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Abstract 
To increase renewable energy generation in some hydroelectric dams, a solution consisting in 

installing wind turbines close to dams is proposed. Indeed, dam surroundings are prone to benefit 

from wind speed-up effect, extra wind generation associated with thermal winds, and existing 

electrical infrastructure. Identifying the most suitable locations for turbines, that is, areas of 

relatively high-speed and low-turbulence wind, is fundamental to maximize this complementary 

power. Easy accessibility to turbines and minimum distance to dam electrical infrastructure are also 

essential to reduce the costs. Thus, a methodology is proposed to improve wind resource 

assessment in complex mountainous areas. First, potentially interesting dams are chosen using 

statistical local wind data. Second, weighted results of wind speed and turbulence intensity, 

considering all wind directions are presented based on CFD simulations. Finally, wind power density 

and annual energy production maps are generated, along with accessibility maps, to identify suitable 

sites. The Camarasa dam in the north-east of the Iberian Peninsula is chosen as case study to show 

and test the proposed methodology. Error estimations are provided, along with validation against 

Wind Atlas data and WAsP simulations. 

Keywords: Wind energy; power density; wind turbine; hydroelectric dam; CFD 

 

1. Introduction 
In recent years, many studies have suggested a future increase of temperature and decrease of 

annual rainfall in areas of Mediterranean climate as a consequence of global warming [1, 2]. These 

trends are confirmed by on-site observations [3]. These changes are expected to be more intense 

over land than over sea. Thus, these areas will suffer a decrease in water resources [4] and water 

stored in reservoirs [2, 5]. Consequently, uses of this water may have to be modified. Namely, there 
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will be constraints on hydropower, since water will have to be saved for irrigation of crops and 

human consumption, as in Spain in 2017 due to generalized draught. A global temperature warming 

of 3ºC could cause reductions of hydropower by 15–20% in countries like Greece, Portugal, and 

Spain [6]. Meanwhile, the global demand of electricity continues to increase along with the 

development of society [7]. Thus, a complementary solution for renewable energy generation in the 

current hydroelectric system arises interest. 

Moreover, projections of wind energy density (WED) in Europe for the 21st century reveal a likely 

increase of mean annual WED over Northern and Central Europe, but a likely decrease over 

Southern Europe [8, 9], due to a likely decrease in intensity of synoptic or atmospheric boundary 

layer (ABL) winds. A stronger decadal variability [10] and intra-annual variability of WED over most of 

Europe is also predicted, and thus higher irregularity of wind energy production [8], making more 

difficult the fit of wind energy in the market. A WED decrease in mid latitudes of the Northern 

hemisphere is suggested also in [11]; in Portugal, wind power may decrease 10–20% in winter and 

spring, and 25–35% in autumn [12]. Thus, it is important to explore wind resources associated with 

other regimes such as thermal winds, which show higher regularity and periodicity [13]. 

Considering that most dams are built in valleys and mountainous areas, where thermal winds usually 

arise [14], a solution to help counterbalancing the likely hydropower decrease would consist in 

installing wind turbines nearby. Thermal winds generated in mountainous areas could be sufficient 

to drive small/medium turbines [15], as confirmed using typical mountain slopes and temperature 

gradients of the Pyrenees mountain range [16] in katabatic wind models [17]. Moreover, 

mountainous surroundings of dams are prone to show wind speed-up effect, which would increase 

turbine capacity factor. Another important benefit is that turbines located near hydroelectric dams 

would take advantage of existing infrastructure for electricity handling and distribution. Since the 

cost of building electricity networks accounts for ≈12% of the total wind farm cost [18], this could 

save construction costs compared with isolated farms. Finally, in protected mountainous areas, 

installing turbines near dams may help circumvent possible restrictions. 

The topography around dams is usually complex and variable. To easily install and maintain turbines, 

the selected sites should be easily accessible [19]. Ideally, the sites should be close to the dam to 

minimize the cost of reusing the available electric infrastructure, since building small power 

transmission lines costs ≈190 k€/km [20]. Wind shear should also be taken into account, since 

uniform incident wind speed profile is required for higher performance and service life of the 

turbines, while thermal winds may show significant wind shear. Furthermore, the speed-up 

phenomenon over topography has long been recognized as significant for structural design and wind 
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energy applications. Investigations have been made on understanding the flow to obtain information 

such as the maximum value of mean and gust speed-up and the extent of the accelerated flow 

region [21, 22]. In mountainous areas, the speed-up effect is thus critical for turbine sitting. 

Several approaches for wind resource assessment and turbine sitting have been developed. Namely, 

extrapolating wind data from nearby weather stations using linear microscale models like Wind Atlas 

Analysis and Application Program (WAsP) [23]. Alternatively, a downscaling process based on tools 

like the Global Wind Atlas (GWA) [24]. Here, Numerical Weather Prediction (NWP) models are used 

to estimate the wind resource over large regions, based on satellite observations [25]. Then, these 

data are reanalyzed for mesoscale modelling, which downscales the data into medium scale [26]. 

Finally, further downscaling can be achieved by using linear microscale models [27]. Although linear 

equations (used in the above approaches) may not always be accurate for evaluating wind behaviour 

over complex terrains, e.g., hills, steep mountains, and valleys [28], they have often proven to be 

valid [29, 30].  

The challenge for wind resource estimation in complex terrains is to capture the main features of the 

wind, while keeping the computational effort at an acceptable level, by concentrating on the details 

of the flow pertinent to wind energy issues [31]. Though being resource consuming, Computational 

Fluid Dynamics (CFD) has proven valuable for wind energy applications on ground and offshore [32, 

33], and particularly for modelling wind over complex terrains by using non-linear models, including 

the Navier-Stokes equations [23]. The output of CFD simulations, providing information on, e.g., 

wind speed, turbulence, and potential power production over the whole region of interest [34], can 

help identify suitable sites and hub-heights for turbines. Thus, results can be visualized for wind 

resource assessment and turbine sitting [35]. 

Recently, several CFD analyses of wind over complex terrains have been performed, studying the 

effect of terrain size, surface roughness, ABL, and forests on CFD predictions [36, 37]. Moreover, 

different turbulence models including Large-Eddy Simulation (LES) have been tested [38], and 

turbine wake effects on wind farms have been analyzed [39]. Besides general CFD software, special 

CFD software for wind farm design, like WindSim and Meteodyn, have been tested and adopted for 

wind resource assessment [19, 29, 40, 41]. To improve accuracy, a method was proposed that 

corrects CFD results by means of coupling with data from multiple surrounding masts [42]. 

The objective of this work is to propose an easy-to-follow methodology to assess the wind resource 

in complex terrains like areas surrounding dams, using wind data from weather stations and/or 

other sources like GWA, as well as statistical analyses and CFD simulations. The goal is also to raise 

attention and facilitate preliminary feasibility analyses on a complementary solution for renewable 
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energy generation, consisting in installing turbines close to hydropower dams. Since in complex 

terrains, like near dams, linearly-calculated predictions might show error with respect to the real 

flow, we test a linear approach, evaluating the error, and results are compared with those from 

GWA and WAsP simulations. We thus aim to contribute to the ongoing discussion in the literature 

about whether linear equations are suitable to model wind behaviour over complex terrains. 

Moreover, most studies only consider annual mean wind speeds, whereas in this work uncertainty is 

assessed by considering annual wind direction distributions in 16 direction bins. Finally, most 

previous studies focused on isolated hills, except works on isolated islands [19, 35] and marine 

channels [43]. Thus, no similar work has been done combining statistical analyses and CFD 

simulations of wind energy in areas near dams, where speed-up effects and thermal winds are 

important factors, which are not always easy to detect. 

The proposed procedure for turbine sitting, applicable to any dam, is depicted in Section 2. Then, it 

is further detailed through a specific case study in Section 3, where results are compared with those 

from conventional WAsP simulations, and finally the conclusions are drawn in Section 4. 

2. Proposed methodology 
In this work, a global methodology to assess the wind resource near dams and to decide the best 

sites for turbine sitting is described. Figure 1 and this section briefly summarize the main steps, 

which will be commented with further detail through the case study in Section 3. 

 

Figure 1. Flow chart of the proposed wind resource assessment procedure  
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2.1 2.1 2.1 2.1 Identifying potentially interesting areasIdentifying potentially interesting areasIdentifying potentially interesting areasIdentifying potentially interesting areas    

To assess the viability of installing turbines near dams, a statistical study of the local wind in these 

regions should first be performed. Note that such data can be obtained from local weather stations, 

from national weather agencies, or from a myriad of weather data sources, such as the National 

Oceanic and Atmospheric Administration (NOAA) or GWA. Figure 2 shows examples of wind roses 

obtained thanks to a local weather station (left) and to GWA (right). 

Once statistically-relevant data are obtained (several years of measurement should be considered), 

there are several methods to obtain the wind power and energy produced [44]. The static method, 

widely used by the wind energy industry for preliminary wind power analysis [45, 46], is the simplest 

one, as it ignores non-stationary effects, such as changes in wind direction and turbine maintenance 

periods. The method is based on the principle that the probability density function of the power 

produced follows a two-parameter Weibull function with the same scale and shape factors as the 

Weibull function corresponding to the wind speed distribution the power originated from. That is, 

both probability distributions are two identical Weibull curves, which can be expressed as: 

 ���� � ���	 �
�
�	


��

�����

�
								�� � 0; 	�, � � 0� (1) 

 

where ���� is the probability of observing a given wind speed �, � is the scale parameter, and � is 

the dimensionless shape parameter. 

  

Figure 2. Wind rose in Camarasa: (left) from MeteoCat weather station data at 2 m AGL; (right) from Global Wind Atlas 

(GWA) data at 50 m AGL on a 10 × 10 km
2 

around Camarasa (DTU, 2018) 
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After that, following the static method, the probability for a turbine to generate a given output 

power is obtained by combining the Weibull distribution of the wind speed and the turbine power 

curve. Particularly, if � is the air density, the wind power density (WPD) can be calculated as follows: 

 
�
� �

1
2��

�� �1 + 3�	 (2) 

 

Comparing the WPD in several locations of interest will give a preliminary estimation of the available 

wind power in the area, and will allow to delimitate the area of highest interest for wind turbine 

sittings. Another interesting factor for the choice of the location could be to assess if the site is 

prone to develop thermal winds or not, since interestingly these are more regular than synoptic 

winds. More details on this part will be given in Section 3.1. 

2.2 CFD simulation of the area of interest2.2 CFD simulation of the area of interest2.2 CFD simulation of the area of interest2.2 CFD simulation of the area of interest    

Once the area of interest has been identified, the CFD process can start. First, a topographic model 

must be created, and then meshed. Second, CFD simulations are set up. The methodology proposed 

here is independent of the CFD method or software chosen. In the selected case study, we used 

ANSYS ICEM CFD 17.2 software, but obviously open-source CFD software, such as OpenFOAM, could 

also be used to make the proposed methodology even more affordable to any interested institution.  

In any case, some common hypotheses will have to be made. Namely, a logarithmic wind profile law: 

 � = �!"#
$% (&/())

$% (&!"#/()) (3) 

can be defined at the inlet of the computational domain, where & is the altitude above ground level 

(AGL), �  is the wind speed at height &, �!"# is the wind speed measured at reference height &!"#, 

and *) is the roughness length. 

A tuning of the inlet velocity can be performed to assess how the local wind direction and speed 

change from the ones imposed at the inlet of the domain. More details on this part will be given in 

Section 3.3. 

If statistical data are available at specific locations, for example from weather stations, mean wind 

profiles should be available for several wind directions, each corresponding to a given weighting 

factor, as shown for example in Figure 2 (left). CFD simulations and analyses should thus be 

conducted for all wind scenarios, or at least the most habitual ones. Afterwards, the final wind 
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profiles can be analysed by post-processing all simulation results and by considering the weighting 

factor of each wind direction. 

Results of this CFD study would consist in wind velocity maps for different wind directions, maps of 

weighted average of wind speed and turbulence kinetic energy (TKE), etc. 

2.3 Post2.3 Post2.3 Post2.3 Post----processprocessprocessprocessinginginging    of power density and wind energy maps of power density and wind energy maps of power density and wind energy maps of power density and wind energy maps     

To complete the CFD results, detailed distributions of wind (both in magnitude and direction) along 

the year can be computed following a series of steps. After studying the effects of non-linearity of 

the CFD simulations, linearity is assumed at this stage to generate global maps of WPD. These maps 

take into account the detail of wind direction in the calculation of WPD and energy, leading to more 

accurate results than if wind direction is not taken into account. After choosing a specific model of 

wind turbine, maps of annual wind energy production can also be generated. Details of this step are 

found in Section 3.5. 

2.4 Identify2.4 Identify2.4 Identify2.4 Identifyinginginging    suitable locationssuitable locationssuitable locationssuitable locations    

The proposed methodology aims to identify suitable sites for wind turbines based on four criteria:  

1. the site should be easily accessible (to limit the cost of installation and maintenance of the 

turbines) 

2. given that the locations are in mountainous areas, the site should take advantage of the 

speed-up effect (to maximise the energy production of the turbine)  

3. uniform incident wind speed profiles should be observed locally (to maximize wind turbine 

efficiency) 

4. the site should be close to its pairing hydropower dam (to limit the electric grid connection 

costs) 

The proposed methodology provides relevant information to the decision-maker about these four 

criteria for turbine sitting. Note that, complementary criteria, such as a thorough study of economic 

feasibility, could also be taken into account, but this is considered to be out of the scope of this work, 

since it would involve a multiplicity of factors very specific of each country and location. 

3. Case study: Camarasa dam 
The proposed methodology is detailed and tested through a particular case study, but it is important 

to recall that it is applicable to any region of interest near dams. 
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3.1 3.1 3.1 3.1 Identification and description of Identification and description of Identification and description of Identification and description of potentiallypotentiallypotentiallypotentially    interestinterestinterestinteresting areasing areasing areasing areas    

Four mountainous regions of Catalunya (Spain) were chosen as possible candidates for wind 

resource assessment (see Figure 3). Darnius Boadella, Certascan, Camarasa, and Oliana dams are 

found in each of these areas, storing water and generating hydropower. Weather stations of the 

Catalan Weather Service (MeteoCat) are located close to these dams, measuring local wind speed 

and direction [47].  

 

Figure 3. Four candidate dams in Catalunya, NE of the Iberian Peninsula 

 

Based on the wind speed data collected from the weather stations and using Eq. (1) , it was found 

that Weibull distributions fit well the data in these four locations. The distributions were validated 

using the two-sample Kolmogorov-Smirnov test at significant level of 0.05. The WPD Eq. (2) was then 

applied, and Table 1 shows the results obtained from this analysis for the mean wind speed, 

standard deviation, and WPD at 10 m AGL, for each weather station. The highest WPD corresponds 

to Camarasa, which is thus selected for conducting the subsequent case study. 

Table 1. Statistical analysis of wind speed at 10 m AGL from weather station measurements close to candidate dams 

    
MeanMeanMeanMean    velocity at 1velocity at 1velocity at 1velocity at 10 m0 m0 m0 m    AGL AGL AGL AGL 

[[[[mmmm····ssss
----1111

]]]]    

Standard deviation Standard deviation Standard deviation Standard deviation 

[[[[m·sm·sm·sm·s
----1111

]]]]    
WWWWPDPDPDPD    at 1at 1at 1at 10 m0 m0 m0 m    AGLAGLAGLAGL    [[[[WWWW····mmmm

----2222
]]]]    

CamarasaCamarasaCamarasaCamarasa    5.75 2.45 186.52 

CertascanCertascanCertascanCertascan    3.57 1.9 43.23 

DarniusDarniusDarniusDarnius    2.64 1.7 35.04 

OlianaOlianaOlianaOliana    2.25 0.88 9.92 
 

Camarasa is located in west Catalunya, with typical Mediterranean climate [48]. The mountainous 

area around the dam is mainly covered by low shrubs. The reservoir has a maximum water capacity 

of 113 hm3. The 82 m height dam, built in the 1920s, sits on the eastern edge of the reservoir, 
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connecting the north and south mountainous ridges (see Figure 4). Measured wind data are limited 

to a single weather station, which cannot be representative of the wind over the entire area due to 

the complex terrain features. Hence, it is interesting to combine these on-site measurements with 

CFD simulations to obtain efficient and high-resolution assessment of the local wind resource, 

especially near the dam. 

  
Figure 4. Overview of Camarasa dam [49] (left) and map of altitude [m] ASL of the topography near the dam (right) 

 

Figure 4 (right) shows the altitude above sea level (ASL) of the terrain near Camarasa dam. 

Accessibility, critical for easy turbine installation and maintenance, can be related to the altitude 

gradient. Steep terrains can be observed, like the ridges south and south-east (SE) of the dam, and 

the skirt of the mountain north from the reservoir. Low-slope areas, more favorable to turbine 

installation, are also found: the ridge north from the dam, and the skirt of the mountain north-east 

(NE) from it. 

MeteoCat’s weather station is in the top of the hill located north-west (NW) of the dam (see Figure 

5), with coordinates 41°55'04.1"N, 0°52'54.3"E. The surrounding exposure is typically low open 

shrub land. The station records wind speed and direction data at 2 m AGL, or 646 m ASL. The data 

used in this study were measured from January 2010 to December 2017 every 30 min. In Section 2.1, 

Figure 2 (left) displays the obtained annual statistics, with the wind direction classified into 16 equal 

sections with different weighting factors. The dominant (most frequent and highest speed) wind 

directions are west, east south-east (ESE), west north-west (WNW), and east, indicating the thermal 

wind nature of these winds [50], as the valley and reservoir are aligned in the east-west direction 

between mountainous terrains. Note that choosing a location where thermal winds occur is an 

advantage, since, as commented in the Introduction, they usually show higher regularity and 

periodicity, constituting a more reliable and predictable source of wind energy. It thus confirms that 

the selected area of Camarasa is a good candidate for wind turbine sitting. For comparison purposes, 

Figure 2 (right) shows wind direction data obtained around Camarasa from the GWA [24] at 50 m 
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AGL, with geographic resolution of 10 × 10 km2. The observed discrepancies in the wind roses are 

due to the fact that MeteoCat’s data are limited to measurements at the weather station, at 2 m 

AGL, whereas the GWA data correspond to a larger grid size at 50 m AGL. However, in both cases 

dominant wind directions are east and west. 

3333....2222    Topographic CAD of the area of interestTopographic CAD of the area of interestTopographic CAD of the area of interestTopographic CAD of the area of interest    and mesh schemeand mesh schemeand mesh schemeand mesh scheme    

The topographic model used in this CFD analysis was the Digit Terrain Model (DTM), obtained based 

on geographic information system (GIS) data. The topography in Figure 5 (right) was downloaded 

from the Spanish National Centre of Geographic Information (CNIG) database [51], with a resolution 

of 5 m. Since the interesting area is the one surrounding the dam, the domain for the simulation is 

defined as a 3.5 km long (in the +-axis) and 3.0 km wide (in the ,-axis) parallelepiped, with the dam 

located in its center. In this model, the reference frame shown in Figure 5 (right) has the +-axis 

pointing towards east, the ,-axis towards north, and the *-axis towards the zenith. 

  

Figure 5. Satellite view of Camarasa dam area (left) and computational model obtained from GIS data (right) 

The top boundary of the computational domain is a horizontal plane, with height AGL varying from 

350 to 684 m (in the *-axis). According to analysis of field observations [52], as the height AGL is over 

300 m everywhere, it has no influence on the accuracy of the CFD results in the interesting area, 

which is below 40 m. The four lateral boundaries are vertical planes that will serve for setting up 

inlet and outlet boundary conditions in the CFD simulations described in Section 3.3. 

ANSYS ICEM CFD 17.2 software [53] was used for meshing the topography model. Due to the 

complexity and detailed features of the terrain, triangular elements had to be used on the 

topography surface, while unstructured tetrahedral elements were used within the computational 

domain. Around the dam and weather station, a high-resolution mesh is necessary to obtain 
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accurate results (see Figure 6). To capture the wind speed-up phenomenon, the surface cells are 

refined at the dam, hilltop, and areas with steep slopes, as seen in Figure 6 (right). Since the 

resolution of the topographic model obtained from CNIG was 5 m, a body sizing of 2 m was used in 

the region of interest, whereas a coarser body sizing of 5 m was used around the dam and potential 

speed-up areas. For the regions far away from the ground, relatively large cells were used to reduce 

the total number of cells. Within the computational mesh, the coarsest element size was set to 70 m. 

To precisely predict the ABL flow deceleration and recirculation over hilly terrain, it is imperative to 

vertically refine the mesh close to the ground [54]. Therefore, an inflation mesh of 8 prism layers 

was used with a first layer height of 0.2 m, as seen in Figure 6 (left). Satisfactory values of ,- of 

between 1 and 5 were obtained on top of the speed-up areas. The total number of cells for the basic 

mesh set up reached 5.6 million.  

  

Figure 6. Details of volume meshing near dam (left) and surface meshing near dam (right) 

To examine the mesh independence, two additional grid schemes were generated based on the 

basic grid. A 3.1 million cells coarser grid was obtained by coarsening the basic grid a factor of 1.8. 

Similarly, a finer grid consisting of 8.9 million cells was generated by refining the basic grid by a 

factor of 0.75. Numerical simulations using these three grids were performed in the east wind 

direction (one of the dominant wind directions), and the obtained results were compared. 

Particularly, the wind speeds in three locations of interest were sampled along the evaluation lines: 

Location 1 (the dam), Location 2 (the mountain), and Location 3 (the weather station).  

Table 2 shows the error of the coarser and basic meshes with respect to the finer mesh for the wind 

speed at 15 m AGL in these three locations. It is clear that the basic grid has much smaller error 

compared with the coarser grid and provides a maximum error of 2.3% with respect to the finest 
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one for these three locations. It was thus concluded that the basic grid provides a good balance 

between accuracy and computational efficiency for this study. 

Table 2. Error in wind speed results at 15 m AGL as obtained from coarser and basic meshes with respect to finer mesh, at 

three locations: Location 1 (the dam), Location 2 (the mountain), and Location 3 (the weather station) 

MeshMeshMeshMesh    

Location 1Location 1Location 1Location 1    Location 2Location 2Location 2Location 2    Location 3Location 3Location 3Location 3    

VelocityVelocityVelocityVelocity [m·[m·[m·[m·ssss
----1111

]]]]    ErrorErrorErrorError    Velocity [m·Velocity [m·Velocity [m·Velocity [m·ssss
----1111

]]]]    ErrorErrorErrorError    Velocity [m·Velocity [m·Velocity [m·Velocity [m·ssss
----1111

]]]]    ErrorErrorErrorError    

CoaCoaCoaCoarrrrsesesese    7.02 8.50% 3.9 6.90% 6.57 6.80% 

BasicBasicBasicBasic    7.73 0.80% 4.15 1.00% 6.89 2.30% 

FineFineFineFine    7.67 - 4.19 - 7.05 - 

3333....3333    CFD CFD CFD CFD nnnnumerical modelumerical modelumerical modelumerical model    

The wind field was solved using the steady, incompressible Navier–Stokes equations, which govern 

the air flow and transport principles of incompressible turbulent flows using mass and momentum 

equations. The governing equations were solved using the commercial CFD software ANSYS CFX 17.2 

[53], which is based on a coupled finite volume solver. In CFX, the numerical schemes use a co-

located grid method to identify the control volume, and a modified Rhie-Chow algorithm for the 

mass flows to avoid the velocity-pressure decoupling. In governing equations, shape functions are 

used to evaluate spatial derivatives for all diffusion terms, while the High Resolution Scheme is 

implemented for the convection term in velocity calculation [55], and a first-order Upwind 

Differencing scheme is used for the convection term in the turbulence model [53]. 

The Shear Stress Transport (SST) model was chosen to capture the turbulent flow over hilly terrains. 

It combines k-epsilon and k-omega models by applying a blending function method [56]. By adding 

the transport effects into the formulation of eddy viscosity, this model provides highly accurate 

predictions of flow separation under adverse pressure gradients, such as the complex terrain around 

dams. The good performance of this model has been demonstrated in a number of validation studies 

[21, 57]. 

The convergence criteria were set such that scaled residuals of all variables fall below 10-6. The 

numerical simulations of wind flow over Camarasa area were carried out with 16 azimuth sections at 

a uniform interval of 22.5º. Thus, the CFD simulations represent 16 different wind directions, which 

are consistent with the weather station data. Each of the presented simulations took approximately 

7 hours of computational time running on an 8-parallel-thread, 32 GB RAM computer. 

Even though the air density � varies with altitude, in the simulations it was considered constant (� = 

1.185 kg/m3) since the change of altitude in the domain leads to a maximum error of 3.5%, with 

respect to considering an averaged value. In addition, the following boundary conditions were set 
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for the numerical simulations: at the inlet of the domain, the logarithmic vertical wind speed profile 

described in Eq. (3) was applied to account for neutral atmosphere [43]. In the simulation model, the 

roughness length *) was chosen based on the observed topology, i.e., the type of terrain and 

surrounding obstacles: in accordance with World Meteorological Organization (WMO) specifications 

[58], the class index for Camarasa is 7, and thus *) can be taken as 1 m. 

The direction of the inlet velocity was set up based on a Cartesian coordinate system consistent with 

the local wind direction. For the inlet turbulence, considering the terrain complexity and wind 

velocity, turbulence with medium intensity of 5% was chosen, with eddy viscosity ratio of 10 [53]. 

Figure 7 presents the inlet velocity profile for one example: the SE wind scenario. On both south-side 

and east-side inlet boundaries, the velocity magnitude increases with altitude, satisfying the typical 

logarithmic vertical profile of the wind speed of Eq. (3). 

 

Figure 7. Plot of SE wind inlet velocity setup in the CFD simulation model of the Camarasa area 

 

For the ground, boundary conditions were set as non-slip wall with different roughness values. The 

area covered with vegetation used a roughness height of 1 m, whereas on the dam the roughness 

was lowered to 0.05 m, and the river and reservoir were considered as smooth walls. The top 

boundary condition was set as free-slip wall. Finally, for consistency with the inlet velocity setup, 

outlet boundaries were set as pressure outlet, with a specified relative pressure of 0 Pa. 

From the weather station data, the mean wind profile in Camarasa was presented in 16 directions 

with different weighting factors, as shown in Figure 2 (left). For coherence with these statistical 

results, 16 CFD simulation cases were setup to describe all wind scenarios in Camarasa. By 

considering the weighting factor of each wind direction, the final regional wind profile can then be 

analysed by post-processing the simulation results of all 16 directions. 

To be able to present coherent results anywhere in the computational domain, it is critical to first 

assess how the local wind direction might change from the one imposed at the inlet of the domain. 
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Since in this case study measured data are available only at a single point, the procedure followed 

was to tune the inlet velocity at the boundary such that the simulation results (values of wind speed 

and direction) at the weather station would match the weather station measurements. 

First, CFD results for wind direction at the weather station were compared with inlet wind direction 

for 8 dominant wind directions, as shown in  

Table 3. Note that, in almost all cases, the differences in the directions are smaller than half of the 

width of the angular sector, i.e., smaller than 11.25º. Thus, the error in change of wind direction 

between inlet and weather station is within the wind direction error margin. WNW is the only case 

showing high difference in direction at 10 m AGL (+15.9º), which would correspond to a NW 

direction. We acknowledge this possible source of error but consider that overall the direction test 

for inlet tuning is satisfactory, and leave a finer tuning (i.e., considering wind direction more 

accurately) for future work. 

Table 3. Differences between wind direction at the inlet and the weather station (WS) for 8 dominant wind directions 

CaseCaseCaseCase    

Wind Wind Wind Wind 

direction direction direction direction     

at inletat inletat inletat inlet    [[[[ºººº]]]]    

Wind Wind Wind Wind     

direction direction direction direction atatatat    

WSWSWSWS    2 m2 m2 m2 m    AGL AGL AGL AGL [º][º][º][º]    

Wind Wind Wind Wind     

direction atdirection atdirection atdirection at    

WS 10 m AGL WS 10 m AGL WS 10 m AGL WS 10 m AGL [º][º][º][º]    

Difference at Difference at Difference at Difference at     

2 m 2 m 2 m 2 m AGL AGL AGL AGL [º][º][º][º]    

Difference at Difference at Difference at Difference at     

10 m 10 m 10 m 10 m AGL AGL AGL AGL [º][º][º][º]    

EEEE    90 91.3 93.3 +1.3 +3.3 

ESEESEESEESE    112.5 120.4 121.4 +7.9 +8.9 

SESESESE    135 137.6 138.5 +2.6 +3.5 

SSESSESSESSE    157.5 149.5 154.4 -8.0 -3.1 

SSSS    180 177.6 178.4 -2.4 -1.6 

WSWWSWWSWWSW    247.5 257.9 257.4 +10.4 +9.9 

WWWW    270 276.1 275.4 +6.1 +5.4 

WNWWNWWNWWNW    292.5 298.2 308.4 +5.7 +15.9 
 

Then, the velocity magnitude at the inlet boundary condition (�./0"1) was tuned for all 16 wind 

directions: the values of �./0"1 were set up such that the velocity magnitude obtained from the CFD 

simulations at the weather station corresponded to the mean velocity at the weather station, as 

obtained from the MeteoCat measurements. 

3.3.3.3.4444    CFD rCFD rCFD rCFD resultsesultsesultsesults    

As previously commented, 16 wind direction cases were simulated separately. The results of each 

simulation show unique wind flow patterns. To better illustrate this, the four dominant wind 

directions, i.e., cases E, W, ESE, and south south-east (SSE), are discussed here. Figure 8 shows 

velocity contours and vortex cores at 10 m AGL for these four scenarios and preliminary candidate 

locations of interest for turbine sitting. For case E (wind coming from the east and blowing along the 

valley), relatively high wind velocity is observed over the mountain surface north from the dam. In 
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addition, over the reservoir, which is west from the dam, high-speed wind is observed, likely due to 

speed-up effect when the wind moves over the dam. Unlike the other three cases presented in 

Figure 8, the inlet speed in case W is relatively small. Thus, in general, the wind speed in this case is 

relative weak in all the domain. However, the wind over the mountainous area north from the dam 

is still stronger than south from it. In cases ESE and SSE, as the wind is not blowing along the valley, 

there are strong winds in the area south from the reservoir due to speed-up effect when the wind 

moves over the mountain in that area. Speed-up effect is also observed at the ridge of the mountain 

north of the dam. For cases E and W, significant turbulence is observed downwind of the dam, i.e., 

respectively west and east from the dam. In cases ESE and SSE, significant turbulence is found 

downwind of the speed-up area over the mountain south from the reservoir. 

 

Figure 8. Velocity contours and vortex cores at 10 m AGL for four dominant wind directions in Camarasa area 

 

The wind flow patterns observed in the 16 wind directions are different, in some cases even showing 

opposite characteristics. To identify suitable sites for installing wind turbines, it is thus necessary to 

obtain overall wind profiles averaged for a whole year, by creating global velocity and TKE contour 

maps. 

The results of the 16 simulated directions are now combined in a weighted-average wind speed map 

(see Figure 9), by considering the probability of wind blowing in the corresponding direction, that is, 

using data similar to the one available from Figure 2. Three areas are now found to have strong wind 
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speed-up effect: zone 1, the ridges north from the dam; zone 2, the area over the hill south from the 

reservoir; and zone 3, the skirt of the hill NE from the dam. On the contrary, along the reservoir, the 

wind velocity is relatively low in general, but might still be used to generate wind energy. 

 

Figure 9. Map of weighted average of wind speed [m·s
-1

] at 10 m AGL in Camarasa area 

 

Following a similar procedure, a weighted-average TKE map was obtained (see Figure 10). Lower TKE 

means that the local wind speed profile is more uniform, which is good for wind turbine operation. 

In contrast, high TKE means more vortices could be developed in the area. It can be seen that 

relatively high TKE can be found over the hill south from the reservoir (zone 2), because east and 

west are the dominant wind directions. Besides, in the ridges north from the dam (zone 1), some 

turbulence is observed in the immediate edge of the hill, which could be expected [21], though not 

as high as in zone 2. Finally, on the skirt of the hill NE from the dam (zone 3), where relatively high 

wind speed was observed, TKE is much lower. 

 

1) 2) 

3) 
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Figure 10. Map of weighted average of turbulence kinetic energy [m
2
·s

-2
] at 10 m AGL in Camarasa area 

3.5. Wind energy 3.5. Wind energy 3.5. Wind energy 3.5. Wind energy estimationsestimationsestimationsestimations    

Though the weighted-average wind speed map presented in Figure 9 gives valuable information for 

wind turbine sitting, it only considers annual mean wind speeds, and not the detailed distribution of 

wind (both in magnitude and direction) along the year. To improve the accuracy of the calculated 

WPD and annual energy production, a more detailed process is proposed next. 

First, the Weibull distribution function is now fitted to the ensemble of wind speeds at the weather 

station in each wind direction bin (16 direction sectors). A correspondence between the measured 

wind speed at the weather station and at any other location must then be found. As commented in 

Section 1, many wind resource assessment studies are based on linearization of the flow motion 

equations, which show good performance for wind flow description in absence of flow separation, 

i.e., for low slopes [23]. In the present case, featuring complex terrain with steep slopes, non-

linearity of the results can be expected. However, to ascertain whether the obtained wind profile is 

linear or not with the inlet velocity, a set of tests were conducted at several locations. Particularly, 

for each wind direction 2, more than four different wind velocities have been set at the inlet, and the 

corresponding velocities obtained from CFD have been evaluated at three different locations. Next, 

the applied procedure is illustrated for two relevant wind directions. 

Figure 11 (left) shows the wind speed at three locations at three different heights AGL (10, 20 and 

30 m) for the main wind direction (west). It can be seen that the behaviour of the wind speed is very 

close to linear. Similar results were obtained for the second main wind direction (east). Errors due to 

using linear fitting are around 6%, which is an acceptable level of error. This can be explained by the 

1) 

3) 

2) 
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fact that the wind is mainly directed along the east-west axis, which follows the longitudinal axis of 

the valley and reservoir. Thus, the main wind flow would not be passing over steep hills, where 

linearized models are more prone to fail since total or partial/intermittent flow separation may 

occur when the flow encounters steep slopes [30]. 

  

Figure 11. Linearity study for west direction (left) and south direction (right) at height AGL of 10, 20, and 30 m in three 

locations: Location 1 (the dam), Location 2 (the mountain), and Location 3 (the weather station) 

On the contrary, and as expected, Figure 11 (right) shows non-linearity at some locations for a wind 

direction not aligned with the valley (south). The same non-linearity was also observed in the WSW 

direction. In these cases, up to 50% of error from a linear behaviour can be observed. Nevertheless, 

note that non-linearity is observed in wind directions that are among the least frequent ones, and in 

locations that will probably show higher turbulence, thus anyway these locations would not be 

adequate for turbine sitting. For these reasons, and for the sake of simplicity as per the proposed 

global wind resource assessment procedure, overall linearity is assumed in the subsequent analysis, 

even though we acknowledge that linearity could be a loose approximation in some specific areas. If 

increased accuracy was necessary, future work should strive to increase the number of simulations 

when non-linearity is detected, to describe more properly the wind speed at these specific locations. 

Based on the hypothesis of linear behaviour of the wind speed, the Weibull distribution function 

obtained for each point of the grid only differs from the one at the weather station in the scale 

parameter (the shape parameters are all the same). There is thus no need to make a new Weibull 

fitting for each grid point. Simply, from the Weibull distribution function for the weather station data, 

with parameters �.,34 and �., the corresponding Weibull function at any location $ is obtained using 

the same shape parameter �. , and calculating the new scale parameter �.,0 = 5.,0�.,34 . The 
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proportionality factor 5.,0 between the wind speed at the weather station and at the location	$, for 

each wind direction 2, is obtained from the CFD simulations. Then, the WPD can be calculated at 

each grid point for each wind direction using: 

 �
�6.,0 = 1

2 ��.,0�� �1 + 3
�.

		 (4) 

 

The total WPD is then obtained at each grid point $ by multiplying the WPD in each direction times 

the annual probability 7.  of wind blowing in that direction, and then adding the results obtained for 

the 16 wind directions: 

 89:;$	<�=0 	� 1
2 �>�.,0� � �1 + 3

�.
	

�?

.@�
7.	 (5) 

 

Table 4 compares, for four different locations, the WPD obtained with Eq. (5), i.e., using 16 adjusted 

Weibull functions (one for each wind direction), with the WPD obtained using a single global Weibull 

for all wind directions, i.e., applying the following equation: 

 89:;$	<�=0 	� 1
2 ��34

� � �1 + 3�	>5.,0�
�?

.@�
7. 	 (6) 

 

Table 4. Wind power density (WPD) at four locations: the dam, NE and SE from the dam, and the weather station 

LocationLocationLocationLocation    
WPD from 16 Weibull WPD from 16 Weibull WPD from 16 Weibull WPD from 16 Weibull 

distributions [W·mdistributions [W·mdistributions [W·mdistributions [W·m
----2222

] Eq. ] Eq. ] Eq. ] Eq. (5)    

WPD from 1 Weibull WPD from 1 Weibull WPD from 1 Weibull WPD from 1 Weibull     

distribution [W·mdistribution [W·mdistribution [W·mdistribution [W·m
----2222

] Eq. ] Eq. ] Eq. ] Eq. (6)    

ErrorErrorErrorError    

LOC 1 (Dam)LOC 1 (Dam)LOC 1 (Dam)LOC 1 (Dam)    81.5 98.1 -16.9% 

LOC 2 LOC 2 LOC 2 LOC 2 (NE from dam)(NE from dam)(NE from dam)(NE from dam)    229.7 146.0 57.3% 

LOC 3 (SE from dam)LOC 3 (SE from dam)LOC 3 (SE from dam)LOC 3 (SE from dam)    57.72 92.5 -37.6% 

LOC 4 (weather station)LOC 4 (weather station)LOC 4 (weather station)LOC 4 (weather station)    145.8 146.0 -0.1% 
 

The last case (LOC 4) corresponds to the weather station, which serves as a reference, since 5.,0 = 1. 

Thus, both methods for calculating the WPD should yield the same results. However, an error of 0.1% 

is observed. The difference obtained comes from using 16 Weibull distributions instead of only one 

Weibull function for all wind directions. Indeed, since for each individual direction there are less data 

than considering all directions altogether, the Weibull fitting is not as good as with the global data. 

Nonetheless, the error is extremely small. 

On the contrary, for the other three locations, significant differences are obtained, and the WPD 

obtained using a single Weibull distribution can be either sub- or over-estimated. This can be 

explained by the fact that, when only a single Weibull function is considered for all wind directions, 

the analysis does not take into account that some wind directions may be very beneficial for some 
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sites, which is determined by the value of 5.,0 (see LOC 2 for example), and these directions may have 

a high probability of occurrence. 

Figure 12 shows the obtained map of WPD. As commented, it serves much better for turbine sitting 

than considering only the weighted average of wind speed in Figure 9, since it takes into account not 

only annual mean wind speeds but the Weibull distributions of the wind in each direction. It is 

important to remark again the key difference between both computations: while Figure 9 uses the 

same general Weibull distribution for all directions, though each direction should have a different 

weight depending on the probability of the wind blowing in that direction, Figure 12 uses a distinct 

Weibull distribution for each of the 16 studied directions, making the results more accurate. Note 

that, it is still necessary to use Figure 12 together with Figure 10, to avoid areas of high turbulence, 

where, on top, linearity of the wind speed is less obvious, and to validate the accessibility of the site. 

 

Figure 12. Map of wind power density [W·m
-2

] at 10 m AGL in Camarasa area 

Finally, the annual energy production was estimated using a medium-power wind turbine: the AH-

10kW pitch-controlled turbine from the Chinese manufacturer Qingdao Anhua New Energy 

Equipment (see Figure 13). Table 5 compares the energy results obtained using 16 fitted Weibull 

distributions with those obtained using a single Weibull function for the data altogether. The results 

are again quite different for LOC 1 and LOC 3, but not for LOC 2. This can be explained by the fact 

that a significant percentage of the wind speed was lower than 2.5 m·s-1, which is accounted in WPD, 

but does not effectively serve to produce energy, since it is lower than the start-up speed of the 

turbine. 
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To sum up, Figure 14 shows the final map of potential energy production in the Camarasa area using 

an AH-10kW turbine. It confirms that the previously identified site, i.e., the skirt of the hill located 

NE from the dam (zone 3 in Figure 9), would be a viable candidate to install small and medium-

power wind turbines.  

  

Figure 13. AH-10kW turbine (Qingdao ANE): (left) power curve; (right) wind turbine 

Table 5. Annual energy production at four locations using an AH-10kW turbine, with hub-height 10 m 

LocationLocationLocationLocation    
16 Weibull16 Weibull16 Weibull16 Weibull----based annual based annual based annual based annual 

energy [MWh]energy [MWh]energy [MWh]energy [MWh]    

1 Weibull1 Weibull1 Weibull1 Weibull----based annual based annual based annual based annual 

energy [MWh]energy [MWh]energy [MWh]energy [MWh]    

ErrorErrorErrorError    

LOC 1 (Dam)LOC 1 (Dam)LOC 1 (Dam)LOC 1 (Dam)    6.3 9.5 -33.7% 

LOC 2 LOC 2 LOC 2 LOC 2 (NE from dam)(NE from dam)(NE from dam)(NE from dam)    15.7 14.1 11.3% 

LOC 3 (SE from dam)LOC 3 (SE from dam)LOC 3 (SE from dam)LOC 3 (SE from dam)    5.3 8.9 -40.4% 

LOC 4 (weather station)LOC 4 (weather station)LOC 4 (weather station)LOC 4 (weather station)    13.7 14.1 -2.8% 
 

3333....6666    Error Error Error Error eeeestimation stimation stimation stimation and comparison with Wind Atlas and WAsPand comparison with Wind Atlas and WAsPand comparison with Wind Atlas and WAsPand comparison with Wind Atlas and WAsP    

As previously discussed, some error has to be accounted in this study due to the mesh and due to 

using constant density with altitude. The total maximum error obtained in velocity results is 

estimated around 6%, which we believe is reasonable for this kind of preliminary assessments that 

do not aim to reach extreme accuracy, but rather aim to reach a good balance between accuracy 

and efficiency, by limiting the computational time. Then, when linearity is assumed to generate WPD 

and energy maps, providing further information beyond simple annual mean wind speeds, an extra 

error is generated highly dependent on the local topography, and thus making very difficult to 

estimate the global error. As mentioned before, if increased accuracy was necessary in areas where 

high non-linearity is expected or observed, a finer study on non-linear effects would be required. 
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Figure 14. Map of energy [MWh] potentially harvested in Camarasa area with an AH-10kW turbine, with hub-height 10 m 

 

When dealing with results on energy, since it involves the cube of the velocity, any source of error in 

velocity is greatly amplified. In this regard, we consider that the WPD and energy maps might show a 

maximum error of around 19%. Although this error is significant, it is important to recall that this is a 

maximum value, not necessarily occurring in all locations. Moreover, for preliminary assessment 

purposes, we believe that it still leads to a correct order of magnitude, as well as higher accuracy 

than if using only GWA data, for example. Indeed, Figure 15 shows the wind speed and WPD 

obtained from GWA (DTU, 2018) at 50 m AGL. Namely, the wind speed maps shown there do not 

capture the speed-up effect detected thanks to a finer study. As a consequence, in areas that we 

identified as suitable for wind turbines (see Figure 9), with an estimated WPD around 300 W·m-2, the 

GWA prediction is below 100–150 W·m-2, corresponding to a 100–200% difference. 

    

Figure 15. GWA of wind speed [m·s
-1

] (left) and wind power density [W·m
-2

] (right) in Camarasa area 
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The results obtained following the proposed procedure are now also compared with those obtained 

from conventional linear model simulations using WAsP. WAsP software is commonly used by  

industry to estimate wind energy resources [59]. The program uses long-term meteorological data 

series at a reference site to estimate conditions at other predicted sites. To ensure a fair comparison, 

the setup of the WAsP case here uses identical input data as those used in our methodology, 

including the Camarasa weather station wind data, the DTM model, and the power curve of the AH-

10kW wind turbine generator. Note that, as expected, simulation time for WAsP is less than 1 hour, 

much faster than the CFD simulation that takes nearly 7 hours each, leading to around 100 hours for 

all wind directions. Grid resolution also differs since the results of resource-grid in WAsP are 

calculated based on the grid resolution of 20 m, whereas CFD simulation are based on 2 to 5 m grid.  

The comparisons of the results (considering all wind directions, at 10m AGL) on wind speed, WPD, 

and annual energy production are presented in Figure 16. 

Figure 16 shows that both methods show the same velocity tendency around the Camarasa dam 

area. As observed in the CFD simulation, the wind speeds from WAsP simulation at the three zones 

(1, 2, and 3) marked in Figure 9 are higher than in the surrounding areas, whereas relatively small 

wind speeds are observed near the valley and reservoir area. Both methods show that the highest 

wind speeds occur in zone 2. Nevertheless, the maximum wind speed obtained from WAsP (4.3 m/s) 

is 33.8% lower than that obtained from CFD simulation (6.5 m/s). Similar conclusions can also be 

drawn from the comparison of the WPD and annual energy production. For both methods, the 

highest values of WPD and annual energy production are obtained in zone 2 and zone 3, as shown in 

Figure 16, but they are significantly lower with WAsP than with CFD simulations. From WAsP results, 

the maximum WPD and energy production in zone 2 are 147 W/m2 and 13 MWh, respectively. These 

values are 58% and 48% smaller than the results obtained from our methodology (350 W/m2 and 25 

MWh, respectively). 

According to a research by Mortensen, to obtain accurate prediction results, WAsP simulations need 

the surrounding terrain be sufficiently gentle and smooth to ensure mostly attached flows [60]. Thus, 

the observed discrepancies in predictions of wind speed, WPD, and annual energy production 

between WAsP and our approach can be explained by the values of the ruggedness index (RIX), 

shown in Figure 17. Particularly, due to the complex mountainous topography, the Camarasa area 

has high RIX values ranging from 20.4% to 30.6%. According to the WAsP User Manual [59], high RIX 

values can lead to large errors in the flow modelling in WAsP simulations. In reality, turbulence exists 

near the terrain with high ruggedness, which may induce wind vortexes [61]. Meanwhile, the RIX 

difference between predicted and reference sites (ΔRIX) ranges from -2.7% to 7.5% in this area. The 

uneven ΔRIX values make WAsP modelling errors to be significant and unequal [60]. 
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Wind speed [m/s]: CFD (left) vs. WAsP (right)  

  
Wind power density (WPD) [W/m

2
]: CFD (left) vs. WAsP (right) 

  
Annual energy production [MWh]: CFD (left) vs. WAsP (right) 

Figure 16: Comparisons of results (considering all wind directions, at 10m AGL) obtained following the procedure proposed 

in this work (left hand side) with those obtained from conventional linear model simulations using WAsP (right hand side): 

(top) wind speed; (centre) wind power density (WPD); and (bottom) annual energy production.  
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Figure 17 RIX values in Camarasa dam area 

Overall, after comparing the results on wind speed, WPD, and annual energy production from the 

proposed methodology and WAsP, it can be concluded that the results from both methods are 

consistent: indeed, similar patterns and same orders of magnitude were obtained from both 

methods, with maximum differences of 33.8%, 58%, and 48% respectively. These differences are 

considered as acceptable given the high RIX values in the Camarasa area. 

3.3.3.3.7777    Identification of suitable Identification of suitable Identification of suitable Identification of suitable sisisisitttteeees for wind turbiness for wind turbiness for wind turbiness for wind turbines    

As discussed in Section 2.4, the selected sites for installing wind turbines should meet the following 

criteria: 1) be easily accessible; 2) take advantage of speed-up effect; 3) have local uniform incident 

wind speed profiles; and 4) be close to its paring hydropower dam. Considering all these factors, the 

skirt of the hill located NE from the dam (zone 3 in Figure 9) is regarded as a good candidate; in this 

area, the slope is small, while the WPD is high (it appears to effectively take advantage of speed-up 

effect, as shown in Figure 12), and the annual values of TKE are acceptable. In addition, it is located 

not far away (less than 500 m) from the dam, as seen in Figure 5 (left). Figure 14 shows that a single 

turbine in this site would lead to an annual production of around 22 MWh, corresponding to the 

annual mean electrical consumption of 7 medium Spanish households, and to a carbon footprint 

saving of 19 and 11 t of CO2, compared to coal- and gas-obtained electricity, respectively. Note that 

this turbine model is not very expensive, and the mean payback time of the turbine would be 

between 2 and 3 years (out of a life expectancy of 20 years), making it profitable in a rather short 

term.  

It is noteworthy that, among the sites identified from Figure 9 to be possible candidates, the north 

ridge (zone 1) would also be acceptable, although it shows higher turbulence and is located a bit 
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further from the dam infrastructure. Finally, zone 2 was disregarded due to showing too much 

turbulence and much worse accessibility (steeper slope), and being much further from the dam. 

4. Conclusions and future work 
To increase renewable energy generation in hydroelectric dams, a solution is proposed consisting in 

installing wind turbines close to dams. To facilitate its implementation, we propose a simple 

procedure for wind resource assessment in complex terrains, which is the typical case near dams. 

The Camarasa case study is presented to show in detail the steps of our approach. The main 

conclusions are: 

• A wind data statistical study allows easy and quick preliminary selection of candidate sites 

based on estimated wind power density, and identifies if thermal winds occur. 

• The proposed method, combining CFD simulations in the selected locations and statistical 

analyses, captures properly the main features of the wind (the speed-up effect beneficial to 

wind energy production, and turbulence and wind shear, which greatly affect turbine 

performance). This allows to easily identify the most adequate sites considering also 

accessibility and distance to the dam. 

• The method takes into account the detail of wind direction distribution for calculating wind 

power density, leading to more accurate results than if only mean speeds are used. 

• Error estimation and comparison of the results with those of GWA and WAsP simulations 

validate the proposed method, given the similar flow patterns and orders of magnitude 

obtained. However, there are still significant discrepancies in wind power density for the 

Camarasa area, with maximum differences of 200%/58% between the results from GWA/WAsP 

and those from the proposed method. This suggests limitations of using GWA and/or WAsP for 

wind resource assessment in areas of complex orography, while the proposed method 

increases the accuracy of numerical analyses in complex terrains, which is crucial for the 

successful development of wind farms in such locations. 

• The Camarasa case study illustrates how to use general CFD software for wind resource 

assessment instead of dedicated wind farm design CFD tools. Moreover, it also shows that the 

method is easy-to-follow, and that, as there is no specific requirement concerning the dam 

area, it is applicable to any dam. Particularly, considering all the aforementioned factors, the 

proposed methodology allowed identifying viable sites near the Camarasa dam to install small- 

to medium-power turbines that would be economically profitable in a rather short term (2 to 3 

years): the skirt of the hill located NE from the dam, where the wind power density is 270 W·m-

2. 
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As future work, we aim to reduce the sources of error, estimated in the case study to a maximum of 

6%/19% for wind speed/WPD. The effect of changing density with altitude could be studied, as well 

as the non-linearity effects. Economic feasibility assessment could be added to the methodology, 

and, since the final assessment is based on multiple criteria, a global criteria function defined as a 

weighted sum of the single criteria could be implemented for use by decision-makers. 

It would be interesting to install meteorological masts in relevant locations to obtain experimental 

data at 10 m height for validation, and to study, in the simulations, the effect of temperature on 

thermal winds, common in mountainous areas. Moreover, it would be worth analysing the wind 

resource time fluctuations associated with thermal winds, due to their cyclic diurnal and seasonal 

fluctuations, often intense during spring and fall, when thermal gradients responsible for these 

winds are usually largest [62]. Recall that the methodology contemplates identifying thermal winds 

in the candidate locations, as in the case study, for which the dominant wind directions were aligned 

with the valley between mountains, indicating a thermal nature of these winds. Furthermore, in the 

case study, thermal winds are the main contributors to wind energy, but this cannot be generalized 

to all dams. Nevertheless, the wind nature, synoptic or thermal, does not affect the proposed 

procedure. 
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Research Highlights: 

 

� A low-cost methodology to install wind turbines close to dams is proposed 

� The proposed locations benefit from wind speed-up effect and thermal winds 

� The easy-to-follow methodology combines statistical wind data with CFD simulation 

� Case study shows the effectiveness of the methodology and provides error estimation 


