

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Implementación de Graphql en la REST API existente

TITULACIÓ: Grau en Enginyeria de Sistemes de Telecomunicació

AUTOR: Binod Lama

DIRECTOR: Miguel Valero García

DATA: 24 de octubre 2019

Títol: Implementing Graphql in Existing REST API

TITULACIÓ: Grau en Enginyeria de Sistemes de Telecomunicació

Autor: Binod Lama

Director: Miguel Valero Gracia

Data: 24 de Octubre 2019

Resum

Classpip es la aplicación desarrollada por el alumno y profesor de EETAC.
El concepto de classpip se basa en el principio de la gamificación, que utiliza
el principio del juego en el contexto no relacionado con el juego. Classpip
aplica el concepto de gamificación en los sistemas educativos.

Todo el proyecto de class pip se divide en 3 partes principales: tablero de
classpip que es la aplicación web para escritorio, classpip mobile es para
dispositivos Android / IOS y el servicio classpip que sirve como back-end para
estos dos clientes.

El objetivo principal de este proyecto es mejorar el proceso de obtención de
datos mediante la implementación de Graphql. Todo el trabajo se realiza para
implementar graphql además de la API de REST existente que usa un
loopback de llamada de marco. Hemos probado varias arquitecturas de
graphql que pueden ayudar a mejorar el proceso general de recuperación de
datos desde la base de datos.

Graphql fue desarrollado por Facebook, cuyo objetivo principal es aumentar el
rendimiento de los usuarios de dispositivos móviles porque en Graphql solo
obtenemos lo que necesitamos en una sola solicitud que ahorra el ancho de
banda y el tiempo para cargar esos datos.
Las compañías de software populares como GitHub, Instagram, Twitter, Stack
Share y más ya han implementado graphql.

Title: Implementing Graphql in Existing REST API

Degree: Telecommunications systems Engineering

Author: Binod Lama

Director: Miguel Valero Gracia

Date: Octuber 24 2019

Overview

Classpip is the application developed by the student and professor of EETAC .
The concept of classpip is based the principle of gamification which uses the
gaming principle to the non-gaming context. Classpip applies the concept of
gamification into education systems.

The whole project of class pip is divided into 3 main parts: classpip dashboard
which is the web application for desktop, classpip mobile is for the android /IOS
devices and the classpip service which serves as the backend for these two
clients.

The main objective of this project is to improve the data fetching process by
implementing Graphql. The whole work is done to implement graphql on top
of existing rest api which uses a framework call loopback .We have tried various
graphql architecture which can help improve the overall process of data
fetching from the database.

Graphql was developed by Facebook whose main goal is to increase the
performance of the mobile users because in Graphql we only get what we need
in just one request which saves the bandwidth and the time to load that data.
Popular software companies like GitHub, Instagram, Twitter, Stack Share and
more has already implemented graphql .

INDEX

INTRODUCTION .. 9

CHAPTER 1. APPLICATION PROGRAMMING INTERFACE 10

1. Application Programming Interface .. 10
1.1.1. Rest API .. 10
1.1.2. Limitation of REST API ... 11

1.2. Graphql API .. 12
1.2.1. Schema ... 13
1.2.2. Resolver .. 13
1.2.3. Create Graphql server .. 14
1.2.4. Limitations of Graphql ... 17

CHAPTER 2. ADVANTAGE OF USING GRAPHQL OVER REST 18

2.1. Eliminate under and over data fetching. .. 18

2.2. Has strong schema type .. 20

2.3. Schema stitching .. 20

2.4. Rapid Product Iterations on the Frontend ... 20

2.5. Graphql has Rich open-source ecosystem ... 20

CHAPTER 3. POPULAR GRAPHQL ARCHITECTURE 21

CHAPTER 4. GRAPHQL ARCHITECTURE IMPLEMENTED TO REST 23

4.1. Replacing the existing REST with Graphql server ... 23

4.2. Graphql as a gateway between REST and the client .. 24

CHAPTER 5. IMPLEMENT GRAPHQL IN EXISTING REST API 25

5.1. Analyze the data model of the REST API ... 25

5.2. Generate Graphql schema based on data model. .. 25

5.3. Implement resolver functions for the schema. ... 25

CHAPTER 6. IMPLEMENT GRAPHQL IN CLASSPIP SERVICE 26

6.1. Graphql as the gateway architecture: .. 26

CHAPATER 7. PREFORMANCE TEST .. 29

7.1. Scenario 1: Get the student name and school information ... 29

7.2. Scenario 2: Get the student, school, rewards, point relation: 31

CHAPTER 8. CONSUME GRAPHQL IN CLASSPIP DASHBOARD 33

8.1. To display /groups pages: ... 33

8.2. To display /groupStudents/ page: .. 36

8.1.2. Create new collectionCards ... 40

CHAPTER 9. CONCLUSION ... 42

REFERENCES ... 43

UNDERGRADUTE THESIS PROJECT 9

INTRODUCTION

As the world of application Program interface (API) is evolving every day with
the growing internet technology we need to get updated our applications with it.
As the new technology comes that doesn't mean they are right to use in every
scenario. We need to analyze their capabilities and use them as our needs.

Graphql is also a new evolving technology that lets rethink the developers how
to build the client and API web applications. Graphql is a query language for
APIS which lets client to fetch data from database in an efficient way
without wasting any bandwidth. It lets the client specify exactly what data it
needs.
We need to think Graphql as a tool to build our application. Before we
implement Graphql in our project we need to rethink the cost of implementation
and how it will help to grow our applications.

Classpip is a web application developed by the professors and the students of
EETAC. It was started back in 2016. It is a server-based application that needs
to interact with server to get its data. The main project of Classpip is divided into
three parts: ClassPip Dashboard which is for the desktop web apps, Classpip
Mobile and the Classpip Service which serves as a REST API for our desktop
and Mobile clients. The main objective of this document is to explain the process
of implementation of Graphql which can be useful for fetching the data. As the
service of Classpip uses a framework called strong loopback which is based on
REST architectural style, Web services.

The project documentation is divided in 9 different chapters. In Chapter 1 we
will briefly introduce the Api. This chapter will explain the core concept of API
and how api world works.

In the second chapter we will briefly compare the concept of REST and
Graphql. In this chapter we will explain the advantages of graphql.

In the third and the fourth chapter we will explain about the different
architecture that can be used to implement Graphql with some examples.
In chapter 5 and 6 we will finally explain the process of creating a new Graphql
server and implement in Classpip dashboard. In these chapter we will explain
how and why Graphql should be implemented in the coming future to increase
the efficiency of our application classPip.

In chapter 7 you can find about the performance test between rest and graphql.
We have created some scenario to test their performance.

In chapter 8 we have explained about the process of implementation of graphql
in Classpip dashboard which is based on angular.
Finally, in the last chapter we will provide the conclusion over this project.
.

UNDERGRADUTE THESIS PROJECT 10

CHAPTER 1. APPLICATION PROGRAMMING INTERFACE

1. Application Programming Interface

Application Programming interface (API) which acts as a middle man between
client and the server. It is a way for software to communicate with each other.
 When the data is requested from the frontend (Mobile, web apps) to the database
then API is responsible to make it happen. It is a set of rules that can be used to
share information between client and the server.

As the internet is expanding and more mobile application are developing which
needs a complex and efficient way of data fetching from the server. Some of the
web service api are described below:

1.1.1. Rest API

Rest (Representational state transfer) is a popular API design architecture used
to implement web services. It is a simple and flexible way of accessing web
services. The server will send the representation of state of the requested
resource to the client. Most of the representation of the state can be in json or
XML format.

Basically, Rest api are stateless which means clients are responsible for storing
all the application state related to client-side information. Clients’ needs to send
state information to the server whenever it is needed. The client and the server
can operate independently in REST api which means are replaceable and all the
data fetched from the server can be cached in client side which will improve the
overall performance.
REST api are based on 5 different http methods which are GET (to fetch data),
POST (to modify the data in server), PUT, PATCH and DELETE.

Fig. 1 Rest api Architecture source (https://phppot.com/php/php-restful-web-
service/)

https://phppot.com/php/php-restful-web-service/
https://phppot.com/php/php-restful-web-service/

UNDERGRADUTE THESIS PROJECT 11

Figure 1 shows the general architecture of Rest where it lies in between client
and the database.

Our classpip service is also designed in REST architecture which uses an open
source framework known as loopback. Loopback framework is built on top of
express js with various set of node.js modules which can be used independently
to build REST api with little or no coding. It also generates api code
automatically which makes design and testing easier. It can also be connected
to multiple data source and glued on top of existing services.

As our application grows we need to have many relational databases which will
need many endpoints to get information. To get the complex information from
our database we need to generate highly customized endpoints which may be
used for only that kind of data request.

1.1.2. Limitation of REST API

Some of drawbacks of REST api which make it less effective are described
below:

a) Multiple Round-trip Time
To get the information from different tables or databases we need to fetch
data using different endpoints which leads to multiple round trip to get what
we want.

 b) Over and under data fetching

As our application grows, there will be new requirements of data from the
server. The client often needs only some parts of the data stored in the
server but api designed with rest do not have the function of providing
which led to over fetching of the data. Over fetching led to degrade the
performance of the product.

As we only want the name of students and their school’s name but from
the first request we will receive all the information about the student that
are not useful which led to over data fetching and from the first request
we cannot get the school name as we only get School’s id, so we do not
have enough information which led under data fetching

UNDERGRADUTE THESIS PROJECT 12

1.2. Graphql API

Moto of Graphql: What you want is what you get

GRAPHQL is basically a query language for an API. It is not tied to any specific
database or storage engine, but it is instead backed by your existing code and
data.

Basically, Graphql has only one endpoint which is http post request. The client
sends a customized post request get the data only what he wants. In other words,
clients have the power to define what type of data to fetch from the database. It
helps where our client needs a flexible response format to avoid extra massive
data transfer. It is also supported in various popular programming languages like
python, c#, JavaScript etc. In Figure 2 shows the general architecture of Graphql
Where all the client sends graphql query to get their data from the database or
microservice or other rest api.

Fig. 2 Graphql Architecture (source:

https://www.apollographql.com/docs/apollo-server/)

Two things are the most important part of Graphql: Schema and Resolver
function.

https://www.apollographql.com/docs/apollo-server/

UNDERGRADUTE THESIS PROJECT 13

1.2.1. Schema

Schema are the brain of a Graphql api. It is where the data models are defined
that can be fetched through Graphql server. It defines what a client can get and
can fetch from a server, and the relationship between the different types.
As schema are the contract between client and the server about how to fetch
data.

Some important special types of schema:

Query: Query are used to read or fetch the data from the server. They can be
comparable with REST GET requests which are used to fetch the data from the
server. Every Graphql server must include query type.

Mutation: To post or modify the data in the server mutations are used and also
returns a value. They are used to insert, update or delete the data in the server.
Graphql server may or may not include mutation type.

Subscription: The main goal of the subscription is to send real time updates to
subscribed client when new or existing link element is created or upvoted.

1.2.2. Resolver

Resolvers are function that resolves a value for a type or field in a schema. It is
where our logics are defined. It generates the response for the Graphql query
that were defined in the schema. It acts as a query handler for our Graphql.

Resolver function accepts four arguments which is described table below:

Fieldname(obj,args,contexts,info)=>{results}

Arguments Descriptions

obj It contains the results from the resolver on the parent fields

args It contains an object with arguments passed into the fields into
query.

Context Shared object by all the resolvers including authentication
information(tokens), base endpoints

info It contains the information about the execution state of the
query, may include fields name, path to the field from the root

Table1: About resolver function

Table 1 describe the arguments that can be passed to a resolver function.

UNDERGRADUTE THESIS PROJECT 14

A resolver function can return different types of values:

Arguments Descriptions

Null Return null or undefined which indicates object could not be
found.

array if the schema indicates that the result of a field should be a list

Promise return a promise that resolves an array or an array of promise

Scalar object return value without special meanings but it is simply passed
down into any nested resolvers.

Table 2 Return values of a resolver

In the above table 2 , it describes all the return types of values.

1.2.3. Create Graphql server

For the understanding of how resolver work we have created a simple Graphql
server which stores information about students and their task.
By following the simple steps we can create our Graphql server.

Step1: Define schema

Fig.3 Simple graphql schema

In figure 3 we have defined how schema are defined in graphql where we have
3 types User ,Task and query. we can query tasks which returns an array of
tasks and users which returns an array of users. To retrieve specific task or
user, we can use data type ID. (Note: “!” means that field cannot be null)

UNDERGRADUTE THESIS PROJECT 15

Step 2: Implement in Resolver function:

From the figure 3, we have demonstrated how to implement our graphql. Tasks,
users, task and user are the resolver that handle the query. As discussed
above, the taskId can be retrieved from args argument, obj will contain the
query object itself. To return the task with specific taskId we can use find
method to get that task from the database. To run the Graphql server we have
used graphql yoga framework which is based on express.js and Apollo.

After schema and resolver are implemented we can run our first graphql
application by hitting npm start command.

Fig .4 Graphql Resolver example code

Figure 4 is the actual code of implementation of resolver in graphql server.

Graphql comes with his own web-based client known as Graphql playground to
execute query to which makes it easy to test.
Once the server is up open the browser and enter http://localhost:4000.

To fetch the task information following query is needed.

http://localhost:4000/

UNDERGRADUTE THESIS PROJECT 16

Fig. 5 Executing query in graphql playground to get the task information

In Figure 5 we have defined the query in the left side and in the right is the
response of that query which the task information.

Fig. 6 Executing query in graphql playground to get list of tasks

In figure 6 we can see how we can execute tasks query; the response is the list
tasks in Json format.

Similarly, we can execute the query for users to get an array of users and user
by user id.

UNDERGRADUTE THESIS PROJECT 17

1.2.4. Limitations of Graphql

Some of drawbacks of Graphql are explain below:

1.Caching

Overall the idea of cache is to lower down the server work by saving the data in
client side for repetitive same request. As we only have post request in Graphql,
which means we cannot cache those post request. We need to use different
libraries to overcome this
problem or set the global unique Ids.

2.Error handling

As queries always returns http status code 200 despite that query was
unsuccessful which makes it more complex while handling errors.

3.Performance

As we can send the nested query which means it needs time to process all the
data. So, we should keep in mind the limitation of nesting in particular query to
improve our application performance.

UNDERGRADUTE THESIS PROJECT 18

Chapter 2. ADVANTAGE OF USING GRAPHQL OVER
REST

Some of the advantages of using Graphql over Rest are briefly described below

2.1. Eliminate under and over data fetching.

As in the above example of user and task Graphql project we can send
customized query to get the task information along with the username and id
just in one request.

Fig. 7 Example of nested query

In figure 7 we have defined a query where we will get the list of tasks along with
user’s id and username. The response of this query is shown in figure 8 .

UNDERGRADUTE THESIS PROJECT 19

Fig. 8 response of the nested query

We can include only the needed fields to get the response from the server and
it’s just needing to request one we can get what we want.

But in Rest we need to send multiple request because one request is not
enough to get all the required information, and we also get unwanted data
which will increase the payloads and decreases the overall performance of the
application.

UNDERGRADUTE THESIS PROJECT 20

2.2. Has strong schema type

 Graphql schemas are the backbone of every Graphql API. Documentation can
be generated automatically which will help the developer’s life to be simpler
otherwise they need to be created manually.

2.3. Schema stitching

We can connect and merge multiple Graphql api which means clients can
connect to multiple api just by using single api. Graphql bindings take the idea
of schema stitching to the next level by enabling a simple approach to reuse
and sharing Graphql APIs.

2.4. Rapid Product Iterations on the Frontend

As we add new function in frontend we need different types of data. In Graphql
they can send custom query to get those data which means they don’t need to
inform backend every time that they need certain types of data which can
significantly increase the efficiency of overall work.

2.5. Graphql has Rich open-source ecosystem

As Graphql is used by most of the software companies like GitHub, Facebook
(which created the Graphql) many tools are developed day by day which will
certainly help to make Graphql a better api language.

https://blog.graph.cool/reusing-composing-graphql-apis-with-graphql-bindings-80a4aa37cff5

UNDERGRADUTE THESIS PROJECT 21

Chapter 3. POPULAR GRAPHQL ARCHITECTURE

Some of the popular graphql Architecture in real world application are described

below:

1: Graphql directly connected to database. In this architecture graphql is
responsible to fetch data directly from the database which is shown in figure 9 .

Fig. 9 Architecture (source:https://www.howtographql.com/basics/3-big-picture/)

2: Graphql server as a layer between third party. Graphql act as a gateway to
different services or to the database or may be to the different REST api which
is shown in the figure10.

Fig.10 Architecture (source:https://www.howtographql.com/basics/3-big-
picture/)

https://www.howtographql.com/basics/3-big-picture/
https://www.howtographql.com/basics/3-big-picture/
https://www.howtographql.com/basics/3-big-picture/

UNDERGRADUTE THESIS PROJECT 22

3: Hybrid approach which means it is connected to a database and different
services and different rest api which is shown in figure 11.

Fig. 11 Architecture (source:https://www.howtographql.com/basics/3-big-
picture/)

https://www.howtographql.com/basics/3-big-picture/
https://www.howtographql.com/basics/3-big-picture/

UNDERGRADUTE THESIS PROJECT 23

 CHAPTER 4. GRAPHQL ARCHITECTURE
IMPLEMENTED TO REST

To implement graphql in our service class pip we have used the following two

architecture which are replacing existing REST with graphql completely and

Graphql as thin layer in between REST and the client.

4.1. Replacing the existing REST with Graphql server

Fig. 12 Replacing REST with Graphql

To implement the above architecture shown in fig 12 we need to change the
following things:
In Server side: Create graphql server and connect to database.
In Client side: Change all the data fetching methods by using graphql query.

Some of the Advantages of this architecture are listed below:
1.No need to map every Rest api endpoint
2. Can configure graphql to obtain the nested and complex data type which
needs multiple data fetching if we use Rest.

Some of the disadvantages of this architecture are listed below:
1.Difficult to connect with existing databases (Database fields mismatch)
2. Needs to reconfigure all the data fetching process in Client side which means
a lot works in frontend side.

UNDERGRADUTE THESIS PROJECT 24

4.2. Graphql as a gateway between REST and the client

Fig.13 Graphql as gateway

To implement the above architecture shown in figure 13 we need to change the
following things:
configuration:
In server: Create graphql server and map the rest endpoint
In client: Fetch the required complex data using graphql.

Some of the Advantages of this architecture are listed below:
- No need to configure database
- No need to change the current architecture and least work we can use the
power of graphql.
- Can be extended in future for new functionality
- Graphql and rest can work side by side
- Can configure graphql to obtain the nested and complex data type which
needs multiple data fetching if we use Rest.

Some of the disadvantages of this architecture are listed below:

• Manually map the rest endpoints which can be complex.

UNDERGRADUTE THESIS PROJECT 25

CHAPTER 5. IMPLEMENT GRAPHQL IN EXISTING REST
API

In the following simple steps described below we can implement Graphql to our
classPip easily:

5.1. Analyze the data model of the REST API

At first, we need to understand the data models of REST API.
Basically, we need to know what the fields and their relationships are.

5.2. Generate Graphql schema based on data model.

Once we understood the data model we can start creating Graphql schema. AS
there are different approaches to create our schema, some of them are listed
below:

1.Manully
We can create the schema of our graphql server manually. This approach may
be simple for the small project but for the large and complex data model it's
difficult to create all the schema manually.

2.Using Prisma to create schema automatically.
 We can use Prisma to create our graphql schema automatically. Prisma
is a database attraction layer that turn database into graphql api. It is glue in
between our database and the graphql server. With Prisma we can create
automatically the CURD based Schema for our graphql.

5.3. Implement resolver functions for the schema.

Once the schemas are defined we need to write the resolver functions for it.
How to write the resolver function which can be found in chapter 7.

UNDERGRADUTE THESIS PROJECT 26

CHAPTER 6. IMPLEMENT GRAPHQL IN CLASSPIP
SERVICE

We have used 2 different architecture to implement graphql on classpip rest
service where graphql as the thin layer in between rest and the client is the best
architecture because we don’t need to modify all the data fetching codes in the
client sides and in the server, we can avoid the database mis match process,
we do not need to connect directly to the database.

6.1. Graphql as the gateway architecture:

At first, we need to create a graphql server. Things that we need to create a
graphql Server.

A. Graphql Schema
 We have used Prisma to create our graphql schema. For this approach
we need to have docker and Prisma installed. In the following steps we can
create our graphql schema:
Step 1: create a folder called Prisma
Step 2: Inside Prisma folder hit prisma init command. We can select existing
database or just create new database. Once done 3 files will be created in
Prisma folder.

Fig.14 Prisma folder contains

In fig 14 we can see the folder structure of the folder Prisma.
In the first file datamodel.prisma we can define our data models for our
database.Docker-compose.yml file contains all the required information about
the docker Prisma images.
Prisma.yml is the root configuration file for Prisma service where we define the
service endpoint, database type, Prisma client

Step 3: Modify the data model. Prisma file with classpip service model.

Step 4: run the docker-compose up -d command which will create the Prisma
image file in the docker.

UNDERGRADUTE THESIS PROJECT 27

Step 5: Run Prisma deploy. Once it done we can run localhost:4466 in our
browsers to check it’s working.

Step 6: we have created a script that will automatically generate the
prisma.graphql schema from our Prisma server .

Step7: To run the server up execute the npm run get-schema command.
B. Resolver:

As we are going to use graphql just as gateway, so we need to map the
required REST api endpoints in our resolver function. In the example below, we
can see how we can map our rest endpoints to graphql resolvers.

For example: Get the list of questions:

Fig.15: Mapping Rest URL in resolver function

In fig15 we have a resolver name question. It takes argument RESTURL which
is the URL for the Rest api. The return value will the list of questions in json
format.
.

Fig.16: mapping Rest URL in resolver function

 In the fig 16 we have a resolver name question. It takes argument RESTURL
which is the URL for the Rest api and the id of question. The return value will be
a question in json format.

We can use graphql playground to test our graphql query:

UNDERGRADUTE THESIS PROJECT 28

Fig. 17 Testing in Graphql play ground

The cool thing about graphql is that we can request only the fields that we need
to fetch like in the above picture we can only fetch the list of questions but only
its id and name which will help to reduce the payload.

In fig 17 we see how we have executed questions query using graphql
playground whose response is the list of questions in json format.

UNDERGRADUTE THESIS PROJECT 29

CHAPATER 7. PREFORMANCE TEST

To test performance of initial Rest implementation and after implementation we
have created different scenario list below. For the
purpose of the performance test we have used Postman.

7.1. Scenario 1: Get the student name and school information

To get the information about student and school information using REST we need
to send the following GET request.

1.Get students list http://localhost:3000/api/students

Fig.18 List of students

In fig 18 we can see the list of students after we send the above get request to
the Rest api using Postman.

http://localhost:3000/api/students

UNDERGRADUTE THESIS PROJECT 30

2. Get http://localhost:3000/api/students/{id}/school

Fig.19 response of the get request

In fig 19 we get school information for student whose id is 10000. So, we need

to send N number of get request to get the school information for N number of

students in the list.

Time consumed: 533 ms to get the student information + 9*542ms = 0.542 sec
to get the information of 9 students and their school information
Total size of the payload: 2,68KB+9*1,14 KB =12.94 KB

To get the same information using graphql:

We just need to send a query with required field and call the graphql endpoint

only once.

http://localhost:3000/api/students/%7Bid%7D/school

UNDERGRADUTE THESIS PROJECT 31

Fig.20 Graphql query to get the required information

In figure 20 shows the query to fetch data using graphql query.

Overall comparison of REST and graphql to get the information is shown in the
table 3

 Time consumed Total payload

REST 0.542 s 12.94 KB

Graphql 587 ms

1.85 KB

Table: 3 General comparision

7.2. Scenario 2: Get the student, school, rewards, point relation:

To get the same information about student name, school name, rewards and

point relation using graphql

We just need to send a query with required field and call the graphql endpoint
only once

UNDERGRADUTE THESIS PROJECT 32

Fig. 21 Graphql query and response

Total time consumed: 527ms,
Total size:1.57 KB

UNDERGRADUTE THESIS PROJECT 33

CHAPTER 8. CONSUME GRAPHQL IN CLASSPIP
DASHBOARD

To consume the graphql implemented api in classpip dashboard we just need to
send post request to a graphql api to get what we need.
For demonstration how to consume a graphql api for our Classpip dashboard
we have implemented two pages in which we need to fetch the information
about groups and the students

8.1. To display /groups pages:

Data needed to display the /groups pages are list of Group names with group
grade names and group matter names.

Fig. 22 Groups page in classpip dashboard

Rest implementation:

When a groups page is clicked then it needs to call 3 different endpoints to get
all the required information:

a. Get localhost:3000/api/groups where we will get the list of group id, group
name, schoolId, teacherId, gradeId and matterId.

UNDERGRADUTE THESIS PROJECT 34

Fig. 23 Response list of groups

b. Get localhost:3000/api/groups/{id}/matters where we get the group matters
name, id and schoolId. To get the information of whole groups matters
information we need to call N times the number of Group.

Fig. 24 Rest response of groups matter.

 c. Get localhost:3000/api/groups/{id}/grades where we will get the groups
grades name, id and schoolId. To get the information of whole groups grades
information we need to call N times the number of Group.

UNDERGRADUTE THESIS PROJECT 35

Fig. 25 Rest response of groups grade.

Graphql Implementation:

We just send a post request where the body contains our query as a string.
Even if the query includes child’s object the total number of requests is only one
time to get all the necessary information to display the /group page.

Fig. 26 Code to fetch data in classpip dashboard from graphql server

UNDERGRADUTE THESIS PROJECT 36

Fig. 27 Query response with all the group information to display the group page

From the figure 26 and 27 we can see that we just send a query with required
fields to display the group page and the response is only what we have defined
in query filed in just one http request.
Whereas in figure 23 ,24, and 25 we can see that we need to send multiple
request to REST api to display the same page and needs to do multiple trip
cause just one request is not enough.

8.2. To display /groupStudents/ page:

Figure 28 shows the groupstudents pages of group 1
When a group folder is clicked then it shows the list of students of that group with
its student name, last name, email and their avatar image:

UNDERGRADUTE THESIS PROJECT 37

Fig. 28 GroupStudents pages

Rest implementation:

To show this information we need to call these endpoints:
a. Get localhost:3000/api/groups/{id}/students where we will have the list of
student’s information in that particular group.

Fig. 29 List of students from REST

Figure 29 is the response of the localhost:3000/api/groups/{id}/students.

UNDERGRADUTE THESIS PROJECT 38

b. GET request to localhost:3000/api/students/{studentId}/avatar where we will
get the students avatar information like name, id and image URL. To get the full
students avatar information we need to call N times the number of students in
that group.

Fig. 30 Avatar information of a student whose id is 10000

Figure 30 show the response of localhost:3000/api/students/{studentId}/avatar

Graphql implementation:

To display the /groupstudents page, we include our query as string in our post request
where we have defined required fields to display that page.

Fig. 31 Group query implementation in classPip Dashboard

UNDERGRADUTE THESIS PROJECT 39

Fig. 31 Response of the above query

In figure 28 and 29 we can see that we need to send multiple request to REST
api to display the groupstudent page and needs to do multiple trip cause just
one request is not enough.
From the figure 30 and 31 we can see that we just send a nested query with
required fields to display the groupStudents page and the response is only what
we have defined in query filed in just one http request.

UNDERGRADUTE THESIS PROJECT 40

8.1.2. Create new collectionCards

Fig.32 Form to create new collection card.

Figure 32 shows the form to create new collection card which was taken from
classpip dashboard. To create the new collection cards, we have tested one
using rest and another using graphql which is shown below:

Rest implementation:
We sent a post request with the information of new collectionCards where in the
post body we define the required information about the new cards which is
shown in figure 33.

Fig. 33 Post request to create a new collection card

UNDERGRADUTE THESIS PROJECT 41

Graphql implementation:
To create the new collection cards using Graphql we send our query in a post
body which is shown in the figure 34 where we need to send the mutation with
required information to create the new collection card.

Fig. 34 Graphql query implement in classpip

UNDERGRADUTE THESIS PROJECT 42

CHAPTER 9. CONCLUSION

As we need different tools to complete certain types of work. Graphql has its
own cool features but it doesn't mean it can be used in every environment.
The main idea of using Graphql in Classpip Service which act as a thin layer
between REST and the database solves the various problems like over and
under fetching, multiple round-trip time but it also comes with problems. It will
be perfect for the application where data types are complex and needs to call
multiple times the server to work that function.

As the mobile applications are increasing, graphql will be the perfect choice
because it reduces the payload and data fetching round trip time.

At the end of this project, I myself learnt how the world of api is working and
improved the understanding of different programming languages and their
techniques. And time management was the most difficult part of the project .
To conclude, I personally feel that this project has been a very good experience
and developed my programming skills much better.

UNDERGRADUTE THESIS PROJECT 43

References

[1] The modern graphql Bootcamp(with Node.js and Apollo)
(https://www.udemy.com/course/graphql-bootcamp/)

[2] Graphql Documentation (https://graphql.org/learn)

[3] Loopback documentation(https://loopback.io/doc/en/lb4)

[4] Angular documentation (https://angular.io/docs)

[5] Migrating to GraphQL: Assessment(https://arxiv.org/pdf/1906.07535.pdf)

[6] Graphql or Brust(https://19yw4b240vb03ws8qm25h366-wpengine.netdna-

ssl.com/wp-content/uploads/GraphQL-or-Bust-2018.pdf)

[7] Prisma documentation (https://www.prisma.io/docs)

[8] What ,why and how graphql

(https://developer.akamai.com/blog/2019/04/08/graphql-101-what-why-and-

how)

https://www.udemy.com/course/graphql-bootcamp/
https://graphql.org/learn/
https://loopback.io/doc/en/lb4/
https://angular.io/docs
https://arxiv.org/pdf/1906.07535.pdf
https://19yw4b240vb03ws8qm25h366-wpengine.netdna-ssl.com/wp-content/uploads/GraphQL-or-Bust-2018.pdf
https://19yw4b240vb03ws8qm25h366-wpengine.netdna-ssl.com/wp-content/uploads/GraphQL-or-Bust-2018.pdf
https://www.prisma.io/docs
https://developer.akamai.com/blog/2019/04/08/graphql-101-what-why-and-how
https://developer.akamai.com/blog/2019/04/08/graphql-101-what-why-and-how

UNDERGRADUTE THESIS PROJECT 44

ANEXIOS

Graphql code :

https://bitbucket.org/chakulama/apigraphql

Classpip dashboard using graphql

https://bitbucket.org/chakulama/classpipv0.5.0graphql

Classpip services

https://github.com/alejandromartincruz/classpip-services.git

https://bitbucket.org/chakulama/apigraphql
https://bitbucket.org/chakulama/classpipv0.5.0graphql
https://github.com/alejandromartincruz/classpip-services.git

