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Abstract 
 

The study of mortality rates has a long history which has been used in 

the literature of fitting and forecasting. For Part-1, I have modelled 

mortality rates for 21 countries in Europe using three models: Lee-

Carter (LC), Gompertz-Makeham (GM) and Polynomial Model (PM). 

Each model estimates parameters which contribute in calculating 

mortality. The accuracy of new Polynomial model directly depends on 

the number of parameters used. The dataset comprises available data 

from male and female aged 0-99 from the years 1985-2014. The 

comparison between the fitted mortality rates of the different proposed 

models and the actual mortality formula has been based on total 

mortality rate for each specific gender. This paper focuses on 

investigating the comparative evaluations of these models based on 

different errors. And then for Part-2, we examine the accuracy by 

predicting the missing mortality of one random year in the defined time 

period and measure the predicting error which resonates similarly to 

forecasting. 
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1. Introduction 
Social networks have been intensively studied by social scientists for several decades 

in order to understand both local phenomena, such as relationship formation and their 

dynamics, as well as network-wide processes, such as transmission of information. 

The recent substantial interest in the structural and functional properties of complex 

networks has been partially stimulated by attempts to understand the characteristics 

of social networks. In everyday social life or professional collaborations, people tend 

to form relationships, the existence of which is a prominent characteristic of social 

networks. Network formation has been studied in many research fields with their 

different focuses. Modelling social networks serves atleast two purposes. Firstly, it 

helps us understand how social networks form and evolve. Secondly, in studying 

network-dependent social processes by simulation, such as diffusion or retrieval of 

information, successful network models can be used to specify the structure of 

interaction [1]. 

The development of stochastic models for the analysis of social networks is an 

important growth area within contemporary statistics. The last few decades have 

witnessed the rapid development of a variety of statistical models capable of 

representing the global structure for generating a social network. The formation of 

social network depends mainly on two factors: one, the dynamic ties between the 

individuals and two, on statistical model of mortality which provides information such 

as age, gender, population, country [2]. 

Mortality contributes significantly to population dynamics and is crucial in many 

fields such as economy, demography and social sciences. Early mortality tables were 

deterministic and static in nature assuming no further improvement in mortality rates 

over time and treating all lives as homogeneous with respect to mortality. In more 

recent years, and as populations age more rapidly, greater attention has been given to 

the modelling and forecasting of mortality and in particular to the uncertainty 

surrounding mortality rates.  

Early attempts to model mortality did not take account of potential future 

improvements in mortality rates. Rather, they took current and past data and assumed 

that future mortality would behave in the same way. An important step towards the 

development of early age-continuous mortality models came from the early mortality 

laws originating from the fitting of a mathematical formulae to the mortality data. The 

first attempt to mathematically model mortality with a continuous formula was 

proposed in 1725 by Abraham De Moivre, who suggested 
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where lx is the number of individuals still alive at age x and k is a normalizing constant, 

the assumption in this model being that all individuals will have died by age 86. 

The models were more subjective than extrapolative, indicating that they relied 

heavily on the opinions of the modellers themselves. There are few ways, if at all 

possible, to obtain exact mortality rates. The most successful approach to modelling 

mortality in recent decades has been the extrapolative method which relies heavily on 

data which has become more and more available in recent years. 

In 1825 Gompertz’s law constitutes one of the most influential proposals in the early 

times of survival modelling. It is expressed in terms of what we now call a” force” of 

mortality. In the early 1990’s researchers began to look at modelling mortality using 

time series to extrapolate the time trend based on historic mortality experience. These 

sorts of models make the implicit assumption that past trends identified in the data 

will continue into the future. The first and most recognized of these types of models 

is the Lee Carter mortality model which models the time trend using a one factor 

stochastic model [9]. 

The mortality models study various factors:  

• Historical trends: characterize historical patterns of mortality and project 

future trends are based on age and time dependent changes in the rate of 

mortality 

• Contributing factors responsible for variation in mortality that affect the risk 

of deaths 

The number and complexity of mortality models have grown rapidly since the first 

law of mortality. A good model provides a simple but adequate mathematical 

description of mortality by age and/or time. The objective of this thesis is to study 

three different extrapolative mortality models and summarize their parameters. We 

design a new model called Polynomial model, which produces better mortality when 

compared with existing models such as Lee-Carter and Gompertz-Makeham. This 

new model gives a trade-off between the number of parameters and the accuracy of 

the mortality. After defining the models, we discuss model specification, estimation 

and assessment.  

This thesis explores a progression of three models. The rest of the paper is organized 

as follows: Section-2 describes about what mortality is and how it is calculated. 

Section-3 defines the three models along with new Polynomial model. Section-4 

assess the parameters and mortality produced by each model. Section-5 tests the 

goodness fit of three models by calculating four errors (RMSE, MAE, MRE and 

MARE). And finally, Section-6 calculates prediction errors for any missing mortality 

data for the new model. 
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2. Fundamentals 
2.1 Data Description 

Our study is based on data obtained from population and death tables of 21 

European countries for 3 decades from 1985-2014. The tables are taken from the 

websites www.mortality.org and https://ec.europa.eu/eurostat/data/database. The 

original raw data collected from reliable sources (mostly as published or distributed 

by national statistical offices), from which all mortality estimates and life tables are 

derived. These data tables are separately available for female and male populations 

for the ages 0-99. To demonstrate the changes in our data, it has been classified into 

age-groups and total mortality rate for each country.  

Table 1: List of 21 Countries for modelling mortality and their abbreviation as 

stated by Eurostat. 

Countries - Abbreviation 

Austria – AT Finland – FI Norway – NO 

Belarus – BY France – FR Poland – PL 

Belgium – BE Germany – DE Portugal – PT 

Bulgaria – BG Greece – EL Spain – ES 

Czechia – CZ Italy – IT Slovakia – SK 

Denmark – DK Lithuania – LT Sweden – SE 

Estonia – EE Netherlands – NL Switzerland - CH 

 

2.2 What is Mortality? 

Mortality rates look at the number of people who die relative to the size and age of 

the population at a specified interval (1985-2014), and gives a general measure of that 

population. It is nothing more than the incidence of death in a certain time window. 

m(x, t) = 
C(x,t)

P (x,t)
 = 

deaths (x,t)

average population (x,t)
 

where, Year = t; Age = x 

The life table provides the most complete description of mortality in any population. 

The basic data input needed for its construction are the age-specific death rates 

calculated from information on both deaths and population by age and sex. 

 

 

https://ec.europa.eu/eurostat/data/database
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• Death Matrix 

Processing of death counts are collected by sex, completed age, year of death. The 

matrix represents the number of deaths of a given sex at age completed i in year n 

(𝐶𝑖
𝑛). The matrix is arranged with the years (1985-2014) in column-wise and ages (0-

99) in row-wise. 

 

 

 

 

• Population Matrix 

Estimating population size, census data and annual population estimates by sex and 

age are collected from statistical offices. The matrix represents population of a given 

sex at age completed i in year n (𝑃𝑖
𝑛). It is arranged with the years (1985-2015) in 

column-wise and ages (0-99) as row-wise. 

 

  

     

Since we simulated for 21 countries, it is hard to display all the countries graphs, but 

in order to illustrate an example, we have decided to display Spain throughout the 

report. The below figures 2.2.1 and 2.2.2 represent death graphs while the figures 

2.2.3 and 2.2.4 demonstrate population graphs for both female and male. The graphs 

are organized as follows: the number of deaths and population on y-axis, years on x-

axis and ages on z-axis. And the estimated mortality rate for both genders are 

displayed in the figures 2.2.5 and 2.2.6 with the mortality rate on y-axis. 
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       Figure 2.2.1: Female’s Deaths 

 

       Figure 2.2.2: Male’s Deaths 

 

The deaths in males is higher than females by 9.92%. In terms of age-groups, the 

deaths are higher for age range 51-99 by 157.75% when compared to age range 0-50 

for males and for females it is 179.55%. The occurrence of highest deaths in males 

happened in 2012 at age 83 and for females it is also in 2012 but at age 89. 
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    Figure 2.2.3: Female’s Population 

 

     Figure 2.2.4: Male’s Population 

 

The population size is higher in females than males by 3.47%. In terms of age-groups, 

the population is higher for age range 0-50 by 85.16% when compared to 51-99 for 

males and for females it is 65.88%. The highest population is noticed in 2011 for 

females at age 34 while for males it is in 2009 at age 32.  
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   Figure 2.2.5: Female’s Mortality - Spain 

 

   Figure 2.2.6: Male’s Mortality - Spain 

 
 

The males produce higher mortality than females by 26.61%. The highest mortality 

for both females and males are in the year 1999 at age 99. And the lowest mortality 

for females is in 2010 at age 8 while for males it is in 2014 at age 9. 

 

m 

m 
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2.3 Age-group Mortality 

Comparing mortality between age-groups accounts for the difference in the structure 

of the populations. To observe the difference in the mortality patterns for both female 

and male populations, the data has been classified as age-group tables. The ages are 

divided into 5 categories:0-19, 20-39, 40-59, 60-79, 80-99.  Each age group 

summarizes mortality for the entire time period (1985-2014). And finally, at the end 

we add mortality of all ages and acquire total mortality for each country. 

Tables 2.3.1displays the mortalities for 21 countries with gender-specific. Mortality 

rates are very volatile and vary from age group to age group and also from year to 

year. Refer to Table 1 for abbreviations of countries. 

Table 2.3.1: Actual Mortality Rate – Age-group 
 0-19 20-39 40-59 60-79 80-99 Total 

F M F M F M F M F M F M 

AT 0.17 0.26 0.18 0.46 1.07 2.23 7.45 13.81 83.65 100.55 92.52 117.31 

BE 0.17 0.26 0.21 0.48 1.17 2.13 7.33 14.28 77.18 99.19 86.06 116.34 

BG 0.37 0.51 0.3 0.7 1.63 4.09 12.97 20.95 105.12 114.83 120.39 141.08 

BY 0.29 0.45 0.4 1.51 2.05 6.3 12.78 25.29 85.61 101.83 101.13 135.38 

CH 0.16 0.23 0.18 0.44 0.88 1.62 5.88 11.43 74.46 93.95 81.56 107.67 

CZ 0.18 0.27 0.2 0.53 1.39 3.3 11.09 19.84 99.46 116.9 112.32 140.84 

DE 0.16 0.23 0.19 0.42 1.13 2.27 7.84 14.45 80.23 94.29 89.55 111.66 

DK 0.2 0.23 0.3 0.44 1.83 2.28 11.69 15.14 90.88 98.19 104.9 116.28 

EE 0.68 0.81 0.4 1.37 1.77 4.77 11.45 23.96 48.84 122.36 63.14 153.27 

EL 0.18 0.26 0.17 0.47 0.85 1.89 7.48 12.41 75 85.94 83.68 100.97 

ES 0.16 0.23 0.18 0.49 0.83 1.98 5.98 12.17 71.84 88.36 78.99 103.23 

FI 0.14 0.22 0.2 0.59 1.04 2.55 7.44 14.94 81.27 100.12 90.09 118.42 

FR 0.16 0.24 0.22 0.56 1.04 2.45 5.66 12.14 67.15 90.42 74.23 105.81 

IT 0.16 0.23 0.16 0.41 0.88 1.73 6.55 12.54 72.74 92.32 80.49 107.23 

LT 0.3 0.46 0.37 1.44 1.89 5.7 10.2 20.63 84.5 92.46 97.26 120.69 

NL 0.16 0.22 0.18 0.3 1.12 1.71 7.35 14.08 77.9 99.16 86.71 115.47 

NO 0.33 0.23 0.21 0.42 1.24 1.72 10.36 13.05 99.25 97.13 111.39 112.55 

PL 0.28 0.41 0.23 0.77 1.57 4.23 10.5 20.05 87.78 101.23 100.36 126.69 

PT 0.23 0.35 0.24 0.71 1.08 2.49 7.86 14.39 79.16 98.53 88.57 116.47 

SE 0.13 0.17 0.16 0.35 0.96 1.56 6.83 11.93 76.28 98.26 84.36 112.27 

SK 0.26 0.36 0.22 0.64 1.54 4.20 11.53 21.25 98.93 116.2 112.48 142.65 

It can be observed that males have higher mortality than females for all countries 

stated. The highest mortality for both males and females in the 80-99 age range and 

least mortality in the 0-39 age range which is the normal pattern. In comparison to all 

the countries mortality, it is observed that Bulgaria has the highest female mortality 

whereas Estonia has the lowest. Bulgaria has 62.39% higher female mortality than 

Estonia. And for males, Estonia has the highest and Greece has the lowest. Estonia 

shows 41.14% higher male mortality than Greece. 

In order to observe the uniform differences in mortality data values mentioned in 

Table 2.3.1, we have normalized total mortality rate between 0 and 1 in the below 

figure 2.3.1. 
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Figure 2.3.1: Normalized Actual Mortality for Females/Males 
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3. Fitting Mortality Models 

3.1 Flowchart 

 

  
Data Collection 

ages, sex, years 

Death Matrix - form the 

matrix using number of 

deaths (𝐶𝑖
𝑛) 

 

Population Matrix – 

form the matrix using 

number of population 

(𝑃𝑖
𝑛) 

Actual 

Mortality 

m(t,x) 

LC Mortality GM Mortality 
PM Mortality 

order- 5, 10, 15 

Measuring the Errors for different models 

RMSE MAE MRE MARE 

- 

- 

- 
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The above flowchart shows the steps involved in modelling mortality for 21 countries. 

At first, we obtain raw data with ages, deaths, population size for each gender. Then, 

we obtain death and population matrices and calculate mortality using the formula in 

Section 2.2. The next step, we fit mortality using three different models as stated in 

upcoming sections. And finally, calculate four errors (RMSE, MRE, MAE and 

MARE) to test the goodness of these models. 

3.2 Lee-Carter Model 

The Lee and Carter model, published in 1992, was the first attempt to model longevity 

data in a stochastic fashion by fitting the past mortality data and modelling the time 

trend as a stochastic process. The benefit of this model is it does not require subjective 

judgment or causes of death. Instead it models the data as a stochastic time series. It 

has become the baseline model against which all stochastic models of mortality have 

since been compared. Since it incorporates period (in years) and age mortality 

dynamics, the modelling mortality is based on past trends in age and time. The 

formulation of the Lee-Carter model is as follows [4]: 

 

Usually, x represents age completed i, and t year n in the death and population 

matrices. The Singular Value Decomposition (SVD is a factorization of 

a real or complex matrix) approach is used for estimation of the parameters bx and kt 

of the LC model. Lee and Carter seek to summarize and age-period surface of log-

mortality rates log m(x, t) in terms of vectors a represents the general tendency in 

mortality for different ages and b shows the rate of change in the mortality with 

respect to changes in kt. The mortality index, kt, demonstrates the period effect which 

is the relationship between time-dependent events and mortality rates, and the error 

term, ext takes into consideration the random historical fluctuations not captured by 

the model. The ext is assumed to be an independent and identically distributed 

Gaussian random variable with mean 0 and variance 𝜎2 [3].  

Lee-Carter model estimate the parameters by imposing two constraints on bx and kt 

to avoid the identification issue that arises when there is more than one solution to a 

parameter estimate. Uniqueness of parameters is therefore ensured. bx is thus summed 

to unity and the summation of kt is brought to zero. 

With the constraint imposed on the mortality index, it can be concluded that the 

parameter is being distributed equally with the instances eliminating each other so that 

the sum of all the time-dependent parameters gives a value of zero. 

 

https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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3.3 Gompertz-Makeham Model 

The Gompertz–Makeham law states that the human death rate is the sum of an age-

dependent parameter (the Gompertz parameter, named after Benjamin 

Gompertz), which increases exponentially with age and an age-independent 

parameter (the Makeham parameter, named after William Makeham). In a protected 

environment where external causes of death are rare (laboratory conditions, low 

mortality countries, etc.), the age-independent mortality component is often 

negligible. In 1825, Benjamin Gompertz proposed an exponential increase in death 

rates with age [8]. 

For many purposes, the Gompertz model provides a satisfactory fit to adult mortality 

rates. However, a close inspection of the difference between model estimates and 

observed death rates often reveals systematic underestimation of actual mortality at 

youngest adult ages (younger than 40) and overestimation at the oldest ages (over 80). 

The deviation at lower ages was addressed by Makeham (1860) with the addition of 

a constant to the Gompertz model. This new parameter is usually referred to as 

background mortality, which is the same for all the years. The Makeham model 

represents a clear improvement over the Gompertz model at younger ages, but it still 

overestimates mortality at the oldest ages [5]. 

The decline in the human mortality rate before the 1950s was mostly due to a decrease 

in the age-independent (Makeham) mortality parameter, while the age-dependent 

(Gompertz) mortality parameter was surprisingly stable.  

 
 
 

The Makeham parameter, a constant mortality rate independent of aging added to the 

Gompertz law of human mortality, is proposed to be a measure of the impact on 

mortality rate by extrinsic causes of mortality, with the effect of aging removed. 

 
 
 
 
 
 
 
 
 

Makeham parameter Gompertz parameter 

https://www.wikiwand.com/en/Gompertz_function
https://www.wikiwand.com/en/Benjamin_Gompertz
https://www.wikiwand.com/en/Benjamin_Gompertz
https://www.wikiwand.com/en/Exponential_growth
https://www.wikiwand.com/en/William_Makeham
https://www.wikiwand.com/en/Mortality_rate
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3.4 Polynomial Model 

This new model has been designed for this project whereas Lee-Carter and Gompertz-

Makeham models have already existed. The new polynomial model has been 

introduced to show that the mortality fitting directly depends upon the number of 

parameters which varies on the order of the polynomial and also ought to produce 

better mortality in comparison with other models. 

Step 1: We acquire logarithm of actual mortality and obtain polynomial fitting for 

each year over the ages (0-99)  

 

 

 

Step 2: Then approximate coefficients for the above fitted polynomials (Poly_Fit). 

Number of coefficients is equal to the order of polynomial plus 1. 

 

Step 3: We approximate coefficient matrix with a polynomial over the years from the 

Poly_Mod.p.  

 

Step 4: We obtain mortality by applying the approximated coefficients (Poly_Mod.q) 

for both number of years and ages. 
  

 

… 

⋱ ⋮ ⋮ 

… 

Poly_Mod.p = 

q 1,1 … q 1, coeff 

⋮ ⋮ 

qcoeff, 1 q coeff,coeff 
… 

⋱ Poly_Mod.q = 

Pcoeff = q1,1t+q1,2t2+……+qcoeff,coefftcoeff 

mx,t = p1x+p2x2+…….+pcoeffxcoeff 

a11 

a30,1 

a1, coeff 

a30, coeff years x coefficients 

log(m0,1985)  … log(m0,2015)  

⋮ ⋱ ⋮ 
log(m99,1985)  … log(m99,2015)  

Poly_Fit = 
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4. Mortality Modelling Results 

4.1 Lee-Carter 

4.1.1  Estimating Parameters 
This section presents the results of estimation of parameters in LC model. Estimated 

values of age-dependent parameter ax are reported in Table 4.1.1 which is a 

summation of all ages 0-99. The estimated parameter vector ax is determined as the 

average over time of the logarithm of the mortality rates. 

 
Table 4.1.1: Age-dependent parameter ax 

 ax  ax  ax 

 F M  F M  F M 

AT -609.77 -548.76 DK -563.80 -550.81 LT -562.43 -481.68 

BE -604.20 -547.19 EE -554.87 -469.88 NL -611.14 -565.65 

BG -558.38 -500.26 EL -617.60 -555.68 NO -581.27 -559.83 

BY -554.00 -473.10 ES -622.16 -555.33 PL -582.86 -508.65 

CH -622.34 -564.52 FI -609.55 -540.07 PT -595.60 -528.39 

CZ -589.05 -524.97 FR -614.38 -546.28 SE -621.70 -572.40 

DE -607.35 -551.65 IT -623.07 -562.24 SK -580.37 -510.25 

 

4.1.2 Mortality Rate 
Table 4.1.2 represents mortality produced by LC model which is a total for all years 

(1985-2014) and ages (0-99). LC model produces similar mortality trends as the 

Actual mortality as stated in Table 2.3.1 

Table 4.1.2: LC mortality rate 

 F M  F M  F M 

AT 92.36 116.81 DK 104.00 115.68 LT 96.74 119.78 

BE 85.93 115.90 EE 63.14 149.11 NL 86.62 115.26 

BG 119.12 139.31 EL 83.39 100.72 NO 110.73 112.01 

BY 100.45 134.58 ES 78.91 103.08 PL 100.20 126.39 

CH 81.43 107.28 FI 89.77 117.42 PT 88.40 116.07 

CZ 112.04 139.91 FR 74.15 105.69 SE 84.27 112.01 

DE 89.38 110.96 IT 80.37 107.06 SK 111.92 140.43 
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The red circles are scattered over the graph represents the Actual mortality to 

demonstrate the difference produced by LC model. 

 Figure 4.1.1: Female’s LC Mortality - Spain 

 
LC model produces 0.1% less total mortality than Actual for females. From figure 

4.1.1, the highest mortality occurrence for LC happens in 1986 at age 99 whereas for 

Actual it was 1999 at same age. The lowest mortality appears in 2014 at age 8 for LC 

but for Actual, it was 2010 at same age.  

 Figure 4.1.2: Male’s LC Mortality - Spain 
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LC model shows 0.15% lower mortality than Actual for Males. From the above figure, 

the highest mortality occurrence for LC shows in 2014 at age 99 while for Actual 

mortality, it was in 1999 at the same age. And for the lowest mortality, it was in 2014 

for both Actual and LC model but at different ages (Actual at age 9 and LC at 11). 

In figure 4.1.3, we represent normalized mortality differences between Lee-Carter and 

Actual mortality for both genders. 

Figure 4.1.3: Comparison between LC & Actual mortality- Female/Male (Normalized) 

 
 

 

  

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

AT BE BG BY CH CZ DE DK EE EL ES FI FR IT LT NL NO PL PT SE SK

Actual_M LC_M Actual_F LC_F



 

17 
 

4.2 Gompertz-Makeham 

4.2.1 Estimating Parameters 
GM model consists of three parameters that need to be fitted in order to calculate the 

mortality rate. α and β parameters vary between populations over years whereas γ is 

affected by age over time. The results of the estimated parameters are reported in 

Table 4.2.1 for all the countries for each gender. 

Table 4.2.1: GM Parameters 
 α β γ 

F M F M F M 

AT 4.23E-08 0.00399 0.000319 0.001445 3.219 2.848 

BE 4.17E-07 0.000927 0.000398 0.002151 3.113 2.700 

BG 0.002773 0.00132 0.003288 0.007465 2.550 2.263 

BY 1.04E-08 0.0017 0.003417 0.013736 2.407 1.980 

CH 2.50E-05 0.002313 0.000127 0.000727 3.451 3.024 

CZ 3.46E-08 0.002319 0.001008 0.003518 2.872 2.561 

DE 0.000749 0.002831 0.000393 0.002574 3.119 2.699 

DK 0.001473 0.004092 0.001138 0.001426 2.778 2.766 

EE 7.52E-05 0.181499 0.009947 0.006361 1.851 3.430 

EL 2.35E-08 0.000822 0.000947 0.001478 2.795 2.690 

ES 6.68E-09 0.000427 0.000286 0.001269 3.216 2.771 

FI 1.25E-05 0.00816 0.000316 0.00141 3.220 2.811 

FR 1.02E-08 0.003215 0.000168 0.001001 3.349 2.874 

IT 1.02E-07 5.65E-08 0.000237 0.001191 3.260 2.812 

LT 0.007974 0.034933 0.001691 0.008061 2.852 2.254 

NL 3.32E-07 2.40E-07 0.000239 0.001592 3.234 2.728 

NO 0.003252 0.000579 0.000422 0.001128 3.113 2.811 

PL 1.76E-08 0.001146 0.001411 0.006967 2.767 2.279 

PT 1.11E-07 0.000125 0.000592 0.001879 2.957 2.654 

SE 3.14E-06 6.11E-08 0.000197 0.000782 3.321 2.945 

SK 0.00087 0.030258 0.000839 0.003549 2.912 2.593 

4.2.2 Mortality Rate 
Table 4.2.4 represents mortality produced by GM model which is a total for all years 

(1985-2014) and ages (0-99). GM model produces similar mortality trends as the 

Actual mortality as stated in Table 2.3.1 

Table 4.2.4: GM mortality rate 

 F M  F M  F M 

AT 94.25 118.16 DK 106.08 116.48 LT 99.37 121.54 

BE 87.75 118.26 EE 67.76 154.54 NL 87.89 117.81 

BG 125.71 143.91 EL 87.16 102.32 NO 112.07 113.75 

BY 104.59 137.13 ES 81.05 104.39 PL 103.35 128.56 

CH 82.57 108.19 FI 91.39 118.78 PT 91.11 117.56 
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CZ 115.66 142.23 FR 75.21 106.27 SE 85.50 113.79 

DE 91.05 112.47 IT 81.92 108.69 SK 114.20 143.65 

 

The red circles are scattered over the graph represents the Actual mortality to 

demonstrate the difference produced by GM model. 

GM model produces 2.57% more total mortality than Actual mortality. From below 

figure 4.2.1, the highest occurrence of mortality for GM model is in 1999 at age 99 

which is same for Actual mortality. While the lowest mortality for GM is in 2011 at 

age 0 but for Actual it was in 2010 at age 8. 

 Figure 4.2.1: Female’s GM Mortality - Spain 

 

For the male mortality, GM produces 1.12% more than Actual mortality. From figure 

4.2.2, the highest mortality occurrence for GM happens in 1994 at age 99 whereas 

for Actual it was 1999 at same age. The lowest mortality appears in 2014 at age 0 
for GM and for Actual, also in the same year but at age 9. 
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Figure 4.2.2: Male’s GM Mortality - Spain 

 

In figure 4.2.3, we represent normalized mortality differences between Gompertz-

Makeham and Actual mortality for both genders. 

Figure 4.2.3: Comparison between GM & Actual mortality- Female/Male 

(Normalized) 
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4.3 Polynomial Model 

4.3.1 Estimating Parameters 
To demonstrate the difference in mortalities produced by different orders of 

polynomial, we have considered three orders (5, 10, 15). The below table 4.3.1 will 

display the summation of coefficients (Poly_mod.q) for each order with gender-

specific. The table 4.3.2 compares the number of parameters used by each model and 

Polynomial model of order 15 uses the highest parameters followed by Lee-Carter. 

Number of Coefficients = Order + 1 

Table 4.3.1: PM parameters 
 5 10 15 

F M F M F M 

AT -3.75 -3.25 -3.80 -3.27 -3.79 -3.27 

BE -3.74 -3.22 -3.81 -3.24 -3.77 -3.22 

BG -3.12 -2.71 -3.12 -2.78 -3.08 -2.78 

BY -3.15 -2.62 -3.18 -2.63 -3.11 -2.59 

CH -3.93 -3.41 -4.02 -3.45 -3.97 -3.45 

CZ -3.39 -2.92 -3.43 -2.99 -3.41 -3.00 

DE -3.71 -3.23 -3.75 -3.23 -3.72 -3.21 

DK -3.29 -3.15 -3.34 -3.15 -3.36 -3.13 

EE -3.28 -2.60 -3.33 -2.60 -3.21 -2.58 

EL -3.71 -3.30 -3.70 -3.29 -3.66 -3.25 

ES -3.97 -3.33 -3.96 -3.34 -3.95 -3.33 

FI -3.81 -3.23 -3.87 -3.25 -3.83 -3.24 

FR -4.05 -3.40 -4.08 -3.42 -4.06 -3.41 

IT -3.89 -3.33 -3.92 -3.34 -3.90 -3.33 

LT -3.44 -2.86 -3.45 -2.89 -3.39 -2.84 

NL -3.72 -3.21 -3.78 -3.22 -3.74 -3.20 

NO -3.38 -3.28 -3.38 -3.30 -3.35 -3.29 

PL -3.47 -2.93 -3.51 -2.94 -3.47 -2.93 

PT -3.74 -3.22 -3.71 -3.18 -3.70 -3.17 

SE -3.76 -3.32 -3.81 -3.36 -3.81 -3.35 

SK -3.29 -2.81 -3.27 -2.80 -3.27 -2.81 

 

Table 4.3.2: Summary of Parameters  

Models Number of Parameters 

LC 230 
GM 90 

PM_5 36 
PM_10 121 
PM_15 256 
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4.3.2 Mortality Rate 
Table 4.3.4 display the mortalities produced by orders (5, 10, 15). For all countries, it 

is observed that higher the order of polynomial the closer the mortality gets to the 

Actual mortality (Table 2.3.1). It can also be observed from the table 4.3.2 as the order 

of polynomial increases, the number of parameters required in estimating accurate 

mortality increases. 

Table 4.3.3: PM mortality rate 
 5 10 15 

F M F M F M 

AT 92.26 117.04 92.36 116.89 92.46 117.02 

BE 85.89 116.81 85.94 115.98 86.00 116.08 

BG 120.13 139.86 119.35 139.66 119.59 139.91 

BY 101.69 136.29 100.84 134.86 100.95 135.00 

CH 81.10 107.65 81.45 107.33 81.53 107.42 

CZ 112.09 140.02 112.05 139.92 112.18 140.17 

DE 89.33 111.36 89.35 111.04 89.49 111.44 

DK 104.13 116.16 104.07 115.75 104.51 115.89 

EE 64.20 147.36 63.41 147.33 63.93 148.81 

EL 84.16 101.52 183.40 100.70 83.50 100.83 

ES 79.07 103.66 78.92 103.09 78.97 103.19 

FI 89.88 117.98 89.84 117.57 89.94 117.86 

FR 73.98 105.76 74.14 105.69 74.20 105.75 

IT 80.26 107.46 80.41 107.09 80.47 107.22 

LT 97.05 120.51 96.90 119.91 97.04 120.14 

NL 86.38 115.74 86.64 115.27 86.71 115.36 

NO 110.81 112.95 110.78 112.04 110.96 112.16 

PL 100.27 126.95 100.19 126.34 100.30 126.49 

PT 88.78 117.11 88.40 116.09 88.46 116.22 

SE 83.94 112.47 84.26 112.01 84.32 112.14 

SK 112.01 140.26 111.97 140.64 112.15 141.04 

 
Figures 4.3.1- 4.3.6 displays mortality rates for Spain, both female and male of 

Polynomial model with orders – 5, 10 and 15 with Actual mortality scattered on the 

graphs to show the differences. 

In females, polynomial order of 5 gives 0.1% higher mortality, order 10 produces 

0.09% lower mortality and order 15 gives 0.03% lower mortality than Actual 

mortality. 

And in males, polynomial order of 5 gives 0.42% higher mortality, order 10 gives 

0.14% lower mortality and order 15 gives 0.04% lower mortality than Actual 

mortality. 

Table 4.3.3: Summary of low and high mortality with year and age 
 PM_5 PM_10 PM_15 Actual 

F M F M F M F M 
Low 2014(12) 2014(11) 2014(6) 2014(7) 2014(9) 2014(10) 2010(8) 2014(9) 

High 2014(99) 2010(99) 1995(99) 1995(99) 1997(98) 1996(98) 1999(99) 1999(99) 



 

22 
 

Figure 4.3.1: PM-5 

 

Figure 4.3.3: PM-10 

 

Figure 4.3.5: PM-15 

 
 

 

Figure 4.3.2: PM-5 

 

Figure 4.3.4: PM-10 

 

Figure 4.3.6: PM-15 
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In the below figures 4.3.7 and 4.3.8, we demonstrate the differences of normalized mortality 

produced by different orders (5, 10 and 15) of Polynomial model and Actual mortality for both 

genders. 

Figure 4.3.7: Comparison between PM & Actual mortality- Female (Normalized) 

 
Figure 4.3.8: Comparison between PM & Actual mortality- Male (Normalized) 
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5. Measuring Fitting Errors 
The error calculation is a useful tool in determining the precision of the models. To 

determine which models produces the best results for four different types of errors. 

The first step to estimate error depends on calculating the difference in mortality 

produced by the models and the Actual mortality, that is, the difference between 

estimated values and actual values. 

Error = Models Mortality (𝒎�̂�) – Actual Mortality (mi) 

5.1 Root Mean Square Error (RMSE) 
It is the standard deviation of the residuals (prediction errors). Residuals are a measure 

of how far from the regression line data points are. Table 5.1 displays RMSE error for 

each model with gender specific and for every country. 

 
 

Table 5.1: RMSE Fitting error 
 LC GM PM_5 PM_10 PM_15 

F M F M F M F M F M 

AT 0.148 0.245 0.191 0.242 0.249 0.368 0.142 0.237 0.153 0.203 

BE 0.134 0.218 0.182 0.214 0.216 0.378 0.122 0.198 0.122 0.179 

BG 0.389 0.385 0.382 0.378 0.415 0.374 0.341 0.334 0.306 0.314 

BY 0.259 0.199 0.241 0.2 0.315 0.326 0.173 0.17 0.151 0.154 

CH 0.148 0.226 0.182 0.212 0.252 0.421 0.143 0.203 0.127 0.187 

CZ 0.173 0.293 0.216 0.287 0.223 0.352 0.162 0.287 0.148 0.264 

DE 0.178 0.275 0.217 0.282 0.303 0.4 0.175 0.239 0.128 0.166 

DK 0.336 0.26 0.348 0.237 0.405 0.395 0.327 0.242 0.287 0.218 

EE 0.442 0.576 0.479 0.846 0.498 1.099 0.373 0.733 0.314 0.578 

EL 0.2 0.164 0.273 0.172 0.351 0.391 0.183 0.159 0.186 0.162 

ES 0.109 0.13 0.171 0.145 0.254 0.315 0.109 0.123 0.114 0.132 

FI 0.208 0.327 0.222 0.307 0.285 0.469 0.191 0.308 0.186 0.26 

FR 0.098 0.107 0.149 0.132 0.203 0.28 0.096 0.104 0.102 0.112 

IT 0.114 0.119 0.136 0.123 0.225 0.326 0.106 0.104 0.127 0.13 

LT 0.251 0.259 0.247 0.25 0.283 0.366 0.237 0.238 0.207 0.203 

NL 0.109 0.148 0.136 0.15 0.173 0.32 0.107 0.137 0.105 0.139 

NO 0.31 0.244 0.279 0.249 0.418 0.435 0.29 0.247 0.279 0.234 

PL 0.141 0.164 0.227 0.214 0.171 0.243 0.132 0.15 0.138 0.15 

PT 0.16 0.204 0.194 0.217 0.297 0.364 0.154 0.184 0.151 0.183 

SE 0.109 0.179 0.145 0.191 0.204 0.386 0.113 0.17 0.126 0.152 

SK 0.254 0.444 0.255 0.412 0.3 0.52 0.228 0.421 0.211 0.387 

From the above table, it is noticed that all models give high RMSE error for both 

female and male for the country Estonia (EE). The models LC, PM_10 and PM_15 

where, N = number of data 
points, 3000(100 ages x 30 
years) 

RMSE = 

https://www.statisticshowto.datasciencecentral.com/residual/
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shows low error both female and male for the country France (FR). PM_5 gives low 

error for country Poland (PL) for both genders. While, GM model gives Netherlands 

(NL) low female error and Italy (IT) low male error. 

5.2  Mean Relative Error (MRE) 
This type of error is relative to the size of the item being measured. It is also be used 

to describe accuracy. Table 5.2 displays MRE errors for all models and countries, both 

female and male. 

 

Table 5.2: MRE Fitting error 
 LC GM PM_5 PM_10 PM_15 

F M F M F M F M F M 

AT 0.025 0.015 -0.101 0.198 0.075 0.096 0.035 0.032 0.026 0.016 

BE 0.017 0.012 -0.109 0.168 0.056 0.081 0.025 0.025 0.018 0.013 

BG 0.015 0.011 0.844 0.458 0.042 0.046 0.021 0.018 0.015 0.01 

BY 0.016 0.016 0.465 0.530 0.039 0.048 0.017 0.018 0.011 0.008 

CH 0.036 0.02 -0.262 -0.034 0.087 0.097 0.049 0.032 0.038 0.02 

CZ 0.017 0.011 0.287 0.312 0.053 0.067 0.028 0.026 0.017 0.013 

DE 0.003 0.004 -0.023 0.305 0.036 0.058 0.011 0.016 0.004 0.004 

DK 0.022 0.029 0.136 0.332 0.049 0.093 0.03 0.042 0.021 0.03 

EE 0.053 0.028 1.148 3.257 0.087 0.076 0.06 0.039 0.049 0.028 

EL 0.025 0.014 0.492 0.087 0.066 0.089 0.037 0.034 0.025 0.015 

ES 0.006 0.006 -0.083 -0.059 0.033 0.051 0.011 0.014 0.006 0.004 

FI 0.039 0.031 -0.108 0.44 0.08 0.098 0.053 0.049 0.036 0.031 

FR 0.003 0.003 -0.295 0.024 0.034 0.058 0.011 0.013 0.004 0.003 

IT 0.005 0.005 -0.146 -0.015 0.037 0.065 0.014 0.017 0.006 0.005 

LT 0.031 0.021 0.635 1.57 0.06 0.069 0.04 0.032 0.03 0.018 

NL 0.011 0.007 -0.187 0.23 0.044 0.057 0.017 0.017 0.012 0.008 

NO 0.031 0.031 0.154 0.067 0.061 0.116 0.038 0.048 0.031 0.031 

PL 0.004 0.003 0.253 0.395 0.038 0.052 0.013 0.017 0.005 0.004 

PT 0.015 0.01 0.029 -0.068 0.039 0.052 0.021 0.017 0.014 0.009 

SE 0.029 0.021 -0.189 -0.027 0.074 0.093 0.038 0.33 0.028 0.02 

SK 0.026 0.018 0.234 1.272 0.061 0.068 0.038 0.031 0.028 0.018 

From the table 5.2, it is demonstrated that the models LC, GM and PM_15 give low 

MRE error in the country France (FR) and high error for Estonia (EE) for females. 

While PM_5 and PM_10 shows low error in the country Spain (ES) and high for 

Estonia. In terms for males, models LC, PM_10 and PM_15 give low error in France 

while GM model shows low for Portugal (PT) and PM_5 for Bulgaria (BG). For high 

male errors, LC and PM_15 shows in countries Finland (FI) and Norway (NO), PM_5 

in Norway, PM_10 in Sweden (SE) and GM shows in Estonia. 

 

 

MRE = 
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5.3 Mean Absolute Error 
MAE measures the average magnitude of the errors in a set of predictions, where all 

individual differences have equal weight. Table 5.3 displays MAE errors for all 

models and countries, both female and male. 

 

Table 5.3: MAE Fitting error 
 LC GM PM_5 PM_10 PM_15 

F M F M F M F M F M 

AT 0.001 0.002 0.003 0.003 0.002 0.005 0.001 0.003 0.001 0.002 

BE 0.001 0.002 0.003 0.004 0.002 0.005 0.001 0.002 0.001 0.002 

BG 0.004 0.005 0.007 0.007 0.005 0.005 0.003 0.004 0.003 0.004 

BY 0.003 0.004 0.004 0.004 0.003 0.006 0.002 0.003 0.002 0.002 

CH 0.001 0.002 0.002 0.003 0.002 0.005 0.001 0.002 0.001 0.002 

CZ 0.002 0.003 0.004 0.005 0.003 0.005 0.002 0.003 0.002 0.003 

DE 0.001 0.003 0.003 0.004 0.002 0.005 0.001 0.002 0.001 0.002 

DK 0.003 0.003 0.004 0.003 0.004 0.005 0.003 0.003 0.003 0.002 

EE 0.004 0.008 0.005 0.016 0.004 0.012 0.003 0.009 0.003 0.008 

EL 0.002 0.002 0.004 0.003 0.003 0.004 0.002 0.002 0.002 0.002 

ES 0.001 0.001 0.002 0.002 0.002 0.004 0.001 0.001 0.001 0.001 

FI 0.002 0.003 0.003 0.004 0.002 0.006 0.002 0.003 0.002 0.003 

FR 0.001 0.001 0.002 0.002 0.002 0.004 0.001 0.001 0.001 0.001 

IT 0.001 0.001 0.002 0.002 0.002 0.004 0.001 0.001 0.001 0.002 

LT 0.003 0.004 0.004 0.005 0.003 0.005 0.002 0.003 0.002 0.003 

NL 0.001 0.002 0.002 0.003 0.002 0.004 0.001 0.002 0.001 0.002 

NO 0.003 0.003 0.004 0.004 0.004 0.006 0.003 0.003 0.003 0.003 

PL 0.001 0.002 0.004 0.004 0.002 0.004 0.001 0.002 0.001 0.002 

PT 0.001 0.002 0.003 0.003 0.003 0.005 0.001 0.002 0.001 0.002 

SE 0.001 0.002 0.002 0.003 0.002 0.005 0.001 0.002 0.001 0.002 

SK 0.003 0.005 0.004 0.006 0.003 0.007 0.002 0.005 0.002 0.005 

 
From the above table, it is concluded that all models show high MAE error for males 

in the country Estonia. While models LC, PM_10 and PM_15 gives high female error 

in both Estonia and Bulgaria but GM and PM_5 gives only in Bulgaria. 

5.4 Mean Absolute Relative Error (MARE) 
It is a way to measure the performance of an estimation method in statistics, for 

example in trend estimation, also used as a loss function for regression. Table 5.4 

displays MARE errors for each model with gender specific and for every country. 

 

MAE = 

MARE = 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Trend_estimation
https://en.wikipedia.org/wiki/Loss_function
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Table 5.4: MARE Fitting error 
 LC GM PM_5 PM_10 PM_15 

F M F M F M F M F M 

AT 0.136 0.104 0.356 0.474 0.232 0.293 0.157 0.152 0.139 0.110 

BE 0.115 0.097 0.355 0.395 0.199 0.277 0.132 0.129 0.114 0.095 

BG 0.115 0.098 1.001 0.558 0.176 0.195 0.127 0.113 0.111 0.089 

BY 0.128 0.137 0.585 0.583 0.177 0.217 0.116 0.111 0.097 0.078 

CH 0.158 0.118 0.403 0.362 0.256 0.303 0.181 0.147 0.160 0.118 

CZ 0.113 0.090 0.472 0.434 0.188 0.235 0.136 0.130 0.113 0.094 

DE 0.057 0.062 0.348 0.476 0.16 0.227 0.085 0.107 0.061 0.06 

DK 0.136 0.139 0.386 0.506 0.19 0.280 0.152 0.164 0.131 0.136 

EE 0.237 0.163 1.273 3.425 0.292 0.267 0.249 0.186 0.221 0.158 

EL 0.135 0.103 0.674 0.341 0.219 0.288 0.16 0.142 0.136 0.103 

ES 0.074 0.072 0.427 0.262 0.154 0.218 0.085 0.091 0.068 0.062 

FI 0.175 0.144 0.386 0.667 0.244 0.289 0.198 0.174 0.167 0.139 

FR 0.057 0.053 0.437 0.379 0.156 0.233 0.081 0.09 0.057 0.051 

IT 0.069 0.068 0.355 0.287 0.159 0.253 0.088 0.095 0.071 0.066 

LT 0.159 0.139 0.852 1.675 0.211 0.247 0.175 0.149 0.154 0.114 

NL 0.092 0.76 0.314 0.399 0.171 0.223 0.107 0.105 0.096 0.082 

NO 0.161 0.148 0.457 0.347 0.224 0.329 0.177 0.179 0.161 0.148 

PL 0.061 0.05 0.445 0.475 0.157 0.206 0.09 0.099 0.068 0.057 

PT 0.106 0.095 0.391 0.277 0.166 0.216 0.123 0.105 0.104 0.083 

SE 0.139 0.119 0.332 0.287 0.23 0.289 0.16 0.143 0.141 0.115 

SK 0.144 0.114 0.448 1.369 0.207 0.231 0.17 0.146 0.151 0.112 

From the table 5.4, it is demonstrated that models LC, PM_10 and PM_15 give low 

MARE error for France and high error for Estonia, in females. While GM and PM_5 

models give high error for Estonia as well but low errors for Netherlands (GM model) 

and Spain (PM_5 model). For males, models PM_10 and PM_15 give low error for 

France and high for Estonia, while GM also display high error for Estonia but low for 

Spain. And finally, for PM_5 model displays low for Bulgaria and high for Norway. 

Table 5.5: Ranking of Fitting errors 
 RMSE MRE MAE MARE 

LEAST 
 
 
 

HIGH 

F M F M F M F M 

PM_15 PM_15 PM_15 PM_15 

PM_10 LC PM_10 LC PM_10 

LC PM_10 LC PM_10 LC 

GM PM_5 PM_5 GM PM_5 

PM_5 GM GM PM_5 GM 

 

From all the above tables (5.1-5.4), it is observed that males show higher errors than 

females. MAE produces the least error compared to the other errors for all models. It 

is noticed from the table 5.5 that based on four errors, Polynomial model of order 15 

gives least error while order-5 and GM model gives highest error. 
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6. Predicting Missing Mortality 

6.1 Flowchart 
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The above flowchart demonstrates the steps for predicting missing year mortality for 

8 countries. The first three steps follow the same procedure as mentioned for fitting 

mortality such as collection of data and organising it into death and population 

matrices. Then the actual mortality is calculated but with exception of removing one 

random year. The polynomial model estimates this missing mortality with different 

orders (5, 10, 15). And finally, errors (RMSE, MRE, MAE, MARE) are calculated in 

testing the accuracy of prediction. 

6.2 Data Description 

For the second part of the thesis, we are trying to evaluate the predictability of the 

new Polynomial model for the missing mortality values in the defined time period 

(1985-2014). In this case, we can randomly delete any one year. And then calculate 

four different errors as in the first part to test the accuracy in predicting. This part 

closely resonates to forecasting as the model is trying to calculate the incomplete 

mortality data. 

Table 6.2 lists the countries used for prediction for each gender specific and missing 

years. 
 F M  F M 
BE 2012 2011 FR 2003 2011 
BG 2011 2003 IT 2011 1989 
DE 1989 1988 PL 2011 2008 
ES 2011 2008 PT 2011 1989 

6.3 Mortality Rate 

In this section, we compare the predicting year mortality of polynomial model with 

the actual mortality.  For this, we summarize the ages (0-99) to obtain mortality for 

the predicting year.  

Table 6.3 illustrates the difference in mortality predicted by different orders of 

Polynomial model 

 F M 
Actual PM_5 PM_10 PM_15 Actual PM_5 PM_10 PM_15 

BE 2.575 2.464 2.493 2.438 3.248 3.477 3.5 3.426 

BG 4.108 3.657 3.774 3.8 4.672 4.55 4.637 4.674 

DE 3.522 3.332 3.302 3.398 4.273 4.296 4.295 4.422 

ES 2.257 2.285 2.277 2.223 3.217 3.205 3.192 3.193 

FR 2.568 2.332 2.333 2.365 2.976 3.064 3.099 3.05 

IT 2.322 2.342 2.372 2.299 3.846 3.953 3.935 3.911 

PL 2.811 2.925 2.915 2.92 3.901 3.827 3.859 3.891 

PT 2.412 2.544 2.577 2.556 4.028 4.22 4.333 4.473 
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6.4 Measuring Predicting Errors 
For this section, we look at four error types as mentioned previously for fitting to give 

insight about the precision of different orders of Polynomial model.  

From below table 6.4.1, it is shown that PM_5 model gives high RMSE female error 

for Germany (DE) while PM_10 and PM_15 gives high error for Bulgaria. For low 

female error, PM_5 (Poland), PM_10 (Spain) and PM_15 (Italy). For low RMSE male 

errors, all three models show for Spain and for high error, PM_5 (Portugal), PM_10 

(Belgium) and PM_15 (Germany). 

 
Table 6.4.1: RMSE 

 5 10 15 

F M F M F M 

BE 0.184 0.226 0.125 0.275 0.167 0.264 

BG 0.711 0.296 0.652 0.232 0.636 0.228 

DE 0.817 0.346 0.649 0.218 0.613 0.4 

ES 0.11 0.192 0.063 0.077 0.123 0.104 

FR 0.335 0.243 0.264 0.124 0.241 0.12 

IT 0.118 0.331 0.125 0.111 0.087 0.193 

PL 0.104 0.243 0.116 0.108 0.144 0.138 

PT 0.176 0.384 0.164 0.268 0.143 0.385 

Table 6.4.2: MRE 

 5  10 15 

F M F M F M 

BE 0.008 0.048 -0.006 0.012 -0.014 -0.002 

BG 0.012 0.039 -0.003 -0.011 0.022 -0.005 

DE 0.064 0.088 0.04 0.004 0.061 -0.033 

ES 0.019 0.033 0.001 0.007 -0.027 0.009 

FR -0.006 0.051 -0.026 0.032 -0.021 0.02 

IT 0.026 0.121 0.018 0.048 -0.005 0.031 

PL 0.048 0.019 0.007 0.018 -0.002 0.006 

PT 0.054 0.119 0.013 0.082 -0.005 0.06 

Table 6.4.3: MAE 

 5 10 15 

F M F M F M 

BE 0.001 0.004 0.001 0.003 0.002 0.003 

BG 0.007 0.005 0.007 0.004 0.007 0.003 

DE 0.004 0.005 0.003 0.002 0.003 0.003 

ES 0.001 0.002 0.001 0.001 0.001 0.001 

FR 0.003 0.003 0.002 0.002 0.002 0.002 

IT 0.001 0.005 0.001 0.001 0.001 0.002 

PL 0.001 0.003 0.001 0.001 0.001 0.002 

PT 0.002 0.006 0.002 0.004 0.002 0.005 

For low female MRE errors, both 

PM_5, PM_10 shows France and 

PM_15 (Spain). For high female errors, 

all models show Germany. For low 

male errors, PM_5 (Poland), PM_10 

(Bulgaria) and PM_15 (Germany). 

And finally, for high male errors, 

PM_5 (Italy), both PM_10 and PM_15 

shows Portugal. 

For high female MAE errors, all three 

models show Bulgaria. And for high male 

errors, PM_5, PM_15 show Portugal 

while PM_10 shows Bulgaria and 

Portugal. 
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Table 6.4.4: MARE 

 5 10 15 

F M F M F M 

BE 0.182 0.218 0.136 0.111 0.132 0.096 

BG 0.159 0.205 0.133 0.113 0.135 0.101 

DE 0.221 0.306 0.145 0.165 0.116 0.093 

ES 0.12 0.154 0.066 0.081 0.066 0.06 

FR 0.146 0.186 0.093 0.071 0.069 0.041 

IT 0.121 0.416 0.078 0.141 0.06 0.109 

PL 0.145 0.167 0.079 0.087 0.072 0.059 

PT 0.165 0.392 0.126 0.173 0.098 0.143 

In order to observe the difference in four errors, we have calculated Global values 

which summarizes values of all the countries for each error type with gender specific. 

Figure 6.4.1: Global Predicting Errors- Females 

 

Figure 6.4.2: Global Predicting Errors- Males 
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It can be noticed that RMSE produces higher predicting error followed by MARE for 

both female and male. While MAE and MRE gives least errors. Polynomial model of 

order 15 gives least predicting errors for all types which is similar to fitting errors. 

7. Conclusions 

A considerable effort has been devoted in recent years to the understanding of 

complex systems such as Social network. These networks possess a complex 

community structure in which individuals typically belong to groups or communities, 

with a high density of internal connections and loosely connected among them, giving 

rise to a hierarchy of nested social ties. One of the defining features of statistical 

models for the analysis of social network is their ability to represent directly the 

underlying mechanisms generating dependence between network ties. Mortality 

statistics are a useful tool for assessment in Social relationships, Age composition 

which helps to build Social networks (family network, work network and friend 

network).  

Mortality contributes significantly to population dynamics and is crucial in many 

fields such as economy, demography and social sciences. In this thesis, we look deeply 

into different mortality models that contribute towards fitting values to actual 

mortality.  

One of the stochastic mortality models used is the Lee and Carter (1992) model is the 

most frequently used, due to some advantages like the small number of parameters 

compared to other models and the robustness. The second model used is Gompertz-

Makeham model which is the pioneer of a new approach to survival modelling in 

1825. The third, is a new model designed during this thesis called Polynomial model 

which is further divided into three polynomial orders of 5, 10 and 15. All models uses 

different parameters in order to produce mortality. Lee-Carter uses an age-dependent 

parameter, Gompertz-Makeham uses three parameters: one age-independent and two 

age-dependent. And finally, Polynomial model uses coefficients as parameters. The 

new model provides a trade-off between the number of parameters require to produce 

accurate mortality which means as the order of the polynomial increases, the 

parameters involved increases and produces closely to Actual mortality. 

In this paper, 21 countries in Europe have been fitted mortality using these models. 

All the models have shown same mortality trends: Bulgaria shows the highest female 

mortality with Estonia the least, and Greece shows the least male mortality with 

Estonia the highest. It can also be noticed from all the tables shown in the report that 

males demonstrate higher mortality than females. 

In order to test the precision of these fitting models, we have calculated four different 

errors (RMSE, MAE, MRE and MARE) for each model. It is observed that MAE is 

the gives the least error for all models. And also, the Polynomial model of order 15 

shows the best results for all the error types. With Gompertz-Makeham the worst 

model followed by Polynomial of order 5. 
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For the second part of the thesis, we dive deeper to study the new Polynomial model 

by predicting the mortality of a random missing year from ages 0-99. We calculated 

the same error types to study the difference in mortality produced by different orders 

of polynomial. It is seen that as the order of the polynomial increases the prediction 

of mortality gets better. Hence, PM_15 is best model for fitting and predicting. 

8. Future Work 

8.1 Based on the second part of thesis, in terms of predicting the missing mortality. 

We have demonstrated the goodness of new Polynomial model by predicting the 

missing mortality of one random year for all the ages from 0-99. In the future 

study case, we can actually remove more than one year which could be either 

consecutive or randomly picked years. And can also be applied in terms of age 

which could predict for any randomly missing specific age or an age-group. This 

method helps to cope for any incomplete statistical data tables obtained from 

Eurostat or from any source. 

 

8.2 There were 6.8 billion estimates for mobile subscriptions worldwide by end of 

2013. As the mobile market gets saturated, it becomes harder for telecom 

providers to acquire new customers, and makes it essential for them to retain 

their own. Due to the high competition between different telecom providers and 

the ability of customers to move from one provider to another, all telecom 

service providers suffer from customer churn. As a result, churn prediction has 

become one of the main telecom challenges. The primary goal of churn 

prediction is to predict a list of potential churners, so that telecom providers can 

start targeting them by retention campaigns. This work describes work in 

progress in which modelling for churn as a dynamic social behaviour, where 

customer churn propagates in the telecom network over strong social ties. 

Figure 8: Mobile Market Churning Process 
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Statistical Sources:  Collect life tables with data such as age, population size, gender. 

Mortality Modelling: Use stochastic models to estimate mortality. 

Customer’s Profile: define customers by their personal profile or characteristics and 

usage profiles, budget, number of devices. 

Social Network Creation: takes into account nodal attributes such as strong and 

loose ties, homophily (the tendency of individuals to associate with others of same 

kind). 

Customer-telecom interaction: The customer’s behaviour determines the interaction 

between customers and telecom providers in a mobile market. 

Churning Process: the analysis of churning process considers the user profiles of 

customers, satisfaction with the service and price. 

The creation of social network is based on customers’ profile. We accommodate 

customer’s profile information based on statistical sources and establish a mechanism 

to form ties between them based on affinity. Thus, ties are more probable between 

similar people. Customers will decide which telecom provider to choose based on the 

information shared by their friends and the features of the mobile service. The 

churning process is based on the satisfaction with the provider. 
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Appendices 
We present Matlab Code used for our thesis. In part-1 we have fitting mortality models (LC; 

GM and PM) and also errors calculation (RMSE, MRE, MAE and MARE). 

Part – 1 

The datasets 

We use Eurostat or HMD to obtain data for the models. 

debug_level = 0; % 0, 1 or 2 
Eurostat_dir = "Eurostat Data"; 
Error_type = 'mortality'; % Types: 'mortality' or 'deaths' 
Error_ref = 'Eurostat'; % Types: 'Eurostat' or 'Statistical' 
Poly_order_max = 15; 
results_dir = "C:\Users\cash\Documents\MATLAB\Results\ES"; 
results_dir = sprintf("%s_%s_%s", results_dir, Error_type, Error_ref); 
if ~exist(results_dir, 'dir') 
    mkdir(results_dir); 
end 
Country_table = readtable("geo.txt"); 
Country_map = containers.Map(Country_table.EUR,Country_table.Europe); 
%Countries =  
{'BE','BG','BY','CH','CZ','DK','DE','EE','EL','ES','FR','IT','LT','NL', 
'AT','SK','FI','SE','NO','PL','PT'} 
Countries = {'ES'}; 
Sex_code = {'M'}; % M: male or F: female 
%Sex_code = {'F'}; % M: male or F: female 
 
View_graphs = true; 
Save_files = true; 
 
RMSE_global_LC = zeros(1,Poly_order_max); 
MRE_global_LC = zeros(1,Poly_order_max); 
MARE_global_LC = zeros(1,Poly_order_max); 
MAE_global_LC = zeros(1,Poly_order_max); 
RMSE_global_LC2 = zeros(1,Poly_order_max); 
MRE_global_LC2 = zeros(1,Poly_order_max); 
MARE_global_LC2 = zeros(1,Poly_order_max); 
MAE_global_LC2 = zeros(1,Poly_order_max); 
RMSE_global_GM = zeros(1,Poly_order_max); 
MRE_global_GM = zeros(1,Poly_order_max); 
MARE_global_GM = zeros(1,Poly_order_max); 
MAE_global_GM = zeros(1,Poly_order_max); 
RMSE_global_Poly = zeros(1,Poly_order_max); 
MRE_global_Poly = zeros(1,Poly_order_max); 
MARE_global_Poly = zeros(1,Poly_order_max); 
MAE_global_Poly = zeros(1,Poly_order_max); 
 
yearStart = 1985; 
yearEnd = 2014; 
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years = (yearStart:yearEnd); 
 
for country_i = 1:length(Countries) 
    for sex_i = 1:length(Sex_code) 
         
        MinimumAge = 0; 
        MaximumAge = 99; 
        %        ages = (MinimumAge:MaximumAge); 
        sex_EuStat = Sex_code{sex_i}; % M: male or F: female 
        if (sex_EuStat=='M') 
            sex = 'male'; 
        else 
            sex = 'female'; 
        end 
        country_EuStat = Countries{country_i}; % Eurostat Country Code 
        country = Country_map(country_EuStat); % Corresponding Country Name (for 
figures) 

The datasets are the following: 

file_mortality = dir(sprintf("%s\\%s_mortality_%s*", Eurostat_dir, country_EuStat, 
sex_EuStat)); 
file_population = dir(sprintf("%s\\%s_population_%s*", Eurostat_dir, 
country_EuStat, sex_EuStat)); 
segments_m = split (file_mortality.name,{'_','.'}); 
yearStart_m = str2double(cell2mat(segments_m(4))); 
yearEnd_m = str2double(cell2mat(segments_m(5))); 
segments_p = split (file_population.name,{'_','.'}); 
yearStart_p = str2double(cell2mat(segments_p(4))); 
yearEnd_p = str2double(cell2mat(segments_p(5))); 
MinimumAge_m = MinimumAge; 
MaximumAge_m = MaximumAge; 
MinimumAge_p = MinimumAge; 
MaximumAge_p = MaximumAge; 

Death Matrix 

C = dlmread(sprintf("%s\\%s",Eurostat_dir,file_mortality.name))';   % Number of 
deaths -- Dimensions: ... 
% {(MaximumAge - MinimumAge + 1), (yearEnd - yearStart +1)} 
figure; 
surf(yearStart_m:yearEnd_m,MinimumAge:MaximumAge,C); 
title(strcat("Number of ", sex, "'s deaths in ",country," (Eurostat)")) 
xlabel('year') 
ylabel('age') 
zlabel('c') 
         
% if necessary trim the matrix 
i=1; 
while any(isnan(C(:,i))) % Trim left side (if missing values) 
    C(:,i) = []; 
    i = i + 1; 
    yearStart_m = yearStart_m + 1; 
end 
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i=size(C,2); 
while any(isnan(C(:,i))) % Trim right side (if missing values) 
     C(:,i) = []; 
     i = i - 1; 
     yearEnd_m = yearEnd_m - 1; 
end 
i=1; 
while any(isnan(C(i,:))) % Trim top side (if missing values) 
     C(i,:) = []; 
     i = i + 1; 
     MinimumAge_m = MinimumAge_m + 1; 
end 
i=size(C,1); 
while any(isnan(C(i,:))) % Trim bottom side (if missing values) 
     C(i,:) = []; 
     i = i - 1; 
     MaximumAge_m = MaximumAge_m - 1; 
end 
if any(isnan(C)) 
  fprintf("Matrix C not valid (NaN values)\n"); 
  exit; 
end         

Population Matrix 

P = dlmread(sprintf("%s\\%s",Eurostat_dir,file_population.name))';  % Population -- 
Dimensions: ... 
% { (MaximumAge - MinimumAge + 1), (yearEnd - yearStart +2) } 
         
figure; 
surf(yearStart_p:yearEnd_p,MinimumAge:MaximumAge,P); 
title(strcat(regexprep(sex,'(\<[a-z])','${upper($1)}'), "'s Population in 
",country," (Eurostat)")) 
xlabel('year') 
ylabel('age') 
zlabel('p') 
         
% if necessary trim the matrix 
i=1; 
while any(isnan(P(:,i))) % Trim left side (if missing values) 
    P(:,i) = []; 
    yearStart_p = yearStart_p + 1; 
end 
i=size(P,2); 
while any(isnan(P(:,i))) % Trim right side (if missing values) 
    i=size(P,2); 
    P(:,i) = []; 
    yearStart_p = yearStart_p - 1; 
end 
i=1; 
while any(isnan(P(i,:))) % Trim top side (if missing values) 
    P(i,:) = []; 
    MinimumAge_p = MinimumAge_p + 1; 
end 
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i=size(P,1); 
while any(isnan(P(i,:))) % Trim bottom side (if missing values) 
    i=size(P,1); 
    P(i,:) = []; 
    i = i - 1; 
    MaximumAge_p = MaximumAge_p - 1; 
end 
if any(isnan(P)) 
  fprintf("Matrix C not valid (NaN values)\n"); 
  exit; 
end 
         

Number of deaths and Population matrices for the models 
yearStart = max([yearStart_m,yearStart_p]); 
yearEnd = min([yearEnd_m,yearEnd_p]); 
if (yearEnd == yearEnd_p) 
   yearEnd = yearEnd - 1;  % Since we need one more year to calculate the mortality 
end 
MinimumAge = max([MinimumAge_m,MinimumAge_p]); 
MaximumAge = min([MaximumAge_m,MaximumAge_p]); 
        
MAE_LC_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MAE_GM_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MAE_Poly_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MAE_LC2_ind_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MAE_LC_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MAE_GM_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MAE_Poly_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MAE_LC2_ind_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MARE_LC_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MARE_GM_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MARE_Poly_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MARE_LC2_ind_years_val = zeros(Poly_order_max,yearEnd-yearStart+1); 
MARE_LC_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MARE_GM_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MARE_Poly_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
MARE_LC2_ind_age_val = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
ACR_LC_years = zeros(Poly_order_max,yearEnd-yearStart+1); 
ACR_GM_years = zeros(Poly_order_max,yearEnd-yearStart+1); 
ACR_LC2_years = zeros(Poly_order_max,yearEnd-yearStart+1); 
ACR_Poly_years = zeros(Poly_order_max,yearEnd-yearStart+1); 
ACR_LC_ages = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
ACR_GM_ages = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
ACR_LC2_ages = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
ACR_Poly_ages = zeros(Poly_order_max,MaximumAge-MinimumAge+1); 
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Mortality Matrix 

T = C ./ (P(:,1:(size(P,2)-1)) + P(:,2:size(P,2))/2); % Mortality rate 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
surf(yearStart:yearEnd,MinimumAge:MaximumAge,T); 
title(strcat("Mortality rate for ", sex, "s in ",country," (Eurostat)")) 
xlabel('year') 
ylabel('age') 
zlabel('t') 
 
Full_T = T; % This is the full T matrix 
column2remove = randi([2,size(T,2)-1]); 
T(:,column2remove) = []; % Now, we remove one column (year) randomly. 
Full_years = years; 
years(:,column2remove) = []; 

Lee-Carter model 
[LC_Mod.axhat,LC_Mod.bxhat,LC_Mod.kthat,LC_Mod.That] = LC1(T); 
         
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
surf (years,ages,LC_Mod.That) 
hold on; 
[Years, Ages, T_scat] = prepareSurfaceData(years, ages', T); 
scatter3 (Years,Ages,T_scat,'red') 
title(["Lee-Carter Model";strcat("(",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel(strcat(regexprep(sex,'(\<[a-z])','${upper($1)}'), "'s Mortality")) 
                 
% Plot estimated number of deaths 
LC_Mod_Deaths = LC_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2))/2); 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
surf (years,ages,LC_Mod_Deaths) 
hold on; 
[Years, Ages, C_scat] = prepareSurfaceData(years, ages', C); 
scatter3 (Years,Ages,C_scat,'red') 
title(["Lee-Carter Model";strcat("(",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel(strcat(regexprep(sex,'(\<[a-z])','${upper($1)}'), "'s Deaths")) 
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Gompertz-Makeham model 
GM_Mod = GM_model_exp_poly (ages,years,T,nan, nan, nan); 
         
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
surf (years,ages,GM_Mod.That) 
hold on; 
scatter3 (Years,Ages,T_scat,'red') 
title(["Gompertz-Makeham Model";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel("Mortality") 
         
% Plot number of deaths 
GM_Mod_Deaths = GM_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2))/2); 
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
surf (years,ages,GM_Mod_Deaths) 
hold on; 
scatter3 (Years,Ages,C_scat,'red') 
title(["Gompertz-Makeham Model";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel("Deaths") 
         

The polynomial model 
StartPoint_val = 0.01; 
Lower_val = 0; 
Upper_val = 1; 
for poly_order = 1:Poly_order_max 
    clearvars Pol_Mod; 
% Approximate mortality for each year with a polynomial 
for i=1:size(years,2) 
    method = sprintf('poly%d',poly_order); 
    method = char(method); 
    Polfit = Poly_fit(ages',log(T(:,i)),poly_order); 
    Pol_Mod.p(i,:) = Polfit(:)'; 
end            
% Approximate the coefficients with a polynomial 
for i=1:poly_order+1 
    p_a = sprintf('p%d',i); 
    p_a = char(p_a); 
    Polfit = Poly_fit(years',Pol_Mod.p(:,i),poly_order); 
    Pol_Mod.q(i,:) = Polfit(:)'; 
end 
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for y=1:size(years,2) 
    for a=1:size(ages,2) 
        vect_a=zeros(1,poly_order+1); 
        vect_y=zeros(1,poly_order+1); 
        vect_a(1)=1; 
        vect_y(1)=1; 
        norm_ages = normalize(ages); 
        norm_years = normalize(years); 
        for i=2:poly_order+1 
            vect_a(i)=vect_a(i-1)*(norm_ages(a)); 
            vect_y(i)=vect_y(i-1)*(norm_years(y)); 
        end 
        Pol_Mod.That(a,y) = exp(vect_a*Pol_Mod.q*vect_y'); 
     end 
end 
% Plot mortality 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
surf (years,ages,Pol_Mod.That) 
hold on; 
scatter3 (Years,Ages,T_scat,'red') 
title_str = sprintf("Polynomial Model (order = %d)",poly_order); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel("Mortality") 
             
% Plot Number of deaths 
Poly_Mod_Deaths = Pol_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2))/2); 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
surf (years,ages,Poly_Mod_Deaths) 
hold on; 
scatter3 (Years,Ages,C_scat,'red') 
title_str = sprintf("Polynomial Model (order = %d)",poly_order); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('year') 
ylabel('age') 
zlabel("Deaths") 
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Measuring the Error 

The Error 

switch (Error_type) 
    case 'mortality'  % Error respect to the mortality (statistical data) 
        switch (Error_ref) 
             case 'Statistical' 
                 V_LC=LC_Mod.That; 
                 V_GM=GM_Mod.That; 
             case 'Eurostat' 
                 V_LC=T; 
                 V_GM=T; 
             end 
             Error_LC = (LC_Mod.That-V_LC); 
             Error_GM = (GM_Mod.That-V_GM); 
             Error_Poly = (Pol_Mod.That-V_GM); 
                     
     case 'deaths'  % Error respect to the deaths (statistical data) 
          switch (Error_ref) 
              case 'Statistical' 
                  V_LC=LC_Mod.That.*(P(:,1:(size(P,2)-1))+    P(:,2:size(P,2))); 
                  V_GM=GM_Mod.That.*(P(:,1:(size(P,2)-1))+ P(:,2:size(P,2))); 
              case 'Eurostat' 
                   V_LC=C; 
                   V_GM=C; 
           end 
           Error_LC = (LC_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2)))-
V_LC); 
           Error_GM = (GM_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2)))-
V_GM); 
           Error_Poly = (Pol_Mod.That.*(P(:,1:(size(P,2)-1)) + P(:,2:size(P,2)))-
V_GM); 
end             

Squared Errors (SE) 

S_error_LC = Error_LC.^2; 
S_error_GM = Error_GM.^2; 
S_error_Poly = Error_Poly.^2; 

Relative Errors 

Rel_error_LC = Error_LC./V_LC; 
Rel_error_GM = Error_GM./V_GM; 
Rel_error_Poly = Error_Poly./V_GM; 
             
[X_coord,Y_coord] = meshgrid(years,ages); 
             
% Plot Relative Errors 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
levels=[0.1 0.2 1]; 
contourf(X_coord,Y_coord, Rel_error_LC,levels,'ShowText','on') 



 

44 
 

title(["Relative Error (LC)";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 
             
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
contourf(X_coord,Y_coord, Rel_error_GM,levels,'ShowText','on') 
title(["Relative Error (GM)";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
contourf(X_coord,Y_coord, Rel_error_Poly,levels,'ShowText','on') 
title_str = sprintf("Relative Error (Poly) (order = %d)",poly_order); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 
             

Absolute Errors 

Abs_error_LC = abs(Error_LC); 
Abs_error_GM = abs(Error_GM); 
Abs_error_Poly = abs(Error_Poly); 
             
% Plot Absolute Errors 
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
levels=[0.003 0.03 0.1 0.2 0.3]; 
contourf(X_coord,Y_coord, Abs_error_LC,levels,'ShowText','on') 
title(["Absolute Error (LC)";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 
h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
contourf(X_coord,Y_coord, Abs_error_GM,levels,'ShowText','on') 
title(["Absolute Error (GM)";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 
 
h = figure; 
if ~View_graphs 
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   h.Visible = 'off'; 
end 
contourf(X_coord,Y_coord, Abs_error_Poly,levels,'ShowText','on') 
title_str = sprintf("Absolute Error (Poly) (order = %d)",poly_order); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
ylabel("years") 

 

Summary of Results 

Global RMSE (Root Mean Square Error) 

RMSE_LC = sqrt(sum(sum(S_error_LC))/numel(S_error_LC))/mean(V_LC(:)); 
RMSE_GM = sqrt(sum(sum(S_error_GM))/numel(S_error_GM))/mean(V_GM(:)); 
RMSE_Poly = sqrt(sum(sum(S_error_Poly))/numel(S_error_Poly))/mean(V_GM(:)); 

Global MAE (Mean Absolute Error) 

MAE_LC = sum(sum(sqrt(S_error_LC)))/numel(S_error_LC); 
MAE_GM = sum(sum(sqrt(S_error_GM)))/numel(S_error_GM); 
MAE_Poly = sum(sum(sqrt(S_error_Poly)))/numel(S_error_Poly); 

Global MRE (Mean Relative Error) 

MRE_LC = sum(sum(Rel_error_LC))/numel(Rel_error_LC); 
MRE_GM = sum(sum(Rel_error_GM))/numel(Rel_error_GM); 
MRE_Poly = sum(sum(Rel_error_Poly))/numel(Rel_error_Poly); 

Global MARE (Mean Absolute Relative Error) 

MARE_LC = sum(sum(abs(Rel_error_LC)))/numel(Rel_error_LC); 
MARE_GM = sum(sum(abs(Rel_error_GM)))/numel(Rel_error_GM); 
MARE_Poly = sum(sum(abs(Rel_error_Poly)))/numel(Rel_error_Poly); 

RMSE_Global vs Poly order 

h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
plot(1:Poly_order_max,log10(RMSE_global_LC)); 
hold on 
plot(1:Poly_order_max,log10(RMSE_global_GM)); 
plot(1:Poly_order_max,log10(RMSE_global_Poly)); 
legend ('LC','GM','Poly','location','best'); 
title(["RMSE Global vs. Poly order";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('order') 
ylabel('log(RMSE)') 

MAE_Global vs Poly order 

h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
plot(1:Poly_order_max,log10(MAE_global_LC)); 
hold on 
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plot(1:Poly_order_max,log10(MAE_global_GM)); 
plot(1:Poly_order_max,log10(MAE_global_Poly)); 
legend ('LC','GM','Poly','location','best'); 
title(["Global MAE vs. Polynomial degree";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('degree') 
ylabel('log(MAE)') 

MRE_Global vs Poly order 

h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
plot(1:Poly_order_max,log10(MRE_global_LC)); 
hold on 
plot(1:Poly_order_max,log10(MRE_global_GM)); 
plot(1:Poly_order_max,log10(MRE_global_Poly)); 
legend ('LC','GM','Poly','location','best'); 
title(["MRE Global vs. Poly order";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('order') 
ylabel('log(MRE)') 

MARE_Global vs Poly order 

h = figure; 
if ~View_graphs 
   h.Visible = 'off'; 
end 
plot(1:Poly_order_max,log10(MARE_global_LC)); 
hold on 
plot(1:Poly_order_max,log10(MARE_global_GM)); 
plot(1:Poly_order_max,log10(MARE_global_Poly)); 
legend ('LC','GM','Poly','location','best'); 
title(["MARE Global vs. Poly order";strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('order') 
ylabel('log(MARE)')        
    end 
end 

Part – 2: we have code of Polynomial model for predicting missing years mortality and 

errors calculation (RMSE, MAE, MRE and MARE) 

Error Estimation for missing years 
Error_fitting = Pol_Mod.That(:,column2remove) - Full_T(:,column2remove); 
             
% Plot Error 
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
plot (ages,Error_fitting) 
title_str = sprintf("Polynomial Model Fitting Error (order = %d, year = 
%d)",poly_order, Full_years(column2remove)); 
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title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
zlabel("Error") 
                         

Squared Errors (SE) 

The square errors: 

S_error_Poly = Error_fitting.^2; 
             
% Plot Squared Error 
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
plot (ages,Error_fitting) 
title_str = sprintf("Polynomial Model Fitting Squared Error (order = %d, year = 
%d)",poly_order, Full_years(column2remove)); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
zlabel("Error") 
                         

Relative Errors 

Rel_error_Poly = Error_fitting./Full_T; 

Absolute Errors 

Abs_error_Poly = abs(Error_fitting); 
             
% Plot Absolute Error 
h = figure; 
if ~View_graphs 
    h.Visible = 'off'; 
end 
plot (ages,Error_fitting) 
title_str = sprintf("Polynomial Model Fitting Absolute Error (order = %d, year = 
%d)",poly_order, Full_years(column2remove)); 
title([title_str;strcat("(",regexprep(sex,'(\<[a-
z])','${upper($1)}'),"s/",country,")")]) 
xlabel('age') 
zlabel("Error") 
                         

Summary of Results 

Global RMSE (Root Mean Square Error) 

 

RMSE_Poly = sqrt(sum(sum(S_error_Poly))/numel(S_error_Poly))/mean(Full_T(:)); 



 

48 
 

Global MAE (Mean Absolute Error) 

 

MAE_Poly = sum(sum(sqrt(S_error_Poly)))/numel(S_error_Poly); 

Global MRE (Mean Relative Error) 

 

MRE_Poly = sum(sum(Rel_error_Poly))/numel(Rel_error_Poly); 

Global MARE (Mean Absolute Relative Error) 

 

MARE_Poly = sum(sum(abs(Rel_error_Poly)))/numel(Rel_error_Poly); 

 


