A traffic-aware electric vehicle charging management system for smart cities

Pablo Barbecho Bautistaa,1,*, Leticia Lemus Cárdenasa,2, Luis Urquiza Aguilarb, Mónica Aguilar Igartuaa

a Dep. of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

b Dep. of Electronics, Telecommunication and Networks, Escuela Politécnica Nacional (EPN), Quito, Ecuador

\textbf{ARTICLE INFO}

\textbf{A B S T R A C T}

The expected increase in the number of electric vehicles (EVs) in the coming years will contribute to reducing CO\textsubscript{2} pollution in our cities. Currently, EVs’ users may suffer from distress due to long charging service times and overloaded charging stations (CSs). Critical traffic conditions (e.g., traffic jams) affect EVs’ trip time (TT) towards CSs and thus influence the total trip duration. With this concern, Intelligent transport systems (ITS) and more specifically connected vehicle technologies, can leverage an efficient real-time EV charging service by jointly considering CSs status and traffic conditions in the city. In this work, we propose a scheme to manage EVs’ charging planning, focusing on the selection of a CS for the energy-requiring EV. The proposed scheme considers anticipated charging slots reservations performed through a vehicular ad hoc network (VANET), which has been regarded as a cost-efficient communication framework. In specific, we consider two aspects: 1) the EV’s total trip time towards its destination considering an intermediate charging at each candidate CS, and 2) the communication delay of the VANET routing protocol. First, in order to estimate the EV’s total trip time, our CS selection scheme takes into account the average road speed, traffic lights, and route distance, along the path of the EV. The optimal CS that produces the minimum total charging service time (including the TT) is suggested to that energy-requiring EV. Then, we introduce two communication modes based on geographical routing protocols for VANETs to attain an anticipated charging slot reservation. Simulation results show that with our charging scheme EVs’ charging service time is reduced and more EVs are successfully charged.

* This work was partly supported by the Spanish Government through projects TEC2014-54335-C4-1-R (Incident monitorIng In Smart Communities, INRISCO) and TEC2017-84197-C4-3-R (Secure smart Grid using Open Source Intelligence, MAGOS).

1 Corresponding author.

E-mail addresses: pablo.barbecho@upc.edu (P. Barbecho Bautista), lelticia.lemus@upc.edu (L. Lemus Cárdenas), luis.urquiza@epn.edu.ec (L. Urquiza Aguilar), monica.aguilar@upc.edu (M. Aguilar Igartua).

1 Is recipient of a Ph.D. grant from Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SESCYT), Ecuador.

2 Is recipient of a Ph.D. grant from the Academic Coordination of the University of Guadalajara, Mexico.

132 https://doi.org/10.1016/j.vehcom.2019.100188

131 2214-2096/https://doi.org/10.1016/j.vehcom.2019.100188

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Now a day, developed countries are implementing policies to reduce carbon emissions and promote sustainable transportation. Among many innovative solutions, electric vehicles (EVs) are considered the most promising alternative to reduce carbon dioxide greenhouse emissions in the transportation sector [1]. In this context, The European Union has set one of the most challenging targets for reducing carbon dioxide greenhouse emissions from vehicles in the world. By the year 2021, CO\textsubscript{2} emissions from new vehicles are expected to be 42\% less than new vehicles in 2005 [2]. USA, China, Japan, Canada, among others, lead the rapid development of the EVs’ industry. The decisive shift of drivers to use EVs is contributing to further reductions in CO\textsubscript{2} emissions. Since EVs are expected to continue growing, a new problem arises for drivers regarding where to charge. In general, EV’s battery charging is a time-consuming process, although fast-charging stations and EVs capabilities for different types of charging levels help to reduce charging time [3] [4]. Battery swapping technology is another option for discharged batteries in EVs [5]. It reduces substantially time at charging stations compared to the plug-in or inductive charging. However, battery-charging stations will be the most widely method to recharge EVs because battery swapping needs a more complex infrastructure. Therefore, to optimally manage where to charge has become an important research problem in recent years because the relatively long time needed to charge an EV battery. Furthermore, in case of several EVs are planning
to charge at the same CS (e.g., the CS is located at a highly visited place) it may become overloaded rapidly, which decreases the quality of experience (QoE) of the EV’s user.

Most of the current research works in this topic investigate the EV charging management in terms of energy-scheduling at the CS, but they are not concerned about EVs’ mobility [6] [7]. In this regard, challenges include the selection of an appropriate CS for the EV during its driving phase (i.e., during the EVs’ journey), and the design of a communication framework to support the EV charging service.

In this paper, we first introduce a CS-selection scheme aims to minimize the total trip time of the user. Here, we consider traffic conditions on the EV’s route towards its destination taking into account an intermediate recharging stop at the selected CS, thus minimizing the total trip duration.

Second, we propose a communication framework among EVs and RSUs to interchanges charging service messages. The framework should be highly dynamic and flexible to support the EV charging service and not interfere to road safety services for smart cities.

To have inter-vehicle communications (IVC), wireless technologies such as traditional cellular technologies (i.e., long term evolution LTE), cellular vehicle-to-everything (C-V2X) or IEEE 802.11p could be used in our CS-selection approach. LTE and C-V2X may significantly increase the communication cost in terms of signaling and delay, since both need a higher overhead than VANETS [8]. Moreover, LTE communications need the use of base station infrastructure and employ a licensed band. Nevertheless, the use of cellular networks for the EV charging service would be provided to customers by subscription, which could include an additional cost for users. Alternatively, a cost-efficient solution is the use of VANETs which can provide high data transfers and low communication latency. Here, vehicles can operate to forward service messages to other vehicles or to road side units (RSUs) located along the city. In this way, cooperative behavior among vehicles allows EV drivers to reduce their charging service time. Furthermore, such a cooperative scheme would assist the smart grid (SG) to efficiently manage a centralized charging slots reservation scheme in the CSs deployed throughout the city. Hence, our communication framework is based on two geographical routing protocols of vehicular ad hoc networks (VANETS). We also evaluate another communication scheme named opportunistic. Specifically, we analyze the store-carry-forward paradigm, where EVs buffer and forward messages opportunistically, valid for delay-tolerant applications in vehicular delay tolerant networks (VDTNs) [9]. It is worth noting that a similar cooperative, decentralized approach can be implemented with LTE device-to-device technology [10].

Finally, we carry out extensive simulations under realistic urban scenarios to validate the effectiveness of our proposed EV charging management system. Here, the proposed strategy clearly outperforms the most current charging system today (i.e., non-coordinated).

In a nutshell, we carefully design an efficient EV charging service for urban areas when EVs with a critical state of charge (SoC), i.e., insufficient battery level to complete the trip, will require charging during their trip. We take advantage of IVC so that EVs can communicate with the city infrastructure and with other vehicles to perform an anticipated charging slot reservation. This feature will definitely improve the efficiency of the EV charging service.

The rest of the paper is organized as follows. Related work is discussed in Section 2. Then, the proposed system is presented in Section 3 including the EVs’ trip time estimation and CS-selection strategy. After that, Section 4 details the service message interaction and the service data packets. In Section 5, we introduce two communication schemes based on geographic routing protocols for EVs-RSU communications, and also on an opportunistic communication scheme. Next, Section 6 shows the benefits of our EVs charging management scheme in realistic urban environments. Finally, conclusions and some future work are drawn in Section 7.

2. Related work

The increasing EVs penetration that we are witnessing today motivate that several works study the impact of EVs in the power grid (e.g., voltage deviations, transformers overloading) [11]. Most of the literature, such as [12–15], focuses on optimizing the energy-scheduling coming from either fossil fuels or renewable energy resources. Most of these works consider that the EV is already at an CS or parked at home, thus, EVs’ mobility issues in the charging management is neglected. Just a few works like [16], [17] consider the charging service required during the EV’s trip.

The proposed strategies for charging management in the literature can be classified into (i) centralized and (ii) decentralized schemes.

(i) A central intelligence or global controller manages EVs’ charging. This controller considers the smart grid (SG) state and the CSs’ state (e.g., available energy). Here a communication framework is required so that the energy-demanding EVs communicate with the global controller. The benefits of using a centralized coordination scheme can be found in [18–20]. Among those benefits, we highlight adaptive real-time operation and better utilization of resources, since a central management unit might consider the current global state of the EVs’ batteries and the amount of available energy in the SG devoted to EVs. In [21], authors present a centralized charging management scheme where CSs are selected considering the electricity price.

(ii) In a distributed scheme, EVs select an CS based on their local knowledge and on each driver’s personal preference. The optimal CS selection (i.e., CS with the minimal charging time) is not guaranteed but the communication framework is less complex. In [22], authors propose a decentralized EV charging management scheme, where CSs disseminate their available time for charging (i.e., waiting time till start their charging service). EVs use this information to select an appropriate CS. Here, the system efficiency depends on the CS dissemination frequency. In [23], an EV charging management scheme based on communications between EV-RSU and EV-CS is presented. The former is a vehicle-to-infrastructure (V2I) communication, whereas the latter is a vehicle-to-grid (V2G) communication. Here, authors evaluate different VANET routing protocols in terms of end-to-end delay. Their results show the impact of choosing a routing protocol, which clearly affects the average charging service time.

Nevertheless, the above literature does not consider the current traffic conditions in the city, nor the impact of the communication protocol in the EV charging framework. Thus, the actual charging service time may increase, since the EVs’ trip time (TT) increases under dense traffic conditions, which typically happen in urban scenarios. Moreover, the EVs’ charging reservations may be affected by traffic conditions. For instance, a reservation may prematurely expire before the EV reach the reserved slot in the planned CS. Very few works undertake the issue of traffic conditions during the energy-demanding EVs’ trip towards the intended CS. In [24], the drivers’ trip duration and mobility uncertainty (e.g., a traffic jam) are considered for selecting an CS. In that work, the EV periodically sends a service request to a centralized controller through a cellular network, which responses with the CS selected for that EV. Alternatively to those works proposed in the literature, we present a communication framework based on VANETs with a novel CS-selection scheme for an efficient centralized traffic-aware scheme to manage the EVs charging system.
3. Electric vehicle charging management system

As we said, most reservation-based charging systems, consider fixed reserve expiration times generally oversized (e.g., reserve expires in 1 hour). In this way, those systems aim not to consider traffic conditions or the occurrence of unforeseen situations that may increase the total trip duration towards the selected CS. However, when a large number of EVs plan to charge at the same charging station, it can get congested rapidly, reducing the users’ QoE. Under that situation, EVs could select a non-optimal CS.

To cope with this, we claim that it is essential to consider the trip duration on the EVs’ charging planning. Specifically, our goal is to minimize the total trip time to destination for each EV. Thus, when we detect that an EV has a low battery below a given threshold, in case it does not have enough battery to get to the destination, the system will look for a proper CS to charge the battery. Current traffic conditions are taken into account seeking to reserve the CS where the EV will arrive sooner.

3.1. Definition of entities of the system

1. EV: Each EV appears in the scenario with a certain trip destination. As soon as the EV moves, it progressively discharges its battery. When an EV presents a low battery state of charge (SoC) during its trip, meaning that its battery is below a threshold, the EV starts to negotiate with the EMMS to find a suitable CS for charging.

Further to this, the EV confirm the reserve of the charging slot through the nearest RSU (either directly, see a red line in Fig. 1 or according to a multi-hop process, see dotted blue lines in Fig. 1).

2. CS: Each CS communicates their local status (e.g., electricity needs of EVs, electricity availability in the CS) to the EMMS. CSs are able to charge EVs in parallel, based on available charging slots.

3. RSU: RSUs are located at strategic positions within the city, including all CSs, to provide effective and reliable communications with the city infrastructure. The RSUs allow the communication between EVs and EMMS.

4. EMMS: It consists of a centralized entity in charge of the EV’s charging planning. The electro-mobility management server (EMMS) has a holistic view of EVs and CSs conditions within the charging service area (i.e., the city).

5. Network: In order to plan EVs charging, we propose to use VANETs, as an alternative to cellular communications. It is well known that infrastructureless VANETs can offer low latency due to short distances, compared to traditional cellular communications. Nonetheless, the promising C-V2X [25] technology also allows direct communication between vehicles, thus without incurring the long latency present in cellular networks in which messages have to pass through access points. Therefore, our proposal for EVs charging management scheme could easily be adapted as well to C-V2X.

To forward the service messages used in our proposal of an EV charging system, we consider three geographic routing protocols, which are described in Section 5 and evaluated in Section 6.

In this paper, we assume the following:

(i) Each vehicle is equipped with a global position system (GPS) as well as with an on-board unit (OBU) which allows vehicles to establish vehicle-to-everything (V2X) communications. Besides, vehicles are aware of smart city services via road-side units (RSUs) deployed along the city.

(ii) Charging stations (e.g., see CS_A and CS_B in Fig. 1) and RSUs are connected to the backbone network as well as to the EMMS.

(iii) Traffic conditions are locally available in the system either gathered directly from the network itself (e.g., a VANET) or from any external traffic service (e.g., Google Maps).

3.2. System design

In this section, we detail the main features of our proposal. An overview is shown in Fig. 1.

According to our proposal, a charging slot is intended to be reserved in the most suitable CS. The criterion is to select the CS where the EV driver experiences the minimum service time. This service time jointly considers the charging time at candidate CSs and the total trip time to destination including an intermediate stop at CSs. Thus, whenever an EV needs to charge its battery, our scheme tries to find and reserve (during a specific period) the best available charging slot. In Fig. 2, our proposed system to manage the EVs’ charging is shown. Notations are introduced in Table 1. The system logic is as follows:
First, whenever an EV needs to charge its battery we first check if the EV has enough battery to reach its intended destination (e.g., home, working place). In such a case, the EV goes to the nearest candidate CS and the charging process starts. Here, based on the current SoC of the EV, charging stops at each candidate CS are estimated considering information reported by the energy-requiring EV. Further details of the EV’s information and message exchanges are presented in Section 3.3.1. The EV’s total trip time is estimated for each candidate CS. Here, based on the output of step 1, the EV’s total trip time to destination is estimated considering current traffic conditions in the scenario.

3.3. Temporal estimations used to select the optimal CS

As stated previously, we assume that traffic conditions are locally available, either from the vehicular network itself or from an external traffic service. Current real-time traffic reporting services and route planners (e.g., Google Maps) could be used in our scheme to estimate the EV’s arrival time towards a specific CS. To mimic the actual route plan of vehicles in our simulations, we analyze which are the elements along the route that vehicles will find (e.g., number of traffic lights, intersections, the speed limit of streets). Those elements have an impact in the EV’s trip time.

To characterize a trip time estimation model for urban environments, we have used a multiple linear regression to attain our traffic-aware proposal of a charging service for EVs. It is worth to highlight that this paper focuses on the influence of considering traffic conditions on the EVs’ charging planning, and not on the design of a traffic reporting service or of a new route planner.

We denote as S_{TF}^{EV} to the service time interval from the moment when the energy-requiring EV reports its charging request till the moment when the EV arrives to its destination. This service time interval includes the charging time at candidate CS_s, where $1 \leq n \leq N$, being N the total number of CSs.

$$S_{TF}^{EV} = SRT_{EV} + T_{E}^{EV} + C_{TS}^{EV}$$

Here, SRT_{EV} is the service response time measured from the moment when the EV reports its charging request till the moment when the vehicle receives the service response from the network. The service response includes the location of the CS suggested where the EV is intended to be charged. Note that SRT_{EV} mainly depends on the routing protocol used to forward service messages. The EV’s total trip time T_{TF}^{EV} is the time spend to travel toward the EV’s destination considering an intermediate stop to charge at candidate CS_s. Note that T_{TF}^{EV} is estimated using eq. (4) according to our linear regressions taken a wide range of representative simulation results, as it is explained in Section 3.3.2. Finally, the EV’s charging time denoted by C_{TS}^{EV} means how long the EV should be stopped at candidate CS_s during the charging phase.

3.3.1. Expected charging time

At the EMMS side, the expected charging time is calculated considering information reported by the energy-requiring EV. Further details of the EV’s information and message exchanges are presented in Section 4.

We denote C_{TS}^{EV} as the EV’s charging time at CS_s and it is calculated as follows:

$$C_{TS}^{EV} = \frac{EV_{max-cap} \cdot (1 - EV_{SOC})}{CS_{power}},$$

where the $EV_{max-cap}$ refers to the EV’s maximum battery capacity, and the EV_{SOC} is the EV’s current state of charge. Notice that C_{TS}^{EV} depends on the CS characteristics (e.g., fast or slow recharge). In this work, for the sake of simplicity we assume CSs are provided with enough energy and public fast-charging slots with identical charging power CS_{power}.

Algorithm 1 presents details regarding the calculation of the charging time. First, in case the EV’s SoC is enough to reach its destination at line 4, the EVs goes directly to its destination. Here, $D_{EV_{cur}} - \eta_{EV}$ denote the electric energy required to reach the EV driver’s destination $D_{EV_{cur}}$ based on the EV’s energy consumption coefficient (η_{EV}). On the other case, if both spare charging slots and the EV has enough energy to reach candidate CS_s at line 8 and 10 respectively, that CS_s is considered as reachable by the EV. Here, $D_{EV_{cur}} - \eta_{EV}$ denote the electric energy required to reach candidate CS_s. Note that CS_{EV}^{LIST} is updated at line 11 and contains attainable CSs for the EV given its current state of charge.
Algorithm 1 $CT_{CS_n}^{EV}$, Expected charging time at CS_n.

1: EV reports $(EV_{SOC}, EV_{curr}, EV_{curr})$
2: $CS_{LIST} = List of the N CS in the service area$
3: if $(EV_{curr} = distance between EV_{curr}, and CS_n)$ then
4: $(D_{CS_n}^{EV}, \eta_{EV}) < EV_{SOC}$ then
5: gotoDestination
6: else
7: for $(n = 1; n \leq N; n++)$ do
8: if $(charging slot available in CS_n)$ then
9: $D_{CS_n}^{EV} = distance between EV_{curr}, and CS_n$
10: if $(D_{CS_n}^{EV}, \eta_{EV}) < EV_{SOC}$ then
11: add CS_n to CS_{LIST}
12: calculate $CT_{CS_n}^E$ (2)
13: end if
14: end if
15: end for
16: update CS_{LIST}
17: return $CT_{CS_n}^E$
18: end if

3.3.2. Estimation of the total trip time to destination

We denote the total trip time $TT_{CS_n}^{EV}$ as the time spent to travel toward the EV driver’s destination considering an intermediate stop to charge at the candidate CS_n.

Note that considered CSs are those CSs attainable for the EV and included in CS_{OTHER} (output from Algorithm 1). Referred to Algorithm 2, the $TT_{CS_n}^{EV}$ is obtained as follows:

1. The shortest path (according to the Dijkstra’s algorithm considering road map topology) toward the EV’s trip destination is computed. It is composed by the shortest path toward candidate CS_n, and from that CS_n to the EV_{DEST}, obtained at lines 5 and 6.
2. Upon computing EV’s route, traffic conditions along the route are updated at line 7. As stated in Section 3, we assume traffic conditions are locally available gathered directly from the network (e.g., a VANET) or from any traffic service (e.g., Google Maps).
3. Then, $TT_{CS_n}^{EV}$ for the energy-requiring EV is estimated given the prediction model (4) detailed as follows. Notice that, instead of considering EV’s local information (i.e., the EV’s speed) for estimating its trip time, we take into consideration conditions along the route, since those will inevitably affect the total trip time (e.g., a high vehicles density reduces vehicles’ speed and therefore the EVs’ electricity consumption).

Algorithm 2 $TT_{CS_n}^{EV}$, Total trip time estimation to destination including a charging stop at CS_n.

1: $CS_{LIST} = List of the N CS in the service area$
2: CS_{LIST} updated by Algorithm 1
3: if $(n = 1; n \leq N; n++)$ do
4: if $(CS_n \in CS_{LIST})$ then
5: $R_{EV_{curr},CS_n} = GET route from EV_{curr}, CS_n$
6: $R_{EV_{curr},EV_{DIST}} = GET route from CS_n, EV_{DIST}$
7: update route conditions on R_{EV_{curr},CS_n} and $R_{EV_{curr},EV_{DIST}}$
8: calculate $TT_{EV_{curr}}$ (4)
9: end if
10: end for
11: return $TT_{CS_n}^{EV}$

To estimate the total trip time $TT_{CS_n}^{EV}$ expressed in (4), we have characterized the additional time on route due to the presence of a certain number of traffic lights (T_L). Also, we have used the average road speed (ARS_{EV}) and the driving distance (DD_{EV}). This way, we estimate the EV's total trip time with respect to EV_{DIST} and CS_n, i.e. with respect the EV's destination (EV_{DIST}) given a charging stop at charge station CS_n. Then, $TT_{CS_n}^{EV}$ is estimated as a linear function of three terms:

- The number of traffic lights (T_L) along the EV’s route towards EV_{DIST} considering an intermediate charging stop at CS_n.
- The average road speed (ARS_{EV}), calculated by averaging the road’s speed ARS, of those roads r that compose the path driven by EV. It basically depends on the current vehicles’ density on those roads.
- The driving distance (DD_{EV}) calculated by adding road distances over the map topology.

Notice that ARS_{EV} could be estimated from diverse ways. For instance, we assume that smart traffic lights average consecutive speeds (v_s) taken from vehicles’ beacons through a given road (r), by using an exponential weighted moving average (EWMA), see (3), where i stands for the iteration index of the averaging process and w (we used $w = 0.25$) is the weight to average new ARS samples:

$$ARS_{i+1} = w \cdot v_s_i + (1 - w) \cdot ARS_{i+1}$$

To model the total trip time $TT_{CS_n}^{EV}$ spent by an EV to travel towards destination considering a potential intermediate stop to charge its battery at CS_n, we use a multiple regression statistical tool [26] and the statistical software SPSS [27]. We have considered many representative simulations for generic urban scenarios of different dimensions and different vehicles’ densities. The $TT_{CS_n}^{EV}$ is calculated as follows:

$$TT_{CS_n}^{EV} = \alpha_1 + \alpha_2 \cdot TL_{EV_{DIST},CS_n} + \alpha_3 \cdot ARS_{EV_{DIST},CS_n} + \alpha_4 \cdot DD_{EV_{DIST},CS_n}$$

where α_1 reflects the average trip time in the assessed scenario; α_2 denotes the time spend due to traffic lights found along the route. This value is derived from the traffic light cycle; α_3 considers the average road speed variation; the last term α_4 adds time to the $TT_{CS_n}^{EV}$ per each meter traveled in the path.

As expected, an increment on the number of TL or DD in the path represents an increase in the trip duration, whereas an increase in ARS_{EV_{DIST},CS_n} decreases the total trip time. Notice that α_i coefficients of the model in (4) depend on the road map, although our considered scenarios are general enough for urban environments under diverse vehicles’ densities. In a future work we plan to consider a self-adaptive model that implements machine learning techniques to dynamically configure the coefficients of the model.

3.3.3. CS selection

The CS selection scheme looks for the CS through which the EV will experience the shortest service time $TT_{CS_n}^{EV}$ (1), mainly settled by the charging time $CT_{CS_n}^{EV}$, and the total trip time $TT_{CS_n}^{EV}$.

By running Algorithm 3, the optimal CS CS_{OPT} is selected by jointly considering the total trip time $TT_{CS_n}^{EV}$ towards the EV's trip destination with an intermediate parking duration for charging CT_{CS_n}. Note that the total trip time towards each candidate CS_n is estimated taking into account current traffic conditions along the route as these affect the total trip time and therefore the CS selection. Here, a sub-optimal CS selection may diminish the EV’s user QoE.

We point out that although in this work we consider the service time as metric to choose the optimal CS (CS_{OPT}), additional metrics could also be included as inputs in Algorithm 3. Examples...
Fig. 3. Interchange of messages in the proposed EV's charging management system.

of interesting metrics to be considered are waiting time at the CS, energy price, or origin of energy (renewable or non-renewable).

Algorithm 3 $C_{opt,EV}$: Optimal CS selection.

1: $C_{S1ST} = \text{List of the N CS in the service area}$
2: for (n = 1; n ≤ N; n++) do
3: calculate $CT_{EV_{CS}}$ via Algorithm 1
4: if ($CS_{n} \in C_{S1ST}$) then
5: calculate $TT_{EV_{CS}}$ via Algorithm 2
6: $ST_{EV_{CS}} = CT_{EV_{CS}} + TT_{EV_{CS}}$
7: end if
8: end for
9: GET $CS_{opt,EV}$ that minimizes $ST_{EV_{opt}}$, eq. (1).
10: Make charging slot reservation at $CS_{opt,EV}$

4. Interchange of service messages

In this Section, we detail the service messages exchange between EVs and the EMMS. The message interaction flow for the proposed charging service is presented in Fig. 3. We focus on the EV-RSU communication for an EV charging service during the EV journey (i.e., while the EV is moving). The EV-RSU communication is modeled based on the IEEE 1609 WAVE standard [28]. Considered service messages (1-3 in Fig. 3) are reported following the standard frame format detailed in the IEEE 1609 WAVE/WAVE Short Message (WSM) [29].

Once an EV notices a low battery ($EV_{soc} < SoC_{threshold}$), it reports its charging requirements using the service request message to the closest RSU through the VANET (see 1 in Fig. 3). Details of the fields of the EV's request message are given in Table 2.

At the EMMS side, the most suitable CS for the EV is selected according to Algorithm 3. Then, the EMMS responds to the EV with a service response message (see 2 in Fig. 3) which contains information of the selected CS, Table 3 gives details of the EMMS service response message. Here, the msgID field contains the application identifier. The $CSinfo$ field contains information of the selected CS, e.g. the CS identifier, the charging slot reserved for the EV.

The $Service_Status$ field indicates to the energy-requireing EV which is the CS decision (i.e., reservation accepted or reservation request expired). The TT field contains the moment when the EV is expected to arrive at the selected CS suggested and reserved by the EMMS (i.e., it counts the EV's trip time towards the selected CS, see TT in Fig. 3).

The service messages exchange, is summarized as follows:

- **EV's service request**: It is triggered by a low battery event at the EV side. It includes EV general information (see Table 2). The EV reports its charging service requirement to the EMMS through the closest RSU. See 1 in Fig. 3.
- **EMMS service response**: At the EMMS side, the EV's service request is processed and the optimal CS is selected for the EV, as it is presented in Section 3.3.3. Then, the EMMS communicates the information of the selected CS (see Table 3) to the EV. See 2 in Fig. 3.
- **EV Arrival**: Message sent by the EV at its arrival at the selected CS. At this time, CT_{EV} is updated according to the current EV_{soc}. See 3 in Fig. 3.

5. Communication schemes and routing protocols

In vehicular networks, the network topology is inherently dynamic due to the potentially high mobility of nodes (i.e., vehicles). Geographic-based routing protocols, which are based on the knowledge of the instantaneous locations of nodes, have shown better performance in VANETs compared to topology-based routing protocols commonly used in less dynamic networks such as mobile ad hoc networks (MANETs) [30] [31]. A similar framework to ours is proposed in [32]. In that work, energy-requesting EVs choose and reserve a charging slot in an CS, autonomously and based on the periodical dissemination of CS information. EVs communicate with CSs based on opportunistic encounters with RSUs (i.e., EVs establish 1-hop communications when they reach an RSU).

Alternatively, in this work we propose an optimal centralized CS-selection scheme using two types of geographic-routing protocols for VANETs to forward service messages that are exchanged between EVs and RSUs (to communicate with the EMMS of the SG) in a multihop manner. This way, using a multihop routing scheme we attain a more efficient EV charging management system since messages are delivered faster compared to the case of only using 1-hop communications. Under this scheme, the EV's service
response time SRT_{EV}, expressed in (1), is minimized leading to an earlier charging slot reservation.

In the following we describe the three routing protocol schemes analyzed in this work and used to forward service messages from EVs to EMMS, as well as in the reverse direction from the EMMS to the energy-requesting EVs. The three routing schemes are: (a) a simple opportunistic routing scheme with which EVs deliver messages directly to the RSUs; (b) a basic routing scheme to efficiently forward messages using a selective algorithm; and (c) an advanced routing scheme based on our previous multimetric routing proposals (MMMR) [33] and (3MRP) [34].

5.1. Opportunistic routing scheme

In the opportunistic routing scheme, we consider a typical store-carry-forward algorithm in which the packet travels within the vehicle instead of through the VANET. This could occasionally be done in those sparse occasions in which the current holding vehicle does not find a proper next forwarding node and during a maximum accumulated delay per packet. In this present work, we have implemented a simple opportunistic scheme as a reference to compare our two proposals explained below. In this opportunistic scheme, EVs just establish a 1-hop communication when they reach any RSU.

5.2. Basic routing scheme

First, we propose to use a selective forwarding mechanism for the service messages exchange in section 4. The Basic scheme is illustrated in Fig. 4. The proposed selective forwarding mechanism reduces network overhead compared to simple flooding, seeking to avoid network congestion. It works as follows: a forwarding node broadcasts the packet if it is closer to destination than the previous forwarding node; otherwise that node refrains in the forwarding. This is repeated till the packet reaches destination. This way, the service request message sent from an energy-requesting EV reaches the EMMS of the SG (through the nearest RSU). In this case, we assume RSUs locations are known in advance by all vehicles.

In Fig. 4, the RSU S sends a response service message to the destination node EV_D (i.e., the energy-requesting EV). Recipient nodes are those within the RSU’s transmission range (nodes R_1, R_2, R_3, and R_4 in the example of Fig. 4). If the current receiver node (R_1) is closer to destination (EV_D) compared to the previous sender position (S), that receiver (R_1) decides to re-broadcast the message. The rest of intermediate receivers (R_2, R_3, R_4), decide not to re-broadcast the message as they are farther to destination (EV_D) than the previous sender node (S).

The selective forwarding logic is described in Algorithm 4. Herein, the message includes the destination nodes’ identification (ID). Once a message is received, in case the current receiver node is the destination node it processes the message (see lines 1–2); otherwise, the node computes its distance ($curr_dsttoDst$) with respect to the destination node (RSU or EV), see line 5 in Algorithm 4. The $curr_dsttoDst$ is compared with the last receiver distance to destination ($last_dsttoDst$) included in the message (see line 6). If $curr_dsttoDst$ is lower than $last_dsttoDst$ then, the current node decides to re-broadcast the message since it is closer to destination (see lines 7 in Algorithm 4). Before forwarding the message, the current node updates the $last_dsttoDst$ in the message with its current closer distance to destination $curr_dsttoDst$ (see line 7).

Notice that for the response message sent from the RSU towards the energy-requesting EV (EV_D in Fig. 4), the current position of the EV_D (i.e., the destination node of the response message) may have changed since the moment in which the energy-requesting message was sent from that EV_D to the RSU. We estimate the EV_D position in the reception moment using the former position of that EV (when it sent the query) and the trajectory of that EV (estimated from several consecutive positions gathered in the query message). Thanks to that estimation, the response message will reach the energy-requesting EV in its current position.

Algorithm 4 Selective forwarding.

5.3. Advanced routing scheme

In the previous section, we have presented the basic scheme, which disseminates service messages based on a selective forwarding scheme that tries to avoid network congestion. Nonetheless, that scheme could cause significant overhead in dense scenarios due to its flooding-like operation. To cope with that, we further propose an advanced routing scheme based on our proposals named multi-metric map-aware routing protocol (MMMR) [33] and multimedia multi-metric map-aware routing protocol (3MRP) [34] for VANETs. MMMR and 3MRP outperform existing solutions in terms of percentage of packet losses and average packet delay.

Since in our EV charging service, EVs and EMMS interchange text messages (see Section 4), we will use the MMMR routing protocol to transmit those messages between EVs and EMMS through the VANET. Under the Advanced scheme, illustrated in Fig. 5, each node efficiently forwards packets hop-by-hop to/from the nearest RSU through the VANET. MMMR routing protocol improves...
6.1. Scenario configurations

We have implemented our EVs charging management system in the open source framework VEINS [38], developed for vehicular network simulations, and OMNeT++ [39] as the network simulation platform. The electro-mobility environment (formed by EVs and CSs) is implemented using the widely-known vehicular traffic simulator SUMO [40] including buildings that may interfere the signal between sender and receiver.

Two different scenarios are considered to evaluate our proposal. On the one hand, Fig. 6a shows a medium-size dense urban scenario, with an area of 1800 m × 1800 m, from Barcelona city, Spain. On the other hand, Fig. 6b depicts a large-size sparse urban scenario, with an area of 3200 m × 3600 m, from Berlin city, Germany. Road maps for each scenario include: intersections, speed limit of streets, traffic lights and buildings information imported from OpenStreetMaps (OSM) [37]. To estimate the EVs’ trip duration for each simulation scenario, the α coefficients used in (4) and described in Section 3.3.2, are shown in Table 4.

Two types of connected vehicles are included: fossil-fuel vehicles (FFVs) and electric vehicles (EVs) with [28 – 50] km/h variable speed. The destination of each vehicle trip is randomly selected in the road map. EVs discharge their batteries according to the model detailed in [42]. Also, SUMO was configured with the car-following Krauss model [41], which defines a realistic car behavior with respect to vehicles on the same line of traffic flow. We consider an EVs’ penetration of 10%, 50% and 80% with a total number of vehicles $T_{FFV+EV} = 300$.

To set the number of charging stations (CSs), we consider EU directives described in [45], that recommended at least one public charging slot for every ten EVs on the road. Thus, for the maximum EVs’ penetration percentage considered (80%), which represents 240 EVs) in the network, four charging stations (CSs) are distributed within the service area with a maximum of six charging slots, see Fig. 6. We assume all CSs are fast charging points with $C_{power} = 60$ kW. We also assume that the set of CSs are provided with enough energy to be able to charge the total amount of EVs present in the network.

In our simulations, EVs are moving within the service area until their batteries fall below a threshold. We set the state of charge threshold for the EV (SoC_threshold = 45% - EV_max_cap) to start the service request. The EV’s battery size is set to $EV_{max_cap} = 5$ kWh. Notice this low configuration value (much lower than the current market EV’s battery size) is just to speed up the battery reduction and need to charge, so that we speed up the simulation process. Actually, current EVs have $EV_{batt_size} \approx 20, 40, 80$, or even 100 kWh [46][47].

All the vehicles in the network are nodes of the VANET and can communicate with each other and with the city infrastructure. RSUs are located at CSs and strategically deployed in the service area, see Fig. 6. Simulations were carried out using the IEEE 802.11p standard on MAC and physical layers. The dedicated service channel SCH3 (174) is used for the energy-charging service, which is the SCH designated for road traffic efficiency in intelligent transport systems ITS [44]. We set an average transmission range of 230 m, which is a typical value in vehicular environments. Simulation settings are summarized in Table 5.

In Table 6 we point out the different schemes evaluated for comparison regarding the CS-selection strategy and the routing scheme used for service messages exchange between EVs and RSUs. Simulation results are presented with 95% of confidence interval (CI) obtained from five simulations per point, each run generated with an independent seed. The following schemes are evaluated for comparison:

1. Basic traffic-aware reservation (B-TAR): The proposed CS-selection scheme with our Basic routing scheme (see Section 5.2). Here, a charging slot is reserved for the EV in the most suitable CS (where the EV arrives earlier to its destination, considering an intermediate parking duration for charging at selected CSs) following a flooding-based selective forwarding mechanism for the exchange of service messages.
2. Advanced traffic-aware reservation (A-TAR): The proposed CS-selection scheme with our advanced multi-metric routing scheme (see Section 5.3). Here, a charging slot is reserved for the EV in the most suitable CS considering an efficient service messages exchange by the means of multi-metric hop-by-hop forwarding decisions.
3. Opportunistic traffic-aware reservation (O-TAR): The proposed CS-selection scheme with the opportunistic routing scheme (see Section 5.1). Unlike the previous schemes (B-TAR and A-TAR), here service packets are transmitted only when an opportunist encounter with an RSU happen. Thus, this scheme is based on 1-hop communications. That is, the packet is delivered when the EV finds an RSU. In the meantime, the EV carries the packet itself. An example that follows this scheme is [32].
4. Advanced distance-based reservation (A-DBR): This scheme looks for the closest CS (distance-based strategy), without consid-
Fig. 6. Simulation scenarios considered: (a) A medium-size dense district in Barcelona, Spain; (b) A large-size sparse district in Berlin, Germany. Maps include locations of road side units (RSUs) and charging stations (CSs). Traffic lights are imported from OSM [37].

6.2. Performance evaluation metrics

We are mainly concerned on how the system performance is affected by the increasing of EV penetration that we are late ly witnessing in our cities. Accordingly, we evaluate the performance of our proposal as we increase the number of EVs in the scenario. Also, we are interested in evaluating the influence of the routing scheme used to exchange the service messages. The following performance metrics are evaluated:

• **Percentage of charged EVs**: The ratio between successfully charged EVs and the total number of EVs that need to charge during the simulation time. From the city’s point of view, a high percentage of charged EVs means that the charging infrastructure is better utilized.
• **Average total trip time**: This is the average time elapsed from the moment the EV’s battery level is lower than a given threshold \(E_{\text{SOC}} < \text{SoC}_{\text{threshold}} \) till the moment the EV arrives to its destination, including a potential intermediate stop to charge its battery at the selected CS. From the EV drivers’ point of view, a shorter trip duration improves their QoE.
• **Average electricity consumption**: This is the average electricity that EVs consume given the traveled distance towards their respective destinations, considering a possible intermediate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Zone</td>
<td>Les Corts (Barcelona)</td>
</tr>
<tr>
<td>Simulation area size</td>
<td>1800 m × 1800 m</td>
</tr>
<tr>
<td>Number of RSUs</td>
<td>7</td>
</tr>
<tr>
<td>Map Zone</td>
<td>Spandau (Berlin)</td>
</tr>
<tr>
<td>Simulation area size</td>
<td>3200 m × 3600 m</td>
</tr>
<tr>
<td>Number of RSUs</td>
<td>10</td>
</tr>
<tr>
<td>Vehicles’ density</td>
<td>60-180 veh/km²</td>
</tr>
<tr>
<td>EVs’ penetration index</td>
<td>30%, 50%, 80%</td>
</tr>
<tr>
<td>Mobility model</td>
<td>Krauss model [41]</td>
</tr>
<tr>
<td>EV energy model</td>
<td>Energy model [42]</td>
</tr>
<tr>
<td>EVs’ battery size</td>
<td>5 kWh</td>
</tr>
<tr>
<td>Number of CS</td>
<td>4</td>
</tr>
<tr>
<td>Number of charging slots</td>
<td>24</td>
</tr>
<tr>
<td>Fast CS power</td>
<td>60 kW</td>
</tr>
<tr>
<td>Path loss model</td>
<td>Empirical IEEE 802.11p [43]</td>
</tr>
<tr>
<td>Transmission range</td>
<td>250 m</td>
</tr>
<tr>
<td>Sensing range</td>
<td>~ 300 m in LoS</td>
</tr>
<tr>
<td>Communication schemes</td>
<td>Opportunistic, Basic, and Advanced IEEE 802.11p</td>
</tr>
<tr>
<td>Nominal bandwidth</td>
<td>6 Mbps</td>
</tr>
<tr>
<td>Service channel</td>
<td>SCH3 [174] for road traffic efficiency ITS [44]</td>
</tr>
<tr>
<td>Simulation time</td>
<td>5000 s</td>
</tr>
<tr>
<td>Beacon interval</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Table 5 Simulation settings.

Table 4 Simulation scenario characteristics. Coefficients \(\alpha \) used in (4).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersections/km²</td>
<td>Roads/km²</td>
</tr>
<tr>
<td>Traffic Lights/km²</td>
<td>(\alpha_1)</td>
</tr>
<tr>
<td>Berlin</td>
<td>340</td>
</tr>
<tr>
<td>Barcelona</td>
<td>645</td>
</tr>
</tbody>
</table>

Table 6 Operating modes to be evaluated. Our proposals are highlighted.

Please cite this article in press as: P. Barbecho Bautista et al., A traffic-aware electric vehicle charging management system for smart cities. Veh. Commun. (2019), https://doi.org/10.1016/j.vehcom.2019.100188
charging stop at a selected CS during the trip. It is calculated based on the average EVs’ energy consumption in [48].

- **Average service response time**: It counts the time interval elapsed from the moment when the EV’s battery is below a given threshold, until the moment when the EV receives the information with the selected CS for the EV.

- **Communication cost**: It evaluates the traffic sent by EVs to the EMMS in terms of service packets per second (pps).

6.3. Influence of EV penetration

Fig. 7 shows the percentage of EVs successfully charged among those EVs that required to charge their batteries, i.e. their SoC was not enough to reach destination and was below a threshold SoC_{threshold}. Thus, the complementary graph depicts the amount of vehicles which required to be charged but did not succeed (i.e., all the CSs where congested). Those vehicles keep looking for an available CS till their batteries get empty, so they never reach their destination. Therefore, their trip times are not included in Figs. 7b and 8b, where we represent the average total trip time to destination.

From Figs. 7 and 8 we can see that the different EVs charging schemes perform equivalently in both scenarios, Berlin and Barcelona. Notice that the average total trip time to destination (see Figs. 7b and 8b) is higher in the Berlin scenario, since the map area is higher and vehicles make longer trips to their destinations.

In Figs. 7a and 8a, we observe that increasing the EV penetration index, the percentage of charged EVs is reduced, whereas the total trip time increases, according to Figs. 7b and 8b. This is because there are more EVs in the scenario and they could need a charging slot sometime during simulation. This fact will increase the chance of having congested CSs.

Our proposal A-TAR achieves the highest percentage of charged EVs, even under a high EVs’ penetration percentage (see Figs. 7a and 8a). With 10% of EVs penetration, A-DBR scheme (which is distance-based) achieves a performance almost same as that obtained by A-TAR or B-TAR. Nonetheless, under higher penetration indexes A-TAR (or B-TAR) scheme clearly outperforms A-DBR scheme. This is because in A-DBR, only distance towards each CS is considered to select the nearest CS. Traffic conditions along the route are not taken into account in A-DBR for the trip time estimation, as it is done in A-TAR and B-TAR. Thus, using A-DBR EVs may not reach the selected CSs at the time they previously reserved.

Due to the same reason, the average trip time to destination increases, see Figs. 7b and 8b. This implies that only considering the distance towards each candidate CS in A-DBR, is not a recommended strategy to attain an optimal performance, especially when the EVs’ penetration percentage is high. Results for A-DBR show not only a lower number of EVs successfully charged, but also a higher trip time for both simulation scenarios, see (Figs. 7 and 8). Notice that for a fair comparison, both schemes A-TAR and A-DBR implement the same advance communication scheme (see Section 5.3) to manage the charging slot reservations.

With NC-DB, the percentage of successfully charged EVs (out of those EVs which needed to charge their batteries) is dramatically reduced as the EV penetration increases. This is because the simple NC-DB scheme selects a CS, without any reservation, ignoring the status of the other CSs. Hence, it is more probable that an EV selects a CS without any available charging slot (i.e., a congested CS). In spite of that, note that for a penetration index of 80%, NC-DB achieves the lowest total trip time (see last column in Figs. 7b and 8b). However, since there is no reservation mechanism, the percentage of charged EVs is very low (see last column in Figs. 7a and 8a). The reason is that in those figures we only consider the trip time of vehicles that reached destination, and vehicles that wander looking for an available CS till their batteries get empty are not included.

It is important to highlight the fact that under all the evaluated EVs charging schemes there might happen that: (a) there might be vehicles whose SoC was not enough to reach destination and was below the threshold SoC_{threshold} to require a CS in order to charge their batteries; (b) unfortunately, they did not find any free CS in the whole area. In such a case, those vehicles keep trying to find a free CS till their batteries get empty. We have not included their trip times in Figs. 7b and 8b, since those figures represent the trip time to destination, and they never reached destination. The chance to happen this situation is considerably higher with NC-DB, since this scheme does not implement any CS reservation.

In Figs. 7 and 8, we observe that O-TAR shows a lower performance than our proposals A-TAR and B-TAR, for low, medium and high EVs’ penetration percentages. Particularly, with A-TAR the amount of EVs charged is in average 7% higher compared to O-TAR. The reason is that O-TAR implements an opportunistic routing scheme, where service packets are carried by the EVs instead of being transmitted through the VANET. In case the reservation is not successfully completed (see service messages flow Section 4) at 1-hop, the EV has to wait until another opportunistic encounter with an RSU (i.e., be within an RSU transmission range) takes place. This behavior affects the charging service response time, see Fig. 9a, that increases notably compared to A-TAR and B-TAR. Furthermore, under O-TAR the amount of electricity consumption also increases markedly, see Fig. 9b. This implies that although delay requirements of an EVs charging service may not be stringent (compared to safety applications), if EVs are informed in advance

![Fig. 7](https://example.com/fig7.png)

Fig. 7. Analysis of operating modes (see Table 6). Simulation scenario of a large-size sparse area in Spandau district, Berlin. Six charging slots per CS. (a) % of charged EVs. (b) Average total trip time till destination. Vehicles’ density $b_{EV-EV} = 60$ veh/km2.

![Fig. 8](https://example.com/fig8.png)

Fig. 8. Comparison of EVs penetration scenarios. A-TAR, B-TAR, O-TAR, A-DBR, and NC-DB. (a) % of charged EVs. (b) Average total trip time till destination.

Please cite this article in press as: P. Barbecho Bautista et al., A traffic-aware electric vehicle charging management system for smart cities, Veh. Commun. (2019). https://doi.org/10.1016/j.vehcom.2019.100188
about their new destination (i.e., the location of the most suitable CS suggested for battery charging) they will spend less time driving, will use less energy during their driving phase and thus will require less energy during their charging phase.

Concluding, our proposals A-TAR and B-TAR achieve the lowest total trip times to destination among all the reservation-based schemes (A-TAR, B-TAR, O-TAR and A-DBR, see Fig. 8b and Fig. 9b), decrease the amount of energy required by the EV from the CS during the charging phase, and consequently EVs consume a lower amount of energy, see Fig. 9b.

6.4. Scalability of the routing schemes

We are interested in evaluating the system scalability in terms of the service communication cost, measuring the traffic generated to provide the proposed charging service. For this, we evaluate our two proposed routing schemes (i.e., Advanced and Basic, see Section 5) under low (60 veh/km²), medium (90 veh/km²), and high (180 veh/km²) vehicles’ densities in the simulation scenario of Barcelona city (see Fig. 6a). We compare both proposed routing schemes against the well known GPSR [35] routing protocol as a reference.

In Fig. 10, we observe that the higher the vehicles’ density, the better the routing protocols performance. Thus, the performance for $\delta_{FFV} + EV = 90 \text{ veh/km}^2$ is better than for $\delta_{FFV} + EV = 60 \text{ veh/km}^2$ next forwarding node selection. This is true up to a maximum vehicle density above which the collision percentage will be too high. Certainly, we observe that for a $\delta_{FFV} + EV = 180 \text{ veh/km}^2$ the average service packet rate (packets/s) for all the EVs increases again. This is due to higher packet collisions produce more packet re-transmissions. Besides, the Advanced routing scheme shows the highest performance compared with the Basic and GPSR routing protocols, in Fig. 10. The reason is its effectiveness in selecting the next hop to forward packets, since it is based on the efficient multimetric geographic MMR [33] routing protocol. Here, the GPSR routing protocol generates a higher amount of traffic because of it is not so efficient in the next hop selection to forward service packets and therefore more re-transmissions are required to fulfill the reservation of a charging slot successfully. The Basic routing scheme shows the highest amount of traffic generated (packets/s) mainly due to its flooding-like operation.

6.5. Discussion on routing schemes

In Fig. 11 we consider the Barcelona-Les Corts simulation scenario depicted in Fig. 6a, with 80% EV penetration and a medium vehicles’ density ($\delta_{FFV} + EV = 90 \text{ veh/km}^2$). In that figure we compare the opportunistic, basic and advance routing schemes in terms of % of packet losses, average round-trip-time (RTT), and average service response time SRT_{EV} expressed in (1). Default configurations are detailed in Table 5.

In Fig. 11a, we observe that the Opportunistic scheme achieves the lower percentage of packet losses compared with the Basic and Advanced schemes. The reason is that in the Opportunistic
case, the service message is saved in a local buffer of the energy-
required EV until an encounter with an RSU happens, i.e. the mes-
sage is stored and carried by the EV till finding an RSU to deliver it.
Conversely, the Advanced scheme selects the best next forwarding
node according to a multi-meteric score, and stores the service mes-
sage only in case there is no neighbor to forward the message to.
The Basic scheme presents the highest percentage of packet losses
because of the flooding-like scheme to forward the EV's service re-
quest messages sent at the moment the EV detects a low battery.
As we consider a realistic scenario, the energy-requiring EV may
remain stopped during a while (e.g., in a red traffic light) without
out any neighbor around to forward the message. In such a low
connectivity case, packet losses will increase.

Fig. 11b shows the average round trip time (RTT) calculated
based on those packets that successfully arrived at destination.
The RTT counts the time interval elapsed from the moment an
EV sends a charging request message to the EMMS, till the recep-
tion moment of the correspondent EMMS service response, see RTT
Fig. 3. We observe a slightly higher RTT in both proposed schemes
(Basic and Advanced) compared with the Opportunistic scheme.
The reason is that service messages are forwarded through sev-
eral hops before reaching their destination (RSU or EV), whereas
in Opportunistic the delivery is 1-hop.

Fig. 11c shows the EVs' average service response time SRT_{EV},
i.e. the interval of time elapsed from the moment when the EV
shows a low battery till the moment when the vehicle receives
the answer from the charging service. Despite the good results for
the Opportunistic scheme shown in Fig. 11a, and Fig. 11b, Fig. 11c
shows that with our two proposed communication schemes (Ba-
sic and Advanced) the energy-requesting EV is answered much
sooner compared to the Opportunistic case. In Fig. 11c, we observe
that the Opportunistic scheme shows the highest delay due to the
high amount of time that packets spend in the local buffer of the
energy-requesting EV. The average SRT_{EV} in the Basic scheme is
higher than with the Advanced scheme because with the Basic
scheme more retransmissions are required to complete the charg-
ing slot reservation.

Under an ideal channel without errors, the minimum delay
(MD) to deliver the packet (VANET transmission over the air in
just 1 hop) is given by $MD = \frac{8.1 \text{ bits}}{6 \text{ Mbps} \times 1 \text{ bit}}$. For a nominal data
rate of 6Mbps and a packet length of 200 bytes, the achievable
maximum throughput of 802.11p is around 2Mbps [49]. The calcu-
lated minimum delay, in this case, would be $MD = 0.8$ ms. In
the Opportunistic equivalent case, considering the target urban
scenario where vehicles' speed is $S \approx 60 \text{ km/h} = 16.7$ m/s and
the RSU transmission range $R_{SU} = 250$ m, a packet would take
$OppDelay = \frac{R_{SU} \text{ cm}}{6 \text{ Mbps} \times 1 \text{ bit}} = 16$ s to get the RSU in 1 hop. These sim-
ple numbers help us to realize that forwarding packets through
the VANET is always better than store and carry them in the ve-
hicle, since the delay is much lower. This conclusion can also be
seen in Fig. 11c, where the average SRT for the Opportunistic case
is around 16 s, whereas for the Basic scheme is around 6 s and for
the Advanced scheme is about 3 s.

6.6. Discussion on operating modes

Given the results obtained for the two different simulation sce-
narios and considering the EVs' penetration percentage as a major
factor to evaluate the usefulness of the operation modes, we can
settle that:

1. Low EVs’ penetration scenario: Under this configuration, reservation-
based schemes (A-TAR, B-TAR, O-TAR and A-DBR) show a similar behavior, see Figs. 7 and 8. Here, NR-DB (without reservation) can work relatively well in terms of percentage of successfully charged EVs. However, it achieves the highest total
trip time, which reduces the EV users' QoE. Besides, the total trip time is remarkable reduced by A-TAR and B-TAR.

2. High EVs’ penetration scenario: Under this configuration A-TAR and B-TAR show the best performance even under a high EV penetration (80%), see Figs. 7 and 8. Even though in these figures we observe just a subtle improvement of the B-TAR scheme compared to O-TAR, the latter shows a higher average electricity consumption, see Fig. 8a. Here, with NC-DB and A-DBR, the percentage of charged EVs is dramatically reduced and therefore they do not scale well when the number of EV increases.

According to recent studies [2] the EV ratio is foreseen to be 35% around the year 2022. Rapid battery cost reduction, strong
support from governments, rising commitment from prime
automakers, have put EVs on track to reflect higher sales than fuel-
powered vehicles. Indeed, according to [50] EV sales during 2018
has grown around 78% in China, 34% in Europe and 79% in the
USA, compared to 2017; and the forecast is that this trend will
increase in the coming years. Thus, with the increasing number
of EVs in our cities, it will pay-off to arrange a reservation-based
energy-charging framework. Results show that our proposals A-TAR and B-TAR provide the best performance even under a high EVs’
penetration percentage, in terms of percentage of EVs successfully
charged, total trip time to destination, and amount of electricity
consumption.

7. Conclusions and future work

In this paper, we have proposed an efficient charging man-
agement system for on-the-move EVs’ charging planning. Our
approach includes an advance communication framework based on
VANETs with geographical-routing protocols for centralized anti-
ipated charging slot reservations. In specific, we have first intro-
duced a scheme to select the optimal looking to minimize the total
charging service time of the energy-requiring EV. The EV's trip
time is estimated considering current traffic conditions towards
its destination, considering an intermediate charging stop during
the trip at the selected CS, leading to a traffic-aware CS selection
scheme. Then, we have evaluated the influence of the transmis-
sion delay incorporated by opportunistic communication and we
demonstrate that our proposed multi-hop multimetric communica-
tion scheme can achieve better performance. Evaluation results in
the district of Les Corts-Barcelona and Spandau-Berlin have shown
the benefits of our proposal, achieving higher percentage of EVs

Please cite this article in press as: P. Barbecho Bautista et al., A traffic-aware electric vehicle charging management system for smart cities, Veh. Commun. (2019),
https://doi.org/10.1016/j.vehcom.2019.100188
Fig. 11. Comparison of Opportunistic, Basic and Advanced routing schemes in terms of (a) percentage of packet losses, (b) average round trip time (see RTT in Fig. 3), and (c) average service response time. Simulation scenario of Barcelona city. 80% EVs’ penetration. Vehicles’ density $s_{EV+FFV} = 90$ veh/km2. CI 95%.

successfully charged, shorter total trip time to destination, as well as less EVs’ energy consumption.

As future work, we plan to analyze the effect of some additional waiting slots arranged in the CSs for those vehicles that arrive at the CS when it is full. Under this scheme, EVs queuing time at CSs should be included in the optimal decision scheme. Also, we plan to include in our proposal a grid-to-vehicle (G2V) communication scheme used to limit the amount of energy to charge each EV as a dynamic percentage of the maximum capacity of its battery, $E_{V_{max,cap}}$. That maximum allowed percentage will be computed depending on the SG state. This way, during peak-hours of energy demand in the city, the SG will regulate the amount of energy devoted to the EVs’ fleet. Such scheme will need a G2V communication framework to perform efficiently.

We plan to design a machine-learning algorithm dynamically adjusting the coefficients of the model. Finally, in a future work we plan to tackle privacy issues in our proposal of a centralized management system for the EVs charging service. As EVs share information with the EMMS, a secure communication is required to ensure security services (i.e., confidentiality, integrity, and privacy) to protect any personal sensitive information.

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARS</td>
<td>Average road speed</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>C-V2X</td>
<td>Cellular vehicle to everything</td>
</tr>
<tr>
<td>CS</td>
<td>Charging station</td>
</tr>
<tr>
<td>CT</td>
<td>Charging time</td>
</tr>
<tr>
<td>DSRC</td>
<td>Dedicated short range communication</td>
</tr>
<tr>
<td>DBR</td>
<td>Distance-based reservation</td>
</tr>
<tr>
<td>DD</td>
<td>Driving distance</td>
</tr>
<tr>
<td>EMMS</td>
<td>Electro-mobility management server</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>FFV</td>
<td>Fossil-fuel vehicle</td>
</tr>
<tr>
<td>G2V</td>
<td>Grid to vehicle</td>
</tr>
<tr>
<td>GPSR</td>
<td>Greedy perimeter stateless routing</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent transport systems</td>
</tr>
<tr>
<td>IVC</td>
<td>Inter-vehicle communications</td>
</tr>
<tr>
<td>LoS</td>
<td>Line of sight</td>
</tr>
<tr>
<td>MD</td>
<td>Minimum delay</td>
</tr>
<tr>
<td>MMMR</td>
<td>Multimetric map-aware routing protocol</td>
</tr>
<tr>
<td>NC</td>
<td>Non-coordinated</td>
</tr>
<tr>
<td>NNT</td>
<td>Node neighbors table</td>
</tr>
<tr>
<td>OBU</td>
<td>On-board units</td>
</tr>
<tr>
<td>OSM</td>
<td>OpenStreetMaps</td>
</tr>
<tr>
<td>QoE</td>
<td>Quality of experience</td>
</tr>
<tr>
<td>RSU</td>
<td>Road side unit</td>
</tr>
<tr>
<td>RTT</td>
<td>Round trip time</td>
</tr>
<tr>
<td>SG</td>
<td>Smart grid</td>
</tr>
<tr>
<td>SoC</td>
<td>State of charge</td>
</tr>
<tr>
<td>SRT</td>
<td>Service response time</td>
</tr>
<tr>
<td>ST</td>
<td>Service time</td>
</tr>
<tr>
<td>TAR</td>
<td>Traffic-aware reservation</td>
</tr>
<tr>
<td>TL</td>
<td>Traffic light</td>
</tr>
<tr>
<td>TT</td>
<td>Trip time</td>
</tr>
<tr>
<td>V2I</td>
<td>Vehicle to infrastructure</td>
</tr>
<tr>
<td>V2G</td>
<td>Vehicle-to-grid</td>
</tr>
<tr>
<td>V2V</td>
<td>Vehicle-to-vehicle</td>
</tr>
<tr>
<td>V2X</td>
<td>Vehicle-to-everything</td>
</tr>
<tr>
<td>VANET</td>
<td>Vehicular ad hoc network</td>
</tr>
<tr>
<td>VDTN</td>
<td>Vehicular delay tolerant network</td>
</tr>
<tr>
<td>WAVE</td>
<td>Wireless access in vehicular environments</td>
</tr>
<tr>
<td>WSA</td>
<td>WAVE service advertisement</td>
</tr>
<tr>
<td>WSM</td>
<td>WAVE short message</td>
</tr>
</tbody>
</table>

Declaration of competing interest

None declared.

References

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

SENESCYT, country=Ecuador, grants=