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ABSTRACT 

Biominerals formed by DNA and calcium oxalate (CaOx) or hydroxyapatite (HAp; 

the most important and stable phase of calcium phosphate) have been examined and 

compared using a synergistic combination of computer simulation and experimental 

studies. The interest of this comparison stems from the medical observation that HAp- 

and CaOx-based microcalcifications are frequently observed in breast cancer tissue and 

some of their features are used as part of the diagnosis. Molecular dynamics simulations 

show that: 1) the DNA double helix remains stable when it is adsorbed onto the most 

stable facet of HAp, whereas it undergoes significant structural distortions when it is 

adsorbed onto CaOx; 2) DNA acts as template for the nucleation and growth of HAp 

but not for the mineralization of CaOx; 3) the DNA double helix remains stable when it 

is encapsulated inside HAp nanopores but it becomes destabilized when the 

encapsulation occurs into CaOx nanopores. Furthermore, CaOx and HAp minerals 

containing DNA molecules inside and/or adsorbed on the surface have been prepared in 

the lab by mixing solutions containing the corresponding ions with fish sperm DNA. 

Characterization of the formed minerals, which has been focused on the identification of 

DNA using UV-vis spectroscopy, indicates that the tendency to adsorb and, especially, 

encapsulate DNA is much smaller for CaOx than for HAp, which is in perfect 

agreement with results from MD simulations. Finally, quantum mechanical calculations 

have been performed to rationalize these results in terms of molecular interactions, 

results evidencing the high affinity of Ca
2+

 towards oxalate anions in aqueous 

environment.   
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INTRODUCTION  

The combination of DNA with nanomaterials (e.g. gold and metal oxide 

nanoparticles, carbon-based nanomaterials and minerals) to form hybrid systems is of 

fundamental interest for applications in DNA delivery, biosensors development and 

nanotechnology.
1-8

 Within this extensive field of research, the interaction of DNA with 

nanostructured calcium phosphate (CaP) is especially relevant because of its important 

biological implications. In particular, hydroxyapatite (HAp), which is probably the most 

important phase of CaP, is the main mineral of mammalian tooth enamel and bone,
9
 

where it grows as nano-sized mineral platelets at nucleating sites on a protein 

template.
10,11

 Understanding the interaction between HAp and DNA has been found to 

be essential for biomedical field applications. For example, HAp nanoparticles (NPs) 

have been used for cell transfection as carrier of nucleic acids
12-15

 and for purifying 

DNA from virus.
16

 

On the other hand, spectroscopic studies on HAp microcalcifications formed inside 

living organism (i.e. tumoral tissue) showed the contribution of vibrational modes of 

DNA, phospholipids and proteins.
17

 Such finding is particularly relevant since HAp 

detection in breast cancer microcalcifications have been successfully used for screening 

and diagnosis purposes.
18-20

 More specifically, such analyses concentrated on the 

chemical differentiation between two minerals: calcium oxalate (CaOx), usually 

associated with benign prognosis, and HAp, which is more frequently associated with 

malignancy.
21,22  

 

In recent years the interaction between plasmid DNA and both nanostructured HAp, 

Ca10(PO4)6(OH)2, and amorphous CaP has been examined.
23-28

 Results showed that 

DNA adsorption depends on the HAp morphology, NPs and fusiform nanorods 

adsorbing more DNA than flower-like and laminar nanocrystals.
23

 Similar results were 
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obtained for polyphosphates, which mimicked the backbone of DNA.
24

 Structural 

changes induced in plasma DNA by the adsorption on HAp resulted in an enhanced 

stabilization, increasing the resistance against enzymatic digestion.
23

 Besides, the 

formation of HAp was found to be regulated by DNA, which acts as a template in a 

ñbiomineralizationò process.
25-28

 More specifically, the DNA backbone behaved as a 

very large nucleus for the growth of HAp surrounding the biomolecule.
28

 Moreover, the 

utilization of HAp NPs as non-viral vectors for transfection has been demonstrated, 

proving that such inorganic particles are able to deliver DNA or RNA to a cell.
23,29-31

 

Interestingly, Mg
2+

 was found to play a unique role in the DNA-HAp biomineralization 

process since this ion has a very high affinity towards DNA, whereas in the initial 

stages of the particle nucleation process it prefers to be located at the surface regions 

rather than at the core ones.
32 

This work renders a physical-chemical explanation to a long term debate in the 

medical community regarding if and why breast cancer patients with HAp-based micro-

calcifications have a worse prognosis compared to those showing mostly CaOx-based 

micro-calcifications. The first part of the paper deals with the energetics and statistical 

mechanics of mineral···DNA complexation and the second part proves that DNA can 

only be encapsulated without denaturalization in HAp-based matrices thus forming 

biominerals not only able to encapsulate and transport DNA but also to deliver it.
33 For 

this purpose, we have used a synergistic approach to compare DNA mineralization in 

HAp and CaOx. Particularly, the capacity of DNA to interact with HAp and CaOx has 

been examined theoretically and experimentally. Initially, molecular dynamics (MD) 

simulations have been carried out in order to analyze: the adsorption of DNA onto the 

most stable facet of HAp and CaOx, the growing of HAp and CaOx minerals around the 

DNA template (i.e. the nucleating effect of DNA), and the stability of biominerals 
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formed by DNA encapsulated inside nanopores of HAp or CaOx. After this, DNA-

CaOx and DNA-HAp complexes have been synthesized in the laboratory and studied by 

UV-vis spectroscopy to compare the ability of these minerals to adsorb and encapsulate 

DNA. Finally, quantum mechanical (QM) calculations have been conducted to provide 

a comprehensive chemical explanation of the results derived from both MD simulations 

and UV-vis spectroscopy, which are fully consistent. It is worth mentioning that special 

attention has been given to the discussion of the biominerals involving CaOx, which 

have been much less studied than those that contain HAp, and to the role of Mg
2+

. 

 

METHODS 

Molecular dynamics 

MD simulations were performed with the NAMD 2.6 software package.
34

 In order to 

study the adsorption and encapsulation of DNA in CaOx and HAp, we took into 

consideration the clinical interest of hypomethylated and hypermethylated DNA 

sequences as they have been associated with the overexpression of genes or genes 

silenced linked to cancer disease.
35-38

 More specifically, two representative DNA 

dodecamers were selected to cover the full range of methylation: a) the highly 

methylated dodecamer 5ô-CG
4
GTCG

5
CCG

6
TCG

7
-3ô (hereafter R1A) extracted from the 

RASSF1A gene; and b) the Dickerson dodecamer 5ô-CGCGAATTCGCG-3ô (hereafter 

DD) as representative of unmethylated sequences.
 
The DD is widely used as DNA 

probe in experiments, working as a wildcard when no specific sequence is investigated. 

On the other hand, hypermethylation of the RASSF1A gene has been correlated with 

clinical and pathological characteristics of breast cancer and with clinical outcomes.
39

 

Charge neutralization was performed with the addition of Mg
2+

 counterions, which were 

located at the major groove of the double helix.
40
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Force-field parameters for DNA and phosphate anions were taken from ff99-SB,
41

 

Ca
2+

 parameters were from Bradbook et al.
42

 and parameters for Mg
2+

 were from 

Sorensen et al.
43

 The TIP3P
44

 water model was employed to describe explicit water 

molecules. In previous work we used quantum mechanical calculations on model 

systems to demonstrate that such combination of force-field parameters satisfactorily 

reproduce the interactions of DNA···HAp systems.
25 

Bonding and van der Waals 

parameters for oxalate anions (Ox
2-

) were extracted from the general Amber force-field 

gaff,
45

 while charges were developed following the RESP
46

 protocol and using ab initio 

HF/6-31G* calculations. 
 

All productive MD runs were performed in the NPT ensemble at 298 K and 1 bar. 

Both temperature and pressure were controlled by the Berendsen thermobarostat.
47

 

Productive MD simulations were conducted using an integration time step of 2 fs. 

Representative structures were extracted every 500 steps. Van der Waals interactions 

were evaluated with a cut-off of 10 Å and a switching distance at 8 Å. For electrostatic 

interactions, we computed the non-truncated electrostatic potential throughout Ewald 

Summations, i.e. the Particle-Mesh Ewald (PME) method.
48

 The real space term was 

determined by the van der Waals cut-off (10 Å), while the reciprocal term was 

estimated by interpolation of the effective charge into a charge mesh with a grid 

thickness of 5 points per volume unit. In all cases bond lengths involving hydrogen 

were kept frozen by using the SHAKE algorithm.
49

  

Adsorption of DNA. The HAp hexagonal unit cell with P63/m geometry (a= b= 9.421 

Å, c= 6.881 Å, a= b= 90º, and g= 120º) and the 4e Wyckoff position occupied by two 

hydroxyl ions, each with ½ occupancy,
50

 and the monohydrated CaOx monoclinic unit 

cell with P21/c geometry (a= 6.316 Å, b= 14.541 Å, c= 10.116 Å, a= g= 90º, and b= 

109º)
51

 were generated. These systems were cleaved to obtain the most stable facet of 
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such minerals (see below). HAp and CaOx unit cells were expanded 6 and 4 times in the 

x and y directions, respectively, creating 6³6 and 4³4 supercells. The thickness of the 

supercell in the z axis entailed a 4 and 2 layer slab for HAp and CaOx, respectively. 

Afterwards, both surfaces were solvated in the z direction with 17756 and 12532 water 

molecules for the (001) of HAp and the (100) of CaOx, respectively.  

Initially, water and DNA coordinates were optimized through 5000 steps of 

conjugated gradient algorithm minimization. The resulting coordinates of the two 

systems underwent 0.5 ns of NVT molecular dynamics (MD) at 373 K with frozen 

coordinates for the DNA and the mineral. Final coordinates and velocities of the NVT 

run were used as input for 0.5 ns NPT (298 K, 1 bar) to equilibrate energy and water 

density (to 1 g/cm
3
 ) in the volume occupied by the liquid and the DNA. The Berendsen 

thermobarostat
47

 was employed at constant xy plane area and frozen DNA and mineral 

slab coordinates. Productive dynamics started from the latter output, only keeping fixed 

the mineral atoms. Trajectories were 150 ns long. 

DNA in solution. The R1A and DD double helices and Mg
2+

 counterions were 

solvated with 30000 water molecules and the density of the resulting system was 

equilibrated to 1 g/cm
3
 following the same protocol used for the surface slabs in the 

adsorption simulations. Productive control dynamics were 150 ns long. 

Nucleation of DNA biominerals. As DNA methylation is not expected to play any 

role in the nucleation of biominerals, simulations were conducted using the R1A 

dodecamer only. The nucleation of CaOx around R1A was simulated considering, in 

addition of the dodecamer, 10 Mg
2+

, 20 Ca
2+

, 20 Ox
2-

 molecules and 50551 water 

molecules. The nucleation of HAp around the R1A was examined considering a system 

with 10 Mg
2+

, 30 Ca
2+

, 20 PO4
3-

 molecules and 51675 water molecules. 
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Systems were previously equilibrated at the target temperature (298 K), pressure (1 

atm) and density (1 g/cm
-1

). For this purpose, 5000 steps of energy minimization were 

initially performed to relax structural tensions. After this, solvent and ions were 

thermally relaxed by three consecutive runs, while the B-DNA was kept frozen: 0.5 ns 

of NVT-MD (volume conserved) at 500 K were used to homogeneously distribute the 

solvent and ions in the box. Then, 0.5 ns of isothermal (298 K) and 0.5 ns of isobaric (1 

atm and 298 K) relaxations were run. Finally, all the atoms of the systems were 

submitted to 0.15 ns of steady heating until the target temperature was reached (298 K), 

0.25 ns of NVT-MD at 298 K (thermal equilibration), followed by 0.5 ns of density 

relaxation (NPT-MD). After equilibration, productive MD simulations of 150 ns were 

conducted. 

Encapsulation of DNA. The HAp hexagonal unit cell
50

 and the monohydrated CaOx 

monoclinic unit cell
51

 were used to construct super-cells considering 6³6³7 and 4³4³5 

unit cells, respectively. After this, a hole was generated in the centre of each super-cell, 

the dimensions of such hole being defined by DNA double helix. After several trials, we 

found that a hole of 2³2³7 units cells was the minimum required for both minerals to 

accommodate the double helix without severe steric contacts. In order to completely 

avoid unfavorable steric interactions between the apatite and the biomolecule, some 

additional atoms and groups of atoms were translated at their border regions allowing us 

to maintain the electroneutrality of the super-cells. Then, R1A and DD double helices, 

which were arranged in the canonical B form, were embedded inside the pores. In order 

to maintain the electrical neutrality of the system, Mg
2+

 ions were put at the major 

groove of the double helix. Figure 1 depicts the starting models used to represent DD 

double helix embedded into HAp and CaOx pores, starting models for the R1A 

sequence being analogous to these ones. 
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In order to evaluate the stability of the encapsulated DNA models, both energy 

minimization and MD simulations were applied. Initially, all the models were 

minimized by applying 5³10
3
 steps of steepest descent to relax the more important 

conformational and structural tensions. Then, a MD run of 3.0 ns in the NVT ensemble 

(constant number of particles, volume and temperature) at 298 K was carried out to 

equilibrate the four systems under study (i.e. R1A and DD encapsulated into HAp and 

CaOx) and eliminate small structural tensions. After such thermal relaxation, the saved 

coordinates were submitted to a new energy minimization by applying 5³10
3
 steps of 

steepest descent until energy convergence. In both energy minimizations and MD 

simulation, atoms contained in R1A and DD were only allowed to move from their 

positions, the coordinates of the mineral being kept fixed at their crystallographic 

positions in all cases. Each system was calculated in triplicate considering starting 

points that differ in the orientation of the DNA inside the generated holes. 

 

In vitro synthesis of biominerals 

In vitro synthesis of DNA-CaOx and DNA-MgOx complexes. The synchronized 

dropwise (rate of 2 mL/min) addition of 10 mL of a solution of 0.04 M sodium oxalate 

(Sigma Aldrich 99,5%, 223433) and 10 mL of 0.04 M CaCl2 (Scharlab, CA01920500) 

to 0.06 g of fish sperm DNA (Sigma Aldrich, 74782) was conducted under stirring at 75 

ºC for 5 h. Then, the resulting solutions were cooled to room temperature, centrifuged 

and washed successively with molecular biology grade water (Millipore, H2OMB0506) 

twice and a 60/40 v/v mixture of ethanolïwater (Ethanol, Scharlab ET0011000). A 

white powder with traces of pale orange was obtained after freeze-drying. Calcium 

chloride was replaced by MgCl2 (Sigma Aldrich, M8266), to obtain the DNA-MgOx 

system. 
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In vitro synthesis of DNA-HAp complexes. 0.1 g of fish sperm DNA were added to 15 

mL of a 0.3 M (NH4)2HPO4 solution in de-ionized water. The pH of such solution was 

previously adjusted to 10 with aqueous ammonia. The mixture was added drop-wise 

(rate of 2 mL/min) and under agitation (400 rpm) to 25 mL of 0.3 M Ca(NO3)2 solution 

in de-ionized water and the appropriate amount of aqueous ammonia to adjust pH to 10. 

Temperature was maintained at 40 °C during the addition process. After that, the 

reaction mixture was stirred at 80 °C for 1.5h and then naturally cooled to room 

temperature. The resultant suspension was aged for 24 h at room temperature. Then, the 

precipitate was separated by centrifugation and washed sequentially with de-ionized 

water and a 60/40 v/v mixture of ethanol-water (twice). A white powder was obtained 

after freeze-drying.  

A UV-3600 (Shimadzu) UV-Vis-NIR spectrophotometer controlled by the UVProbe 

2.31 software was used to record UV-Vis spectra of DNA-CaOx, DNA-MgOx and 

DNA-HAp complexes at room temperature, in the 200-400 nm range, with a bandwidth 

of 0.2 nm and a scan speed of 600 nm/min. 

 

QM calculations 

QM calculations were performed using Gaussian 09 software package.
52

 Geometry 

optimization, solvation and binding energy calculations were carried out with the hybrid 

functional B3LYP
53,54

 combined with the 6-311G++(2d,2p) basis set. All geometry 

optimizations were carried out until a stationary point was reached. These were 

confirmed as minima by frequency analyses (i.e. no imaginary frequency was found). 

The gas-phase free energies were obtained at 298 K by correcting the energies with the 

zero point energy and the thermal correction term and by evaluating the entropy using 

standard statistical thermodynamic methods. The SMD solvation method
55

 was chosen 
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to calculate the hydration free energy of the systems, DGhyd, which was estimated as the 

difference between the free energies in the gas-phase and aqueous solution. Binding 

energies, DGb, were calculated as DGb= Gsol,c ï SiGsol,i where Gsol,c is the free energy of 

the complex in aqueous solution and Gsol,i is the free energy of each component of the 

complex in aqueous solution (i.e. i stands for each of the interacting component of the 

complex). All DGb values were corrected by the Base Superposition Error (BSSE) using 

the standard counterpoise protocol. 

 

RESULTS AND DISCUSSION 

Adsorption of DNA on the minerals surface 

Initially, MD simulations were focused on the adsorption of R1A and DD sequences 

on the surface of the HAp and monohydrated CaOx minerals. We focused on the 

interaction formed when such dodecamers are adsorbed onto the most stable facet of 

HAp
56

 and monohydrated CaOx,
57

 which is the (001) and (100), respectively. Almora-

Barrios et al.
58

 reported that the calculated surface energies of the (001) and the average 

(010) surfaces are 1.01 and 1.32 J/m, respectively, indicating that the former is more 

stable than the latter, in agreement with previous literature.
59,60

 Indeed, the less stable 

(010) surface, which was proposed to be much less populated than the (100), quickly 

accumulating more material that grow out of the crystal morphology because of the 

reactivity associated to such instability. Besides, the (100) was identified by atomic 

force microscopy experiments not only as the most populated facet of CaOx
61,62

 but also 

as the surface that forms the strongest interactions with carboxylate and amidinium 

groups, which are abundantly present in biomolecules, including DNA.
62

 

Although the methylated and non-methylated sequences showed a similar behaviour 

when interacting separately with HAp or monohydrated CaOx, simulations 
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demonstrated that the structural stability of DNA is totally different for each mineral. 

The stability of the adsorbed sequences was evaluated by examining the temporal 

evolution of the root mean square deviation (RMSD), which was calculated between 

each atom position of the B-DNA canonical double helix and the dodecamer structures 

recorded from MD trajectories. As shown below, the RMSD was converged for all 

systems preserving the B-DNA structure, whereas the RMSD was high enough to 

guarantee complete de-structuration for all systems in which the double helix is lost. 

However, in the latter cases convergence of the RMSD was not considered a requisite 

since the dynamics and structure of unfolded B-DNA is out of the scope of this work. 

Figures 2a and 2b, which include the results obtained in aqueous solution (control), 

compare the RMSDs obtained for R1A and DD, respectively. The average RMSD 

obtained for R1A and DD adsorbed onto the (001) HAp (3.5±0.6 Å and 3.4±0.4 Å, 

respectively) is close to that obtained for the same sequence in aqueous solution 

(2.7±0.5 Å and 2.7±0.4 Å, respectively), evidencing that the B-DNA double helix 

remains stable when adsorbed onto HAp. Thus, the double helix is able to accommodate 

itself onto the HAp surface, independently of the methylation, by establishing a balance 

between the attractive and repulsive interactions between the phosphate groups of DNA 

and the Ca
2+

 and PO4
3-

 ions of the mineral, respectively. The formation of such 

interactions is reflected in Figures 2c and S1a for R1A and DD, respectively, which 

display a representative snapshot of the dodecamer adsorbed onto HAp and compares 

the adsorbed double helix with a canonical one. The affinity of HAp towards the double 

helix of DNA has been attributed to the complementarity between the mineral and the 

phosphate groups of the DNA backbone, which were found to exhibit isomorphic 

planes.
25
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In contrast, the average RMSD increases progressively for the R1A and DD 

sequences adsorbed on the (100) facet of monohydrated CaOx, reaching in both cases 

values higher than 8 Å after 150 ns. Thus, the CaOx surface causes a drastic 

destabilization of the adsorbed double helix due to the electrostatic repulsions between 

the Ox
2-

 and polyphosphate DNA backbone, which are directly confronted. The effect 

of Ox
2-

···polyphosphate repulsive interactions in the double helix is illustrated in 

Figures 2d and S1b for R1A and DD, respectively. As it can be seen, electrostatic 

repulsions tend to deploy the DNA double helix, separating the two strands. This 

destabilizing effect is not offset by the water molecules of the internal monohydration 

layer, which practically does not interact with the superficial DNA.  

 

Nucleation of DNA templated biominerals 

The behavior of R1A in an ionic solution to assess the feasibility of DNA to nucleate 

CaOx and/or HAp biominerals and act as a template was modelled using solution-like 

systems containing Ox
2-
 or PO4

3-
 ions together with the DNA dodecamer, Ca

2+
 and 

Mg
2+

. Figure 3a shows the radial distribution functions (RDFs) derived from the 

simulation with Ox
2-

 for the following pairs: Mg
2+
ïDNAp (where DNAp refers to the 

centre of masses of the phosphate groups from the DNA backbone), Ca
2+
ïDNAp, 

Mg
2+
ïOx

2-
 (where Ox

2-
 refers to the centre of masses of Ox

2-
 anions), Ca

2+
ïOx

2-
 and 

DNApïOx
2-

. For a given pair, aïb, the RDF curve gives a measure of the relative 

probability that b resides at a radial distance r from a centred at the origin of 

coordinates.  

The profile obtained for Mg
2+
ïDNAp pair (black) shows a sharp peak at r= 1.9 

Å, evidencing the high affinity of Mg
2+

 towards DNA. Besides, the first peak for 

the Ca
2+
ïDNAp pair, which appears at r= 2.6 Å, apparently displays a lower area 
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under the curve (red). On the other hand, the area under the Ca
2+
ïOx

2 
 peak at r= 

2.6 Å (light blue) is much higher, reflecting that the attraction of Ca
2+

 by the Ox
2-
 

is very favoured in comparison to the affinity by the phosphate groups from 

DNA. Interestingly, Ox
2-

 anions do not exhibit any affinity towards DNA, an 

equi-probable distribution being found once an exclusion threshold at r= 5.5 Å is 

exceeded.  

Considering the possibility of forming triads like DNAp···X···Ox
2-

, where X 

refers to Ca
2+

 or Mg
2+

 coordination ions, analysis of the RDFs shows that Ca
2+

 

cannot play this role. Once Ca
2+

 is bound to DNAp or to Ox
2-

 prefers the 

interaction with surrounding explicit water molecules instead of forming the 

triad. Thus, the sum of the r values for the first peak of the Ca
2+
ïDNAp and 

Ca
2+
ïOx

2-
 RDFs totals 5.2 Å, this value being lower than the threshold distance 

of cation-mediated DNApïOx
2-

 carboxyl interaction (i.e. 5.5 Å). The addition of 

the distances associated to the first peak of Mg
2+
ïDNAp and Mg

2+
ïOx

2-
 RDFs 

renders a value of 6.0 Å, which is bigger than the cation mediated threshold. 

However, the absence of peaks in the RDF of the DNAp-Ox
2-

 pair suggests that 

DNAp···Mg
2+

···Ox
2-

 interactions are extremely weak in highly hydrated 

environments. The above mentioned tendencies are reflected in Figure 3b, which 

displays a snapshot from the MD simulation of the modelled system (red box). As 

it can be seen, Ox
2-

 anions tend to form clusters with Ca
2+

 cations separated from 

the DNA. Apparently, the polyphosphate groups from DNA do not play any 

significant role in the formation of CaOx. 

Figure 3c displays the RDFs derived from the simulation with PO4
3-

 for the Mg
2+
ï

DNAp, Ca
2+
ïDNAp, Mg

2+
ïPO4

3-
 (where PO4

3-
 refers to the centre of masses of PO4

3-
 

anions), Ca
2+
ïPO4

3-
 and DNApïPO4

3-
 pairs. The profiles obtained for Mg

2+
ïDNAp and 
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Ca
2+
ïDNAp pairs (black and red, respectively) show sharp peak at r= 1.9 and 2.5 Å, 

respectively. Thus, although the affinity of the DNA dodecamer towards Mg
2+

 is higher 

than towards Ca
2+

, the latter ion interacts more with the phosphate groups of DNA than 

in the simulation with Ox
2-

. Besides, the Ca
2+
ïPO4

3- 
 profile shows a sharp peak at r= 

2.5 Å (light blue), indicating that the attraction of Ca
2+

 by PO4
3-

 anions and DNAp is 

very similar. However, the most important difference between simulations with Ox
2-
 

and PO4
3-

 is detected in the RDF calculated for the DNApïPO4
3-

 pair (green), which 

shows a broad peak centered at r= 5.00 Å. This peak evidences that PO4
3-

 anions tend to 

be distributed around the DNA, which acts as a template and facilitates the growing of 

the mineral around it.  

Moreover, in this case the formation of both DNAp···Ca
2+

···PO4
3-

 and 

DNAp···Mg
2+

··· PO4
3-

 triads is consistent with the peaks observed in the RDFs. 

Thus, the addition of the r values for the first peak of the Ca
2+
ïDNAp and Ca

2+
ï

PO4
3-

 RDFs sums 5.0 Å, which matches the maximum of the broad peak obtained 

for the DNApïPO4
3-

 RDF (i.e. 5.0 Å). Besides, the sum of the distances 

associated to the first peak of Mg
2+
ïDNAp and Mg

2+
ïPO4

3-
 is 4.3 Å, which is 

within the area of the broad peak obtained for DNAp-PO4
3-

. These results 

indicate that PO4
3-

 anions tend to form clusters around the polyphosphate 

backbone of DNA, repulsive interactions being shielded by the Ca
2+

 and Mg
2+

 

ions located between them. This clustering distribution is shown in Figure 3b, 

which displays a representative snapshot from the MD simulation of the PO4
3- 

containing system (blue ellipsoid) superposed to that from simulation with Ox
2-

. 

Overall, the formation of calcium phosphate clusters surrounding the DNA 

backbone is fully consistent with previous experimental observation, in which the 
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DNA was found to act as template for the nucleation and growth of crystalline 

HAp.
28 

 

Encapsulation of DNA inside mineral nanopores 

In order to elucidate DNA can be present inside HAp and CaOx in 

microcalcifications, the encapsulation of R1A and DD in mineral nanopores was 

modelled. Figure 4 represents the structure of R1A and DD dodecamers embedded in 

HAp and CaOx nanopores after relaxation through energy minimizations and MD, as is 

described in the Methods section.  

In the case of HAp, the DNA double helix occupies practically the whole pore, 

independently of its methylation degree. Although interactions with mineral ions induce 

some distortions in the backbone, the DD and R1A double helix with its intra-strand 

stacking and the inter-strand hydrogen bonds are clearly preserved. This is illustrated in 

Figure 4, which also depicts the double helix without the mineral. As it can be seen, 

initial double helices do not undergo significant distortions, which is fully consistent 

with the simulations discussed in the previous sub-section. Thus, the attractive 

interaction between the Ca
2+

 ions of HAp and the polyphosphate
 
chain of the DNA 

allows maintaining the stability of the B-DNA inside the pore. The RMSD between the 

canonical double helix (i.e. the starting structure) and the relaxed double helix, which 

was calculated considering all the atoms, is relatively small: 1.9 and 3.5 Å for R1A and 

DD, respectively. 

Relaxation of R1A and DD dodecamers embedded in CaOx induced drastic 

geometric distortions that affected significantly both the inter-strand hydrogen bonds 

and the intra-strand p-p stacking, as is displayed in Figure 4. Thus, the RMSD 

calculated with respect to the canonical B-DNA used as starting point was close to 10 Å 
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for both sequences, which is significantly higher than the values obtained for complexes 

with HAp. This is because of the repulsive interactions between the Ox
2-
 anions and the 

phosphate groups of the double helix that, in this case, are not shielded by the attractive 

interactions of the latter with the Ca
2+

 ions. Apparently, these results indicate that the 

geometry of CaOx is not appropriated to preserve the tertiary structure of the biological 

DNA when the latter is embedded inside of the nanopore.  

Overall, these results indicate that the cavity generated in HAp allows B-DNA 

double helices encapsulation without producing mineral-induced stress, while the 

opposite situation is obtained when CaOx nanopores are studied. Although this feature 

might be related with the benign and malignancy cancer prognosis associated to CaOx 

and HAp microcalcifications,
21-22 

no experimental observation relating the medical 

diagnosis and the functionality of the genes linked to cancer disease has been reported 

yet. 
  

 

Experimental DNA mineralization 
 

As a consequence of the previous in silico results, DNA mineralization with CaOx, 

magnesium oxalate (MgOx) and HAp was investigated forming DNA-CaOx, DNA-

MgOx and DNA-HAp complexes through the procedure described in the Methods 

section. It is worth noting that DNA was incorporated into aqueous inorganic solutions 

and, therefore, the biomolecule could be absorbed onto the surface of the formed 

mineral particles or encapsulated into them. The non-physiological conditions used in 

these experiments have been used as a proof of concept for the underlying 

physicochemical mechanism considering monohydrated CaOx and HAp, which are the 

minerals employed in the simulations. Thus, the conditions used for the in vitro 

synthesis of minerals have avoided mixed effects of other crystalline forms, as for 
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example dihydrated and trihydrated in the case of CaOx and brushite, tricalcium 

phosphate or amorphous calcium phosphate in the case of HAp 

Figure 5a compares the UV-vis spectra recorded for: a1) as obtained DNA-CaOx 

samples; a2) digested DNA-CaOx samples, in which superficially adsorbed DNA is 

removed by digesting as obtained DNA-CaOx complexes with DNAase; a3) as obtained 

DNA-CaOx samples from a1 are re-dissolved with sodium citrate (5 mM); and a4) 

digested DNA-CaOx samples dissolved with sodium citrate (5 mM). The UV-vis 

spectrum of as prepared DNA-CaOx complexes (a1) clearly demonstrates the presence 

of DNA since a characteristic absorption peak is observed at 266 nm. However, the 

absorbance at 266 nm decreases considerably after enzymatic degradation treatment 

(a2). This absorbance increases after dissolution of the as obtained DNA-CaOx 

complexes (a3), while it remains very small when the digested samples are dissolved 

(a4). Overall, these results unambiguously demonstrate that the mineralization of DNA 

from Ca
2+

- and Ox
2-

-containing solutions mainly occurs through the adsorption of the 

biomolecule on the surface of the formed CaOx particles, whereas the encapsulation of 

DNA inside such inorganic particles is very limited.  

Trying to promote the affinity of Ox
2-

 towards DNA, DNA-MgOx complexes were 

prepared following the procedure previously used to obtain DNA-CaOx complexes (see 

Methods section). As the electrostatic binding of Mg
2+

 in the grooves of DNA is 

essential for the stability of the double helix, substitution of Ca
2+

 by Mg
2+

 was 

hypothesized to favor the mineralization of DNA. The UV-vis spectra recorded for as 

prepared, digested and dissolved DNA-MgOx samples are displayed in Figure 5b. 

Surprisingly, the absorption peak at 266 nm is very small for the as obtained samples, 

before and after dissolution (b1 and b3, respectively) and inexistent for the digested 

ones, before and after dissolution (b2 and b4, respectively). Accordingly, the adsorption 
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of DNA onto the mineral surface is lower for MgOx than for CaOx, whereas the DNA 

encapsulation was very limited in both cases. These experimental observations are fully 

consistent with MD simulations on the nucleation of DNA biominerals, in which the 

formation of DNAp···Ca
2+

···Ox
2-

 and DNAp···Mg
2+

···Ox
2-

 interacting triads were not 

detected, indicating that Ox
2-

 anions hinder the mineralization of DNA, independently 

of the identity of the divalent metallic cation. 

Conversely, UV-vis spectra obtained for DNA-HAp complexes shows the presence 

of both DNA absorbed on the surface and encapsulated inside the particles. Thus, the 

DNA absorption peak is clearly observed in as prepared complexes, before and after 

dissolution (c1 and c3, respectively) and in samples dissolved after digestion with the 

DNAase (c4). Interestingly, the absorbance is much higher for dissolved samples (c3 

and c4) than that of as prepared samples (c1 and c2), evidencing the very high tendency 

of HAp to grow surrounding the DNA molecule that acts as the nucleating template.  

It is worth noting that the experimental observations achieved for DNA-CaOx, DNA-

MgOx and DNA-HAp complexes are fully consistent with the computer simulations 

discussed above. Thus, MD simulations showed that, although DNA can be adsorbed 

onto the most stable facets of CaOx and, especially, HAp, its predominant role as 

nucleating template only occurs for HAp. On the other hand, Mg
2+

 ions tend to be 

located in the grooves of DNA, acting as counterions of the polyphosphate backbone. 

Nevertheless, MgOx particles are not appropriated to mineralize the DNA by superficial 

absorption or encapsulation. 

 

QM calculations 

Interactions between the different species involved in DNA-CaOx complexes were 

further studied to completely understand the poor affinity of DNA by CaOx in 



20 

 

comparison to HAp. For this purpose, QM calculations in vacuum and within the 

framework of an implicit solvation model were performed on small representative 

model complexes involving two or three interacting species, which are depicted in 

Figure 6. The estimated DGb and DGhyd values, which were calculated as is indicated in 

the Methods section, are expected to complete the scenario described by classical MD 

simulations. The DGb informs about the strength of the interactions that maintain the 

species involved in the complex assembled in aqueous solution, while DGhyd gives the 

free energy change associated with the transfer of the complex between vacuum and 

bulk water. The DGb and DGhyd values included in Figure 6 completely support the 

conclusions derived from MD simulations and experimental observations.  

First inspection of the DGb and DGhyd values reveals that the strength of the binding 

is more exothermic in complexes with Mg
2+

 than with Ca
2+

, whereas hydration favors 

the latter with respect to the former. Careful analysis reveals that when differential 

energies are considered for the calculated complexes, this behavior can be explained. 

The DGb is more attractive for Mg
2+

···DNAp than for Ca
2+

···DNAp (i.e. DDGb= -32.5 

kcal/mol), indicating that the phosphates from DNA tend to coordinate Mg
2+

 instead of 

Ca
2+

 when both ions are present. The same trend is observed for Mg
2+

···Ox
2-

 and 

Ca
2+

···Ox
2-

 complexes, the strength of the binding being higher in the former than in the 

latter (i.e. DDGb= -46.0 kcal/mol). However, DGhyd indicates the opposite, the solvation 

being significantly more favored for complexes with Ca
2+

 than with Mg
2+

 (i.e. DDGhyd= 

-42.0 and -49.5 kcal/mol for complexes with DNAp and Ox
2-

, respectively). The 

balance between DDGb and DDGhyd values indicates that, in a solution containing all the 

considered species, Ox
2-

 preferentially interacts with Ca
2+

 while DNA phosphate prefers 

Mg
2+

.  
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Additional calculations on model complexes involving three interacting species 

provide complete understanding of the in lab experiments described in the previous sub-

section for CaOx and MgOx. Thus, the strength of the binding in Ox
2-

···Mg
2+

··· Ox
2-

 is 

stronger than in Ox
2-

···Ca
2+

··· Ox
2-

 by DDGb= -33.4 kcal/mol, while the hydration of the 

latter is favored with respect to that of the former by DDGhyd= -40.1 kcal/mol. 

Therefore, the sum of these free energy gaps indicates that Ox
2-
 anions tend to surround 

and coordinate with Ca
2+

 instead of Mg
2+

. Amazingly, this tendency is much more 

pronounced for DNAp···Mg
2+

··· Ox
2-

 and DNAp···Ca
2+

··· Ox
2-

 complexes. Thus, 

although the binding is favored in the former complex by DDGb= -35.0, hydration 

stabilizes the latter by DDGhyd= -60.2 kcal/mol. These and the previous DDGb and 

DDGhyd  differences indicate that the coordination of an extra Ox
2-

 with already Ox
2-

-

bound Ca
2+

 or Mg
2+

 instead of DNAp-bound Mg
2+

 is favored before the precipitation of 

any of the complexes may happen. In addition, Ca
2+

···Ox
2-

 and Ox
2-

···Ca
2+

···Ox
2-

 have 

much more favorable hydration than their corresponding Mg
2+

 counterparts. Finally, 

Mg
2+

 prefers to coordinate with two Ox
2-

 rather than with DNAp and Ox
2-

, which 

enables CaOx and MgOx calcifications to grow DNA-free in the solution as previously 

confirmed by in the lab tests.  

 

CONCLUSIONS 

In summary, we systematically compared the mineralization of DNA in CaOx and 

HAp using a synergistic computational-experimental approach. Being the latter 

materials traditionally related with transfection of cells with nucleic acids and with the 

formation of microcalcifications inside of living organisms, the biomedical application 

of DNA-based biominerals might be further improved by understanding the 

fundamental interactions associated to adsorption and encapsulation of such 
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biomolecule in HAp and CaOx. Using atomistic MD simulations, we studied DNA 

adsorption and encapsulation in CaOx and HAp. Although DNA can be adsorbed onto 

the most stable facet of the two minerals, important differences are found. HAp is able 

to preserve the DNA double helix because of the complementarity between their 

phosphate anions through isomorphic planes, while the repulsive interactions between 

the oxalate anions of CaOx and the polyphosphate backbone of the biomolecule cause 

the destabilization of the double helix. Besides, DNA nucleates the growing of HAp 

when it is immersed in an ionic solution containing Ca
2+

, Mg
2+

 and PO4
3-

 ions and 

encapsulates it inside HAp nanopores maintaining the stability of the double helix. The 

opposite behavior is observed when DNA is immersed in a Ca
2+

, Mg
2+

 and Ox
2-

 

solution and encapsulated in CaOx pores: the minerals grow separately from DNA and 

the double helix undergoes severe structural alterations, respectively. These theoretical 

results have been corroborated experimentally by preparing DNA-HAp, DNA-CaOx 

and DNA-MgOx complexes. UV-vis spectra show that HAp is much more effective 

than CaOx and MgOx for DNA mineralization in terms of both adsorption and 

encapsulation. Furthermore, QM calculations on model complexes in aqueous solution 

show that Ca
2+

 ions prefer to coordinate with two Ox
2-

 than form triads involving an 

Ox
2-

 and a phosphate group from DNA.  

Another fundamental insight obtained in this work is that results described above are 

independent of the methylation degree of the simulated DNA dodecamers. This is very 

relevant in the medical context since CaOx and HAp breast cancer micro-calcifications 

have been associated with more frequent benign and malign prognosis, respectively. 

Results derived from this study open a new concept that deserves further research, 

suggesting that HAp microcalcifications might be involved in the protection and 

transport of carcinogenic DNA. 
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CAPTIONS TO FIGURES 

Figure 1. Axial and equatorial perspectives of the starting models used to represent 

the DD double helix embedded in HAp and CaOx nanopores. 

Figure 2. Comparison of DNA adsorption on HAp and monohydrated CaOx. 

Temporal evolution of the RMSD with respect to the canonical B-DNA double helix for 

(a) R1A (5ô-CG
4
GTCG

5
CCG

6
TCG

7
-3ô) and (b) DD (5ô-CGCGAATTCGCG-3ô) 

adsorbed onto the (001) HAp and (100) CaOx facets. The RMSD obtained for the DNA 

in aqueous solution has been included for comparison. Axial view of the R1A 

dodecamer adsorbed onto (c) the (001) surface of HAp and (d) the (100) surface of 

monohydrated CaOx. Oversized black balls highlight the position of carbon of methyl 

groups in the methylated DNA. For each system, the axial and equatorial views of the 

canonical double helix (in black) and the R1A double helix adsorbed onto the HAp or 

CaOx surface (in red) are compared at the bottom. 

Figure 3. (a) RDFs extracted from the MD simulation of the solution containing 

R1A, water, Mg
2+

,
 
Ca

2+
 and Ox

2-
. DNAp refers to the DNA phosphate backbone. (b) 

Superposed snapshot extracted from the simulations with Ox
2-

 (red box) and PO4
3-

 (blue 

ellipsoid) ions. (c) RDFs extracted from the MD simulation of the solution containing 

R1A, water, Mg
2+

,
 
Ca

2+
 and PO4

3-
. In order to ensure that R1A···ion and ion···ion 

interactions had enough time for their formation (if possible), RDFs were calculated in 

all cases considering only the last 50 ns of productive simulations. 

Figure 4. Axial perspective of the R1A and DD double helix embedded in HAp and 

CaOx nanopores after relaxation through energy minimization and MD. The double 

helix is also displayed without mineral to show the different degree of distortion 

induced by the minerals. 
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Figure 5. UV-vis absorption spectra of the (a) DNA-CaOx, (b) DNA-MgOx and (c) 

DNA-HAp complexes. Spectra of: as prepared samples (#1, blue solid lines); samples 

digested with DNAase to eliminate DNA adsorbed on the surface (#2, red solid lines); 

dissolved as prepared samples (#3, blue dashed lines); and dissolved digested samples 

(#4, red dashed lines), where # refers to a, b or c.  

Figure 6. Quantum mechanics calculated binding free energy in aqueous solution 

(ȹGb; kcal/mol) and hydration free energy (ȹGhyd; kcal/mol) for different complexes 

including either Ca
2+

 or Mg
2+

, oxalate (Ox
2-

) and DNA phosphates (pDNA): black color 

letters stands for Ca
2+

 whereas red color ones for Mg
2+

. Calculations were performed 

within the SMD-B3LYP/6-311G++(2d,2p) framework. 
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