
Universitat Politècnica de Catalunya
Escola Superior d’Enginyeria Industrial, Aeroespacial i

Audiovisual de Terrassa

Engineering in Aerospace Technologies

Evaluation of the Lightning Imaging
Sensor aboard the International Space

Station using Lightning Mapping Array

Bachelor Thesis
– REPORT –

Author:
Ícar Fontcuberta

Supervisor:
Joan Montanyà

Delivered: 10 June 2019



ABSTRACT
In this work the data from a Lightning Mapping Array (LMA Ebro Delta) and the Lightning Imaging
Sensor (ISS-LIS) has been used with the aim to explore which properties of the former make it more
likely to have simultaneous ISS-LIS detections associated. To do so, the data has been divided in
10ms time bins; the ISS-LIS and LMA data points inside a same time bin have been associated as a
sole emission. Then, the properties of each sensors’ detections have been transferred to the bins, to
which have been assigned the properties of both kinds of detections. The analysis has shown a clear
relation between the amount of LMA data points in a bin and the likelihood of that bin to have a
simultaneous LIS detection. This relation is probably due to the sum of powers of LMA data points;
the study has not shown any clear relation between the maximum power recorded in a bin with its
simultaneous ISS-LIS detection. Other parameters such as the height of LMA detections has been
taken into account; which has shown no clear influence on generating orbit detectable emissions. In
this work is also presented an introductory technical report on ISS-LIS and its current data products,
as well as the way how they have been treated for acquiring the mentioned results. Plus, it has been
performed a literature research with the aim to find a relation between the voltage applied to the
open air in order to generate an electrical arc and its emissions on the 777.4 nm band; research that
has shown unsatisfactory results.

1



Contents

1 Introduction 8

2 Description of Sensors 10
2.1 INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR . . . . . 10

2.1.1 International Space Station - LIS . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 LIS: instrument description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Event Grouping Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Technical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 LIGHTNING MAPPING ARRAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Ebre Lightning Mapping Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Sensors’ Data Handling 19
3.1 ISS-LIS HIERARCHICAL DATA FORMAT FILES . . . . . . . . . . . . . . . . . . . 19

3.1.1 LIS HDF processor.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 LIS vs LMA comparator.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 LMA DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 LMA zoom7.sci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 LIS data analysis using LMA as reference 26
4.1 OVERVIEW OF GATHERED DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Space-Time distributions of detections . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Influence of excited pixels’ position on the CCD . . . . . . . . . . . . . . . . . 37
4.1.3 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY . . . 39
4.2.1 Hypothesis and analysis description . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Sources’ Height Influence on Detectivity . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Sources’ Maximum Power influence on Detectivity . . . . . . . . . . . . . . . . 45
4.2.4 Density of sources in the time bins . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Section Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND
LMA SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Flash Duration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Electric arc emissions for LIS calibration 55
5.1 Minimum Radiance Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Relation peak voltage – radiance emitted . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Direct relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion and further work 62

3



CONTENTS

Appendix A APPENDIX 64
A.1 Geostationary Lightning Mapper description . . . . . . . . . . . . . . . . . . . . . . . 64
A.2 Night vs. Day distribution of LIS during 2017 period . . . . . . . . . . . . . . . . . . . 65
A.3 Detections’ properties influence on LIS detectivity from a typical value approach . . . 66

A.3.1 Sources density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3.2 Sources’ height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.3.3 Sources’ Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3.4 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4 Extra Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.1 Mean sources’ height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.2 Histogram distributions from a data-point point of view . . . . . . . . . . . . . 76

A.5 User Guide for data the processing codes . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6 Codes for data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.6.1 LIS HDF processor.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.6.2 LIS vs LMA comparator.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ACRONYMS AND ABBREVIATIONS
In alphabetical order

ASIM Atmosphere-space Interaction Monitor

CCD Charged-Coupled Device

CG Cloud to ground (flash)

EM Electromagnetic

ESEIAAT Escolta Superior d’Enginyeria Industrial, Aeroespacial i Audiovisual de Terrassa

FOV Field of View

HDF Hierarchical Data Format

IC Intra Cloud (flash)

IFOV Instantaneous Field of View

ISS International Space Station

LAT Latitude

LON Longitude

LMA Lightning Mapping Array

LINET Lightning detection Network

LIS Lightning Imaging Sensor

LRG Lightning Research Group

OTD Optical Transient Detector

oe only sources

pwr Power

RF Radio-frequency

se sources + events

SNR Signal-to-Noise Ratio

TLE Transient Luminous Event

4



TOA Time of Arrival

TRMM Tropical Rainfall Measuring Mission

txt Text

UTC Universal Coordinated Time

VHF Very High Frequency

List of Figures

2.1 Measuring range of OTD and TRMM imaging sensors. Source: [2] . . . . . . . . . . . 11
2.2 ISS-LIS observable area. Source: [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Lightning Spectra Information. Source: [6] . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Example of grouping process. Source: [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 3-D models of the ISS-LIS sensor. Source: [7] . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Lightning Mapping System antennae locations. Source: [11] . . . . . . . . . . . . . . . 17
2.7 Position of LMA antennae in Ebre delta (white circles). Source: [13]. . . . . . . . . . . 18

3.1 ISS-LIS HDF files organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Screenshot of a output LIS txt file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Space and time distribution of LIS and LMA detections during 17-10-18 10:30. . . . . 27
4.2 Height[m] vs. time [sec. from start of 10 min. period]. Zoom on time distribution of

LIS and LMA detections during 17-10-18 10:30. . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Space and time distribution of LIS and LMA detections during 17-10 18 17:00. Top:

height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height[m] vs.
LAT/LON [deg.]. Sources are dots, events are circles. Sources coloured by time, events
by group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Space and time distribution of LIS and LMA detections during 17-10 18 17:00. Focus
on LIS view time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Sources and Events detections printed on height and time . . . . . . . . . . . . . . . . 30
4.6 Space and time distribution of LIS and LMA detections during 18-04-27 13:10. . . . . 31
4.7 Space and time distribution of LIS and LMA detections during 18-04-29 11:30 view

time. Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] The smaller picture
displays the whole 10 min period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Space and time distribution of LIS and LMA detections during 18-05-25 01:40 view time. 33
4.9 Space and time distribution of LIS and LMA detections during 18-06-05 15:10 view time. 33
4.10 Space and time distribution of LIS and LMA detections during 18-06-06 14:20 view time. 34
4.11 Space and time distribution of LIS and LMA detections during 18-06-13 17:50 view time. 35
4.12 Height and time distribution of LIS and LMA detections during 2018-08-09 18:50 view

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.13 Height and time distribution of LIS and LMA detections during 2018-08-09 04:40 view

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.14 Space and time distribution of LIS and LMA detections during 2018-09-18 03:30 view

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.15 Space and time distribution of LIS and LMA detections during 2018-10-18 15:10 view

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.16 Excited pixels distribution on the CCD for bad data cases. . . . . . . . . . . . . . . . 37
4.17 Excited pixels distribution on the CCD for two cases with good data: 17-10-18 . . . . 38

5



4.18 Mean height histograms for the cases of the 2017 fall . . . . . . . . . . . . . . . . . . . 41
4.19 Median of Sources Heights Histograms for all periods of data . . . . . . . . . . . . . . 42
4.20 Example for symmetrical distribution of power . . . . . . . . . . . . . . . . . . . . . . 43
4.21 Power-weightened average sources’ height . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.22 Maximum power histograms for all periods of data . . . . . . . . . . . . . . . . . . . . 46
4.23 Distribution of Density of sources in a bin for all periods . . . . . . . . . . . . . . . . . 48
4.24 Distributions of the sum of power for all periods . . . . . . . . . . . . . . . . . . . . . 49
4.25 Sources (+) and events (x) detected during the 171018 1030 time period printed over

time, coloured by flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.26 Zoom on a flash of the 171018 1030 time period. Sources (+) and events (x) printed

over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 MODTRAN output Flux and Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Atmospheric transmittance depending on the wavelength by MODTRAN . . . . . . . 57
5.3 Emission properties of controlled electric arc discharges. Extracted from [19] . . . . . 58
5.4 Emission properties of controlled electric arc discharges (second). Extracted from [19] 59
5.5 Emission intensity of different spectral lines with the plasma temperature. Source: [21] 60
5.6 Intensity of emissions depending on the wavelength. Source: [23] . . . . . . . . . . . . 61

A.1 GEOS satellite and its FOV on the Earth surface. Source: [10] . . . . . . . . . . . . . 65
A.2 GLM sensor performance properties. Source: [10] . . . . . . . . . . . . . . . . . . . . . 65
A.3 Night-Day presence of lightning detected by LIS around Deltebre area from March 2017

to July 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.4 Typical values of sources densities in bins for each 10 min period. . . . . . . . . . . . . 67
A.5 Typical values of sources’ height in each 10 min. time period, achieved from the typical

height values inside each bin of the same period. . . . . . . . . . . . . . . . . . . . . . 68
A.6 Space-time detections distribution of 2017-10-18 with LINET included (X and +). ”x”

are negative strokes and ”+” are positive strokes. Circles are events (coloured by flash)
and dots are events (coloured by time). . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.7 Sum of powers for each bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.8 Typical values for power-weighted centroid positions in each time period. . . . . . . . 71
A.9 Maximum power for each bin during 171018 1030 . . . . . . . . . . . . . . . . . . . . . 72
A.10 Typical values of maximum power for each inside-FOV time period . . . . . . . . . . . 72
A.11 Data-point POV histograms for 171018 10:30 . . . . . . . . . . . . . . . . . . . . . . . 76
A.12 Data-point POV histograms for 17-10-18 17:00 . . . . . . . . . . . . . . . . . . . . . . 76
A.13 Data-point POV histograms for 18-08-09 . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.14 Data-point POV histograms for 18-08-31 . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.15 Data-point POV histograms for 18-09-18 . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.16 Data-point POV histograms for 18-10-18 . . . . . . . . . . . . . . . . . . . . . . . . . . 77

List of Tables

2.1 ISS-LIS sensor technical properties. The frame rate is of 2ms and the total FOV is of
600 x 600 km. Source: [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Duration of LMA and LIS flashes (seconds). In the table there are not the flashes
that were not detected by LIS. The rows with zeroes represent those flashes that LIS
detected but not LMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6



LIST OF TABLES

5.1 Typical radiance values of events with sources associated at 2500m, with a tolerance of
50m in [ µJ

sr2m2µm ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7



Chapter 1

Introduction

Motivation
Lightning are rather puzzling phenomena: beams of light that fall from the sky, announcing the ar-
rival of a sound blast that will frighten men and animals for equal. It is not surprising that they have
sparkled mythologies, stories and the human mind an imagination from millennia. Through observa-
tion and reasoning we have mostly unraveled the physical mechanisms that generate such beautiful
elements; yet their measurement and observation has been far from losing interest.

In the modern times lightning have gained a huge interest as indicators of thunderstorms: they are
wonderful electromagnetic signal generators. Their print is widely used to generate thunderstorm
maps by weather-forecasting institutions all over the globe. Scientists and engineers have pushed
themselves along the years to design a number of systems that can map the presence of lightning.
One of those are the Lightning Mapping Arrays (LMA), systems of antennae that can detect lightning
in a radius of the order of 100km. Despite the LMA being extremely useful to generate local lightning
maps, since the 90s some space agencies such as NASA have put their focus on orbit-based systems,
which have an extremely wider range of detection. These systems, although not having the same
precision or being as effective as the LMAs, have proven their utility by allowing the scientific insti-
tutions study thunderstorm populations where other sensors could not ”dream” to reach. Monitorin
the oceanic storms, for instance, is not only mandatory for understanding the weather in situ, which
has a gigantic economic impact in maritime trade, but is also important for being able to prescience
the weather else were.

That being said, the success and utility of orbit-based lightning detectors is currently circumscribed
by their relatively short time of experience. Validation and calibration are major operations that each
one of these sensors has to face and can be done, for instance, from a cross-sensor approach. The
LMA systems gain here a new role: they can provide very accurate local data to less accurate global
detectors. This approach is relevant since the systems are already installed and the technology is well
known. The only perk, nonetheless, is that orbit-based systems, being the Lightning Imaging System
at the International Space Station (ISS-LIS) the most promising at the moment, don’t read the same
same signal: while LMA captures VHF RF pulses (at the band of 60MHz approx.), the ISS-LIS detects
the light pulses of much greater frequency (wavelength of about 777 nm).

In order to be able to compare the data, for example with the aim of calibrating a LIS sensor, it is
mandatory to understand if both detections can be associated and in which way. Assuming that a
lightning emits both types of signals, the first step could be to explore which properties of the LMA
detections have an impact on the likelihood of generating a simultaneous detection from LIS.

8



Finally, as commented above, the newness of orbit-based systems, and in particular ISS-LIS, leads
to a lack of information about the systems’ properties and data products. Moreover, there is little
knowledge and analysis on data crossing from LIS-LMA systems.

Aim and Scope
Accordingly at what has been said above, this work aims to provide:

1. A comprehensive report about the technical properties and the fundamental
structure of the LIS and LMA systems

2. A description about the ISS-LIS data products and how they have been processed
in this work

3. A report on the exploration of the influence of the LMA sources’ properties on
its likelihood to be detected with ISS-LIS and other cross-sensor assessments

Out of the scope will be left:

• An exhaustive technical description of the systems

• Data analysis with sensors other than ISS-LIS and LMA

• Production of statistical models for prediction of detection by ISS-LIS of LMA sources

In summary, the main objective of this work is to evaluate the detections of lightning from space by
means of high-resolution Lightning Mapping Array systems (LMA); and as partial objectives will be
done reviews of lightning and lightning imagers, definition of the evaluation, develop codes for reading
data and develop codes for the evaluation.

9



Chapter 2

Description of Sensors

Contents
2.1 INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SEN-

SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 International Space Station - LIS . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 LIS: instrument description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Event Grouping Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Technical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 LIGHTNING MAPPING ARRAY . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Ebre Lightning Mapping Array . . . . . . . . . . . . . . . . . . . . . . . . . 18

In this chapter the reader will find non-exhaustive descriptions of the sensors involved in the current
lightning analysis. A complete technical description of the sensor is left out of scope of this chapter,
and merely generic system descriptions and technical properties will be provided. The aim of this
chapter is to give comprehensive compendium of the information recollected from more complete,
technical sources, that will be indicated; this compendium should allow the reader to gain basic

technical knowledge about the systems to which this work refers.

2.1 INTERNATIONAL SPACE STATION - LIGHTNING IMAG-
ING SENSOR

The Lightning Imaging Sensor (LIS) is a sensor designed by NASA, the University of Alabama in
Huntsville and their partners in the early nineties with Hugh Christian as principal investigator. The
LIS is an orbital sensor that monitors Earth low-atmosphere and detects lightning via the observation
of high luminosity events (measuring its radiance) during thunderstorms.

Historical Background1

The first orbital sensor that detected lightning was the Optical Transient Detector (OTD), launched
by NASA in 1995, with the objective of provide a better understanding of thunderstorms distribution
through a wide tropical strip. The OTD could detect intra-cloud (IC) and cloud-to-ground (CG) light-
ning via imaging process, with a spatial resolution of 10 km and a detection efficiency2 of 50%. From a
740km high and 70 °orbit, it had a footprint (projected area where it could measure) of 1300 x 1300 km.

In order to gain spatial resolution and to be able to compare the imaging detection method with other
types of measurements (X-ray, gamma ray, RADAR...) the LIS sensor was designed. LIS would be a
sensor that would scan for luminous events during thunderstorms from orbit and its imaging method

1Most information about the historical background has been extracted from [1].
2Understood as the percentile of lightning that sensor detects in a given are to the total amount, estimated with

other measurements.

10



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

(a) OTD range
The zone in grey-and-white (the stripes in the

middle LATs included) are out of range.

(b) TRMM-LIS range
The detection range is enclosed by the two

parallel lines, at the South of Spain and Australia
respectively.

Figure 2.1: Measuring range of OTD and TRMM imaging sensors. Source: [2]

would be compared to data gathered from other instruments that would scan the same phenomena.
In 1997 the Tropical Rainfall Measurement Mission (TRMM) was launched. Its satellite orbited the
Earth at 350 km and with 35 °of inclination, and contained a LIS sensor alongside a RADAR, a
Infra-red scanner, a microwave sensor and other measuring devices. Despite that a lower orbit implied
a reduction of the wideness (LAT direction) of the scanned region, it was estimated that it detected
approximately the 90% of lightning that occur through out the Earth each year. This high efficiency
detection while latitude range reduction was achieved because the vast majority of lightning happen
near the tropics, so detection reduction near the poles will not affect the overall efficiency. The lower
orbit also led to a better spatial resolution (up to 4 km). Nonetheless, also due to the same parameter
the footprint was reduced to 600 x 600 km.

A visualization of both OTD and TRMM imaging sensors is displayed in the figure 2.1. It is possible
to see how the higher orbit (OTD) and inclination satellite had a wider observable zone: the maximum
latitudes of observation are on the north of Greenland, whereas the TRMM-LIS only could observe
up to the south Mediterranean. In the recent years, more advanced satellite-based sensors have been
developed, such as LIS or GLM. Below the reader will find a description of the former. Information
about the latter is available in appendix A.1.

2.1.1 International Space Station - LIS
From March 2017 a new LIS sensor is operative. Integrated on the International Space Station (ISS),
the scope of the ISS-LIS is to monitor the global lightning distribution and other parameters associ-
ated with thunderstorms and lightning, such as total precipitation volume; lightning and precipitation
relation; relation between lightning and the type of cloud etc.

Some of the advantages of the ISS-LIS over the TRMM-LIS are:

• Higher latitude coverage. Represented in fig. 2.2.

• Substantial improvement in data availability and telemetry velocity (real-time data possible).

• Possibility of observation comparison with other sensors integrated on the ISS, such as: the
Atmosphere-Space Interaction Monitor (ASIM) – which detects high energy emissions (X-ray
and gamma ray, TLEs...); or the Global Lightning and Sprite Measurement Sensor, which detects
Very High Frequency (VHF) emissions. Furthermore, the availability of other sensors makes
possible a cross-sensor validation of the LIS.

Also, as the ISS orbits at roughly 400km (higher than the TRMM satellite) the observable area of the
ISS-LIS sensor is wider than the one from TRMM, covering now the USA and most of Europe.

11



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

Figure 2.2: ISS-LIS observable area. Source: [2]

2.1.2 LIS: instrument description
The scope of this section is not to provide a technical description of the sensor; its detailed structure
or system configuration. On the contrary, its mission is to give a general description on what are the
important sub-systems that configure the LIS sensors, in order to gain knowledge that may be useful
for future allusions when analysing its data. Most information of this section is extracted from [3].

A variety of characteristics of the LIS are described below. As they are not of the same nature (system
point of view or requirement-to-description point of view) they will be split in both approaches.

System Approach

The LIS is a sensor that in many aspects resembles a digital camera, although modified to take shots
of radiation outside the visible spectre. I.e. an input of radiation is set on a Charged- Coupled Device
(CCD) that generates a map of triggered photo-diodes. Below are summarized the most important
subsystems that configure the sensor.

• Imaging System The LIS has an Imaging System that provides a correct (in terms of spectrum,
direction...) radiation beam to the CCD. It consists of a telescope with a FOV of 80°x80°that
converges the entering light to a 5°wide beam and sends it to a filter. The latter is a band-pass
filter centred approximately at 777.4 nm (*). Afterwards, a re-imager is required to resend the
radiation to the CCD in a proper way.

(*): The centre of the band-pass is actually a bit shifted to low wavelengths, as the incident beam
has non-perpendicular waves, and the band-pass filters shift their centring for non-perpendicular
incising waves.

• Focal Plane Assembly In order to configure an image (also a map that shows a x-y distribu-
tion of radiation) a CCD is used. This device is a wide matrix of photo-diodes (the Focal Plane
Assembly) alongside some electronic components that testify the triggering of the photo-diodes
to a processor. Each element of the matrix (the photo-diodes) will generate an electrical impulse
under some specific conditions. This conditions, in our case, is a threshold of incident radiation
of a particular wavelength. As there is a matrix of photo-diodes, for each time that the processor
records which photo-diodes are activated an x-y map of electric impulses is generated, which
will be processed as an image.

• Real-time Signal Processor + Background Remover The scope of this subsystem is to
provide a true/false response to a pulse, deciding if it is from a lightning of from background.
To do so, it averages the output coming from the CCD and generates an estimation for the

12



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

background value. Then, it subtracts the background estimation to the current signal, living a
signal with less offset (near 0) and some peaks (that correspond to lightning pulses). This signal is
then processed and, if a peak surpasses a threshold, it is considered a lightning. This threshold
can be modified in order to match different requirements. For instance, during daytime the
threshold must be higher as the amount of noise (peaks of incoming light that are not lightning)
is bigger and more frequent.

• Event Processor and Formatter When a peak in the signal is detected and accepted as a
lightning pulse, the system must process this raw measurement to provide a formatted set of
data. To do so it is used an algorithm that groups the peaks (”lightning pulses” or events), and
applies some criteria to provide data files that contain more complex information. This criteria
will be described further in the document.

• Power Supply

• Interface Electronics

3-D model representations of the system are displayed in figure 2.5 at the end of this section.

Measurement approach

It is important to mention that lots of efforts were made to make sure that LIS could also detect
lightning during daytime, against an also-very-bright background. This requirement implied some
particular sensor characteristics, basically to increase the lightning signal in front of the one from the
background.

To do so, filtering in intensity, space and time is applied, using electronic components. Four methods
are used:

1. Spatial filtering: matches the instantaneous field of view (IFOV)3 of each excited element on
the CCD to the typical value for the cloud-top area illuminated by a lightning.

2. Spectrum filtering: the device has a band-pass filter on 777.4 nm radiation, emitted by OI(I);
which is one of the wavelengths where lightning emit the most, as is shown in the figure 2.3.

3. Taking advantage of the difference between the pulse duration of a lightning ( 400µs) and the
background (constant).

4. Observing if a radiation input is temporal(**) or constant. The former should be associated
with a lightning pulse and the latter to the background.

5. Subtraction of successive frames, which allows the background signal, which remains roughly
constant, to be eliminated.

(**): To properly capture the lightning pulse in front of the background signal a high signal-to-noise
(SNR) ratio is required. This ratio improves if the integration time, which is the time during which the
pixel accumulates charge between two excitations, is approximately this same as the pulse duration.
For a 400µs pulse a 1 ms integration time would be appropriate, but technical difficulties imposed
an integration time of 2 ms. The measurement time that is associated to the whole integration time
corresponds to the latter’s center, i.e. 1 ms before the end of the integration time [4].

3The IFOV is the area on the surface that a sole pixel of the CCD is observing.

13



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

(a) Slit-less lightning spectra of lightning in the (a)
near-ultraviolet, (b) visible, and (c) near-infrared spec-
tral regions. Wavelengths shown in Å.

(b) Typical example of cloud top lightning spectrum
in the near infrared which was obtained during a U-2
aircraft study on thunderstorms.

Figure 2.3: Lightning Spectra Information. Source: [6]

2.1.3 Event Grouping Process
As previously has been mentioned, a lightning pulse, a peak in the signal, is called an event. As one
lightning can generate various events, there has to be some criteria to correctly group these events in
flashes, which is the name given to the whole discharge. Also, inside of a flash there can be groups
of events that take place closely in time and space. They will be called groups. A simple criteria4 of
space and time separation between events is applied to group the them in groups and flashes. This
criteria can be summarized in the three points below.

• Event: excited pixel on the CCD.

• Group: One or more events that take place in adjacent CCD pixels and occur at the same
integration time.

• Flash: One or more groups that occur within less than 330ms and 16.5km of separation.

With these simple definitions it is possible to group the phenomena, as displayed in figure 2.4 below.

The data provided by LIS has the events labeled with numbers (1,2,3...n), where those are its group
and flashes. Inside each flash, groups go from 1 to n; in each LIS viewtime, flashes also go from 1
to n. Worth to mention, several filters and improvements have been introduced in this algorithm in
order to generate data as precise as possible. Details about the algorithm and its quality control can
be found on [8].

4More detailed information about the algorithm available at [8].

14



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

Figure 2.4: Example of grouping process. Source: [8].

15



2.1. INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR

2.1.4 Technical properties
In the table 2.1 below are displayed the most relevant technical properties of the ISS-LIS sensor.

PARAMETER VALUE PARAMETER VALUE
FOV 80º x 80º

B
Location 1 pixel

IFOV (nadir) 4 km intensity 10%

A wavelength 777.4 nm time tag at frame rate
bandwidth 1 nm C sensor head assembly 20 x 37 cm

Detection Threshold 4.7 \micro J m electronics box 31 x 22 x 27 cm
SNR 6 Weight 20 kg
CCD Array Size 128 x 128 pixels Power 30 Watts
Dynamic Range >100 D data rate 8 kb/s
Detection Efficiency ∼90% format PCM

False Event Rate <5% E Integration time (I.T.) 2 ms
Convention for
time assignation 1 ms before end of I.T.

Table 2.1: ISS-LIS sensor technical properties. The frame rate is of 2ms and the total FOV is of 600
x 600 km. Source: [9]
Area A is ”Interference Filter”, B is ”Measurement Accuracy”, C is ”Dimensions”, D is ”Telemetry”
and E is ”Time labeling at the CCD”.

Figure 2.5: 3-D models of the ISS-LIS sensor. Source: [7]
.

16



2.2. LIGHTNING MAPPING ARRAY

2.2 LIGHTNING MAPPING ARRAY
The Lightning Mapping Array or LMA is a system that locates in 3-D and time very high frequency
(VHF) emissions from lightning. The system consists of a set of sensors (radio frequency antennas),
located at a distance of kilometres from each other. The term ”LMA” is used widely to refer all the
systems that follow the same design in the world. Indeed, there are LMA systems installed in different
places, by different institutions. For instance, the Lightning Research Group (LRG) at Polytechnic
University of Catalonia (UPC) has control over three of those: one in the south of Catalonia, called
”Ebro”; and the others in Colombia, in Santa Marta and Barrancabermeja.

Despite the introduction of satellite-based lightning measurement systems such as LIS, which provide a
global coverage, LMA systems still remain relevant. Since they have a much higher detection efficiency,
their measurements can be used as a reference for satellite-based sensors calibrations.

2.2.1 Principle of Operation
It is known that lightning emit VHF electromagnetic pulses. These pulses can be measured by radio
antennas that, when set up in a network (fig. 2.6), can track the position of the VHF source. The
principle of operation relies on computing the time of arrival (TOA) of the each signal and then com-
puting the origin by modeling the light velocity in the medium.

Figure 2.6: Lightning Mapping System antennae locations. Source: [11]

Each antenna computes the TOA of its received pulse, and then – knowing the propagation velocity
of the EM wave – the distance of the source from the antenna. Afterwards, with the correlation of all
distances computed by all the antennas and their position, the source coordinates can be obtained.
The source position, its time of detection and power will be saved. Each source is registered for the
antennas as an electromagnetic pulse (EMP) with its corresponding energy, or power. The detected
sources’ power may vary widely: using the LMA system they have been registered to range from 1W
up to 10-30kW [12].

17



2.2. LIGHTNING MAPPING ARRAY

2.2.2 Ebre Lightning Mapping Array
The LRG of UPC has installed over the Ebre delta a set of sensors, forming the Ebre LMA. It is
the LMA system from which the data used in this work is generated. In the west Mediterranean sea,
few storms -compared to tropics in South America- take place. Furthermore, during the cold season
they occur over the sea and during the hot season over the mainland. Then, placing the LMA system
throughout the Ebre delta has revealed a great solution for capturing thunderstorms from both sea-
sons, as its measuring range reaches both the sea and the mainland. Moreover, the presence of the
LINET network in the area provides the possibility of complementary observations. In the figure 2.7
below the position of LMA antennae is displayed. Currently 7 of them are operative.

Figure 2.7: Position of LMA antennae in Ebre delta (white circles). Source: [13].

There is a town in the delta’s centre named Deltebre, so the area may be called Deltebre Area as well.

18



Chapter 3

Sensors’ Data Handling

Contents
3.1 ISS-LIS HIERARCHICAL DATA FORMAT FILES . . . . . . . . . . . 19

3.1.1 LIS HDF processor.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 LIS vs LMA comparator.m . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 LMA DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 LMA zoom7.sci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The objective of this chapter is to give an introduction to the reader regarding what data formats
and programs have been used to get the results displayed further in this document. Here will not be

presented a technical description of the codes nor the data, but it should be regarded more as a
comprehensive description that will allow the reader to understand the outputs of the codes and how

the data from the sensors is treated.

3.1 ISS-LIS HIERARCHICAL DATA FORMAT FILES
The Hierarchical Data Format (HDF4) files are items formatted in a self-describing way (i.e. they
contain metadata that describes the data that is stored within the file), and they are designed to store
large amount of very different scientific data1. Basically, these files can contain the following types of
data, also represented in the figure 3.1a below:

• Raster Images: Graphical representation of
data; in this case, the orbit.

• Palette: Information about graphical dis-
play of the data in the raster images (e.g.
colour distribution).

• Scientific Data Set: N-Dimension matrix of
data (includes the attributes of the data
points, which are the axis of the matrix).

• Annotation: Text data that provides info
about the file

• Vdata: data stored in table format.

• Vgroup: group of data items. A Vgroup can
contain one or more of the previous data
items.

This way of information organisation allows the storage, in one file, of lots of data that is indeed related
but not necessarily has the same format, nor refers to the same physical phenomena. For instance,
in ISS-LIS case each file contains information of a whole ISS orbit. Nonetheless, each file contains
information about the orbit itself (start time, start coordinates in Geo. Coordinates System...); infor-
mation about the LIS sensor in every moment along the orbit; information about lightning phenomena
recorded by LIS etc.

All these different types of data will be stored under different Vgroups, which will contain various HDF
items (Sci. data sets, Vdata tables...), depending on the respective requirements. In the figure 3.1b

1Most information in this section has been extracted from [14].

19



3.1. ISS-LIS HIERARCHICAL DATA FORMAT FILES

(a) HDF Structure. Source: [14]
(b) Screen picture of HDFView when accessing an ISS-
LIS file.

Figure 3.1: ISS-LIS HDF files organisation

this is clearly displayed. Each ”folder” icon represents a Vgroup item, than contains other items. In
this case, all information except the Raster Imager is stored in Vdata tables. Notice also how for the
selected Vdata set, ”event”, some metadata is displayed on the menu on the right: this Vdata table has
21 fields that contain data of different sizes, from 7749 events or ”rows”; the class of the data arrays etc.

More precise information about this file format can be extracted from creators’ website ([14]). Al-
though the HDF4 files can be accessed through a number of programs (e.g. HDFView), they do are
not useful for massive data extraction. Thus, in this project a custom MALTLAB code will be used,
named ”LIS HDF processor.m”. MATLAB uses its own commands for accessing the HDF4 files, so
a particular description for this case is required. The MATLAB codes developed for this project are
available at the appendix A.6 and at https://github.com/icarfontcu/LIS-LMA-data-reading-codes.

3.1.1 LIS HDF processor.m
The program was made to satisfy the need of creating files of LIS data that can be an input of the pro-
gram ”LMA zoom7.sci”, a Scilab code made by van der Velde, O. that plots data from LMA, LINET,
LIS and other sensors in the space-time domain. As it was made, ”LMA zoom7.sci” receives LIS data
from txt files. Considering that the LIS full data is stored in HDF4 files, the need of a program that
converts HDF4 to txt files arises. Furthermore, some relevant issues appeared, regarding the bulk
data downloading and selection processes. They will be discussed later.

All the data is available online and can be download through Earthdata website client. When this
program was developed, the data was not yet downloaded on any UPC server so some assumptions,
mainly the organization of said data, had to be taken.

The program has a total of 7 functionalities, to be selected trough a ”switch” function when the
program starts. Some of them more relevant than others. Following is a description of those functions.

READ AND STORE INFORMATION FROM HDF FILES

This case will write txt files from HDF4 files. To fulfil this task, some other functions will be previously
executed.

20



3.1. ISS-LIS HIERARCHICAL DATA FORMAT FILES

”Check for folders”

This program is written bearing in mind the files organization of Earth Data HTLM server2. This is:

1. Year folders

(a) Orbit ID folders
i. Bulk data

Inside the latter are all the .hdf files that contain the data of the events detected during the orbits.
Supposing that the data, once downloaded, would be organized through:

1. General folder

(a) Subgeneral folder
(b) Subgeneral folder

i. subsubgeneral folder
ii. subsubgeneral folder

and so on until the last folders, where there would only be .hdf data items.

The first task that the code shall bear is to find the data inside whatever server it is. This task is
given to the function ”check for folders”. What this function does is, given a general directory on
the computer (e.g. C : /Users/Name/Desktop/Data), go through all the subfolders of the directory
until finding those folders with only data files (or not-folders, as it is coded).

Precisely, this folders use the MATLAB function ”folderinfo” to get the information about the items
that are inside the folder where the function currently is set. Using folderinfo.isdir, the user gets a
logical comma-separated-list of which items inside the folder are directories. With that information we
can do some conditional commands. In our case, as the info. is organized, the code will set the current
file as a final reading directory only if no item in the folder is a folder. To do so, we can transform
the comma separated list to a logical array ”cell2mat()” and check for 1 (directory) or 0 (not directory).

If the folder is a final reading directory its address is saved in an size-increasing string array, ”dir
list”, which will return to the main program as an output of the function. If the folder is not a final
reading directory (it does contain other folders) the function recalls itself and explore the subfolders
that the current folder has.

”Select interestingfiles”

Once we have the list directory for the data that we want to acquire, we shall extract that data. It is
supposed that the user will be searching data with some space and time boundary conditions (they
must be specified in the first lines of the codes). Supposing also that the UPC server will have a lot of
bulk data that may not be interesting, the program will search in the folders of the directory file for
the HDF4 files containing data that is interesting (events within the space-time conditions). Those
files will be called ”interestingfiles”, and those events ”interestingevents”. The utility of this method
is that a list of ”interestingfiles” can be stored for later use: in case the user would want to operate
again with those files, the program wouldn’t need to search trough all the data base

To check if the files contain any ”interestingevents”, the MATLAB functions ”interesect(a,b)” and
”find(x>y)” have been used, in order to select the array indexes where the data that is within the
space-time boundaries is. Previously another method was used (line-by-line and logical true/false
analysis) was made, but the use of ”intersect” and ”find” turned up to be much faster.

2https://ghrc.nsstc.nasa.gov/pub/lis/iss/data/science/nqc/hdf/

21



3.1. ISS-LIS HIERARCHICAL DATA FORMAT FILES

ISS-LIS HDF4 files data organisation

In order to get the data arrays where MATLAB can search for interesting data it is previously required
to import that data. Then, the knowledge about the LIS HDF4 data becomes important. IN the ISS-
LIS case, each HDF contains:

1. Orbit Information (groupdata)

(a) Point information (groupdata)
i. Lightning data (groupdata)

A. area (vdata)
B. flash (vdata)
C. group (vdata)
D. event (vdata)

ii. point summary (vdata)
iii. viewtime (vdata)
iv. background summary (vdata)

(b) Orbit summary (vdata)
(c) one second (vdata)

2. A raster Image of the Orbit through the world map

MATLAB can access the structure and meta-data of these files with the command ”hdfinfo”, which
will give the names, properties (size, class...) etc. of the data.

Once you read a groupdata address MATLAB will show a structure containing different field with
labels, and data characteristics of that data group. The ”sub folders” (vdata or groupdata) will be
labelled as 2 different fields. Accessing it as a structure field will lead to an opening of a new structure
with fields or directly data, respectively. The vdata files within will be regarded as a field, that will
contain at the same time data in the structure form. E.g., we can access the lightning data groupdata
through:

vdata address(i) = fileinfo.V group.V group.V group.V data(i)
We can read the vdata that we want with the command hdfread(vdata address). With i (1,2,3 or
4) we can select the area, flash, group or event vdata, cell arrays where each cell are cell arrays
containing columns of same-class and size data (i.e. event vdata=hdfread(vdata address(4)) will
give a group of group of cell arrays. We can store them in a new structure element called ”event”:
event.coordinates=event vdata(3). (The third column of this vdata address(i) contains 1x2 elements
which represent the coordinates of the event)).

Now, with this data organization, more clear and manageable, we can introduce the space-time bound-
aries and know if the hdf file we are reading is an interesting file. This last information will be stored
in a vector that will remain in the global workspace during the rest of the program.

PRINT txt FILES WITH EVENTS’ INFORMATION

”w txt files”

This function will read all the interestingfiles and plot its interesting events to a txt file with the
similar name: ”ISS LIS 20171018 1032 1034 events”, where the 20171018 indicates the date time
through the format YYYYMMDD and the 1032 and 1034 indicate the time (HHMM) of the first and
last event in the file.
To do so, we will introduce again the space-time boundaries and with the indexes of the interesting
events apply the MATLAB function ”fprintf()” to print row-by-row the relevant information. The
data will be separated with a tab and the file will contain a header with the titles of each column (e.g.
TAI933 Latitude, Longitude...).

3Time of the measurement in seconds from 1 Jan 1993. To convert from TAI93 to UTC the former has to be summed
to the date (1 Jan 1993) as follows: (7.8248e+08)[s] + (1 Jan 1993) = (18 Oct 2017 10:31:56).

22



3.1. ISS-LIS HIERARCHICAL DATA FORMAT FILES

At this stage, it was required to make a decision on which data from the HDF4 file will be stored
in the txt files (remember that we can access area data, flash data, group data, event data, orbit
data...). Regarding that the interesting parameters to measure are radiance, space-time coordinates
of the events and its grouping with other events, the stored parameters are:

• TAI93 time: TAI93 time in seconds resolution of the event

• event LAT and LON: space coordinates of the event

• radiance: event’s radiance

• group address: The group to which the event belongs

• group LAT and LON: the group’s radiance-weighted centroid

• flash address: The flash to which the event belongs

• flash LAT and LON: the flash’s radiance-weighted centroid

• area address: The area to which the event belongs

• area LAT and LON: the area’s radiance-weighted centroid

• exited pixels’ position on the CCD

• observe-time: the time during which the LIS sensor was focused on the are

The reader should note that the addresses of each group, flash and area are renewed for different in-
teresting –txt– files, so events from two different files may have the same group address, which doesn’t
mean they do belong to the same group. This is an aspect to improve in the near future, but at the
moment it doesn’t represent a problem, as for this documents the txt files have been processed (and
displayed) separately.

The output txt files will have a column for each saved parameter, and a header containing the title of
each column. A screen shot of a txt file is displayed in the figure 3.2.

Figure 3.2: Screenshot of a output LIS txt file

EVENT PLOTTING

This task is optional and the writing of general events txt files may be done without plotting the data.
Nonetheless, if the plotting is activated, the function plot-events is activated.
It simply plots on a gridded map the events, sized by radiance and coloured by group, of each file. It
also draws the area where the data is selected, and plots a low resolution coastline loaded from the
MALTAB mapping toolbox.

23



3.1. ISS-LIS HIERARCHICAL DATA FORMAT FILES

HDF4 FILE NAMES TO URLs

To download LIS bulk data you need a txt files with the URLs of the HDF4 files that you want to
download from Earthdata server. These URLs have the following shape:

https://ghrc.nsstc.nasa.gov/pub/lis/iss/data/science/nqc/hdf/2018/0613/ISS LIS SC P0.2 20180613 NQC 08218.hdf

On the LIS data website you can download a txt file with the URLs from all the HDF4 files whose orbit
is within a period of time specified by the user. Nonetheless, this generates a problem: the selected
files will correspond to orbits in the time period, but that orbit may not pass (actually will be the
common case) through the area that we want to analyse. Therefore, the amount of data downloaded
would be much higher than the required and the process of selecting interestingfiles way much longer.

A workaround to this problem was found by using the space-time domain search engine from the LIS
website. This tool lets you specify the time period as well as the area were you want to look for, and
displays a list with the names of the HDF4 files that contain data in this space-time domain. Then,
it is required to select ”by hand” this list and copy it to a txt file. This txt file will be later processed
by the function webfilenames2urls(), that will construct URLs from the files names taken from the
website list.

Then, these URLs are written on a new txt file, and finally we are able to download the interesting
HDF4 files with the cmd command:

wget –user username –ask-password –auth-no-challenge –no-check-certificate -i URLsfile.txt
This, provided by instructions from the LIS website will download all the HDF files listed in the
URLsfile.txt.

For an optimal usage of the LIS data with the program LIS vs LMA comparator.m, the best praxis
is to join all txt files for the interesting period of time with the aim to have a large sole file containing
all the events. This can be done manually, since the number of txt files that the studies presented in
section 4.2 require is of the order of 5.

Also, a posteriori Prof

3.1.2 LIS vs LMA comparator.m
In order to compare the data from LMA and LIS a MATLAB program has been made. Such code
compares data from both sensors (fundamentally events and sources) and associates them by time
proximity. The output of the program are statistical result (typical value distributions, histograms...)
that contain information about such associations. For instance, a source and an event that are sepa-
rated in time less than 10 ms are considered to be associated. Since events and sources have different
properties, via this association we can compare events properties (e.g. radiance) with sources prop-
erties (e.g. height) and produce distributions that allow a study of, say, the radiance evolution with
height. A more exhaustive explanation of this approach is done in the section 4.2 and in this section
only the structure and behaviour is to be discussed.

To use the program, the user should edit the code (first lines, indicated in MATLAB) to introduce
the proper variables:

LIS total filename The txt file containing all the LIS data

LMA filename The txt file containing the LMA data for of the interesting time period

timestep Maximum time between an event and a source to associate them

Plotting Options Histograms/plotting/sources and events. Set variable as 1 or 0 to plot his-
tograms, typical values of each time bin or display all sources and events printed over time.

comparing length section This option enables the execution of a section that is used to compare
the length of lightning computed from LIS or LMA data; results described in section 4.3.

24



3.2. LMA DATA

A more detailed explanation of the user-introduced variables can be found in the user guide, at A.5.
As the reader might infer, the fundamental output of this program is graphical displays of the evolu-
tion of some properties with others (e.g. radiance vs counts, height vs counts, radiance vs height etc).
Its results can be seen in section 4.2.

Another section of the code is dedicated to assess which is the typical radiance of events that
had sources associated at a given height. For this functionality, the user should set the variables
DISCHARGE-ALT [m] and tolerance [m] accordingly. The results of this study are displayed in the
Chapter 4.

3.2 LMA DATA
The LMA data is generated by each LMA antenna, by dumping ”.dat” files each 10 min. Each an-
tenna dumps its files respectively, containing information about the distance and timing of the sources
detected by the antenna. In order to get the 3-D position of each source, a post-processing is required,
made by an UPC-LRG4 algorithm. This algorithm crosses the information about various antennas
regarding the same time, and dumps ”.dat” files for each 10 min period, containing the position; tim-
ing; power and other values of the sources detected during the said period.

This crossover of information may be done more or less exhaustively. For instance, the user can select
to cross information from 5 to all 7 antennas. The number of antennas is the number of simultaneous,
separated detections that the algorithm requires to declare a source in the respective location. More
antennas will give results with less noise but the user might lose information, as some VHF emissions
might be only detected by less antennas that the specified. In the other hand, too few antennas will
produce a very noisy result, where a lot of the declared sources may be errors or detections of other
phenomena.

The LMA .dat files used in this document have been computed using a 5 (out of 7) antenna restriction,
a parameter that has been found to give a nice equilibrium between quality and quantity. In order
to process the said .dat files a program has been made with Scilab, LMA zoom7.sci (Van der Velde.
2017). This program displays the sources in space and time domain, as well as other information
such as their power, spread velocity etc. Alongside the sources the program can also display the LIS
events, LINET detections, Meteorage detections and other data coming from other sensors. For this
document, the LMA zoom7.sci will be used mainly to compare LIS vs. LMA detections, and only
a part of all the program applications will be executed. Below are described the capabilities of the
Scilab program that are of use in this document.

3.2.1 LMA zoom7.sci
The main goal of this program is to display the information about position and timing of detections in
a comprehensive way. To do so, the user must select a 10 min LMA file and the program will display
a panel with 4 graphs. In this panel there is information regarding

1. Time-height position: top panel

2. LAT-LON position: bottom left panel

3. LAT/LON vs height position: bottom right panels

The program allows the user to colour the detections under a number of parameters (power, time,
flash...). An example of the output figures is fig. 4.1 below. Note that the sources have been coloured
by time. As the reader may notice, the LIS detections are also displayed as a circles, coloured by
group. To do so the user must select a corresponding LIS txt file. Symmetrically, the same can be
done with LINET, if data is available. The usefulness of this display is that allows the user to have
a generic view on the data gathered at a given time. It allows a search for space or time offsets and
other particularities of the data set that with a less graphic approach could go unnoticed.

4Lightning Research Group at Universitat Politècnica de Catalunya

25



Chapter 4

LIS data analysis using LMA as
reference

Contents
4.1 OVERVIEW OF GATHERED DATA . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Space-Time distributions of detections . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Influence of excited pixels’ position on the CCD . . . . . . . . . . . . . . . 37
4.1.3 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DE-
TECTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Hypothesis and analysis description . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Sources’ Height Influence on Detectivity . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Sources’ Maximum Power influence on Detectivity . . . . . . . . . . . . . . 45
4.2.4 Density of sources in the time bins . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Section Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN
LIS AND LMA SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Flash Duration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

In this chapter is mainly reported an analysis of the influence of the LMA sources’ properties on its
likelihood to be detected from orbit; along some other assessments. It has been done using data
coming from LMA and LIS and associating it by a time criteria, in order to extract statistical

distributions. For clarity purposes, in the section 4.1 is presented the data that will be used. Also,
some comments regarding the availability of data can be found in appendix A.2. Finally, in the

section 4.3 is presented a first-approach analysis on which is the assessed duration of a flash
depending on the used sensor.

4.1 OVERVIEW OF GATHERED DATA
4.1.1 Space-Time distributions of detections
The time periods during which LIS detected events around Deltebre from March 2017 until October
2018 are listed below. Because the LMA files are provided each 10 minutes, the listing indicates only
the start time of the 10 min period where the events that LIS detected occurred (i.e. event detected
from 2017-10-18 10:31 to 10:36 are listed as 2017-10-18 10:30). Nonetheless, LIS usually has a view-
time on Deltebre area of around 2 min of duration, so within this 10 min periods a lot of LMA data
won’t be detected by LIS, since it was outside LIS FOV. Further down this last perk of the problem
is discussed.

26



4.1. OVERVIEW OF GATHERED DATA

1. 2017-10-08 10:30

2. 2017-10-18 17:00

3. 2018-04-27 13:10

4. 2018-04-29 11:30

5. 2018-05-25 01:40

6. 2018-06-05 15:10

7. 2018-06-06 14:20

8. 2018-06-13 17:50

9. 2018-08-09

10. 2018-08-31

11. 2018-09-18

12. 2018-10-18

Notation: YYYY-MM-DD hh:mm.
Also the notation YYMMDD hh:mm will be used in the future.

Fall of 2017 to Summer 2018

2017-10-08 10:30

This is the first and one of the most interesting case. In the figure 4.1 it is shown the time and space
distributions of detected LMA sources (dots) and LIS events (circles). In the time distribution panel
(height [km] vs. time [sec.] from the starting of the 10 min. time period), it is possible to observe a
lot of vertical sources clusters. Those are flashes. Even if they seem almost only vertical, the reader
must bear in mind that for an electrical discharge process the current time resolution is relatively low,
and later on we will zoom in the panel to better see time distribution of a flash.

Figure 4.1: Space and time distribution of LIS and LMA detections during 17-10-18 10:30.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height[m] vs. LAT/LON

[deg.]. Sources are dots, events are circles. Sources coloured by time, events by group.

In this case, we observe how in a period of roughly 90 sec. there are multiple events, that concur with
flashes on top of them. The events are printed at a height of near 0 km because LIS detects only
luminosity on the surface of the clouds taking ”pictures” from above. This means that by itself LIS
only has LAT/LON distribution, not height. The location (in height) of the detected event could be
achieved by crossing the LIS data with data of other sensors, but in this hasn’t been done.

Even if as shown in 4.2 the LIS and LMA detections are near simultaneous, the LAT/LON panel
from fig. 4.1 clearly show a kind of offset of the LIS detections from the LMA ones, to the S.W. This
phenomena will be further observed in the remaining cases and it is a matter to study. This could
result in some interesting conclusions about comparison of both sensors; but it has to be said that the
LIS data provided to users is calibrated in order to correct these kind of offsets, and in the past the

27



4.1. OVERVIEW OF GATHERED DATA

LIS team has re-uploaded some data with offset corrections

Figure 4.2: Height[m] vs. time [sec. from start of 10 min. period]. Zoom on time distribution of LIS
and LMA detections during 17-10-18 10:30.

2017-10-08 17:00

In the fig. 4.3 printed below, it can be seen a pair of thunderstorms around Deltebre. The N.E.
cluster and a more scattered thunderstorm in the shores of the Ebre’s delta. Through the height/time
panel it is clear how LIS detected at 70 sec. aprox. We can see in the LAT/LON panel how this flash
was part of the scattered thunderstorm, and the height/LAT and height/LON panels show how the
detection correspond to the lowest discharges.

Figure 4.3: Space and time distribution of LIS and LMA detections during 17-10 18 17:00. Top:
height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height[m] vs. LAT/LON [deg.].
Sources are dots, events are circles. Sources coloured by time, events by group.

The approximate entry and exit time of the LIS FOV throughout the area was 17:01:31 17:03:01, which
is from second 91 to 181 (displayed in fig. 4.4). This means that LIS actually had the opportunity to
detect some following flashes to the one that it detected. Notice how the LIS detection displayed in
this figure is previous to the second 91. This is because the computation for the entry/exit time takes
some assumptions that generate these kind of errors, and therefore its information is only useful for
preliminary evaluation, at least in this stage of development.

28



4.1. OVERVIEW OF GATHERED DATA

Figure 4.4: Space and time distribution of LIS and LMA detections during 17-10 18 17:00. Focus on
LIS view time.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height[m] vs. LAT/LON

[deg.]. Sources are dots, events are circles. Sources coloured by time, events by group.

With the inspection of the fig. 4.4 the reader may already infer how height should not have a strong,
relevant role in LIS detection, as the only lightning detected in this case is the one with lower sources’
altitudes (more info. on section A.3.2). Actually, it is possible that the detected lightning would have
stroked the ground and caused a return stroke.

Equivalent results have been obtained with the program LMA vs-LIS comparator.m. They are
displayed in the figures 4.5a and 4.5b below. There, it can be appreciated in more detail how the
10:30 case consists of a set of lightning and the 17:00 case a sole, intense discharge to the ground.

29



4.1. OVERVIEW OF GATHERED DATA

(a) 171018 10:30 period

(b) 171018 17:00 period

Figure 4.5: Sources and Events detections printed on height and time

2018-04-27 13:10

In the space-time representation of the events and sources detected during this time period (fig.4.6) it
is possible to see that LIS only detected one of the lightnings during the current 10 min. period. The
approximate entry and exit time of the LIS FOV throughout the area for this date was 2018-04-27 to
13:17:16; this is from second 391 to 463, so LIS detected the only lightning that occurred during its
pass.

30



4.1. OVERVIEW OF GATHERED DATA

Figure 4.6: Space and time distribution of LIS and LMA detections during 18-04-27 13:10.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height[m] vs. LAT/LON

[deg.]. Sources are dots, events are circles. Sources coloured by time, events by group.

2018-04-29 11:30

This file does not seem very useful: the figure 4.7 shows how there was a single flash detection from
LIS, which does not coincide in time or space to sources detected by LMA. This detection is particu-
larly unsettling as it has a very high offset in time and space, so LIS really detected something that
LMA did not, which is not usual.

31



4.1. OVERVIEW OF GATHERED DATA

Figure 4.7: Space and time distribution of LIS and LMA detections during 18-04-29 11:30 view time.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] The smaller picture displays the whole
10 min period.

2018-05-25 01:40

During this time period, as seen in the figure 4.7, LIS detected some lightning in front of the coast, at
S.W. from the delta. In the time-space domain window it is possible to observe that this LIS detection
is not simultaneous with any other LMA detections. As a very good signal from LIS was registered
(the dots correspond to the same flash but come from a number of groups), LINET data was checked
and a simultaneous stroke was found in the same place. Therefore, a discharge did happen but was
not detected by LMA.

32



4.1. OVERVIEW OF GATHERED DATA

Figure 4.8: Space and time distribution of LIS and LMA detections during 18-05-25 01:40 view time.
The colourful inside-figure displays the strokes detected by LINET. height/LAT and height/LAT

distributions are not displayed because the non-validity of the data.

2018-06-05 15:10

In this case, displayed in the figure 4.9, only one lightning was detected. The time window of the LIS
FOV was, approximately, from second 360 to 430, so probably the detected flash was the only one
that LIS could had seen.

Figure 4.9: Space and time distribution of LIS and LMA detections during 18-06-05 15:10 view time.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.] Bottom right: height vs. LAT / height

vs. LON

33



4.1. OVERVIEW OF GATHERED DATA

2018-06-06 14:20

During this period few data was recorded by LMA: only what it seems to be a portion of a full-scale
lightning, far S.W. from Deltebre (fig. 4.10). Furthermore, it was detected at the edge of the inter-
esting Deltebre area, so information about the possible development of discharges outside the space
boundaries lacks. Moreover, LIS didn’t detect that phenomena either: it only detected two lone events
far to the North. This data has no interest for methodical analysis.

Figure 4.10: Space and time distribution of LIS and LMA detections during 18-06-06 14:20 view time.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.]

2018-06-13 17:50

In this date LIS detected a lightning simultaneously with LMA, as displayed on the figure 4.11 below.
LIS seems to have a relatively large offset in S.W. direction, but the time domain windows shows how
LIS detections matches perfectly with a lightning detected by LMA.

34



4.1. OVERVIEW OF GATHERED DATA

Figure 4.11: Space and time distribution of LIS and LMA detections during 18-06-13 17:50 view time.
Top: height[m] vs. time[sec.]. Bottom left: LAT/LON [deg.]

Fall of 2018

During this period 4 valuable episodes were recorded, that provided a huge number of detections.
The following data only contains sources that were under the LIS FOV at the given time. Since they
were observed to be concurrent in space and show a very high activity, only the outputs from LMA

vs LIS comparator.m will be displayed.

2018-08-09 18:50

In this case, as in the following, a relevant quantity of synchronized sources and events were recorded.
Below are printed over time. In the figure 4.12 it can be seen how the activity, despite only occupying
2 min in time, is intense. A minimum of 10 separated flashes were detected by the LMA and virtually
all of them had synchronised LIS detections.

Figure 4.12: Height and time distribution of LIS and LMA detections during 2018-08-09 18:50 view
time.

35



4.1. OVERVIEW OF GATHERED DATA

2018-08-09 04:40

In the figure 4.13 it can be seen how an intense activity was detected from both sensors during the
LIS pass. Although more homogeneously distributed over time, here discrete lightning discharges can
also be appreciated during the whole pass.

Figure 4.13: Height and time distribution of LIS and LMA detections during 2018-08-09 04:40 view
time.

2018-09-18 03:30

In this pass (fig. 4.14) a remarkable intense activity was registered. In the figure it can be seen the
extremely dense cluster of LMA detections and their LIS couple.

Figure 4.14: Space and time distribution of LIS and LMA detections during 2018-09-18 03:30 view
time.

36



4.1. OVERVIEW OF GATHERED DATA

2018-10-18 15:10

In this pass several flashes were detected. They can be appreciated discretely in the fig. 4.15 alongside
with their synchronous LIS detections. In this case, at the contrary of the 2018 09 18 one, the lightning
are clearly separated in time.

Figure 4.15: Space and time distribution of LIS and LMA detections during 2018-10-18 15:10 view
time.

4.1.2 Influence of excited pixels’ position on the CCD
The LIS CCD has a surface of 128x128 pixels, and it is possible to made a plot where to represent
pixels, given their xy coordinates. To explore if the position of the exited pixels on the CCD has some
influence on the three cases with deficient data (18-04-29,18-05-25 and 18-06-06), the position of said
pixels have been printed. They are displayed in the fig. 4.16, and there it can be seen that only few
pixels were activated. In 18-04-29 and 18-06-14 cases the excited pixels were in the boundaries of the
CCD whereas in the 18-05-25 they were more centred.

(a) 18-04-29 (b) 18-05-25 (c) 18-06-14

Figure 4.16: Excited pixels distribution on the CCD for bad data cases.

For comparison purposes, also the pixel excitation distribution of some good data has been displayed

37



4.1. OVERVIEW OF GATHERED DATA

(fig. 4.17). It shows the two cases of 17-10-18, from where more data is available.In fig. 4.17 it can
be seen how there are excitation both in through the centre of the CCD and in the boundaries.

(a) 10:30 (b) 17:00

Figure 4.17: Excited pixels distribution on the CCD for two cases with good data: 17-10-18

It is therefore acceptable to sustain that there is no relation between the quality of the gathered data
and the position of excited pixels on the LIS CCD.

4.1.3 Section summary
From the section 4.1.1 and 4.1.2 some conclusions arise:

• The periods of more data are the ones of the 2017-10-18 and the cases of the 2018 fall. This is
concordant, since in the coast of Catalonia strong thunderstorms occur typically at the summer’s
end.
Other cases where data is not extremely mediocre are 180427 13:10, 180605 15:10 and 180613
17:50, where although LIS only detected one flash per case, there is a simultaneous LIS detection
with low space offset from LMA data. Because they do not provide a high amount of data,
compared to the more populated observations, they will not be analysed.
The deficient data cases are of two kinds:

1. In the 181525 01:40 period, LIS clearly detected a flash near the coast, as did LINET; who
detected a stroke in the same position at the same time. Nonetheless, LMA did not detect
anything so the detected flash (by LIS) is not useful for comparison with VHF presence.

2. The other two cases LIS and LMA detected activity, but with a very high offset in space.
This means that either they detected different phenomena or the signals that they recorded
are background noise.

• The validity of the data does not seem to have a clear relation with the relative position of the
sensor to the event (and therefore the position of the exited pixels on the CCD). It has been
seen how in both good and bad data cases the exited pixels can be on the edge of the CCD or
near the centre.

38



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

4.2 INFLUENCE OF VHF SOURCES’ PROPERTIES ON
ITS LIS DETECTIVITY

The scope of this section is to assess what (if any) properties of the VHF RF sources emitted by light-
ning discharges have an impact on the lightning detection by LIS. Since effects of the excited pixels’
position on the LIS CCD have already been discussed, below this will not be discussed again. In this
document a statistical analysis of data containing dozens of lightning will be done, an approach that
has not been done yet with ISS-LIS. Some works have been done around the matter that concerns
this section but only at a scale of studying some flashes –of the order of ten. This section is meant to
be a results report, so statistical statements will only regard the used data and they are not intended
to be valid about LIS detection worldwide.

4.2.1 Hypothesis and analysis description
The presented data can be analysed from different perspectives. One of these is to check the LIS
efficiency to detect lightning discharges. A priori, LMA is a better detector of lightning than LIS (i.e
that it usually detects the discharges that LIS sees and some that LIS doesn’t); so to measure the
effectiveness of LIS in detecting lightning we can use LMA data as a reliable source of information on
what LIS should detect.

Following this criteria, an hypothesis has been made:

The luminosity detected by LIS is part of the same physical process that generates the VHF emissions
recorded by LMA, i.e. leader propagating through the air.

Then, with the appropriate time corrections for possible offsets between LIS instrument measuring
(TAI93 time) and LMA (UTC time), detections should be roughly simultaneous. It is understood
that both detectors may have offsets of microseconds and that the VHF emissions and LIS detections,
although part of the same exact physical process, may not be generated at the same exact time. For
instance, it is possible that in order for LIS to get the minimum luminosity to activate its threshold
a number of near-simultaneous VHF sources must be closely generated. Actually, the data preview
seems to support this last suggestion, since there is a much greater of LMA detections than LIS events,
which might suggest that the sources must have some characteristics (e.g. minimum power, height ...)
in order to be detected. The data will be analysed in order to find those characteristics.

As stated in section 3.1.2 for this analysis a MATLAB code named ”LMA vs LIS comparator.m”1

was made. Basically it divides the time period in time bins, in order to assess the presence of events
and/or sources in the mentioned bins. Then, every time bin may or not contain event and sources,
that at the same time will have some physical properties associated, for instance the power of the
source. Moreover, the program will compute some physical properties of the bins (e.g height-weighted
centroid of sources’ power, mean height of the sources in the bin...). To do so , it processes text
files dumped from the Scilab program, which contain information about sources, flashes, power... dis-
played in whatever time period the user is displaying. Afterwards, ”LMA vs LIS comparator.m”
loads events text files of the same period and compare the data.

For instance, the bins will be separated in ”bins with only sources”, ”bins with events and sources”
etc. These labels refer to the content of the bin; bins with only events will, for the moment, not been
taken into account.

It is appropriate to comment that preparing the data for its analysis with the LMA vs LIS com-
parator.m program has not been a strait forward task. The final approach has been proposed and
implemented by Prof. Montanyà. To put it in few words, the LIS FOV time of a certain area has
been extracted from the LIS HDF4 files, and a filter has been set in order to eliminate all the LMA
data that did not match the space-time criteria of the LIS sensor. Only the sources that were under
the LIS FOV have been used for the analysis.

1The code is available at at appendix A.6 and https://github.com/icarfontcu/LIS-LMA-data-reading-codes.

39



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

The size (in time) of the bins that divide the time period is called ”timestep”. The size of the timestep
should be big enough to ignore the possible micro-offset in time and small enough to be able to
correctly separate different events detections in different bins. A timestep of 10 ms was selected,
after observing with the Scilab program the time distribution of events and sources detections within
flashes: there’s rarely a gap of more of 10 ms between sources in the same flash, so inside the said
flash we shouldn’t get empty bins.

In this section the properties of the VHF sources that influence its detectivity with the LIS instrument
will be explored. This analysis will be done from an histogram approach. A typical value approach
has also been done and can be found in the appendix A.3. It is not presented in the report because
it provides less complete information than the histogram approach. For an histogram point of view,
only some of the observed periods have enough data to produce significant results. Below are the
results of such cases.

4.2.2 Sources’ Height Influence on Detectivity
The first source’s parameter that has been studied is the source’s height. Since LIS is an orbital im-
ager system, one should consider some simple aspects like the atmospheric attenuation of the radiation
emitted by lightning or its distortion by the clouds. Such parameters might have an impact on the
final detection depending on the source’s height since, the higher is the source, the less atmosphere
and (probably) clouds will be between it and the detector.

Comment About the State of the Art

The most significant work on the matter can be read on the paper published by Thomas et al. [18].
In this paper are explained the results of a thunderstorm observation with a LMA system at New
Mexico. In the only pass of the ISS, 128 lightning discharges were observed. With this data, a relation
between height and LIS detectivity is observed: most of lightning that occurred in the higher part of
the cloud were detected, not like discharges that happened in lower parts. In the said paper, this is
attributed to the higher discharges being closer to the cloud boundaries since in previous work it had
been found that light was more likely to escape the cloud if it was originated near the surface.

Cases of 2017 fall

The 171018 periods sources distribution are displayed in figure 4.5a. These histograms show the counts
of a representative value of a time bin. I.e. the data (sources, events) has been grouped in time bins
of 10ms, and a representative value of the elements in each bin has been computed. For instance, the
mean heights of the sources within each bin has been assessed, and in the histogram is represented
the counts of that last value.

For this case, we can observe a higher distribution of detected sources on the higher spectrum of
heights, from 8 to 12km. In the figure 4.18 is represented the main height distribution of the sources
of that period. There, it is clear how sources detections are distributed in two groups, the upper and
the lower one. One could argue that they could correspond to sources detected in the upper and lower
part of a cloud, but this is hardly defensible, as the centre of the ”blocks” is separated roughly 6km.
Then, it is assertive to state that LMA has detected two groups of flashes –as we have already seen
in fig. 4.5a: one with lower flashes and one with higher. What is interesting here is to how the ratio
of sources also detected by LIS was much higher in high altitude flashes than it was in lower altitude
flashes. The reason of that detectivity difference can be a matter of discussion. The median histogram
was also made but showed the same results.

If we take a look at the period 171018 17:00 (its detections are displayed in fig. 4.5b) we find quite
a different result. In this case, where only one flash was measured, one cannot appreciate any kind
of special distribution. Of course, as can be seen in the fig. 4.5b this was a low flash (it stroke the
ground) so we cannot compare the detectivity with higher sources. Nonetheless, we can see that
whithin a flash it is not obvious that the height matters on the detectivity. This may be because of
the difference in heights within a flash is too small to have a real impact in the detection.

40



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

From another point of view, following the line of thought of Thomas et al. [18] one could extract from
this observation that VHF sources’ distances to the closest surface, inside the surveyed flash, were
homogeneously distributed, or even more closer in the central region –around 4.6km.

(a) Mean height distribution of sources for the 171018
10:30 period

.

(b) Mean height distribution of sources for the 171018
17:00 period

Figure 4.18: Mean height histograms for the cases of the 2017 fall
The darker red is the same as the blue (indicated in the legend)

All cases

These observations don’t seem to hold when looking at the data from a more global scale, with all
periods included. The histograms for the median heights of the sources detected during all the periods
is displayed in the fig. 4.19 below. There, it can be seen how there is a main difference between the
cases of 2017 and those of 2018.

In the first place, in the 2017 cases the cluster of detections can be clearly differentiated in two groups
at different heights, while in the 2018 cases the observations approach more to a single-peak distribu-
tion. The data of the 171018 17:30 period could be disregarded, since it displays only one flash and
that might interfere with the results. Nonetheless, even doing so, the 171018 10:30 period still would
present an anomalous distribution of detections in the lower heights. The 181018 period is the other
one to present a significant amount of detections in that spectrum of heights but in this particular
case a extremely relative greater number of detections were made. On the other hand, one thing that
can be observed from the data is that there seems to be a huge decrease of LIS detections of sources
for heights lower than 4km, even if there have been detected sources below.

On the other hand, an important aspect can be inferred from this graphs2: all the sources that were
also detected by LIS group up around 10km. Even in the cases where there was a higher number
of sources detected in lower heights (i.e. 171018 10:30 and 181018) the peak ofsources+events bins
is around the said height. This could reveal that height might have an impact in limiting the LIS
detection of sources, for example, it could be extracted that the efficiency in detecting sources de-
creases with altitude. In fact, this again is concurrent with the Thomas et al. [18] observations of
some lightning in south U.S.A.

The measurements shown on figure 4.19 are the medians of the sources. The median has been chosen
as the representative value of the height over the mean since it is less affected by outliers. In the
lightning parameter evaluation the outliers can be particularly ”dangerous”, since noise can generate
detections far away from where the physical phenomenon is taking place, which will deviate the data
significantly. An analogous figure but with means as the representative value can be found in the
appendix A.4.

2Disregarding the single-flash data

41



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Figure 4.19: Median of Sources Heights Histograms for all periods of data
From left to right, and top to bottom:

171018 10:30
171018 17:00 (single flash)

180809 18:50
180831 04:40

180918 03:30
181018 15:10

42



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Power-weighted average height

In this approach chosen value to represent the height property of a time bin has been the power-
weighted centroid. Thus, for a given bin with sources, the average height pondered by the power of
each source has been computed. The intention of this approach is to evaluate if there is a trade-off
of impact between height and power for a given source. I.e. a higher sources (in terms of height) but
weaker might have higher changes of being detected from the LIS.

The said power-weighted centroid height has been assessed applying the following formula in each bin:∑nsrcs
i=1 (pwri ∗ heighti)∑nsrcs

i=1 pwri

Please be aware that for this operation the power has been introduced in [W] units. dbW units would
produce erratic results.

The results of this approach are displayed in the figure 4.21 below.

It is remarkable the similarity of the measurements displayed in the refereed figure with the ones
regarding the median of heights (fig. 4.19. Although some minor displacements of the distributions’
peaks can be observed, they stay virtually in the same position both in absolute terms (in height and
counts) and in relative, when taking a look if the sources+events distributions have shifted in respect
to the only sources distributions. The absence of change when introducing a power weighting may
account the possibility that each bin –then, each cluster of sources– have a symmetrical distribution
of powers in respect to the median, an example shown in the figure 4.20. Thus, this approach does
not provide extra information on how the altitude might affect LIS detectivity.

Figure 4.20: Example for symmetrical distribution of power
around the heights’ median inside a bin

In the height case, the median has been taken as a representative value for each bin, which has not
shown any remarkable tendency. With the aim to account the possible effect of a source power to
influence on the detection, also a weighing of the height median values has been done, using the power
of each source as a factor. This latter approach has shown similar distributions to the without-weighting
approach. And thus not providing any valuable result.

43



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Figure 4.21: Power-weightened average sources’ height
From left to right, and top to bottom:

171018 10:30
171018 17:00 (single flash)

180809 18:50
180831 04:40

180918 03:30
181018 15:10

44



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

4.2.3 Sources’ Maximum Power influence on Detectivity
In the previous section it has been explored the influence of lightning height on their LIS detectivity.
Nonetheless, some other parameters of the sources arise as possible influencers on the matter. In this
approach, a representative value for each bin related to the sources’ power has been computed, in
order to explore if a correlation can be made with the LIS observations. As a representative value,
the maximum power of each bin has been taken.

In the figure 4.22 are displayed the histograms for the distribution of maximum power between time
bins. I.e. the data has been grouped in time bins of 10ms and then the maximum power of each bin
has been assessed. The histograms show the counts for these values. Some interesting aspects of the
data can be observed:3

In the first place, there is an apparent shift of the events+sources bin counts peak to the right of
the only sources bin counts; only reversed for the single-flash case (171018 17:00). This characteristic
could be very remarkable. A shift to the right of the sources+events peak may mean that LIS is more
effective in detecting sources, or group of sources, with higher maximum power emissions. Thus, it
seems that there could be a link between the power of a VHF emission and the luminosity of the
discharge that generates it.

Secondly, it is worth observing that the bulk of sources+events detections are usually centred around
20-25 dbW of power. Nonetheless, it does not seem to be any relation between the position of this
center and the amount of LIS detections, in absolute term or in relation to the LMA detections, for
a given period. For instance, in the 180831 period the sources+events bin counts sum up to a value
of the order of 60, and the only sources bins up to 100. On the other hand, for the case of and 18018
there is a higher number of only sources detections (maximum at around 120 counts) but a lower of
sources+events counts (maximum at around 20 counts).

Finally, it seems to be a lower limit on the bins max. power for its LIS detection, at around 10 dbW.
If luminosity is linked to the VHF power it may be relevant to determine the relation between them
and what is the minimum luminosity at the origin that allows a detection from orbit.

The influence of the maximum power of a sources cluster in its LIS detectivity has also been studied.
In this approach it has been seen for the first time how the power of the VHF RF sources might have an
impact in its detection by LIS: the bins where also events were detected usually had a higher maximum
power recorded.

3In the figures appear negative power values. Please, be aware that the units are in Decibel - Watts, so negative
values have an origin at a 0.X power [W] value

45



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Figure 4.22: Maximum power histograms for all periods of data
From left to right, and top to bottom:

171018 10:30
171018 17:00 (single flash)

180809 18:50
180831 04:40

180918 03:30
181018 15:10

46



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

4.2.4 Density of sources in the time bins
Finally, another parameter that has been studied is the density of sources in time bins, and how it
may affect the LIS detectivity. From a first approach, the relation might account for the fact that
considering that a sources in the same cluster occur near simultaneously, the 777.4 nm radiation that
LIS detect may sum up, thus increasing the radiation received by the CCD and therefore having a
greater chance to surpass the threshold and trigger the detection.

The histograms regarding the distribution of sources densities are displayed in the figure 4.23 below.
An important remark for this analysis is that the step time for each bin has been diminished to 2 ms.
The reason for that is that the integration time on the LIS CCD is 2 ms and, by setting the same step,
we increase the validity of affirming that a cluster –i.e. sources in a same time bin– will represent a
single LIS detection and therefore the sum of radiance has a significant meaning.

In the fig. 4.23 it is clear that both sources+events and only sources low-density bins are more nu-
merous than their counterparts. A steady increase in both cases can be observed when going from
high density to low density, with the exception of the cases 180918 and 181018, were the presence of
sources+events bins seems quite equally distributed on the lower density spectrum.

The said characteristic of the distributions becomes relevant when comparing the increase rate of the
sources+events density counts vs. the only sources counts. In the figures we can see how lower-density
clusters are less likely to be detected by LIS: the while in high density bins the proportion of s+e bins
to only s bins is very similar, at lower densities the number of only s detections increase exponentially,
while the s+e bins do so with a slower rate.

Also, there might a link with the total power expelled from a cluster: the more dense, the more
power generated. To further study the density aspect but also the link with the power produced in a
cluster, the distributions of the sum of the power for each bin have been produced. They are displayed
in the figure 4.24. There, it can be seen how in all cases the distribution peak for the s+e bins is
either shifted to higher power or remains parallel to the only sources distribution peak. This is very
significant: in the studied cases, containing dozens of lightning discharges, LIS has been more likely to
detect clusters of VHF RF sources that had a higher overall power, that usually has been correlated
with more populated clusters. I.e. the difference in detectivity has not been produced by sources with
very high power, but rather by the presence of a greater number of sources.

The density of sources in the bins has also been studied, and it has shown how both only sources and
sources+events bins are more numerous in the low-density spectrum. Nonetheless, it has been observed
how the increase rate is not the same, and the proportion of bins detected by LIS in relation to the
not–detected diminishes in the low-density spectrum. Thus, the data shows that LIS is more likely to
detect high populated source clusters. Finally, the distributions of sum of power for each bin have been
studied and have shown that LIS has been more likely to detect VHF source clusters with a higher sum
of power. In all the cases recorded, the peak of thesources+events bins detected is centered at the same
or higher power than theonly sources bins detection distribution.

47



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Figure 4.23: Distribution of Density of sources in a bin for all periods
From left to right, and top to bottom:

171018 10:30
171018 17:00 (single flash)

180809 18:50
180831 04:40

180918 03:30
181018 15:10

48



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

Figure 4.24: Distributions of the sum of power for all periods
From left to right, and top to bottom:

171018 10:30
171018 17:00 (single flash)

180809 18:50
180831 04:40

180918 03:30
181018 15:10

49



4.2. INFLUENCE OF VHF SOURCES’ PROPERTIES ON ITS LIS DETECTIVITY

4.2.5 Section Summary
In this section the Height, Power and Density (and cross-overs) of sources in the time bins have been
studied in order to see their influence on its LIS detectivity.

• In the height case, the median has been taken as a representative value for each bin, which has
not shown any remarkable tendency. With the aim to account the possible effect of a source
power to influence on the detection, also a weighing of the height median values has been done,
using the power of each source as a factor. This latter approach has shown similar distributions
to the without-weighting approach. And thus not providing any valuable result.

• The influence of the maximum power of a sources cluster in its LIS detectivity has also been
studied. In this approach it has been seen for the first time how the power of the VHF RF
sources might have an impact in its detection by LIS: the bins where also events were detected
usually had a higher maximum power recorded.

• The density of sources in the bins has also been studied, it has shown how both only sources
and sources+events bins are more numerous in the low-density spectrum. Nonetheless, it has
been observed how the increase rate is not the same, and the proportion of bins detected by LIS
in relation to the not–detected diminishes in the low-density spectrum. Thus, the data shows
that LIS is more likely to detect high populated source clusters.

• Finally, the distributions of sum of power for each bin have been studied and have shown that
LIS has been more likely to detect VHF source clusters with a higher sum of power. In all the
cases recorded, the peak of the sources+events bins detected is centered at the same or at higher
power than the only sources bins detection distribution.

Summing up the last two points above, an effect of the sources’ power into its LIS detection has
been recorded. It has been observed how source clusters more populated –and therefore more likely
to have a higher total power– have been more likely detected by LIS than their counterparts.

50



4.3. ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND LMA
SENSORS

4.3 ANALYSIS OF THE FLASH DURATION CONCOR-
DANCE BETWEEN LIS AND LMA SENSORS

Each sensor measures electromagnetic waves coming from lightning, and more than just providing
information about that phenomena, it is interesting to extract information about the whole flash.
The scope of this section is to compare the information that the user would extract about the flash
from both sensors. For instance, the flash duration or its size is something that a post processing of
the events’/sources’ time and position could provide. Nonetheless, if for example one would compute
the lightning duration from LIS and LMA by saying:

”flash duration = max(events.time)−min(events.time)”

or

”flash duration = max(sources.time)−min(sources.time)”

Where ”events.time” and ”sources.time” are the vectors of events/times of each flash.

It is clear that different results could be extracted for the same flash, as LIS could detect events only
in the middle of the real flash and so on.

4.3.1 Flash Duration Analysis
Comparing flash durations (with the previously proposed method) has not been trivial. Even if in
the sources’ txt files4 it is specified the ”seconds-in-flash” of each source (so we have already the flash
duration) and the flash number; the comparison process is not as simple as it may seem. This is
because

1. in both txt files (LIS and LMA) the flashes are not numbered following the same ”coordinates”.

2. a simple time comparison can not be made as different start/end times in the two files could
relate to the same flash

Therefore, in order to be able to compare the flash durations provided by both sensors, an extension
of the LMA-vs-LIS-comparator.m has been made. This extension creates vectors with the start/end
times computed from both files; and then compares them by considering that a LMA flash and a LIS
file are the same if:

1. at least the start time of the LIS flash is comprehended in time in the LMA flash

2. at least the end time of the LIS flash is comprehended in time in the LMA flash

3. both ends in time of the LMA flash are comprehended in the LIS flash

Please note that the case were the LIS flash is comprehended inside the LMA flash is implemented in
one of the 2 first options.

2017-10-18 10:30

In the studied data, this is the best period to check if the comparator works, as is the only one with
several flashes in it. the LMA-vs-LIS-comparator.m displays the following (fig. 4.25):
In this time period, the LMA5 detected 23 different flashes, whereas the LIS detected 17. This can be
attributed, for example, to the various flashes that LIS did not detect. In the fig. 4.25 can be seen how
approximately at 10:33:37, 10:34:03, 10:34:8, 10:34:16, 10:34:25 and 10:34:29 there are LMA flashes
that were not detected by LIS6. There are also some flashes that LIS detected but LMA did not. This

4As previously said, they are extracted from the Scilab program for a given 10 min period
5Its criteria is established in LMA-zoom7.sci and it follows a simple imposition of the maximum amount of time

between two subsequent sources; if they are more separated than the established time they will be considered from two
different flashes.

6Please note how the LMA criteria is considering to be the same flash the first two clusters near the 10:32:45.

51



4.3. ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND LMA
SENSORS

Figure 4.25: Sources (+) and events (x) detected during the 171018 1030 time period printed over
time, coloured by flash.

does not mean that LIS detected more real flashes than LMA but it can be attributed to the different
(probably more restricted) LIS criteria when it comes to separate various detections in different flashes.

In this time period, under a closer look to the events-sources distribution the problem about flash
duration arises, as LIS and LMA detections in a flash have a very different span in time. A clear
example of that is shown on the figure 4.26.

Figure 4.26: Zoom on a flash of the 171018 1030 time period. Sources (+) and events (x) printed over
time.

52



4.3. ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND LMA
SENSORS

The results of computing the flash duration from data of both sensors are displayed in table 4.1 below.

LIS flash# LMA flash# LIS flash
duration

LMA flash
duration

295 0 0 0
296 31 0.4799 0.0753
297 0 0 0
298 0 0 0
299 33 0.3913 0.3516
300 33 0.0734 0.3516
301 35 0.3010 0.1796
302 37 0.0990 0.1307
303 42 0.2241 0.1971
304 43 0.2487 0.2754
305 48 0.1809 0.3528
330 32 0.1543 0.4110
331 34 0.1487 0.0736
332 36 0.3598 0.3711
333 39 0.1503 0.2809
334 41 0.3312 0.4899
335 47 0.5030 0.5481

Table 4.1: Duration of LMA and LIS flashes (seconds). In the table there are not the flashes that were
not detected by LIS. The rows with zeroes represent those flashes that LIS detected but not LMA.

For the cases with complete data (2 simultaneous detections of flashes) the subtraction of LIS
durations to LMA durations is shown in the following set of data:

-0.4046
-0.0397

0.2782
-0.1214

0.0317
-0.0271

0.0267
0.1719

0.2567
-0.0751

0.0114
0.1307

0.1587
0.0451

Set of data extracted from table 4.1
The typical values of this set are:

mean = 0.0261 median = 0.014

Therefore, at least in this set of data, LIS tends to provide results where lightning appear to be shorter
than they really are. Although as it can be seen in the data this is not an absolute statement, as there
are cases where the duration values for LIS are higher than the ones from LMA.

This result is not very surprising, because it is know that LMA detects a higher number of events7

than LIS, so a higher probability of finding earlier and later phenomena of a flash seems reasonable.

Also, the median and mean of the flash durations are:

LIS : mean = 0.2144 median = 0.1809

LMA : mean = 0.2405 median = 0.2754

which is in the other of 10 times bigger than the median/mean value of the subtraction. This is quite
surprising, because in the example (shown in fig. 4.26) the LIS flash is way shorter in time than the
LIS one, at the order of a half. Despite being surprising, this is a positive result, because it shows
how, at least in this set of data, typically the sensor does not have a very high influence on the typical
lightning duration.

7Not in the sense of sources/events notation, but referring to the fact that it detects an event as as a generalisation
of ”EM pulse”.

53



4.3. ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND LMA
SENSORS

4.3.2 Section summary
In this section the issue for lightning duration with LIS and LMA has been addressed, by comparing
simultaneous flashes between them. For the computation of the flash duration, the time of the earliest
and latest event/source of a flash (coming from respective txt files) have been subtracted. Afterwards,
typical values of duration and subtraction have been computed in order to see the influence of the
sensor in the calculus. It has been found that

1. Typically LMA flashes last more than the LIS flashes, if the said criteria when computing the
duration is used.

2. The typical value of the difference in time between LMA flashes and LIS flashes is 10 times
smaller than the typical duration of respective flashes, so the influence of the sensor over the
computed typical duration is rather small.

54



Chapter 5

Electric arc emissions for LIS
calibration

Contents
5.1 Minimum Radiance Emissions . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Relation peak voltage – radiance emitted . . . . . . . . . . . . . . . . . . 58

5.2.1 Direct relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Although LMA can be very useful for calibration of orbit lightning sensors, other methods can be
used. One of those can be the creation of an electric arc discharge near the ground, such that
produces radiance emissions observable by LIS. This technique would clearly increase the precision of
the calibration since the position of the light source would be completely known. In order to do this
project, three main tackles should be overcome:

• Setting the minimum radiance emission at the source in order to make it detectable by LIS

• Establishing the relation between the peak voltage for the electric arc generation and the radiance
emission at the 777.4 nm line.

• Constructing the system that enables an effective discharge

This chapter is meant to be a report on the bibliographical research about the two first stages, being
the second a topic that is far from trivial in plasma physics.

5.1 Minimum Radiance Emissions
The location of the discharge generator has been supposed to be the station at El Niu de l’Àliga,
situated in the mid-longitude Pyrenees of north Catalonia. It has also been supposed that the exper-
iment would be done in a Summer night. The data regarding the weather during such periods has
been extracted from [20].

The web application for MODTRAN (http://modtran.spectral.com/) has been used to model the
atmosphere. The solver has worked with the following parameters set:

• Atmosphere Model: Mid-Latitude Summer

• Ground Temperature as average temperature of Summer months (Jun-Sep): 283.01 K

• Sensor altitude: 99 km (maximum)

• Sensor Zenith: 180º (the sensor is on top of the discharge)

• Spectral range: 0.7-0.8 µm

• Resolution: 0.00192 µm (maximum)

55



5.1. MINIMUM RADIANCE EMISSIONS

• Water Column (atm-cm): 3635.9

• Ozone Column (atm-cm): 0.33176

• CO2 (ppmv): 400

• CO (ppmv): 0.15

• CH4 (ppmv): 1.8

• Ground Albedo: 0

• Aerosol Model: rural

• Visibility: 23 km

In the figure 5.1 are displayed the radiance and radioactive flux registered in the conditions above. In
the figure figure 5.2 below, the transmittance for each wavelength on the same conditions is displayed.
It is remarkable to notice how for the wavelength of the radiation emitted by the atomic oxygen the
transmittance is of approximately 0.79; where

T = Iwλ
I0wλ

(5.1)

where [I] = µJ
sr2m2µm

In order to set a minimum radiance emission that enables its detection from orbit, at a height of
approx. 2500m a selection of the events that had sources associated at that height has been done.
Then, a representative value of these events’ radiance has been extracted. The values obtained are
below:

Period 171018 10:30 171018 17:00 180809 180831 (t = 200m) 180918 181018
avg 18.23 14.48 18.07 10.5 15.76 16.75
m 14 12.5 14 10.5 12 13.5

Table 5.1: Typical radiance values of events with sources associated at 2500m, with a tolerance of
50m in [ µJ

sr2m2µm ]
For the period 181031, where no sources took place at 2500m with t =50. Results with a t=200m

are displayed instead.

In the table 5.1 it can be seen how the the average and the median differ significantly, showing a high
variance since the averaging is greatly influenced by outliers. Also, note that for the period of 1810831
no sources were detected withing the tolerance (2500m ± 50m), so the latter was augmented to 200m.
Still, the data shows a high deviation from the other cases so it will not be considered.

56



5.1. MINIMUM RADIANCE EMISSIONS

(a) Atmospheric Radiance depending on the wave-
length by MODTRAN

(b) Atmospheric radiation Flux depending on the
wavelength by MODTRAN

Figure 5.1: MODTRAN output Flux and Radiance

Figure 5.2: Atmospheric transmittance depending on the wavelength by MODTRAN

For the other cases, an average of the medians will be taken as a representative value, since the medi-
ans only show a standard deviation of only 0.9083 between them. Thus, an acceptable representative
value is:

Iwλ = 13.2 µJ

sr2m2µm

Thus, using the data provided by MODTRAN (see fig. 5.2) the radiance emitted at the source1 should
be, approximately:

Isource = Isensor
Tλ=777.4nm

= 16.71 µJ

sr2m2µm

1Not as ”VHF source” but as ”the origin of the emission”

57



5.2. RELATION PEAK VOLTAGE – RADIANCE EMITTED

5.2 Relation peak voltage – radiance emitted
5.2.1 Direct relation
Some experiments have been done which give a relation between both parameters. A significant work
is described in Liu Feng et al 2005 [19]. Below is cited the abstract of the paper:

In this study, the emission spectra of active atoms O (3p5P → 3s5S0
2777.4 nm),H,

(3P + 2s 656.3 nm) and N (3p4P → 3s4S0
2 742.3 nm, 744.2 nm, 746.8 nm)

produced by the positive high-voltage pulsed corona discharge (HVPCD) of Nz and
HzO mixture in a needle-plate reactor have successfully been recorded against a
severe electromagnetic interference coming from the HVPCD at one atmosphere.
The effects of the peak voltage, the repetition rate of pulsed discharge and the
flow rate of oxygen on the production of those active atoms are investigated. It is
found that when the peak voltage and the repetition rate of the pulsed discharge are
increased, the emission intensities of those active atoms rise correspondingly. And
the emission intensities of O (3p5P → 3s5S0

2777.4 nm), H, (3P → 2s 656.3nm)
and N (3p4P + 34S0 742.3 nm, 744.2 nm, 746.8 nm) increase with the flow rate
of oxygen (from 0 to 25 ml/min) and achieve a maximum value at a flow rate
of 25 ml/min. When the flow rate of oxygen is increased further, the emission
intensities of those atoms visibly decrease correspondingly.

For these experiments, the spacing between the electrodes was 80 mm and the discharge was done
inside a stainless steel chamber with the aim to control the atmospheric conditions described in the
abstract. The figures below display some of the measurements done:

(a) Typical emission spectrum O, Hα and N gen-
erated by pulsed corona discharge in a N2 and
H2O mixture at 24 kV peak voltage and 72 Hz
repetition rate of pulsed discharge

(b) Emission intensities of O, Halpha and N active
atoms as a function of the peak voltage at one atmo-
sphere and 72 Hz repetition rate of pulsed discharge

Figure 5.3: Emission properties of controlled electric arc discharges. Extracted from [19]

In the figure 5.3a it can be seen how they actually registered the well known peak for atomic oxygen
radiation at 777.4 nm of wavelength. The really interesting measurements are displayed in the fig.
5.3b, where an evolution of emission intensity with the peak voltage can be observed. The figures 5.4a
and 5.4b (also extracted from [19] provide valuable information regarding the evolution emission of
radiance with other parameters of the experiment: the repetition frequency for the discharge and the
oxygen flow rate to the environment.

58



5.2. RELATION PEAK VOLTAGE – RADIANCE EMITTED

(a) Emission intensities of O, Halpha and N ac-
tive atoms as a function of the repetition rate of
pulsed discharge at one atmosphere and 24 kV
peak voltage

(b) Emission intensities of O, Halpha and N active
atoms as a function of the O2 flow rate at 25 kV peak
voltage and the 56 Hz repetition rate of pulsed dis-
charge

Figure 5.4: Emission properties of controlled electric arc discharges (second). Extracted from [19]

It is understood that the discharge generator, for from-orbit observation, should generate the maximum
amount of emitted atomic oxygen radiation. Figures 5.3b and 5.4a suggest the usage of maximum rep-
etition frequency and peak voltage available. On the other hand, from figure 5.4b can be inferred that
an optimisation of the emitted intensity with the oxygen flow rate should be sought.

Information regarding a link between current in an electric arc and the radiance emitted has been
sought in the following search engines/databases:

• Google Scholar

• Science Direct

With the keywords: electric arc, current, voltage, radiance, emitted, plasma, atomic oxygen, air,
spectroscopy. With, among others, the following combinations:

• electric arc current emission intensity

• atomic oxygen emission arc current open air

• electric arc open air spectroscopy

• atomic oxygen radiance emission current electric arc

• atomic oxygen radiance electric arc current

• electric arc radiation relation voltage

• atomic oxygen electrical arc open air

Also were revised the 21 citations of the article (André, P. et al. 1997, [21]) and no information
regarding a link between the voltage and the radiance of an electrical arc in open air was found.
Probably, it is due to the fact that the radiance of a plasma depends on its temperature and state
(thermal and chemical equilibrium, ionization degree, composition...); which are parameters difficult
to relate to a current without taking into consideration a prepared atmosphere etc.

5.2.2 Other approaches
Intensity of emission vs. temperature of the plasma

Other works have related not directly the current or voltage applied to the atmosphere to generate
the electric arc with the emitted intensity, but rather other parameters such as the temperature of
the plasma. An example of this approach is presented by André, P. et al. in [21], where a method to

59



5.2. RELATION PEAK VOLTAGE – RADIANCE EMITTED

compute monotonic spectral lines intensities is presented. Fundamentally, the intensity distribution
by the wave longitude is computing using the Boltzmann distribution:

I(λmn) = 1
4π

hc

λmn
Amngm

Ni
ZintT atex

exp
(
− Em
kT atex

)
(5.2)

For fore information and parameters description see [21]
To solve this equation, the concentration Ni of the different species in the plasma has to be computed.
The team of Prof. André does it by solving the Gibbs free energy of the plasma, written as 5.32:

G =
N∑
i=1

ni
[
µ0
i +RTtriln

( niTtri∑N
i=1 niTtri

)]
(5.3)

and

µ0
i = −RTtriln(ztri)−RT atex ln(zint) + e0 (5.4)

N∑
i=1

niqi = 0 (5.5)

P −∆P =
N∑
i=1

niRTtri (5.6)

∆P = − 1
24πε0ld

N∑
i=1

q2
i ni (5.7)

An example of the results in [21] can be seen in the figure 5.5 below.

Figure 5.5: Emission intensity of different spectral lines with the plasma temperature. Source: [21]

The paper of André, P. et al. shows that a computation can be done that links the temperature of
the plasma and the its emissions’ intensity, but the problem remains on the link between the power
provided and the temperature of the plasma’s heavy species.

2The temperature is assumed to be constant in the plasma, and hence the chemical equilibrium is reached when the
Gibbs energy is minimal.

60



5.2. RELATION PEAK VOLTAGE – RADIANCE EMITTED

Simulation of emission spectra

C. Trassy and A. Tazeemb [23] developed a simulation algorithm to compute the emission spectra of a
given plasma. The input parameters are: pressure, temperature, electron density and emitting species
number density. In this method some effects such as Doppler, Van der Waals, Stark and instrumental
broadening, shifts and self-absorption are taken into account. The results of the simulation method-
ology can be seen in the fig. 5.6 below. Again, the inputs of this assessment are not what was sought
bout it could shed light onto the matter.

Figure 5.6: Intensity of emissions depending on the wavelength. Source: [23]

This simulation method, despite having some error with respect to experimental results has a broad
area of possible applications thanks to the quantity of errors that can take into account. Nonetheless,
it might be useful to use a verification of the formulation proposed in [21] since it is a numerical
approach nature.

To sum up this section, only experiments in a very particular experimental environment have been
found. Other experiment shave been checked, which relate properties of plasma to its radiating emis-
sions. Although they are interesting for shed light on further research, knowing such plasma properties
for an electric arc in the open-air is still a challenge.

61



Chapter 6

Conclusion and further work

On LIS performance
This work has constituted a first approach to explore which is the physical relation between LMA
sources and LIS events, while providing a comprehensive introduction to the sensors and data products.
For the analysis of which properties of LMA sources have an impact on its likelihood to be detected
by LIS (through associating events with sources by time proximity), the following parameters have
been taken into account:

1. Typical value the sources’ height in a time bin

2. Maximum power of the sources in a time bin

3. Typical value of sources’ density in a time bin

It has been found how power has a role on enhancing the detection by LIS of high populated time
bins. It has been observed how this impact is not so relevant when observing the maximum power in
a bin, which suggests that LIS is more likely to detect large groups of sources rather than detecting
those with high power. It has also been found that the distribution of power vs height inside a time
bin is most likely symmetric, since a typical height weighted by power has been found to be virtually
the same as the height without power weight. More precisely:

Regarding the height:
The median has been taken as a representative value for each bin, which has not shown any remarkable
tendency. With the aim to account the possible effect of a source power to influence on the detection,
also a weighing of the height median values has been done, using the power of each source as a factor.
This latter approach has shown similar distributions to the without-weighting approach. And thus
not providing any valuable result.

Regarding the maximum power:
In this approach it has been seen for the first time how the power of the VHF RF sources might
have an impact in its detection by LIS: the bins where also events were detected usually had a higher
maximum power recorded. Nonetheless, the further approaches such as cluster density have shown
more clear results that link power and detections.

Regarding the density of sources in the bins (and the sum of power):
It has been shown how both only sources and sources+events bins are more numerous in the low-
density spectrum. Nonetheless, it has been observed how the increase rate is not the same, and the
proportion of bins detected by LIS in relation to the not–detected diminishes in the low-density spec-
trum. This means that at lower densities LIS also has lower efficiency on detecting source clusters.
Finally, this result has been enhanced by the distributions of sum of power for each bin; that show a
clear pattern where bins with sources+events have higher sums of powers.

This is important, since it means that it is not simply the number of sources which has an impact on
the detectivity by LIS (which could mean that there is another property of the sources, not studied

62



yet, that generates this result); but is the power that generates the difference in detectivity. Clearly,
the sum of power and the density are very connected and it has been shown how is the this combina-
tion and not another (e.g. maximum power at the bin, mean height...) the ones that has an impact.

Further work regarding this study should be to explore deeper the relation between density/sum of
power and the detectivity by LIS. The final objective could be the development of a model that would
link sources properties and event presence/radiance, which could bring new insights on what is the link
between the physical processes that generate VHF sources and light pulses. From a more pragmatic
perspective, the said model could be helpful in predicting what should be the LIS detection associated
to a given LMA detection,
On the other hand, it is clear how in this work the radiance –i.e. the LIS detections’ properties– has
not been used; the second part of a further study could be to try to do the experiments the other way
around: take the bins where events were detected and see which radiance, clustering etc. was required
for it to be detected by LMA. One could argue that this approach would be not that useful, since LMA
detects mostly everything that LIS detects, nonetheless it could shed some light on the matter anyway.

In this work also were produced histogram distributions from a data-point point of view, not from a
bin point of view; which can be found in appendix A.4. They have not been commented since the
approach is completely different: there is no association between LMA and LIS data, and as such
they only offer space for an analysis within the same sensor (e.g. ”LIS might be more likely to detect
events with greater radiance than X).

On other analysis of the data
It has been proved how the simple expression ”∆TFlash = TLastDetection − TFirstDetection” produces
different results for the same flash depending on which is the sensor where the detections are coming
from (LIS or LMA). It has been shown that for the studied cases the typical lighting time is greater if
computed with sources detections; result that is rather logical since LMA has a higher detection rate
than LIS. This result can be useful as a statement about how LIS data must be used with precaution
if lightning duration wants to be computed. Of course, some further studies on this matter could
be focused on finding an expression, or pondering events’ parameters in a way such that the typical
duration of a lightning with LIS data reassembles to the duration computed from LMA data.

On electric arc emission for LIS calibration
An attempt has been made to assess which should be the voltage applied to an open-air atmosphere
at 2500 m approximately in order to generate an electric arc observable by LIS. A a typical value for
the radiance emitted by events that had sources associated at this height has been obtained and an
attempt to model the loss of radiance throughout the atmosphere has been done. This has been done
using a demo of the software MODTRAN and has not been validated. Regarding the link between
the applied voltage and the radiance emission little information has been found. For a direct relation,
only experiments in a very particular experimental environment have been found. Other experiments
have been checked, which relate properties of plasma to its radiating emissions. Although they are
interesting for shed light on further research, knowing such plasma properties for an electric arc in the
open-air is still a challenge. Further work on this direction could focus on doing in situ experiments
to generate data that links voltage applied with emitted radiance.

63



Appendix A

APPENDIX

Contents
A.1 Geostationary Lightning Mapper description . . . . . . . . . . . . . . . . 64
A.2 Night vs. Day distribution of LIS during 2017 period . . . . . . . . . . 65
A.3 Detections’ properties influence on LIS detectivity from a typical value

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3.1 Sources density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3.2 Sources’ height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.3.3 Sources’ Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3.4 Section summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4 Extra Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.1 Mean sources’ height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.2 Histogram distributions from a data-point point of view . . . . . . . . . . . 76

A.5 User Guide for data the processing codes . . . . . . . . . . . . . . . . . . 77
A.6 Codes for data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.6.1 LIS HDF processor.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.6.2 LIS vs LMA comparator.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Geostationary Lightning Mapper description
The Geostationary Lightning Mapper (GLM) is a sensor integrated on satellites that constantly mon-
itor the Americas (fig. A.1b) for weather study [10]. A system of GLM sensors is being implemented
with a new series of satellites (fig. A.1a) within the Geostationary Environmental Satellite Net-
work (GEOS) mission; which has been developed by NASA and NOAA. This mission is launching
to geostationary orbit a constellation of 4 satellites (GEOS-R,S,T,U), with a GLM instrument each,
that will cover a huge part of Earth surface, centred in the Americas. The improvement in weather
forecasting and monitoring with these new sensors come from the new capabilities for detecting cloud-
to-ground (CG) and intra-cloud (IC) lightning; as well as from the fact that the satellites also will
have a Advanced Baseline Imager that observes the atmospheric moisture with improved scale resolu-
tion from previous, similar instruments, and provides fresh data five times faster than its predecessors.

64



A.2. NIGHT VS. DAY DISTRIBUTION OF LIS DURING 2017 PERIOD

(a) Representation of a satellite from the GEOS-R se-
ries. (b) Combined FOV view from GOES-R series

constellation superimposed on 10-yr of lightning
observation from TRMM-LIS and OTD.

Figure A.1: GEOS satellite and its FOV on the Earth surface. Source: [10]

Sensor Description
The GLM, as the LIS, measures the radiance that lightning emit through the top of clouds with an
imaging device. Actually, the sensor’s principles are very similar to those from LIS1 and will not be
explained another time.

It is important to remark that it can measure CG, CI and CC lightning during day and night; the
latter being crucial as the satellite is stationary and will suffer from continuous daytime cycles over
its FOV.

As the GLM orbit is much higher than the one of ISS-LIS (35786km vs. 400km) it is clear that it will
suffer in its spatial resolution. In fact, it goes from 8km at the NADIR of the CCD to 14km at the
edge. This decrease would be much higher, but it has been lowered by the implementation of a CCD
that has smaller pixels on the edges, allowing an homogeneous distribution of resolution along the
image. To achieve a acceptable spatial resolution from such a high orbit, a CCD of 1372 x 1300 pixels
has been implemented (for the record LIS had a 128 x 128 pixel CCD). Also, a higher telemetry speed
(and therefore the amount of processable data) has had a great impact on increasing the detection
efficiency, due to the possibility to establish a lower threshold to detect weaker luminous events. The
overall result is a geostationary imaging sensor that has a flash detection of at least 86% and a false
alarm rate of 5%.

Regarding the detections classifications the GLM uses, just as LIS, a groping structure that clusters
the luminous events in groups, flashes and areas. Information about this parent-child algorithm can
be found on [8].
Other technical properties are described in the table below (fig. A.2).

Figure A.2: GLM sensor performance properties. Source: [10]

A.2 Night vs. Day distribution of LIS during 2017 period
As previously mentioned, the thunderstorms in the west Mediterranean weather (and therefore over
Deltebre) are not very numerous. This, added to the fact that the ISS orbit does not always pass
over Catalonia; and that for a approximately 100 x 100 km area the view time at maximum of 2 min;
makes the amount of lightning observations over the Ebre delta not be very high. Then, it is relevant
to generate some statistics about the probability of LIS recording a thunderstorm in the place. It is

1I.e. a wide FOV, focusing radiation beam in a CCD with an interference filter at 777.4 nm, and finally a data
processing subsystem.

65



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

also important to remark that LIS has been operative only since March 2017 and the data of these
observations in particular reach June 2018.

While the LIS was operative (from March 2017) the ISS passed over Deltebre 1998 times. It only
captured activity in 8 of those. Most of activity occurred during daytime, and the magnitude order
of detected flashes has been of tenths.

(a) 2017 (b) 2018

Figure A.3: Night-Day presence of lightning detected by LIS around Deltebre area from March 2017
to July 2018.

In the figure A.3 is displayed the day-night distribution of LIS detected flashes during 2017 and 2018
periods. It is in this moment that the background remover and the LIS post-processing unit detailed
in section 2.1.2 shows its importance, as a good managing of the background radiance is critical during
daytime.

A.3 Detections’ properties influence on LIS detectivity from
a typical value approach

In this appendix the reader will find an analysis of the influence of some lightning properties on its
detectivity using a representative value approach. This approach has been only added to the appendix
because it was only after it was produced that it was found that the Histogram method provides clearer
information about the matter.

A.3.1 Sources density
In this section will be analysed the effects of the number of sources in each time bin on the LIS
detection. To do so, a typical value for bins with only sources and bins with sources+events has
been extracted from each 10 min. time period, if the said period had simultaneous (LIS and LMA)
detections to compare on.

These typical values have been made with the average and also the median, as in every set of data
appear to be some heavy outliers that will very much effect the mean. They have been displayed
in figure A.4; along with the number of bins with both events and sources, as the number of data
available may play some role in the results.

In the figure A.4 are displayed both median and mean typical values, for the mean values there
seems to be no tendency (in reference to comparison between bins with LIS detection and bins with
LIS+LMA detections); but a further inspection, with the median reveals more interesting. It shows
that for the cases with significant data (the first and the second in time), the bins that also had LIS
detections tend to more source-populated.

The mean and the median in the 171018 17:00 period differ so much because the outliers: the stan-
dard deviation for the bins with events+sources and only sources in this period is 4.5682 and 6.9174,

66



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

respectively. This is a lot, considering that the the average is situated at approximately 8 sources in
each case, so the median seems indeed a better indicator of the typical value for this case.

Figure A.4: Typical values of sources densities in bins for each 10 min period.

This tendency (LIS detections come from more populated bins) is not so clear in the following cases,
but as the figure shows, the first case has 128 simultaneous detections and the second 42, whereas the
third has only 7 and the next period with data 3.

Also, it is mandatory to bear in mind what it is known from section 4.1.1: the size of the thunderstorms
recorded during 2017-10-18 was much higher than during the other dates, and this is reflected by the
number of bins with simultaneous detections as well; from the first to the third time period the number
of simultaneous detections is reduced a 94.53%. So if there is not a permanent tendency on all the
data, it is acceptable to state that detection rate increases with source density in time, as displayed
by the data that provides more information.

67



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

A.3.2 Sources’ height
Typical values of height in each bin have been computed, and then averaged again to get the typical
values of the typical heights for each 10 min. time period. This information is displayed on the figure
A.5, where it is show the mean and median values for each case.

Figure A.5: Typical values of sources’ height in each 10 min. time period, achieved from the typical
height values inside each bin of the same period.

In the figure of this section there is 6 variables per period of time, as the following values have been
computed for each type of bin:

1. Mean of the typical heights from bins with ; where the typical heights were obtained with simple
mean.

2. Median of the typical heights; where the typical heights were obtained with simple mean.

3. Mean of the typical heights from bins with ; where the typical heights were obtained with the
median.

The goal of this diversity of values is to check the effects of the data dispersion on the results, both
of sources’ heights and the variability of their typical values.As it can be seen in the figure, dispersion
does not play an important role in heights, as medians and means show the same result: there is no
tendency observable for the height.

Indeed, in the first case the typical height values of the events+sources bins are higher than those
that only have sources, but in the second time period this relation is twisted -and very accentuated-
the other way around. In fact, in this 171018 17:00 time period the detected flash was one that stoke
the ground, as commented during the data overview (section 4.1.1).

LINET effect

One could argue that return stroke can be the dominant variable in this second case. Let’s compare
the data gathered by LINET in the two time periods of 171018.

68



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

(a) 10:30

(b) 17:00

Figure A.6: Space-time detections distribution of 2017-10-18 with LINET included (X and +). ”x”
are negative strokes and ”+” are positive strokes. Circles are events (coloured by flash) and dots are
events (coloured by time).

In the figure A.6 are displayed the LIS, LMA and LINET detections for the time periods of 2017-10-
18. As it can be seen, virtually all the detection clusters -flashes- have some stroke associated; both
flashes that LIS did and did not detect. This means that the sole presence of strokes has not a direct
implication on the LIS detection of its flash.

69



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

A.3.3 Sources’ Power
One of the main sources’ characteristics that may influence in LIS detection is the source’s power.
Moreover, it may do it in various ways. For instance, the summed up power in a bin time, the maxi-
mum power registered in that bin or the height of the power centroid may have a role in LIS detection
of the said bin.

Sum of sources’ powers

This case is a crossover between the influence of power in LIS detection and the density of sources in
a given bin. Obviously, it will have a strong relation with the section A.3.1, but it may have some
amplifying effects on some of the samples. It is displayed in the figure A.7, where de mean and median
of powers’ sums for all types of bins are printed.

Figure A.7: Sum of powers for each bin

In the said figure, some unexpected effects arise: whereas in the first, third and last time period the
relation observed in section A.3.1 seems to be enhanced, in the other cases its appearance is dras-
tically reduced. For instance, the mean value for the only-sources bins in the period 171018 17:00
sky-rockets way above the other values for the same period; while in the first case the relation between
sources+events bins and sources bins is maintained.

This actually means that, while in the 171018 10:30 period the sources of both types of bins have
similar powers, in the second case the power of the sources that have no events associated is higher
than those from bins where events were detected; so this may indicate that sources’ power level - or
at least, its sum - does not have an impact and detections.

Power-weighted sources’ centroid

Even if in section A.3.2 it has been revealed that the height by itself does not have a clear role in
LIS detection, its effect combined with power might do. I.e. that higher source with lower power
might be more likely detected by LIS than a lower source with higher power. To reflect this effect,
the power-weighted centroid (in height coordinates) for each bin has been made; and then computed

70



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

its typical value for each 10 min. time period.

The said power-weighted centroid height has been computed applying the following formula in each
bin: ∑

−i = 1n−srcs(pwr − i ∗ height− i)∑
−i = 1n−srcspwr − i

Figure A.8: Typical values for power-weighted centroid positions in each time period.

The information displayed in the fig. A.8 shows similar results to those we had from section A.3.2,
figure A.5. The second case has a very strong variation between sources+events bins and sources
bins: it has already been discussed how in that case the heights of detected sources were very low, as
the lone detected had its sources close to ground. This, computed now with powered centroid, stays
roughly equal, even if now there are big differences in mean and median; which means that in each bin
there is usually no deviation in heights (a flash develops closely in space) but there is high deviation
in power (a flash produces a high range of VHF emissions).

Again, in the first case (where there is information available for a number of flashes) shows some
difference between sources+events and sources bins: it seems that in that period the detected sources
were higher and more powerful.

Maximum power

Supposing that a number of sources take place roughly simultaneously (separated less than 10 msec.),
and are detected by LIS; one can hypothesize that not all of these simultaneous sources have been
detected by LIS, and in fact LIS has detected the one with maximum power. To explore this option,
the maximum power values in each time bin have been recorded, and will be compared to those from
bins where no events where recorded by LIS.

The figure A.9 displays a point (dot or asterisk) for each bin. Each point represents the power of
the source that has the maximum power inside the bin. The blue asterisks correspond to bins where
events also were detected, and black dots to bins where no events were detected. It is clear that the
vertical -so almost simultaneous- sources clusters correspond to separated lightning.

71



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

Figure A.9: Maximum power for each bin during 171018 1030

Taking in account that the area came under LIS FOV at 10:32:46, we can observe how the sources that
were accompanied by events group up in higher power clusters. With the exception of the clusters at
min. 32.95 and 33.3, the sources’ power of clusters that LIS also detected are above 20 dbW. This
tendency is well observable in the mentioned case. The figure A.10 shows results of the same approach
for the other 10 min. sets.

Figure A.10: Typical values of maximum power for each inside-FOV time period

There, it can be seen how this tendency is hardly maintained through the other cases. If both the
180427 and the 180613 periods have sources+events bins with higher maximum power than the other

72



A.3. DETECTIONS’ PROPERTIES INFLUENCE ON LIS DETECTIVITY FROM A TYPICAL
VALUE APPROACH

bins, this is not the case for the second and sixth time periods, where it is the other way around.

Even if in the first period the amount of lightning evaluated is way higher than the second, the data
shows how both the mean and median of only sources bins remains roughly equal. This could mean
that virtually all undetected bins on the day had an average maximum power value, but it had no
effect on its detection; as in the detected cases the maximum power varies without restriction.

73



A.4. EXTRA FIGURES

A.3.4 Section summary
It is important to reiterate that the amount of data in Deltebre area is low, and therefore descriptive
statistical statements can’t and will not be proposed. What is possible and interesting is the fact that
typical values approach can at least exclude some factors of influence of LIS detection and open shed
light on which might be the following way of analysis. Therefore, some conclusions can be extracted
from this section, regarding the data gathered in Deltebre:

• A tendency has been observed in the time periods with more lightning detected, that associates
the detection rate of a given source cluster with its density. This effect has not been recorded
in two of the 3 cases that have low amount of data, but its importance in deciding if there is a
tendency density-detection may be disregarded for the same reason.
In the more populated data sets (171018), this tendency has been observed in the median typical
values, but not in the average, that in these cases is much higher than the mean. This suggests
that in general the mentioned density-detection applies, but rather than stating that more dense
clusters will be detected it should be read as low density clusters are not detected by LIS. I.e.
that LIS did not detect some clusters with high density (see fig. A.4, period 171018 17:00, mean
nº sources of only-sources bins), but usually the bins with events were more source-dense than
the others.

• Height by itself has not played any role in the detection of events by LIS, in the Deltebre data.
In the period 171018 17:00 the only lightning detected was the one to, presumably, strike the
ground. In fact, this has been checked by examining the 171018 periods LINET data. Nearly
all the lightning detected by LIS and/or LMA had a stroke detection associated, so there is no
relation with presence/absence of strokes detection with LIS detection Nonetheless, it is possible
that a given intensity or stokes density is required for LIS detection, or at least to enhance the
possibilities of detection.

• The sum of powers in each bin does not provide any clear tendency. Obviously, it maintains a
strong relation with the bins’ density, but it does not the somewhat clear relation that appeared
in the cases with higher amount of data. In fact, in some cases it accentuates the said tendency
(171018 10:30, 180427, 180613) and in others (171018 17:00) reverses it.

• The powered-weighted centroid provides similar results to those coming from the height by itself.
At this stage this might reveal itself as palpable, because now it is acknowledged how neither
sum of powers or height produced any tendency on the data.

• The effect of the maximum power typical values in each bin for its detection by LIS has not
show any tendency either. In fact, for both 171018 time periods the typical value for maximum
power of non-detected bins stayed still, whereas for the cases that LIS detected the value varied
both up and down.

A.4 Extra Figures
In this appendix the reader will find extra figures that were mentioned in the main body of the work,
but were more fit to be in the appendix.

A.4.1 Mean sources’ height
Below are displayed the histograms that show the mean height distribution of the sources detected
during all the observation periods, once separated in time bins. Each time bin has a duration of
10msec.

74



Mean sources’ heights of the time bins for the periods (from top to bottom, left to right): 
 
171018 10:30 180809 18:50 180918 03:30 
171018 17:00 (single flash) 180831 04:40 181018 15:10 

A.4. EXTRA FIGURES

75



A.4. EXTRA FIGURES

A.4.2 Histogram distributions from a data-point point of view

Figure A.11: Data-point POV histograms for 171018 10:30

Figure A.12: Data-point POV histograms for 17-10-18 17:00

Figure A.13: Data-point POV histograms for 18-08-09

Figure A.14: Data-point POV histograms for 18-08-31

76



A.5. USER GUIDE FOR DATA THE PROCESSING CODES

Figure A.15: Data-point POV histograms for 18-09-18

Figure A.16: Data-point POV histograms for 18-10-18

A.5 User Guide for data the processing codes
In this appendix the reader will find a a User Guide that helps in the usage of the codes used in this
work.

77



LIS and GLM data processing software

USER GUIDE

Fontcuberta i Garćıa-Cuenca, Ícar.

May 11, 2019

The scope of this document is to make a guide for the most relevant applications of the MATLAB R©
codes developed by Fontcuberta, Í. for Lightning Imagin System and Lightning Mapping Array
data processing. The codes can be found at: https://github.com/icarfontcu/LIS-LMA-data-reading-
codes. Any questions or suggestions are welcomed and can be addressed to icar.fontcuberta@gmail.com.

In the Annex are attached screen-shots of the processes described in the document.

Contents

1 LIS HDF files processor 1
1.1 Download LIS HDF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Read interesting information from HDF files and print it into txt files . . . . . . . . 4

2 LIS vs LMA comparator 4

3 ANNEX 7
3.1 LIS HDF processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Download HDF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Process HDF files to txt files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Process NC files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 LMA vs LIS comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 LIS HDF files processor

The software ”LIS HDF processer.m” is a MATLAB R© software that helps the user to download
LIS HDF files, read them and extract its interesting information in order to print it into txt files,
which is a more usual format for temporal data storage.

To do so, some the user will have to specify some variables at the first lines of code, and select some
options in a prompt menu that the program displays in the command window. This guide will only
describe the usage of the applications just mentioned, despite the program having some more; that

1



are also interesting but can be used by simple observation or by derivations of the indications in
this document. Below, each section will describe the guide for a program and each sub section a
particular application.

1.1 Download LIS HDF files

The LIS Bulk Data downloading tool only selects files by dates and huge amount of irrelevant data
is downloaded using only that tool. Instead, a semi-automatic process has been developed, seizing
the LIS data website space-time domain searcher; which allows the user to know which files contain
information of its interest.

In this application the program prints a txt files containing URLs that download the mentioned
interesting HDF files using a wget command (specified later on).

1. Go to https://lightning.nsstc.nasa.gov/isslisib/isslissearch.html and use the space-time do-
main searcher in order to display the names of the interesting HDF files (fig. 1b.

2. Manually select the list of HDF files and copy it to a txt file (fig. 1a). The caption of the list
must also bee included in the selection.

3. Introduce working directories and file names required by the code, in the first lines.

(a) website filename: file and directory of the txt file containing the copy of the list extracted
from LIS website.

(b) write dir: directory where txt file with generated URLs will be printed.

4. Introduce in ”LIS HDF processer.m” the space-time domain of your interest (fig. 2). This
might not be the same as the one used for the LIS searcher. For instance, it might be of the
user interest to select a wider domain in the website to be sure of getting all the interesting
files.

5. Execute the program and introduce ”7” when asked by the command window.

6. Open the windows cmd and go to the directory where you want to download the HDF files.

7. introduce the following command:

wget –user EarthDatauser –ask-password –auth-no-challenge –no-check-certificate -i interestingURLSfile.txt1

The HDF files will start to download (information displayed in the cmd) and stored in the current
directory.

1To use this command a user login has to be made into the Earth Data website

2



(a) LIS website file selection

(b) LIS space-time domain searcher

Figure 1: Screenshots of LIS website

Figure 2: space-time domain parameters in the code

3



1.2 Read interesting information from HDF files and print it into txt
files

This application reads the LIS HDF files that the user has stored and print its information (if rel-
evant) to txt files with adequate names. These txt files will contain a number (it can be changed)
of columns with one type of data each, e.g. LAT, LON, time...

Note that the code is prepared to access a big collection of folders with data, as it has functions
implemented that register each subdirectory for other subdirectories until it finds where the HDF
files are. This process is completely automatic excepting for the specification of the space-time
domain selected. The steps required are described below.

1. Introduce the required directories in the first lines of the code.

(a) write dir: where the txt files with information will be written

(b) read dir: the directory from the program will start looking for HDF files.

2. Introduce the space-time domain as shown in the fig. 2.

3. Run the code and select the option 1 when asked by the command window.

The option 2 also plots the interesting events for validation purposes. The option 5 only plots the
interesting events, without writing txt files.

Code projection and future improvements

One possible improvement is to make the downloading of HDF files fully automated. The option
6 of the code’s menu is a first approach to do so: when downloading LIS bulk data, the user gets
a txt files with a huge amount of HDF URLs. These can be processed to get only URLs from files
that contain info from a certain period. What option 6 does is to read the mention big URLs files
and generate a similar, new one with only the relevant URLs.

2 LIS vs LMA comparator

The LIS-vs-LMA-comparator.m has the objective of generating statistical distribution and mo-
ments for a study of LIS and LMA data products together. Fundamentally, it pierces the given
measurement time with time bins of a given size (e.g. 10 ms). Then, it associates the LIS and LMA
data points to each time bin for finally working on bin properties (e.g. mean radiance of all the LIS
events inside a bin) instead of working with properties of the data points. This approach is useful
since the aim is to associate LMA and LIS detections by time proximity, and in the end generate
relations a la ”this LMA source had this LIS radiance associated”, i.e. giving a scalar value for a
given detection (or bin).

The optimal way to work with this code is to provide it with two text files. First, a text file where
all LIS detections are listed. Second, another text file where are listed the LMA detections that
were under the LIS FOV during the measurement time. The LMA detections that were not under

4



the LIS field of view at a given time can be filtered out with the help of a code made by Prof.
Montanyà (Electrical Engineering Dpt. UPC). Once the user has these files, to use the code:

1. Set the variable LIS total filename as the name (with the path) of the text file where all the
LIS events are; line 21 of the code.

2. Set the variable LMA filename as the name (with the path) of the text file where the LMA
sources are, line 22 of the code.

3. Set the variable examined day as the day where the measurements where done, line 23 of the
code. Use the format: datetime(yyyy,mm,dd).

4. Set the variable timestep as the time width of the time bins with which the data will be
divided, line 28 of the code. A recommended value is 10ms.

5. Set plotting options by changing the following variable values (1 = on / 0 = off):

• histograms: plot histograms of several bins properties (e.g. mean height of the bin, mean
power of the bean...)

• plotting: display plots of bin properties in their position in time (i.e. a point represents
a value of a property where the coordinate is the time coordinate of the bin and the
ordinate the value of the property). Also plot the excited pixels on the LIS CCD

• sources and events: plot the sources and events detected over time. For LMA ordinate
is the height, for LIS is a random value fixed at 100 m.

• comparing length section: activate the section where assessments regarding which is the
length of a given flash are done. Do not activate this if you are not particularly going to
use this section.

• save workspace: save the workspace in the current LMA file directory

• savingcsvfile: save a csv file on the current LMA file directory containing moments of
the statistical distributions of detections’ properties.

If an assessment of the power of events that had a source at a given height associated the discharge
altitude has to be set at the line 576 of the code and the tolerance at the line 577.

In the figure 3 below the variables listed above can be seen. In the figure 4 are displayed the lines
of code where the user should introduce the necessary variables for computing the power at a given
height.

5



Figure 3: Introductory section of the LIS vs LMA comparator code

Figure 4: User introduced variables for power at a given altitude assessment

6



3 ANNEX

3.1 LIS HDF processor

3.1.1 Download HDF files

1. Search for interesting at iss data websiteHDF files using ISS-LIS search tool

2. Select the list of emerging HDF files

7



3. Copy it to a text file (say yes to any dialogue appearing when closing the txt file)

4. Select space-time domain in MATLAB code

8



5. Set the variable ”website filename” as the directory where you stored the txt file with the
HDF files’ names.

6. Execute the code and select option 7 when asked by the command window. This will create
a file named interesting URLs.txt in the directory where the txt file with the names was.

7. Open the Windows CMD and introduce the following command:
wget –user EarthDatauser –ask-password –auth-no-challenge –no-check-certificate -i interestingURLSfile.txt2

The HDF files will be downloaded in your current directory.

3.2 Process HDF files to txt files

1. Set the directories: write dir, read dir

2. Select space-time domain in MATLAB code

2To use this command a user login has to be made into the Earth Data website

9



3. Execute the code and enter option ”1” when asked by command window

3.3 Process NC files

1. Set the reading/writing directories

2. select space-time domain

3. Execute the program

3.4 LMA vs LIS comparator

1. Set the Reading directories

10



2. Set the time domain

3. Set the time step (etimestep)

4. Select Modes: Recommended setup as shown in the figure below

5. Execute the program

11



A.6. CODES FOR DATA PROCESSING

A.6 Codes for data processing
Below are displayed the MATLAB codes produced for this project. They are also available at
https://github.com/icarfontcu/LIS-LMA-data-reading-codes.

A.6.1 LIS HDF processor.m

1 %////////////////////////////////////////////
2 %// LIS HDF4 data processor //
3 %// MATLAB converter //
4 %// Universitat Polit cnica de Catalunya //
5 %// icar.fontcuberta@gmail.com //
6 %// //
7 %// Requires: MATLAB R2017b at least //
8 %// //
9 %// //

10 %////////////////////////////////////////////
11

12

13

14

15 clear all;
16 close all;
17 clc;
18

19 % #################USER MODIFIABLE VARIABLES ####################
20 read dir='/Users/Icar/Desktop/transfer/EUMETSAT/1 DE/HDFprova/'; %from where to read ...

HDF files
21 write dir scilab='C:\Users\icar\Desktop\LIS HDF files\Barrancabermeja\Barranca txt Jun Jul';
22 write dir='C:\Users\icar\Desktop\LIS HDF files\Barrancabermeja\Barranca txt Jun Jul';
23 read dir txtfiles=write dir; %atm we read the txt files from the same place we store ...

them
24 urls file='C:\Users\icar\Google ...

Drive\PRACTIQUES\HDF reading\reading txt files\GHRC URLs.txt';
25 corrected urls file write dir='C:\Users\icar\Desktop\LIS HDF files\Barrancabermeja\'; ...

%here will also go the file twith urls from the website names file
26 relevant orbits file='C:\Users\icar\Google ...

Drive\PRACTIQUES\HDF reading\reading txt files\relevant orbits.txt';
27 website filename='C:\Users\icar\Desktop\LIS HDF files\Barrancabermeja\filenames website.txt';
28 map folder='C:\Users\icar\Google Drive\PRACTIQUES\LMAvsLIS (sci ...

oscar)\Sci program\mapfolder';
29 %------------
30

31 %For adding LIS FOV to LMA files:
32 ISSLIS datafile = '/Users/Icar/Desktop/transfer/EUMETSAT/1 DE/ISS LIS/ISS LIS.mat'; ...

%file containing the mat with all LIS data
33 LMA data dir = '/Users/Icar/Desktop/transfer/EUMETSAT/1 DE/LMA/'; %WHere the LMA txt ...

files are and the corrected ones will be written
34 HDF file = ...

'/Users/Icar/Desktop/transfer/EUMETSAT/1 DE/HDFprova/ISS LIS SC P0.2 20180809 NQC 09105.hdf';
35 day of the pass = 180809;
36

37 %Other-------
38 write other info dir='C:\Users\icar\Desktop\LIS HDF files\Ebre\Ebre other info\'; ...

%specify this to save the workspace and other info there
39 %------------
40

41 %coordinates info
42 deltebre=[40.75 0.95];
43 santamarta=[11.2403547 -74.2110227];
44 barranca=[7.06878 -73.744418];
45

46 %scanning area specification
47 centroid=deltebre; %LAT/LON (remember, on the plot, this would be y and x)
48 range=60*sqrt(2); %range in km. With the range provided (box of LAT: 40.1 to 41.4, ...

LON: 0.4 to 1.5) this should be 46km approx. But tolerance cna be applied
49 %time interval
50 starttime=datetime(2018,6,1,0,0,0);
51 endtime=datetime(2018,7,3,8,0,0);

89



A.6. CODES FOR DATA PROCESSING

52 timerange=[starttime endtime];
53

54

55 %###############################################################
56

57 %correction for change in radius. extracted from https://rechneronline.de/earth-radius/
58

59

60 B=centroid(1);
61 r1= 6378.137;%radius at the equator
62 r2=6356.752;%radius at the poles
63 earth radius=sqrt(((((r1ˆ2)*cos(B))ˆ2)+((r2ˆ2)*sin(B))ˆ2)/((r1*cos(B))ˆ2+(r2*sin(B))ˆ2)); ...

%radius at your location
64

65 ang range=range/earth radius*360/(2*pi); %range in degrees
66

67 disp(' ');
68 disp('--------------------------------------------------------------------');
69 disp('Welcome to the ISS LIS data processor.');
70 disp('Do you want to: ');
71 disp(' ');
72

73 disp('0: Exit Program');
74 disp('1: Write general event txt files');
75 disp('2: Write general event txt and plot them');
76 disp('3: Write event txt files for scilab (TO VERIFY) ');
77 disp('4: Plot events in interesting time-space from HDF4 files (TO VERIFY)');
78 disp('5: Plot events in interesting time-space from .txt files ');
79 disp('6: Correct GHRCs URLs and generate a new URLs txt file');
80 disp('7: Process website filenames to list of interesting URLs');
81 disp('8: Check only for interesting files and save the workspace.');
82 disp('9: Add LIS FOV to LMA txt files ');
83 disp(' ');
84 n=input('Enter option: ');
85

86

87

88 isok=false;
89

90 while isok==false
91 switch n
92 case 0
93 interestingfiles=[];
94 isok=true;
95 case 1
96

97 dir list=[];
98 dir list=check for folders(read dir,dir list);
99 interestingfiles=[]; a=1;

100 corruptfiles=[]; b=1;
101

102 for i=1:size(dir list,1)
103

104

105

106

107 local read dir=dir list(i,:);
108 [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(local read dir,centroid, ...
timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir);

109

110 end
111

112 w txtfiles(interestingfiles,write dir,centroid,ang range,timerange,n); %in ...
this function we will calibate the events because we don't have the ...
scilab post-processing program

113 isok=true;
114 case 2
115

116 dir list=[];
117 dir list=check for folders(read dir,dir list);
118 interestingfiles=[]; a=1;

90



A.6. CODES FOR DATA PROCESSING

119 corruptfiles=[]; b=1;
120

121 for i=1:size(dir list,1)
122

123 local read dir=dir list(i,:);
124 [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(local read dir,centroid, ...
timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir);

125

126 end
127

128

129

130 w txtfiles(interestingfiles,write dir,centroid,ang range,timerange,n); %in ...
this function we will calibate the events because we don't have the ...
scilab post-processing program

131 plot coastline(map folder,centroid,ang range);
132

133 isok=true;
134 case 3
135

136 dir list=[];
137 dir list=check for folders(read dir,dir list);
138 interestingfiles=[]; a=1;
139 corruptfiles=[]; b=1;
140

141 for i=1:size(dir list,1)
142

143 local read dir=dir list(i,:);
144 [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(local read dir,centroid, ...
timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir);

145

146 end
147

148

149

150 w txtfiles 4scilab(interestingfiles,write dir scilab);
151 isok=true;
152 case 4
153

154 dir list=[];
155 dir list=check for folders(read dir,dir list);
156 interestingfiles=[]; a=1;
157 corruptfiles=[]; b=1;
158

159 for i=1:size(dir list,1)
160

161 local read dir=dir list(i,:);
162 [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(local read dir,centroid, ...
timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir);

163

164 end
165

166 read hdf4 and plot(interestingfiles,centroid,ang range,timerange);
167 plot coastline(map folder,centroid,ang range);
168

169 isok=true;
170

171 case 5 %disp('5: Plot events in interesting time-space from .txt files (TO ...
VERIFY)');

172

173 dir list=[];
174 dir list=check for folders(read dir txtfiles,dir list);
175 interestingfiles=[]; a=1;
176 corruptfiles=[]; b=1;
177

178 for i=1:size(dir list,1)
179

91



A.6. CODES FOR DATA PROCESSING

180 local read dir=dir list(i,:);
181

182 read txt and plot(local read dir,centroid,ang range,timerange);
183

184 end
185 plot coastline(map folder,centroid,ang range);
186 disp('All events in the interesting sace-time dominum plotted');
187

188 isok=true;
189 case 6
190

191 isok=true;
192 correct hdf urls(urls file,relevant orbits file,corrected urls file write dir);
193 %if you have a list of relevant orbits computed with the py program
194 case 7
195

196 isok=true;
197

198 disp('Have you entered a correct space-time domain?');
199 disp('Write dir for the txt file?');
200 webfilenames2urls(corrected urls file write dir,website filename);
201 %if you have a file taken manually from the data from LIS website
202

203 case 8
204

205 isok=true;
206

207 dir list=[];
208 dir list=check for folders(read dir,dir list);
209 interestingfiles=[]; a=1;
210 corruptfiles=[]; b=1;
211

212 for i=1:size(dir list,1)
213

214 local read dir=dir list(i,:);
215 [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(local read dir,centroid, ...
timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir);

216

217 end
218

219 case 9
220

221 isok = true;
222

223 add FOV to LMA function(day of the pass,HDF file, LMA data dir, ...
ISSLIS datafile);

224

225

226 otherwise
227 n=input('Bad entry. Rechoice option: ');
228

229 end
230

231 end
232

233

234 disp(' ');
235 disp('------------End of execution ----------');
236 disp('Bye!');
237

238

239 %--------------------------------------------------------------------------
240 % ------------------------------FUNCTIONS----------------------------------
241 %--------------------------------------------------------------------------
242 %Found folders where the files are
243 function [dir list]=check for folders(read dir,dir list)
244 disp('Looking for folders with HDF4 files inside');
245 addpath(read dir); %current reading directory
246 folderinfoprev=dir(read dir);
247 folderinfo=folderinfoprev(¬ismember({folderinfoprev.name},{'.','..','.DS Store'})); ...

%.DS Store is a metadata file created by iOS environment

92



A.6. CODES FOR DATA PROCESSING

248

249 aretherefolders=cell2mat({folderinfo.isdir});
250

251 if any(aretherefolders)==true %check if there are folders inside the folder
252

253 namesarray={folderinfo(aretherefolders).name};
254 %gives a cell array but in char
255

256 %foldernames=convertCharsToStrings(namesarray); %lets convert it to string
257

258 for i=1:length(namesarray)
259 % new read dir(i)=fullfile(read dir,foldernames(i));
260 new read dir=(fullfile(read dir,(namesarray{i})));
261

262 [dir list]=check for folders(new read dir,dir list); %if the folder contains ...
more folders, re-check

263

264 end
265

266 else
267

268 dir list=[dir list; read dir]; %if the folder is a file folder save its ...
directory and make it travel through the function

269

270

271 end
272

273 disp('Read directories will be:');
274 for i=1:size(dir list,1)
275 disp(dir list(i,:));
276 end
277 disp(' ');
278 end
279 %Select interesting files from those folders
280 function [interestingfiles, ...

corruptfiles,a,b]=select interestingfiles(read dir,centroid, timerange, ...
ang range,interestingfiles,corruptfiles,a,b,write other info dir)

281

282 %-----------------------------NOTATION------------------------------------%
283 %k=index of current file. all files inside folder, interesting files or not
284 %a=index of file in the interesting files subgroup
285 %b=index for possible cannot-read files inside the folder
286 %i = flash index inside the HDF file
287 %-------------------------------------------------------------------------%
288 disp('Selecting the interesting files from the interesting folders. This might take ...

a while, depending on the n of HDF4 files.');
289 addpath(read dir);
290 folderinfoprev=dir(read dir);
291 folderinfo=folderinfoprev(¬ismember({folderinfoprev.name},{'.','..','.DS Store'})); ...

%.DS Store is a metadata file created by iOS environment
292

293 totalnoffiles=size(folderinfo,1);
294 for k=1:size(folderinfo,1)
295 %get the names of all files inside your data directory
296 filename=folderinfo(k).name;
297

298 fileinfo=hdfinfo(filename);
299 %try to read, the file may be corrupt/empty
300 try
301 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
302

303 catch
304

305 %{
306 disp(['The file ' filename ' with index ' num2str(k) ' could not be read.']);
307 disp(' ');
308 %}
309 corruptfiles(b).Filename=filename;
310 corruptfiles(b).File index=k;
311 b=b+1;
312

313 continue
314 end

93



A.6. CODES FOR DATA PROCESSING

315 viewtime vdata=hdfread(fileinfo.Vgroup.Vgroup.Vdata(2));
316 fovinfo(k).fov coordinates=viewtime vdata{1};
317 fovinfo(k).fovstart=viewtime vdata{2};
318 fovinfo(k).fovend=viewtime vdata{3};
319

320

321 event.coordinates=event vdata{3};
322 event.tai time=event vdata{1};
323

324 time=datetime(1993,1,1)+seconds(event.tai time);
325 lats=event.coordinates(1,:);
326 lons=event.coordinates(2,:);
327

328 ang distances=sqrt((lats-centroid(1)).ˆ2+(lons-centroid(2)).ˆ2);
329

330 space ind=find(ang distances<ang range);%get indexes of space dominum
331 time ind=intersect(find(time>timerange(1)),find(time<timerange(2)));
332 %get indexes of time dominum. Intersect gives common values, so
333 %here its ok because finds gives indexes and we want to find
334 %common indexes
335

336 [view ind]=intersect(space ind,time ind); %relevant elements of each file
337 %intersect both indexes in order to find positios that meet
338 %space-time dominum
339

340 if ¬isempty(view ind)
341

342 interestingfiles(a).Filename=filename;
343 interestingfiles(a).File index=k;
344

345 a=a+1;
346

347 end
348

349

350 %{
351

352 i=1;
353 eventinsiderange=false; eventinsidetime=false;
354 while i≤size(event.coordinates,2) && ¬(eventinsiderange && eventinsidetime)
355 eventinsiderange=false; eventinsidetime=false;
356

357 %check space domain
358 coordinates=event.coordinates(:,i);
359 c distance=sqrt((coordinates(1)-centroid(1))ˆ2+(coordinates(2)-centroid(2))ˆ2);
360

361 if c distance<ang range
362 eventinsiderange=true;
363 end
364

365 %check time domain
366 time=datetime(1993,1,1)+seconds(event.tai time(i));
367 if time<timerange(2) && time>timerange(1)
368 eventinsidetime=true;
369 end
370

371 %if both are positive, this file is interesting, and we dont need to
372 %further loop
373 if eventinsidetime==true && eventinsiderange==true
374

375 interestingfiles(a).Filename=filename;
376 interestingfiles(a).File index=k;
377

378 a=a+1;
379

380 end
381

382 i=i+1;
383

384 end
385 %}
386 disp([num2str(k*100/totalnoffiles) '% of the interesting files checking inside ' ...

read dir ' is done.']);

94



A.6. CODES FOR DATA PROCESSING

387

388 end
389

390 %save FOV info from these interesting files
391 disp(' ');
392 disp('Saving Workspace...');
393 save([write other info dir 'workspace ' num2str(centroid(1)) ' ' ...

num2str(centroid(2)) ' ' datestr(timerange(1),'yymmdd') ' ' ...
datestr(timerange(2),'yymmdd') '.mat'] ,'fovinfo', 'interestingfiles', ...
'corruptfiles' ,'centroid', 'ang range','timerange');

394

395 if ¬isempty(interestingfiles)
396 disp([num2str(length(interestingfiles)) ' interesting files have been found']);
397 else
398 disp(['No interesting files were found in ' read dir]);
399 end
400

401 end
402 %Make .txt for scilab files from the interesting files
403 function w txtfiles 4scilab(interestingfiles,write dir)
404 addpath(write dir);
405

406

407 for k=1:length(interestingfiles)
408

409 filename=interestingfiles(k).Filename;
410 fileinfo=hdfinfo(filename);
411

412 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
413

414 filetextname=[erase(filename,'.hdf'),' event4scilab','.txt'];
415 fullfilename=fullfile(write dir,filetextname);
416

417 tai time=event vdata{1}; %get the instant, for comparison pruposes
418 observe time=event vdata{2};
419 location=event vdata{3};
420 radiance=event vdata{4};
421 footprint=event vdata{5};
422 address=event vdata{6}+1; %add +1 so it doesn't start w/ 0 adrexx
423 parent address=event vdata{7}+1;
424 x pixel=event vdata{8};
425 y pixel=event vdata{9};
426 bg value=event vdata{10};
427 bg radiance=event vdata{11};
428 amplitude=event vdata{12};
429 sza index=event vdata{13};
430 glint index=event vdata{14};
431 approx threshold=event vdata{15};
432 alert flag=event vdata{16};
433 cluster index=event vdata{17};
434 density index=event vdata{18};
435 noise index=event vdata{19};
436 bg value flag=event vdata{20};
437 grouping sequence=event vdata{21};
438

439

440 fileID=fopen(fullfilename,'w');
441 if fileID==-1
442 disp('Could not open file!');
443

444 else
445 fprintf(fileID, 'TAI93 time observe time latitude longitude radiance ...

footprint address parent address x pixel ypixel bg value bg radiance ...
amplitude sza index glint index approx threshold alert flag ...
cluster index density index noise index bg value flag ...
grouping sequence\r\n');

446 for i=1:length(tai time)
447 fprintf(fileID, '%-18.16E %2d %7.3f %7.3f %4.1d %3.1d %4u %3u %3u %3u %4u ...

%3u %3u %3u %3u %3u %1u %2u %2u %3d %1u ...
%6u\r\n',tai time(i),observe time(i),location(1,i),location(2,i),radiance(i),footprint(i),address(i),parent address(i),x pixel(i),y pixel(i),bg value(i),bg radiance(i),amplitude(i),sza index(i),glint index(i),approx threshold(i),alert flag(i),cluster index(i),density index(i),noise index(i),bg value flag(i),grouping sequence(i));

448 end
449

450 fclose(fileID);

95



A.6. CODES FOR DATA PROCESSING

451 disp(['Printing file ' filename ' @ ' write dir]);
452 end
453

454 end
455

456

457

458 end
459 function w txtfiles(interestingfiles,write dir,centroid, ang range,timerange,n)
460 disp('Printing general events .txt files...');
461

462

463 ninterestingfiles=length(interestingfiles); %added constant for % use
464 for k=1:length(interestingfiles) %We will go through all interestingfiles
465 %and search for interestingevents
466 clear area vdata flash vdata group vdata event vdata
467

468 filename=interestingfiles(k).Filename;
469 fileinfo=hdfinfo(filename);
470

471 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
472 event.location=event vdata{3};
473 event.tai time=event vdata{1};
474

475 area vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(1));
476 flash vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(2));
477 group vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(3));
478 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
479

480 event.location=event vdata{3};
481 event.tai time=event vdata{1};
482 event.observe time=event vdata{2};
483 event.radiance=event vdata{4};
484 event.address=event vdata{6}+1; %add +1 so it doesn't start w/ 0 adress
485 event.parent address=event vdata{7}+1;
486 event.bg radiance=event vdata{11};
487

488 event.x pixel=event vdata{8};
489 event.y pixel=event vdata{9};
490 event.bg rad=event vdata{11};
491

492 group.parent address=group vdata{7}+1; %no need to store group.address as ...
they are ordered by number inside each file

493 group.location=group vdata{3};
494

495 flash.parent address=flash vdata{8}+1;
496 flash.location=flash vdata{4};
497

498 area.location=area vdata{4};
499 area.observetime=area vdata{3};
500

501 orbit vdata=hdfread(fileinfo.Vgroup.Vdata(1));
502 orbit id=orbit vdata{1};
503

504

505

506 %We could size this info for printing and plotting, but better not
507 %to change what works
508 time=datetime(1993,1,1)+seconds(event.tai time);
509 lats=event.location(1,:);
510 lons=event.location(2,:);
511

512 ang distances=sqrt((lats-centroid(1)).ˆ2+(lons-centroid(2)).ˆ2);
513

514 space ind=find(ang distances<ang range);%get indexes of space dominum
515 time ind=intersect(find(time>timerange(1)),find(time<timerange(2)));
516 %get indexes of time dominum. Intersect gives common values, so
517 %here its ok because finds gives indexes and we want to find
518 %common indexes
519

520 [view ind]=intersect(space ind,time ind); %relevant elements of each file
521 %intersect both indexes in order to find positios that meet
522 %space-time dominum

96



A.6. CODES FOR DATA PROCESSING

523 starttime=time(min(view ind));
524 starttime=datestr(starttime,'HHMM');
525 endtime=time(max(view ind));
526 endtime=datestr(endtime,'HHMM');
527 %-----------------------------------------------------------
528

529 %prepare for writing interestingevents
530 q=erase(filename,'.hdf');
531 q=erase(q,' NQC');
532 erasethis=[' ' num2str(orbit id,'%05i')];
533 q=erase(q,erasethis);
534 q=erase(q,' SC P0.2');
535 filetextname=[q,' ' starttime, ' ', endtime,' events','.txt'];
536 fullfilename=fullfile(write dir,filetextname);
537 fileID=fopen(fullfilename,'w');
538

539 event properties{1,17}=[];
540 if fileID==-1
541 disp('Could not open file!');
542

543 else
544

545 %disp(['Printing file n' num2str(k) ', ' filetextname ' @ ' write dir]);
546 disp([num2str(k*100/ninterestingfiles) '% of .txt files printed']);
547

548 %Write Header of the file
549

550 fprintf(fileID, 'TAI93 time e lat e lon e radiance group g lat g lon flash ...
f lat f lon area a lat a lon a observe time x pixel y pixel ...
bg radiance\r\n');

551

552

553

554

555

556

557 j=1; %n of intersting events in each file
558 for i=1:length(event.tai time) %HERE THE PROGRAM PRINTS
559

560 eventinsidetime=false;
561 eventinsiderange=false;
562

563 %Is this event interesting?
564 %----------------------------------------------------------------------
565 coordinates=event.location(:,i);
566 c distance=sqrt((coordinates(1)-centroid(1))ˆ2+(coordinates(2)-centroid(2))ˆ2);
567 if c distance<ang range
568 eventinsiderange=true;
569 end
570

571 %check time domain
572 time=datetime(1993,1,1)+seconds(event.tai time(i));
573 if time<timerange(2) && time>timerange(1)
574 eventinsidetime=true;
575 end
576 %----------------------------------------------------------------------
577

578 if eventinsidetime==true && eventinsiderange==true
579

580

581 %Make new clear info with time event, its radiance, adress, group
582 %adress, flash adress and area adress
583

584 tai time=event.tai time(i);
585 event lat=event.location(1,i);
586 event lon=event.location(2,i);
587 radiance=event.radiance(i);
588 bg rad=event.bg rad(i);
589 x pixel=event.x pixel(i);
590 y pixel=event.y pixel(i);
591

592 egroup=event.parent address(i);%his group address
593 group lat=group.location(1,egroup);

97



A.6. CODES FOR DATA PROCESSING

594 group lon=group.location(2,egroup);
595

596 eflash=group.parent address(egroup);%his flash address
597 flash lat=flash.location(1,eflash);
598 flash lon=flash.location(2,eflash);
599

600 earea=flash.parent address(eflash);%his area address
601 area lat=area.location(1,earea);
602 area lon=area.location(2,earea);
603 area observetime=area.observetime(earea);
604

605 fprintf(fileID, '%-18.16E %7.3f %7.3f %4.1d %u %7.3f %7.3f %u %7.3f %7.3f ...
%u %7.3f %7.3f %u %u %u ...
%u\r\n',tai time,event lat,event lon,radiance,egroup,group lat,group lon,eflash,flash lat,flash lon,earea,area lat,area lon,area observetime,x pixel,y pixel,bg rad);

606

607 a={ ...
tai time,event lat,event lon,radiance,egroup,group lat,group lon,eflash,flash lat,flash lon,earea,area lat,area lon,area observetime,x pixel,y pixel,bg rad};

608 event properties(j,:)=a;
609 %the group, event flash and area address will not be ordered nor
610 %listed from 1 to X, maybe from 543 to 987. That's because the
611 %parent address of an event is reset in each file (1-to-end), but
612 %when we recheck if an event is inside the spacew-time dominum we
613 %will eliminate, for example, all events that were part of de
614 %groups 1 to 453.
615

616 if isempty(event properties{j,4})
617 disp('Radiance empty. code line 598 aprox');
618 end
619

620 j=j+1;
621

622

623 end
624

625

626 end
627

628 fclose(fileID);
629

630

631 end
632

633

634 if n==2
635 disp('Plotting events form the current file...');
636 plot events(event properties,centroid,ang range);
637

638

639 end
640 end
641

642 end
643

644 function read hdf4 and plot(interestingfiles,centroid,ang range,timerange)
645

646 disp('Reading data from interestingfiles and plotting...');
647 for k=1:length(interestingfiles) %We will go through all interestingfiles
648 %and search for interestingevents
649

650 eventinsiderange=false;
651 eventinsidetime=false;
652

653

654 filename=interestingfiles(k).Filename;
655 fileinfo=hdfinfo(filename);
656

657 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
658 event.location=event vdata{3};
659 event.tai time=event vdata{1};
660

661 area vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(1));
662 flash vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(2));
663 group vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(3));

98



A.6. CODES FOR DATA PROCESSING

664 event vdata=hdfread(fileinfo.Vgroup.Vgroup.Vgroup.Vdata(4));
665

666 event.location=event vdata{3};
667 event.tai time=event vdata{1};
668 event.tai time=event vdata{1};
669 event.observe time=event vdata{2};
670 event.radiance=event vdata{4};
671 event.address=event vdata{6}+1; %add +1 so it doesn't start w/ 0 adress
672 event.parent address=event vdata{7}+1;
673 event.bg radiance=event vdata{11};
674

675

676 group.parent address=group vdata{7}+1; %no need to store group.address as ...
they are ordered by number inside each file

677 group.location=group vdata{3};
678

679 flash.parent address=flash vdata{8}+1;
680 flash.location=flash vdata{4};
681

682 area.location=area vdata{4};
683 area.observetime=area vdata{3};
684

685 %prepare for writing interestingevents
686

687

688 %Write Header of the file
689

690

691 event properties{1,14}=[];
692 for i=1:length(event.tai time)
693

694 %Is this event interesting?
695 %----------------------------------------------------------------------
696 coordinates=event.location(:,i);
697 c distance=sqrt((coordinates(1)-centroid(1))ˆ2+(coordinates(2)-centroid(2))ˆ2);
698 if c distance<ang range
699 eventinsiderange=true;
700 end
701

702 %check time domain
703 time=datetime(1993,1,1)+seconds(event.tai time(i));
704 if time<timerange(2) && time>timerange(1)
705 eventinsidetime=true;
706 end
707 %----------------------------------------------------------------------
708 if eventinsidetime==true && eventinsiderange==true
709

710

711 %Make new clear info with time event, its radiance, adress, group
712 %adress, flash adress and area adress
713

714 tai time=event.tai time(i);
715 event lat=event.location(1,i);
716 event lon=event.location(2,i);
717 radiance=event.radiance(i);
718

719 egroup=event.parent address(i);%his group address
720 group lat=group.location(1,egroup);
721 group lon=group.location(2,egroup);
722

723 eflash=group.parent address(egroup);%his flash address
724 flash lat=flash.location(1,eflash);
725 flash lon=flash.location(2,eflash);
726

727 earea=flash.parent address(eflash);%his area address
728 area lat=area.location(1,earea);
729 area lon=area.location(2,earea);
730 area observetime=area.observetime(earea);
731

732 a={ ...
tai time,event lat,event lon,radiance,egroup,group lat,group lon,eflash,flash lat,flash lon,earea,area lat,area lon,area observetime};

733 event properties(i,:)=a;
734 end

99



A.6. CODES FOR DATA PROCESSING

735

736 eventinsiderange=false;
737 eventinsidetime=false;
738 end
739

740 plot events(event properties,centroid,ang range);
741 end
742

743

744

745 end
746

747 function read txt and plot(read dir,centroid,ang range,timerange)
748

749 addpath(read dir);
750 folderinfoprev=dir(read dir);
751 folderinfo=folderinfoprev(¬ismember({folderinfoprev.name},{'.','..','.DS Store'})); ...

%.DS Store is a metadata file created by iOS environment
752

753 for k=1:size(folderinfo,1)
754 filename=folderinfo(k).name;
755

756 data=import event LIS txtfiles(filename);
757 event properties=[];
758 time=datetime(1993,1,1)+seconds(data(:,1));
759 lats=data(:,2);
760 lons=data(:,3);
761

762 ang distances=sqrt((lats-centroid(1)).ˆ2+(lons-centroid(2)).ˆ2);
763

764 space ind=find(ang distances<ang range);
765 time ind=intersect(find(time>timerange(1)),find(time<timerange(2)));
766

767 view ind=intersect(space ind,time ind); %relevant elements of each file
768

769 event properties(:,:)=data(view ind,:);
770

771 plot events(event properties,centroid,ang range);
772

773 %{
774 for i=1:size(data,1)
775 eventinsiderange=false; %for each element we initialise inside checking
776 eventinsidetime=false;
777

778 coordinates=[data(i,2),data(i,3)];
779 c distance=sqrt((coordinates(1)-centroid(1))ˆ2+(coordinates(2)-centroid(2))ˆ2);
780 if c distance<ang range
781 eventinsiderange=true;
782 end
783

784 %check time domain
785 time=datetime(1993,1,1)+seconds(data(i,1));
786 if time<timerange(2) && time>timerange(1)
787 eventinsidetime=true;
788 end
789

790 if eventinsiderange==true && eventinsidetime==true
791 event properties(i,:)=data(i,:);
792 end
793

794

795 end
796

797

798 %call this function for each file. If the .txt file contains
799 %interesting events or not doesn't matter. If event properties is
800 %empty the function plot events will simply do nothing.
801 %This doesn't happen with HDF4 files because in that case we
802 %first search for interesting files that they already contain
803 %interesting information.
804 %}
805

806 end

100



A.6. CODES FOR DATA PROCESSING

807 end
808

809 function correct hdf urls(urls file,relevant orbits file,corrected urls file dir)
810

811 disp('Reading urls and relevant orbits txt file...');
812 relevant orbits=import relevant orbits(relevant orbits file);
813 allurls=import urls times(urls file);
814 urls=import GHRCURLs(urls file);
815

816 disp('Reading URLs timing...');
817 for i=1:length(allurls)
818

819 date=num2str(allurls(i,1));
820 year=str2double(date(1:4));
821 month=str2double(date([5 6]));
822 day=str2double(date([7 8]));
823 orbit days from urls(i)=datetime(year,month,day);
824

825

826 end
827

828 days that LIS passes the zone=relevant orbits(:,1);
829

830 unique days LIS passes=table2cell(unique(days that LIS passes the zone));
831

832

833 disp('Checking URLs coincidence with relevant orbits...');
834 eliminate indexes=[];
835 for i=1:size(orbit days from urls,2)
836

837 finding=false;
838 for j=1:size(unique days LIS passes,1)
839 if orbit days from urls(i) == unique days LIS passes{j,1}
840

841 finding=true;
842

843 end
844 end
845

846 if finding==false
847 try
848

849 eliminate indexes=[eliminate indexes; i];
850

851 catch
852

853 disp('error line 673');
854 end
855 end
856

857 disp([num2str(i*100/size(orbit days from urls,2)) '% checked.']);
858

859 end
860

861 disp(['Found ' num2str(length(eliminate indexes)) ' non-relevant URLs']);
862 urls(eliminate indexes,:)=[];
863

864 fullfilename=fullfile(corrected urls file dir,'interesting URLs.txt');
865 writetable(urls,fullfilename);
866 disp(['Urls .txt file written at: ' corrected urls file dir]);
867

868

869 end
870 %plotters
871 function plot coastline(read dir,centroid,ang range)
872

873 load coastlines;
874 addpath(read dir);
875 disp('Plotting coastline...');
876

877

878 latlim=[ centroid(1)-ang range centroid(1)+ang range ];
879 lonlim=[centroid(2)-ang range centroid(2)+ang range];

101



A.6. CODES FOR DATA PROCESSING

880

881 tf=ingeoquad(coastlat,coastlon,latlim,lonlim);
882 lats=coastlat(tf);
883 lons=coastlon(tf);
884

885 hold on;
886 plot(lons,lats,'k-');
887

888

889 end
890 function plot events(event properties,centroid,ang range)
891

892 hold on;
893

894 if ¬isempty(event properties)
895

896 if iscell(event properties)
897

898 size=cell2mat(event properties(:,4));
899 color=cell2mat(event properties(:,5));
900 lats=cell2mat(event properties(:,2));
901 lons=cell2mat(event properties(:,3));
902

903

904

905 else
906

907 size=event properties(:,4);
908 color=event properties(:,5);
909 lats=event properties(:,2);
910 lons=(event properties(:,3));
911 end
912

913 plot interesting area(centroid,ang range);
914 scatter(lons,lats,size,color,'x');
915 xlabel('Longitude [deg.]');
916 ylabel('Latitude [deg.]');
917 grid on;
918 title('Events detected. Size -> Radiance. Color -> group');
919 axis equal;
920

921

922 else
923 disp('Event properties vector is empty!');
924 end
925

926

927 end
928 function plot interesting area(centroid,r)
929 x=centroid(2);
930 y=centroid(1);
931

932 hold on;
933 grid on;
934

935 th = 0:pi/50:2*pi;
936 xunit = r * cos(th) + x;
937 yunit = r * sin(th) + y;
938 plot(xunit, yunit,'k--','LineWidth',0.01);
939 %plot(x,y,'kx','LineWIdth',0.01);
940 axis equal;
941

942 end
943

944 %LMA FOV correction. Made by Prof. Montanya, J.
945 %adapted, updated and assembled to the general code by Fontcuberta .
946

947 function add FOV to LMA function(day of the pass, HDF, LMA data dir, LIS data file)
948 % J. Montanya
949 %
950 % Adds a column (Nbr 8) to LMA data where 1 = that source was in the FOV
951 % 0 = that source was NOT in the FOV
952 %

102



A.6. CODES FOR DATA PROCESSING

953 %
954 % Input: HDF of the pass
955 % LMA file from the Batch program
956 % ISS LIS.mat (ISS LIS data file)
957 %
958 % Output: LMA file in 'mat' format ith the extra columns
959 %
960 % The program uses the function check ISS FOV()
961 format long g
962

963 % Troba HH:MM:SS dels llamps de ISS per tal de saber franja horaria
964 % (p.e. ho faig servir per el batch program del LMA (nomes precessar el
965 % fitxer de 10 minuts que toca)
966

967 % 20181018
968 % dia=20181018;
969 % HDF=('C:\Joan\EUMETSAT\1 DE\HDF\ISS LIS SC P0.2 20181018 NQC 10190.hdf');
970 % LMA=load('C:\Joan\EUMETSAT\1 DE\LMA\181018.txt');
971

972 % 20180918
973 %dia=20180918;
974 %HDF=('C:\Joan\EUMETSAT\1 DE\HDF\ISS LIS SC P0.2 20181018 NQC 10190.hdf');
975 %LMA=load('C:\Joan\EUMETSAT\1 DE\LMA\181018.txt');
976

977 dia = ['20', day of the pass];
978

979 disp('Loading LMA and LIS data...');
980

981 LMA = load([LMA data dir, num2str(day of the pass), '.txt']);
982 LIS data=load(LIS data file);
983 LIS raw=LIS data.data;
984 clear LIS data
985 disp('Done!');
986

987 % IMPORTANT: Anar al final a posar el nom del fitxer de sortida
988 %UPDATE: Solucionat (Icar)
989

990 [X,Y]=find(LIS raw(:,1)==dia);
991 LIS=LIS raw(X,:);
992

993 clear X Y LIS raw
994

995

996 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
997 %%%% First check for all LMA sources is ISS-LIS was within FOV %
998 %%%% Sets a new column (Nbr 8) with 1=YES in FOV 0: NO in FOV %
999 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1000

1001 [fil,col]=size(LMA);
1002

1003

1004

1005

1006 % Read HDF file used to determine if each LMA is within FOV
1007 disp('Reading selected HDF file...');
1008

1009

1010 ISS info=hdfinfo(HDF); % Read HDF file
1011 ISS data=hdfread(ISS info.Vgroup.Vgroup.Vdata(2)); % Read Viewtime ...

location, start time, end time, duration
1012

1013 Location=cell2mat(ISS data(1,1,1)); % Read location LAT LON of the ...
0.5x0.5 center of grid cells

1014 Location=Location'; %
1015 Location=double(Location); % Change to double in order to ...

use later
1016

1017

1018

1019 % Time start : obtains the Start Times of the FOV for each 0.5x0.5 grid
1020 Time start TAI= cell2mat(ISS data(2,1)); % TAI 93 start time
1021 time=seconds(Time start TAI); % Converts times to format seconds

103



A.6. CODES FOR DATA PROCESSING

1022 TAI UTC = seconds(10) ; % This is the delay that matches ...
with the ISS LIS data of the GHRC website

1023 time = (time - TAI UTC);
1024

1025 date = time + datenum([1993,1,1]);
1026 date = datenum(date);
1027 myDateTime = datetime(date, 'ConvertFrom', 'datenum');
1028 myDateTime.Format = 'dd-MMM-uuuu HH:mm:ss.SSSSS'; % Format of the ...

myDateTime
1029

1030 % Creates the Start Time in seconds of the day (UTC)
1031 MyTime start = hour(myDateTime)*3600 + ...

minute(myDateTime)*60+second(myDateTime); % Time in seconds of the day UTC
1032

1033 % Get the day in numeric format
1034 Date dia= year(myDateTime(1,1))*10000+month(myDateTime(1,1))*100 ...

+day(myDateTime(1,1));
1035

1036 clear time date myDateTime checkDate
1037

1038

1039 % Time end : obtains the End Times of the FOV for each 0.5x0.5 grid
1040 Time end TAI= cell2mat(ISS data(3,1)); % TAI 93 end time
1041 time=seconds(Time end TAI);
1042 TAI UTC = seconds(10) ;
1043 time = (time - TAI UTC);
1044

1045 date = time + datenum([1993,1,1]);
1046 date = datenum(date);
1047 myDateTime = datetime(date, 'ConvertFrom', 'datenum');
1048 myDateTime.Format = 'dd-MMM-uuuu HH:mm:ss.SSSSS';
1049

1050 % Creates the End Time in seconds of the day (UTC)
1051 MyTime end = hour(myDateTime)*3600 + ...

minute(myDateTime)*60+second(myDateTime); % Time in seconds of the day UTC
1052

1053 % Duration of observation when the ISS LIS is withtin the FOV of the ...
0.5x0.5 grid cell %%%%

1054

1055 Duration= cell2mat(ISS data(4,1)); % Duration in seconds
1056

1057

1058 % We obtained: Location MyTime end MyTime start
1059

1060

1061

1062 disp('Done!');
1063

1064 disp('Checking which sources were inside LIS FOV...')
1065 for i=1:1:fil
1066

1067 time LMA=LMA(i,2);
1068 LATLMA=LMA(i,4);
1069 LONLMA=LMA(i,5);
1070

1071 FOV = check ISS FOV(time LMA,LATLMA,LONLMA,Location,MyTime start,MyTime end);
1072

1073 if FOV==1
1074 LMA(i,8)=1;
1075 end
1076

1077 if FOV==0
1078 LMA(i,8)=0;
1079 end
1080

1081 clear FOV LATLMA LONLMA time lma
1082

1083 %i
1084

1085 end
1086 disp('Done!');
1087

1088

104



A.6. CODES FOR DATA PROCESSING

1089

1090

1091

1092

1093 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1094 % PART 2: Adds Column 9 with the ID (also for the sources classified as
1095 % noise)
1096 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1097 disp('Adding a 9th column to the LMA data with the ID...');
1098 disp(' Start to relate LMA noisy sources with the flash ID')
1099 clear i X Y FOV fil col
1100

1101

1102 LMA(:,9)=LMA(:,1); % Firt copy the flash ID of column 1 to column 9
1103 % that is beacuse sources with ID not 0 will not be
1104 % analyzed
1105

1106 [fil,col]=size(LMA);
1107

1108

1109

1110 End ID flash=max(LMA(:,1));
1111

1112 for i=1:1:End ID flash
1113

1114 ID=i;
1115

1116 [X,Y]=find(LMA(:,1)==ID);
1117

1118 TimeLMAstartID=min(LMA(X(:,1),2));
1119 TimeLMAendID=max(LMA(X(:,1),2));
1120

1121 clear X Y
1122

1123 [X,Y]=find(LMA(:,1)==0 & LMA(:,2)≥TimeLMAstartID & LMA(:,2)≤TimeLMAendID );
1124

1125 LMA(X,9)=ID;
1126

1127 clear X Y ID
1128

1129

1130

1131

1132 end
1133 disp('Done!');
1134

1135 disp(['Writing data at ' LMA data dir '... ']);
1136

1137 LMA txt filename = [LMA data dir, 'LMA FOV ', num2str(day of the pass), ' wFOV'];
1138

1139 save([LMA txt filename '.mat'],'LMA');
1140

1141 save([LMA txt filename '.txt'],'LMA','-ascii');
1142 disp('Done!');
1143

1144 end
1145

1146

1147 function FOV = check ISS FOV(time LMA,LATLMA,LONLMA,Location,MyTime start,MyTime end)
1148

1149 %
1150 % Cheks if a source is within the fiel of view
1151 %
1152 % Returns:
1153 %
1154 % FOV =1 if LMA source is within fov
1155 % FOV = 0 if LMA source is not within fov
1156 %
1157

1158

1159

1160

1161

105



A.6. CODES FOR DATA PROCESSING

1162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1163 % Check if LMA flash could be seen by the ISS LIS
1164

1165 % Flash LMA location
1166 LAT LMA=LATLMA;
1167 LON LMA=LONLMA;
1168

1169 %TimeLMA= 3* 3600 + 37* 60 + 34.9; % Time of the LMA flash
1170 TimeLMA=time LMA;
1171

1172 % Finds the closest grid square of 0.5 x0.5 in the FOV of ISS at
1173 % the LAT LON of the LMA flash location
1174 % a difference of 0.25 is allowed
1175 clear X Y
1176 [X,Y]=find( Location(:,1)<(LAT LMA+0.25) & Location(:,1)>(LAT LMA-0.25) & ...

Location(:,2)<(LON LMA+0.25) & Location(:,2)>(LON LMA-0.25) ) ;
1177

1178 [fX,cX]=size(X);
1179

1180 % If one or several 0.5x0.5 square grids are found
1181 % selects the absolute close and then checks if the time
1182 % of the LMA flash was within the start and end time of the
1183 % ISS FOV over that square grid.
1184

1185

1186

1187

1188

1189

1190 if isempty(X)
1191

1192 %disp('No Location is found !');
1193 FOV=0;
1194 else
1195

1196 if fX==1 | Location(X(1,1),:)==Location(X,:)
1197

1198 % Pot passar(ho he comprovat) que hi ha varies
1199 % locations amb el mateix FOV de LIS, es a dir varis
1200 % Location que tenen exactament la mateixa LAT LON
1201 % i que compleixen amb distancia amb LAT/LON LMA.
1202

1203 Location(X,:);
1204

1205 MyTime start(1,X);
1206 MyTime end(1,X);
1207

1208 % Diff Location= abs(Location(X,1)-LAT LMA) + ...
abs(Location(X,2)-LON LMA) ;

1209

1210 % [MinLoc,IndexMinLocation]=min(Diff Location(:,1));
1211

1212 % Index=X(IndexMinLocation);
1213

1214 FOV = 0;
1215

1216 for ii=1:fX
1217

1218 if TimeLMA≥MyTime start(1,X(ii,1)) && TimeLMA ≤MyTime end(1,X(ii,1))
1219 %disp('The source WAS within the field of view of the ISS');
1220 FOV=1;
1221

1222 end
1223

1224 end
1225

1226 end
1227

1228 if Location(X(1,1),:)6=Location(X,:)
1229

1230 disp('Source vista per varies locations (FOV de 0.5x0.5 ) diferents ...
!'); % En el cas que una source estigui a multiples Location ...
diferents de LIS seria un error i para el programa

106



A.6. CODES FOR DATA PROCESSING

1231 quit
1232

1233 end
1234

1235 end
1236 end
1237

1238

1239

1240

1241

1242

1243 %txt reading. Made by MATLAB
1244 function data = import event LIS txtfiles(filename)
1245 %IMPORTFILE Import numeric data from a text file as a matrix.
1246 % DATA = IMPORTFILE(FILENAME) Reads data from text file FILENAME for the
1247 % default selection.
1248 %
1249 % DATA = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows
1250 % STARTROW through ENDROW of text file FILENAME.
1251 %
1252 % Example:
1253 % data = importfile('ISS LIS SC P0.2 20180429 NQC 07514 event.txt', 2, 47);
1254 %
1255 % See also TEXTSCAN.
1256

1257 % Auto-generated by MATLAB on 2018/07/25 13:04:15
1258

1259 % Initialize variables.
1260 delimiter = {' ',' '};
1261 if nargin≤2
1262 startRow = 2;
1263 endRow = inf;
1264 end
1265

1266 % Format for each line of text:
1267 % column1: double (%f)
1268 % column2: double (%f)
1269 % column3: double (%f)
1270 % column4: double (%f)
1271 % column5: double (%f)
1272 % column6: double (%f)
1273 % column7: double (%f)
1274 % column8: double (%f)
1275 % column9: double (%f)
1276 % column10: double (%f)
1277 % column11: double (%f)
1278 % column12: double (%f)
1279 % column13: double (%f)
1280 % column14: double (%f)
1281 % For more information, see the TEXTSCAN documentation.
1282 formatSpec = '%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[ˆ\n\r]';
1283

1284 % Open the text file.
1285 fileID = fopen(filename,'r');
1286

1287 % Read columns of data according to the format.
1288 % This call is based on the structure of the file used to generate this
1289 % code. If an error occurs for a different file, try regenerating the code
1290 % from the Import Tool.
1291 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1292 for block=2:length(startRow)
1293 frewind(fileID);
1294 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1295 for col=1:length(dataArray)
1296 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1297 end
1298 end
1299

107



A.6. CODES FOR DATA PROCESSING

1300 % Close the text file.
1301 fclose(fileID);
1302

1303 %Post processing for unimportable data.
1304 %No unimportable data rules were applied during the import, so no post
1305 % processing code is included. To generate code which works for
1306 % unimportable data, select unimportable cells in a file and regenerate the
1307 % script.
1308

1309 % Create output variable
1310 data = [dataArray{1:end-1}];
1311 end
1312

1313 function GHRCURLs = import urls times(filename, startRow, endRow)
1314 %IMPORTFILE Import numeric data from a text file as a matrix.
1315 % GHRCURLS = IMPORTFILE(FILENAME) Reads data from text file FILENAME for
1316 % the default selection.
1317 %
1318 % GHRCURLS = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows
1319 % STARTROW through ENDROW of text file FILENAME.
1320 %
1321 % Example:
1322 % GHRCURLs = importfile('GHRC URLs.txt', 1, 433);
1323 %
1324 % See also TEXTSCAN.
1325

1326 % Auto-generated by MATLAB on 2018/07/23 16:23:22
1327

1328 % Initialize variables.
1329 delimiter = {' ','.'};
1330 if nargin≤2
1331 startRow = 1;
1332 endRow = inf;
1333 end
1334

1335 % Read columns of data as text:
1336 % For more information, see the TEXTSCAN documentation.
1337 formatSpec = '%*s%*s%*s%*s%*s%*s%*s%*s%s%s%s%[ˆ\n\r]';
1338

1339 % Open the text file.
1340 fileID = fopen(filename,'r');
1341

1342 % Read columns of data according to the format.
1343 % This call is based on the structure of the file used to generate this
1344 % code. If an error occurs for a different file, try regenerating the code
1345 % from the Import Tool.
1346 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1347 for block=2:length(startRow)
1348 frewind(fileID);
1349 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1350 for col=1:length(dataArray)
1351 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1352 end
1353 end
1354

1355 %Close the text file.
1356 fclose(fileID);
1357

1358 % Convert the contents of columns containing numeric text to numbers.
1359 % Replace non-numeric text with NaN.
1360 raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
1361 for col=1:length(dataArray)-1
1362 raw(1:length(dataArray{col}),col) = mat2cell(dataArray{col}, ...

ones(length(dataArray{col}), 1));
1363 end
1364 numericData = NaN(size(dataArray{1},1),size(dataArray,2));
1365

1366 for col=[1,2,3]
1367 % Converts text in the input cell array to numbers. Replaced non-numeric

108



A.6. CODES FOR DATA PROCESSING

1368 % text with NaN.
1369 rawData = dataArray{col};
1370 for row=1:size(rawData, 1)
1371 % Create a regular expression to detect and remove non-numeric prefixes and
1372 % suffixes.
1373 regexstr = ...

'(?<prefix>.*?)(?<numbers>([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
1374 try
1375 result = regexp(rawData(row), regexstr, 'names');
1376 numbers = result.numbers;
1377

1378 % Detected commas in non-thousand locations.
1379 invalidThousandsSeparator = false;
1380 if numbers.contains(',')
1381 thousandsRegExp = 'ˆ\d+?(\,\d{3})*\.{0,1}\d*$';
1382 if isempty(regexp(numbers, thousandsRegExp, 'once'))
1383 numbers = NaN;
1384 invalidThousandsSeparator = true;
1385 end
1386 end
1387 % Convert numeric text to numbers.
1388 if ¬invalidThousandsSeparator
1389 numbers = textscan(char(strrep(numbers, ',', '')), '%f');
1390 numericData(row, col) = numbers{1};
1391 raw{row, col} = numbers{1};
1392 end
1393 catch
1394 raw{row, col} = rawData{row};
1395 end
1396 end
1397 end
1398

1399

1400 % Exclude columns with non-numeric cells
1401 I = ¬all(cellfun(@(x) (isnumeric(x) | | islogical(x)) && ¬isnan(x),raw),1); % Find ...

columns with non-numeric cells
1402 raw(:,I) = [];
1403

1404 %Initialize column outputs.
1405 columnIndices = cumsum(¬I);
1406

1407 % Create output variable
1408 GHRCURLs = cell2mat(raw);
1409

1410 end
1411

1412 function relevantorbits = import relevant orbits(filename)
1413 %IMPORTFILE Import numeric data from a text file as a matrix.
1414 % RELEVANTORBITS = IMPORTFILE(FILENAME) Reads data from text file
1415 % FILENAME for the default selection.
1416 %
1417 % RELEVANTORBITS = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
1418 % rows STARTROW through ENDROW of text file FILENAME.
1419 %
1420 % Example:
1421 % relevantorbits = importfile('relevant orbits.txt', 1, 1021);
1422 %
1423 % See also TEXTSCAN.
1424

1425 % Auto-generated by MATLAB on 2018/07/23 15:13:23
1426

1427 % Initialize variables.
1428 delimiter = ' ';
1429 if nargin≤2
1430 startRow = 1;
1431 endRow = inf;
1432 end
1433

1434 % Format for each line of text:
1435 % column1: datetimes (%{yyyy-MM-dd}D)
1436 % column2: datetimes (%{HH:mm:ss}D)
1437 % For more information, see the TEXTSCAN documentation.
1438 formatSpec = '%{yyyy-MM-dd}D%{HH:mm:ss}D%[ˆ\n\r]';

109



A.6. CODES FOR DATA PROCESSING

1439

1440 % Open the text file.
1441 fileID = fopen(filename,'r');
1442

1443 % Read columns of data according to the format.
1444 % This call is based on the structure of the file used to generate this
1445 % code. If an error occurs for a different file, try regenerating the code
1446 % from the Import Tool.
1447 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1448 for block=2:length(startRow)
1449 frewind(fileID);
1450 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1451 for col=1:length(dataArray)
1452 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1453 end
1454 end
1455

1456 % Close the text file.
1457 fclose(fileID);
1458

1459 % Post processing for unimportable data.
1460 % No unimportable data rules were applied during the import, so no post
1461 % processing code is included. To generate code which works for
1462 % unimportable data, select unimportable cells in a file and regenerate the
1463 % script.
1464

1465 % Create output variable
1466 relevantorbits = table(dataArray{1:end-1}, 'VariableNames', {'year day','hour'});
1467

1468 % For code requiring serial dates (datenum) instead of datetime, uncomment
1469 % the following line(s) below to return the imported dates as datenum(s).
1470

1471 % relevantorbits.year day=datenum(relevantorbits.year day);
1472 % relevantorbits.hour=datenum(relevantorbits.hour);
1473 end
1474 function GHRCURLs = import GHRCURLs(filename)
1475 %IMPORTFILE Import numeric data from a text file as a matrix.
1476 % GHRCURLS = IMPORTFILE(FILENAME) Reads data from text file FILENAME for
1477 % the default selection.
1478 %
1479 % GHRCURLS = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows
1480 % STARTROW through ENDROW of text file FILENAME.
1481 %
1482 % Example:
1483 % GHRCURLs = importfile('GHRC URLs.txt', 1, 433);
1484 %
1485 % See also TEXTSCAN.
1486

1487 % Auto-generated by MATLAB on 2018/07/23 15:39:58
1488

1489 % Initialize variables.
1490 delimiter = {''};
1491 if nargin≤2
1492 startRow = 1;
1493 endRow = inf;
1494 end
1495

1496 % Format for each line of text:
1497 % column1: text (%s)
1498 % For more information, see the TEXTSCAN documentation.
1499 formatSpec = '%s%[ˆ\n\r]';
1500

1501 % Open the text file.
1502 fileID = fopen(filename,'r');
1503

1504 % Read columns of data according to the format.
1505 % This call is based on the structure of the file used to generate this
1506 % code. If an error occurs for a different file, try regenerating the code
1507 % from the Import Tool.

110



A.6. CODES FOR DATA PROCESSING

1508 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...
delimiter, 'TextType', 'string', 'HeaderLines', startRow(1)-1, 'ReturnOnError', ...
false, 'EndOfLine', '\r\n');

1509 for block=2:length(startRow)
1510 frewind(fileID);
1511 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'TextType', 'string', 'HeaderLines', ...
startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1512 dataArray{1} = [dataArray{1};dataArrayBlock{1}];
1513 end
1514

1515 % Close the text file.
1516 fclose(fileID);
1517

1518 %Post processing for unimportable data.
1519 % No unimportable data rules were applied during the import, so no post
1520 % processing code is included. To generate code which works for
1521 % unimportable data, select unimportable cells in a file and regenerate the
1522 % script.
1523

1524 % Create output variable
1525 GHRCURLs = table(dataArray{1:end-1}, 'VariableNames', ...

{'httpsghrcnsstcnasagovpublisissdatasciencenqchdf20170401ISS LIS '});
1526

1527 end
1528

1529 function webfilenames2urls(write dir,read filename)
1530

1531 website='https://ghrc.nsstc.nasa.gov/pub/lis/iss/data/science/nqc/hdf/';
1532

1533 files= import web filenames(read filename);
1534 %urls generation
1535 disp('Creating url vector...');
1536

1537 write filename=fullfile(write dir,'interesting URLs.txt');
1538 fileID=fopen(write filename,'w');
1539

1540 disp(['Printing @ ' write dir]);
1541 for i=1:size(files,1)
1542

1543 name=char(files{i,1});
1544 year=name([17:20]);
1545 month=name([21 22]);
1546 day=name([23 24]);
1547 url(i,:)=[website year '/' month day '/' name];
1548 fprintf(fileID,[url(i,:) '\r\n']);
1549

1550 end
1551 fclose(fileID);
1552 end
1553 function files = import web filenames(filename)
1554 %IMPORTFILE Import numeric data from a text file as a matrix.
1555 % FILES = IMPORTFILE(FILENAME) Reads data from text file FILENAME for the
1556 % default selection.
1557 %
1558 % FILES = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows
1559 % STARTROW through ENDROW of text file FILENAME.
1560 %
1561 % Example:
1562 % files = importfile('filenames website.txt', 2, 30);
1563 %
1564 % See also TEXTSCAN.
1565

1566 % Auto-generated by MATLAB on 2018/07/24 10:17:13
1567

1568 % Initialize variables.
1569 delimiter = {'\t','?','[',']',' '};
1570 if nargin≤2
1571 startRow = 2;
1572 endRow = inf;
1573 end
1574

1575 %Format for each line of text:

111



A.6. CODES FOR DATA PROCESSING

1576 % column1: text (%s)
1577 % column2: datetimes (%{MMM}D)
1578 % column3: datetimes (%{dd}D)
1579 % For more information, see the TEXTSCAN documentation.
1580 formatSpec = '%s%{MMM}D%{dd}D%*s%*s%*s%*s%*s%*s%[ˆ\n\r]';
1581

1582 % Open the text file.
1583 fileID = fopen(filename,'r');
1584

1585 % Read columns of data according to the format.
1586 % This call is based on the structure of the file used to generate this
1587 % code. If an error occurs for a different file, try regenerating the code
1588 % from the Import Tool.
1589 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1590 for block=2:length(startRow)
1591 frewind(fileID);
1592 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1593 for col=1:length(dataArray)
1594 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1595 end
1596 end
1597

1598 % Close the text file.
1599 fclose(fileID);
1600

1601 % Post processing for unimportable data.
1602 % No unimportable data rules were applied during the import, so no post
1603 % processing code is included. To generate code which works for
1604 % unimportable data, select unimportable cells in a file and regenerate the
1605 % script.
1606

1607 % Create output variable
1608 files = table(dataArray{1:end-1}, 'VariableNames', {'name','month','month day'});
1609

1610 % For code requiring serial dates (datenum) instead of datetime, uncomment
1611 % the following line(s) below to return the imported dates as datenum(s).
1612

1613 % files.month=datenum(files.month);
1614 % files.month day=datenum(files.month day);
1615

1616 end

112



A.6. CODES FOR DATA PROCESSING

A.6.2 LIS vs LMA comparator.m

1 %////////////////////////////////////////////
2 %// LIS HDF4 data processor //
3 %// MATLAB converter //
4 %// Universitat Politecnica de Catalunya //
5 %// icar.fontcuberta@gmail.com //
6 %// //
7 %// Requires: MATLAB R2017b at least //
8 %// //
9 %// //

10 %////////////////////////////////////////////
11

12

13

14 %% Program Presets
15 clear all;
16 close all;
17 clc;
18

19 % To use the program:
20 %1. select LMA filename of the day you want to study the sources
21 %2. Set the "examined day" variable as the same day.
22 %3. Set timestep
23 %4. Set plotting options: histograms/plotting (sources in
24 %time)/sources+events in time
25 %5.RUN
26

27 disp("########## START OF EXECUTION ##########");
28 %{
29 sources data file = 'C:\Users\icar\Google ...

Drive\LIGHTNING\10minPeriodData\1710181700\171018 1700.txt';
30 events data file = ...

'C:\Users\icar\Desktop\LIS HDF files\Ebre\Ebre txt\ISS LIS 20171018 1701 1701 events.txt';
31 read workspace dir = ...

'C:\Users\icar\Desktop\LIS HDF files\Ebre\Ebre other info\workspace 40.7 0.7 171018 180713.mat';
32 corrected file='C:\Users\icar\Desktop\txt4database\corrected file.txt';
33 %}
34 LIS total filename = '/Users/Icar/Google Drive/TFG/LMA LIS DATA/ISS LIS.txt';
35 LMA filename = '/Users/Icar/Google Drive/TFG/LMA LIS DATA/LMA FOV 20171018 pass1.txt';
36 examined day = datetime(2017,10,18); %used to get the LMA date correctly
37

38

39 disp("###Remember to set the examined day to the one from where the LMA is coming");
40

41 timestep = 2e-3; %sec
42

43 %{
44 % addpath('C:\Users\icar\Desktop\LIS HDF files\Ebre\Ebre txt\');
45 % addpath('C:\Users\icar\Desktop\Data from scilab\');
46

47 %starttimes/endtimes
48 %ebre
49 %[18-Oct-2017 10:32:46 18-Oct-2017 10:34:31]
50 %[18-Oct-2017 17:01:25 17:01:28]
51

52 %barranca
53 %[18-Jul-03 6:40:14 6:41:18]
54 %[18-Jun-08 3:56:04 3:56:38]
55

56 %lisdata = import lis(events data file);
57 correcting=0; %1 if the database is used to correct postion
58 toinput=0; %1 if the user wants to input the start time and endtime of fov. If 0 the ...

program will take the min(listime) and max(endtime). THIS IS BAD
59 storedinput=1; %the same as above but previously saved in fovtime:
60 %}
61

62 %Plotting Options
63 histograms =0;
64 plotting=1;
65 sources and events = 0; %plot sources and events over time. COMPUTATION LOADING

113



A.6. CODES FOR DATA PROCESSING

66 comparing length section=0;
67

68 %Other Options
69 save workspace=0; %if you want to write workspace. SAFEMODE=0
70 savingcsvfile=0;
71

72

73

74 disp(' ');
75 disp('-----------------------------------');
76 %% Get LMA data
77 ouput data = get LMA data(LMA filename);
78

79 disp("Reading LMA data...");
80

81

82 sources data = get LMA data(LMA filename);
83

84 lma.flash = sources data(:,1);
85 lma.sources time = examined day + seconds(sources data(:,2));
86 lma.slats = sources data(:,4);
87 lma.slons = sources data(:,5);
88 lma.salts = sources data(:,6);
89 lma.pwr = sources data(:,7);%power
90 lma.LIS FOV = sources data(:,8);
91 lma.noise fID = sources data(:,9);
92

93 %eliminate those sources that were not under LIS FOV:
94 indexes = find(lma.LIS FOV ==0);
95

96 firstsize = length(lma.sources time);
97 secondsize = length(indexes);
98 disp(['Eliminating ' 'sources outside the LIS FOV time...']);
99 disp([num2str(firstsize-secondsize) ' elements within the FOV']);

100

101 lma.flash(indexes) = [];
102 lma.sources time(indexes) = [];
103 lma.slats(indexes) = [];
104 lma.slons(indexes) = [];
105 lma.salts(indexes) = [];
106 lma.pwr(indexes) = [];
107 lma.LIS FOV(indexes) =[];
108 lma.noise fID(indexes) = [];
109

110 %The starttime of that day will be the minum time of the sources that were
111 %inside the FOV, that day.
112

113 starttime = min(lma.sources time);
114

115 endtime = max(lma.sources time);
116

117

118

119

120 %% Get LIS data
121

122 lisdata=import LIS total data(LIS total filename);
123

124 disp('Reading LIS data...');
125

126 %LIS data
127 day string = num2str(lisdata(:,1));
128 date day = datetime(day string,'InputFormat','yyyyMMdd');
129 [lis.events time,I] = sort(date day+seconds(lisdata(:,2)));
130

131 lis.elats = lisdata(I,3);
132 lis.elons = lisdata(I,4);
133 lis.erad = lisdata(I,5);
134 lis.group = lisdata(I,6);
135 lis.glat = lisdata(I,7);
136 lis.glon = lisdata(I,8);
137 lis.flash = lisdata(I,9);
138 lis.flat = lisdata(I,10);

114



A.6. CODES FOR DATA PROCESSING

139 lis.flon = lisdata(I,11);
140 lis.area = lisdata(I,12);
141 lis.alat = lisdata(I,13);
142 lis.alon = lisdata(I,14);
143 lis.aobstime = lisdata(I,15);
144 lis.xpixel = lisdata(I,16);
145 lis.ypixel = lisdata(I,17);
146 lis.bgrad = lisdata(I,18);
147 lis.dis2lma = lisdata(I,19);
148

149

150

151 lis starttime address=find(lis.events time≥starttime,1,'first'); %first source ...
time where LIS had it under its FOV

152 lis endtime address=find(lis.events time≤endtime,1,'last');
153

154

155 erase indexes = [find(lis.events time<starttime); find(lis.events time>endtime)];
156

157

158 lis.events time(erase indexes)=[];
159 %lma.seconds flash(erase indexes)=[];
160 lis.elats(erase indexes)=[];
161 lis.elons(erase indexes)=[];
162 lis.erad(erase indexes)=[];
163 lis.group(erase indexes)=[];
164 lis.glat(erase indexes)=[];
165 %lma.cstp(erase indexes)=[];
166 lis.glon(erase indexes)=[];
167 lis.flash(erase indexes)=[];
168 lis.flat(erase indexes)=[];
169 lis.flon(erase indexes)=[];
170 lis.area(erase indexes)=[];
171 lis.alat(erase indexes)=[];
172 lis.alon(erase indexes)=[];
173 lis.aobstime(erase indexes)=[];
174 lis.xpixel(erase indexes)=[];
175 lis.ypixel(erase indexes)=[];
176 lis.bgrad(erase indexes)=[];
177 lis.dis2lma(erase indexes)=[];
178

179 disp(['Start time: ']);
180 disp(starttime);
181 disp(['End time: ']);
182 disp(endtime);
183

184 %% Make chunksinfo structures
185

186 %{
187 %load(read workspace dir,'fovinfo');
188 %[min starttime on area, max endtime on area]=lisboundaries(fovinfo,lma);
189 %}
190

191 %{
192 %Let's set a function that leaves only the data that should be seen from
193 %both sensors simultaniously
194

195 %Analize all the LMA detections and eliminate those that are outside the
196 %field of view. Create new lma struct and do the following:
197 %}
198

199

200 timeperiod = seconds(endtime-starttime);
201

202 %ftimestep = timeperiod/(lma.total nflashes.*10); %an adimensional number.
203 %The flashes may not fit in the same chunk but
204 %but w/ this criteria we got a avalue
205 %that changes with no of flashes
206

207

208 %etimestep = timeperiod/(lis.nevents*2); %check if inside a eventstime chunk therees ...
a LMA detection!

209 etimestep = timestep;

115



A.6. CODES FOR DATA PROCESSING

210

211 disp('Dividing time in chunks....');
212 % Precence
213 [chunksinfo,chunksdata]=check detections(etimestep,starttime,endtime,lis,lma);
214

215 chunksinfo=e vs s presence(chunksdata,chunksinfo);
216

217 chunksinfo.annotation='.times gives the minutes coordinates, from the hour we are ...
regarding, of all chunks that divide the detection period. Other .chunk guive ...
the ADDRESS of the chunks.';

218

219

220 %physical properties of chunks where events and/or sources where detected
221 [secproperties, scproperties]=chunk physical properties(chunksinfo,lis,lma);
222 disp('Info about the time chunks saved');
223

224

225 chunksinfo
226

227 %% Statistics Mean,Medians...
228 %power
229 secmaxpwrarray=array max power(secproperties);
230 scmaxpwrarray=array max power(scproperties);
231

232 semeanmaxpower=mean(secmaxpwrarray);
233 semedianmaxpower=median(secmaxpwrarray);
234

235 smeanmaxpower=mean(scmaxpwrarray);
236 smedianmaxpower=median(scmaxpwrarray);
237

238 secpwrcentroid=array power centroid(secproperties);
239 scpwrcentroid=array power centroid(scproperties);
240

241 semeanpowercentroid=mean(secpwrcentroid);
242 semedianpowercentroid=median(secpwrcentroid);
243

244 smeanpowercentroid=mean(scpwrcentroid);
245 smedianpowercentroid=median(scpwrcentroid);
246

247

248 %height
249 %secmedian, secmen, ... are vectors taht contain the mean height of all the
250 %sources inside each chunk, one value per chunk.
251 secmedian=array h median(secproperties);
252 scmedian=array h median(scproperties);
253

254 secmean=array h mean(secproperties);
255 scmean=array h mean(scproperties);
256

257 sheightmedianmean=mean(scmedian);
258 seheightmedianmean=mean(secmedian);
259

260 seheightmeanmean=mean(secmean);
261 sheightmeanmean=mean(scmean);
262

263 seheightmeanmedian=median(secmean);
264 sheightmeanmedian=median(scmean);
265

266 %number of sources
267 %nsources/nesources is the vector that contain information about the number
268 %of sources in each chunk that contains only/with events sources
269

270 [nesources,nsources]=nsourcesxchunks(chunksinfo);
271 senumsourcesmean=mean(nesources);
272 senumsourcesmedian=median(nesources);
273

274 snumsourcesmean=mean(nsources);
275 snumsourcesmedian=median(nsources);
276

277 %Sum of powers in each chunk
278 %sesumpower/ssumpower are the vectors that contain the simple sum of all
279 %the powers in each chunk with events/only sources
280 [sesumpower,ssumpower]=sumpowersinchunks(chunksinfo,lma);

116



A.6. CODES FOR DATA PROCESSING

281

282

283 sesumpowermean=mean(sesumpower);
284 ssumpowermean=mean(ssumpower);
285

286 sesumpowermedian=median(sesumpower);
287 ssumpowermedian=median(ssumpower);
288

289 if save workspace==1
290 disp('saving workspace...');
291 save([erase(sources data file,'.txt') '.mat']);
292 disp('done');
293

294 end
295

296

297

298

299

300 %% Plotting representative values
301 n=1;
302 if plotting==1
303 disp('Plotting over time started...');
304 close all;
305 %x axis limits:
306 [h,m,s]=hms([starttime-seconds(etimestep) endtime+seconds(etimestep)]);
307 lims=minutes(minutes(m)+seconds(s));
308

309 % Power may be related to the detection from LIS
310

311 %maximum power
312 figure(n);
313 n=n+1;
314

315 scatter(minutes(chunksinfo.times(chunksinfo.chunks w both)),secmaxpwrarray,'*b');
316 hold on;
317 scatter(minutes(chunksinfo.times(chunksinfo.chunks only sources)),scmaxpwrarray,'.k');
318 grid on;
319 title('Maximum power from the sources registered in each time chunk');
320 xlabel('Time from the current hour [min.]');
321 ylabel('Max power [dW]');
322 legend('Chunk w/ events+sources','Chunk w/ only sources');
323 %xlim(lims);
324 colormap(jet);
325

326 figure(n);
327 n=n+1;
328 scatter(minutes(chunksinfo.times(chunksinfo.chunks w both)),secpwrcentroid,'*b');
329 hold on;
330 scatter(minutes(chunksinfo.times(chunksinfo.chunks only sources)),scpwrcentroid,'.k');
331 grid on;
332

333 title('Height of power centroid in the chunk');
334 xlabel('Time from the current hour [min.]');
335 ylabel('Height [m]');
336 legend('Chunk w/ events+sources','Chunk w/ sources');
337 %xlim(lims);
338 colormap(jet);
339

340 %.-----------------------------------------------------------------
341 figure(n);
342 n=n+1;
343 [or times, indexv]=sort(lis.events time,1);
344 or pixels(:,1)=lis.xpixel(indexv);
345 or pixels(:,2)=lis.ypixel(indexv);
346

347 or times=datenum(or times);
348 scatter(or pixels(:,1),or pixels(:,2),1,or times,'.');
349 axis equal;
350 grid on;
351 axis([0 128 0 128]);
352 title('Pixels excited on the CCD. Colored by time');
353 colormap(jet);

117



A.6. CODES FOR DATA PROCESSING

354

355 %-------------------------------------------------------------------
356

357 disp('Continuing plotting...');
358 % Comparing Altitudes in detection
359 %Median of the height
360 figure(n);
361 n=n+1;
362

363

364

365 scatter(minutes(chunksinfo.times(chunksinfo.chunks w both)),secmedian,'*b');
366 hold on;
367 scatter(minutes(chunksinfo.times(chunksinfo.chunks only sources)),scmedian,'.k');
368 grid on;
369 title('Median of sources height in each time chunk');
370 xlabel('Time from the current hour [min.]');
371 ylabel('Height [m]');
372 legend('Chunk w/ events+sources','Chunk w/ sources');
373 xlim(lims);
374 colormap(jet);
375

376

377

378 figure(n);
379 n=n+1;
380

381 scatter(minutes(chunksinfo.times(chunksinfo.chunks w both)),secmean,'*b');
382 hold on;
383 scatter(minutes(chunksinfo.times(chunksinfo.chunks only sources)),scmean,'.k');
384 grid on;
385 title('Mean of sources height in each time chunk');
386 xlabel('Time from the current hour [min.]');
387 ylabel('Height [m]');
388 legend('Chunk w/ events+sources','Chunk w/ sources');
389 %xlim(lims);
390

391 colormap(jet);
392

393 end
394

395 if sources and events ==1
396 disp("Plotting events & sources over time...");
397 % plot events with sources
398 figure(n);
399 n=n+1;
400 k=0;
401 grid on;
402 hold on;
403

404 [C,ia,ic]=unique(lis.flash);
405 colorvalues(1)=5;
406 for j=2:length(C)
407

408 colorvalues(1,j)=colorvalues(j-1)+30;
409

410 end
411

412 colorvector=colorvalues(ic)';
413

414

415 for i=1:length(chunksinfo.events)
416

417 local addresses=chunksinfo.events{i};
418 if ¬isempty(local addresses)
419 scatter(lis.events time(local addresses),linspace(500,500,length(local addresses)),lis.erad(local addresses),colorvector(local addresses),'x');
420 k=k+length(local addresses);
421

422 end
423

424

425 end
426

118



A.6. CODES FOR DATA PROCESSING

427 [C,ia,ic]=unique(lma.flash);
428 colorvalues(1)=5;
429 for j=2:length(C)
430

431 colorvalues(1,j)=colorvalues(j-1)+30;
432

433 end
434

435 colorvector=colorvalues(ic)';
436

437 for i=1:length(chunksinfo.sources)
438

439 local addresses=chunksinfo.sources{i};
440 if ¬isempty(local addresses)
441 try
442 scatter(lma.sources time(local addresses),lma.salts(local addresses),abs(lma.pwr(local addresses)),colorvector(local addresses),'+');
443 catch
444 warning("Unable to plot Events & Sources");
445 end
446 end
447

448

449 end
450 ylabel('Height [m]');
451 title('Events and sources printed over time');
452 legend('x Events. Size==radiance. Color==flash.','+ Sources. Size==power. ...

Color==flash.');
453

454 %etimestep=seconds(etimestep);
455 %timev=(starttime-etimestep/2):etimestep:(endtime+etimestep/2);
456 %xticks(timev);
457

458 xlim([starttime-seconds(etimestep) endtime+seconds(etimestep)]);
459

460 end
461 cif savingcsvfile==1
462 % Write CSV file to open with excel
463 disp('Writing csv file...');
464 M=[semeanmaxpower semedianmaxpower smeanmaxpower smedianmaxpower semeanpowercentroid ...

semedianpowercentroid smeanpowercentroid smedianpowercentroid sheightmedianmean ...
seheightmedianmean seheightmeanmean sheightmeanmean seheightmeanmedian ...
sheightmeanmedian senumsourcesmean senumsourcesmedian snumsourcesmean ...
snumsourcesmedian sesumpowermean ssumpowermean sesumpowermedian ssumpowermedian];

465 csvwrite([erase(sources data file,'.txt') '.csv'],M);
466 disp('Done.');
467

468 end
469

470 %% Plot histograms
471 if histograms == 1
472 disp('Plotting histograms...');
473

474

475

476 %maximum power
477 figure(n);
478 n=n+1;
479

480 histogram(secmaxpwrarray,30);
481 hold on;
482 histogram(scmaxpwrarray,30);
483 title('Bins max power histogram');
484 xlabel('Max power in the bin [dbW]');
485 ylabel('Counts');
486 legend('Sources + events bins','only sources bins');
487

488

489 %Heights
490

491 figure(n);
492 n=n+1;
493 histogram(secmedian,30);
494 hold on;

119



A.6. CODES FOR DATA PROCESSING

495 histogram(scmedian,30);
496

497 title('Bins median height histogram');
498 ylabel('Counts');
499 xlabel('Height [m]');
500 legend('sources+events bins','only sources bins');
501

502

503 figure(n);
504 n=n+1;
505

506 histogram(secmean,30);
507 hold on;
508

509 histogram(scmean,30);
510 title('Bins height mean histogram');
511 ylabel('Counts');
512 xlabel('Height [m]');
513 legend('sources+events bins','only sources bins');
514

515

516

517

518 %sources densities per bin
519 figure(n);
520 n=n+1;
521 histogram(nesources);
522 hold on;
523 histogram(nsources);
524 title('Density of sources per bin');
525 ylabel('Counts');
526 xlabel('Number of sources per bin');
527 legend('Bins with sources+events','Bins with only sources');
528

529

530 figure(n);
531 n=n+1;
532 histogram(secpwrcentroid,30);
533 hold on;
534 histogram(scpwrcentroid,30);
535 title('Bins power centroid histogram');
536 ylabel('Counts');
537 xlabel('Height [m]');
538 legend('sources+events bins','only sources bins');
539

540

541 figure(n);
542 n=n+1;
543 histogram(sesumpower)
544 hold on;
545 histogram(ssumpower)
546 title('Distributions for the sum of power in each bin');
547 xlabel('Power [dbW]');
548 ylabel('Counts');
549 legend('sources+events bins','only sources bins');
550

551 %Power population distribution
552 figure(n);
553 n=n+1;
554

555 formatOut='yyyy-mm-dd HH:MM';
556 histogram(lma.pwr)
557 title( ['Power Histogram for ' datestr(starttime,formatOut)]);
558 xlabel('Power [dbW]');
559 ylabel('Counts');
560

561 figure(n);
562 n=n+1;
563

564 histogram(lis.erad)
565 title(['Radiance histogram for ' datestr(starttime,formatOut)]);
566 ylabel('Counts');
567 xlabel('Radiance [J/(mˆ2 * sr *m)]');

120



A.6. CODES FOR DATA PROCESSING

568

569

570

571

572 figure(n);
573 n=n+1;
574 histogram(lma.salts);
575 title(['Heights histograph for ' datestr(starttime,formatOut)]);
576 ylabel('Counts');
577 xlabel('Height [m]');
578 disp('plotting ended');
579

580

581 end
582

583 %% Power of events that had a source at 2500m associated
584

585 DISCHARGE ALT = 2500; %m
586 tolerance = 50; %m. Tolerance for the search
587

588 [rad dischargealt] = ...
typical radiance at height(DISCHARGE ALT,tolerance,lma,lis,chunksinfo);

589

590 disp(['Radiances at discharge height: ' num2str(DISCHARGE ALT) ...
591 'm with tolerance: ' num2str(tolerance) 'm:']);
592 disp(['Mean: ' num2str(mean(rad dischargealt.averages)) '[\mu J/sr/mˆ2/\mu m]']);
593 disp(['Median: ' num2str(median(rad dischargealt.medians)) '[\mu J/sr/mˆ2/\mu m]']);
594

595 figure(n);
596 n= n+1;
597

598 histogram(rad dischargealt.medians,30);
599 hold on;
600 histogram(rad dischargealt.averages,30);
601 title(['Typical values for the radiance of events that had sources associated at ' ...

num2str(DISCHARGE ALT) ...
602 'm with tolerance: ' num2str(tolerance) 'm:']);
603

604 xlabel('Radiance [\mu J/sr/mˆ2/\mu m] ');
605 ylabel('Time bin counts');
606

607 text = {strcat(['Altitude: ' num2str(rad dischargealt.alt) 'm ']); ...
608 strcat(['Tolerance: ' num2str(rad dischargealt.tol) 'm ']);...
609 strcat(['Total n of bins: ' num2str(rad dischargealt.nbins)])};
610

611 dim = [.2 .55 .3 .3];
612 annotation('textbox',dim,'String',text,'FitBoxToText','on');
613

614 legend('Radiance median in the bin','Radiance average in the bin');
615

616

617 %% Comparing lightning length
618 if comparing length section == 1
619 disp('comparing flash lengthes...');
620 % GET THE LENGTH OF THE FLASHES. WE HAVE TO ASSIGN TIMINGS TO FLASHES AND
621 % THEN ASSIGN FLASHES OF LMA TO FLASHES OF LIS, SO WE COMPARE THE SAME
622 % FLASH. The LIS and LAST
623

624 %get the LIS flashes
625 %start times (and positions)
626 [flashnst,ilistst]=unique(lis.flash,'first'); %"flash number starts / index list ...

starts]
627 %end times (and positions)
628 [flashnend,ilistend]=unique(lis.flash,'last'); %"flash number ends / index list ...

ends"
629

630 lisflashprops.nflash=flashnst;
631 lisflashprops.ilistst=ilistst;
632 lisflashprops.ilistend=ilistend;
633 lisflashprops.times(:,1)=lis.events time(ilistst);
634 lisflashprops.times(:,2)=lis.events time(ilistend);
635

636

121



A.6. CODES FOR DATA PROCESSING

637 %get the LMA flashes
638 %start times (and positions)
639 [flashnst,ilistst]=unique(lma.flash,'first'); %"flash number starts / index list ...

starts]
640 %end times (and positions)
641 [flashnend,ilistend]=unique(lma.flash,'last'); %"flash number ends / index list ...

ends"
642

643 lmaflashprops.nflash=flashnst;
644 lmaflashprops.ilistst=ilistst;
645 lmaflashprops.ilistend=ilistend;
646 lmaflashprops.times(:,1)=lma.sources time(ilistst);
647 lmaflashprops.times(:,2)=lma.sources time(ilistend);
648

649

650 %there might be flashes that lis did not detect (usually the case).
651 %Associate the flashes:
652

653 flashesrelated=zeros(size(lisflashprops.nflash,1),4);
654 flashesrelated(:,1)=lisflashprops.nflash;
655

656

657 %now we have to associate the LIS flashes to LMA flashes
658

659 %4 options: 1 start time of LIS inside LMA
660 %2 end time of LIS inside LMA (the first two cases alredy
661 %comprehend the case of a LIS flash inside a LMA flash
662 %3 LMA flash inside LIS flash
663 %the starttime of lis flash has to be higher or equal
664 for i=1:size(lisflashprops.times,1)
665

666 lmaindex=intersect(find(lmaflashprops.times(:,1)≤lisflashprops.times(i,1)), ...
find(lmaflashprops.times(:,2)≥lisflashprops.times(i,1))); %the start of ...
LIS is comprehended in the LMA flash

667

668 if isempty(lmaindex) %in case that it is not the start, but the end of a LIS ...
flash that is comprehended inside a LMA flash

669

670 lmaindex=intersect(find(lmaflashprops.times(:,1)≤lisflashprops.times(i,2)), ...
find(lmaflashprops.times(:,2)≥lisflashprops.times(i,2)));

671

672 if isempty(lmaindex) %repeat the process for in case that the LMA flash ...
is comprehended inside LIS flash

673

674

675 lmaindex=intersect(find(lmaflashprops.times(:,1)≥lisflashprops.times(i,1)), ...
find(lmaflashprops.times(:,2)≤lisflashprops.times(i,2))); %the ...
start of LIS is comprehended in the LMA flash

676

677

678 end
679

680

681 end
682

683 if isempty(lmaindex)
684

685 disp('error on comparing flashes times. lma index not assigned');
686 disp('It also can be that there are non-simultaneous flashes. (This can ...

be seen in the data');
687

688 else
689

690 flashesrelated(i,2)=lmaflashprops.nflash(lmaindex);
691

692 end
693

694

695 end
696

697

698 for i=1:size(flashesrelated,1)
699

122



A.6. CODES FOR DATA PROCESSING

700 if flashesrelated(i,2) 6=0
701

702 locallisflash=flashesrelated(i,1);
703 locallmaflash=flashesrelated(i,2);
704

705 indexlis=find(lisflashprops.nflash==locallisflash);
706

707 timeslis=(lisflashprops.times(indexlis,:));
708

709 durationlis=second(timeslis(2))-second(timeslis(1));
710

711 indexlma=find(lmaflashprops.nflash==locallmaflash);
712

713 timeslma=(lmaflashprops.times(indexlma,:));
714

715 durationlma=second(timeslma(2))-second(timeslma(1));
716

717

718 flashesrelated(i,3)=durationlis;
719 flashesrelated(i,4)=durationlma;
720

721 end
722

723 end
724

725 diffdurations=flashesrelated(:,4)-flashesrelated(:,3);
726

727

728 figure(n);
729 n=n+1;
730 histogram(flashesrelated(:,3),30);
731 hold on;
732 histogram(flashesrelated(:,4),30);
733 legend('LIS duration count','LMA duration count');
734 ylabel('Counts');
735 xlabel('Duration [sec.]');
736

737

738

739

740

741

742

743 disp('END at line 660');
744 disp(' '); disp(' '); disp(' ');
745 %flashesrelated content: /LIS#/ LMA#/ LIS durat./ LMA durat./
746

747

748

749

750 end
751

752

753 %% END
754 disp("################END OF EXECUTION #####################");
755 disp(" ");
756 %% Functions
757

758

759 function [chunksinfo,chunksdata] = check detections(timestep,starttime,endtime,lis,lma)
760 timestep=seconds(timestep);
761

762

763 timev=(starttime-timestep/2):timestep:(endtime+timestep/2);
764 %the way the vector is constructed will assure that the first and last
765 %event/source is within the time perdiod. This vector has the values of the
766 %surrounding positions of timechunkns. It has thee end and final time in
767 %it.
768

769 central chunk times=starttime:timestep:endtime; %will have the same size as the ...
chunk vector

770

771 %now we should assign events and sources to each chunk. We will assign, to

123



A.6. CODES FOR DATA PROCESSING

772 %each chunk, what events and sources index there are. In the first row we
773 %will put the events and in the second one the sources
774

775 %{
776 chunksdata{2,length(timev)-1}=[];
777

778 for i = 1:lis.nevents %check in what chunks events were detected
779

780

781 subind=find(lis.events time(i)>timev,1,'last');
782

783 if ¬isempty(subind)
784

785 chunksdata{1,subind} = [chunksdata{1,subind}, i];
786

787 end
788

789 end
790

791 for i = 1:lma.nsources %check in what chunks sources were detected
792

793 subind=find(lma.sources time(i)>timev,1,'last'); %notice here the vector is ...
the "timev". There is no ≥ because in case that the source time would be ...
equal to timev(end) it would assign to the last chunk, indexed throught ...
the left time limit of the chunk

794

795 if ¬isempty(subind) %if it does find something
796

797 chunksdata{2,subind} = [chunksdata{2,subind}, i];
798

799 end
800

801 end
802 %}
803 %for each time chunk check if event and/or source was recorded
804

805 %lets store only the minutes and seconds of the chunk since the time is
806 %obvious
807 [h,m,s]=hms(central chunk times);
808 times=minutes(m)+seconds(s);
809

810

811 lis addresses=knnsearch(seconds(central chunk times-datetime(1993,1,1))',seconds(lis.events time-datetime(1993,1,1)));
812 lma addresses=knnsearch(seconds(central chunk times-datetime(1993,1,1))',seconds(lma.sources time-datetime(1993,1,1)));%to ...

make the knn search we need numeric arrays.
813 %what we do is to set those datetime vectors as duration vectors (with the
814 %same time reference) to afterwards pass them to numeric seconds with
815 %seconds() function
816

817 chunksdata{2,length(central chunk times)}=[];
818

819 for i=1:length(lis addresses)
820

821 chunksdata{1,lis addresses(i)}=[chunksdata{1,lis addresses(i)} i];
822 end
823

824 for i=1:length(lma addresses)
825

826 chunksdata{2,lma addresses(i)}=[chunksdata{2,lma addresses(i)} i];
827 end
828

829 chunksinfo.times=times;
830 chunksinfo.events=chunksdata(1,:);
831 chunksinfo.sources=chunksdata(2,:);
832 chunksinfo.timestep=timestep;
833 chunksinfo.timeperiod=[starttime, endtime];
834

835

836 end
837

838 function chunksinfo=e vs s presence(chunksdata,chunksinfo)
839

840 %this function only checks if each chunk is full of sources/events. It is,

124



A.6. CODES FOR DATA PROCESSING

841 %therefore, realted to its presence on the chunks.
842

843 chunks w events=find(¬cellfun(@isempty,chunksdata(1,:)));%logical vectors. ...
1==has events/sources. 0==empty

844 chunks w sources=find(¬cellfun(@isempty,chunksdata(2,:)));
845

846 chunks w both=intersect(chunks w events,chunks w sources);
847

848 chunks only events=setdiff(chunks w events,chunks w sources);
849 chunks only sources=setdiff(chunks w sources,chunks w events);
850

851 empty chunks=setdiff(1:1:length(chunksdata),[chunks w events chunks w sources]);
852

853 chunksinfo.chunks w events=chunks w events;
854 chunksinfo.chunks w sources=chunks w sources;
855 chunksinfo.chunks w both=chunks w both;
856 chunksinfo.chunks only events=chunks only events;
857 chunksinfo.chunks only sources=chunks only sources;
858 chunksinfo.empty chunks=empty chunks;
859

860

861 end
862

863 function [secproperties, scproperties]=chunk physical properties(chunksinfo,lis,lma)
864

865 secproperties=[];
866 scproperties=[];
867

868

869 s and e=chunksinfo.sources(chunksinfo.chunks w both); %sources address that appeared ...
alongside with events

870

871 %see what's the maximum height of each chunk and its median. (Half sources
872 %will be up that value and half will be under that value).
873

874 %lets store some physical properties of each chunk where sources and events
875 %where detected
876

877 %secproperties stands for "sources with events chunk properties"
878 %each "i" relates to a chunk of time!
879 for i=1:length(s and e)
880

881 local addresses=s and e{1,i};
882 local heights=lma.salts(local addresses);
883 secproperties(i).mean s h=mean(local heights);
884 secproperties(i).median s h=median(local heights);
885

886 local pwr=lma.pwr(local addresses);
887 secproperties(i).max pwr=max(local pwr);
888

889 %influence of the power on the detection
890 local pwr = 10.ˆ(local pwr/10); % temporal conversion to linear units to ...

weight the centroid
891 secproperties(i).pwr centroid=sum(local pwr.*local heights)/sum(local pwr);
892

893 %properties coming from LIS detection
894

895

896 end
897

898 os=chunksinfo.sources(chunksinfo.chunks only sources);
899

900 %store the same physical variables of chunks where only sources were
901 %detected (and so events should have been detected also)
902

903 %secproperties stands for "sources chunk properties"
904

905 for i=1:length(os)
906

907 local addresses=os{1,i};
908 local heights=lma.salts(local addresses);
909 scproperties(i).mean s h=mean(local heights);
910 scproperties(i).median s h=median(local heights);

125



A.6. CODES FOR DATA PROCESSING

911

912 local pwr=lma.pwr(local addresses);
913 scproperties(i).max pwr=max(local pwr);
914

915 %influence of the power on the detection
916

917 local pwr = 10.ˆ(local pwr/10); % temporal conversion to linear units to ...
weight the centroid

918 scproperties(i).pwr centroid=sum(local pwr.*local heights)/sum(local pwr);
919

920 end
921

922

923 disp('Physical Poperties of chunks were events and/or sources were detected done');
924 end
925

926

927 function property=array power centroid(struct)
928

929 property=zeros(1,length(struct));
930

931 maximum = 0;
932 indexmax = 0;
933 for i=1:length(struct)
934

935 property(i)=struct(i).pwr centroid;
936

937 % if property(i)>maximum
938 % maximum = property(i);
939 % indexmax = i;
940 % end
941 end
942 % disp(maximum);
943 % disp(indexmax);
944

945

946

947 end
948

949 function property=array max power(struct)
950

951 property=zeros(1,length(struct));
952

953 for i=1:length(struct)
954

955 property(i)=struct(i).max pwr; %the array property will have the maximum ...
power of each chunk

956

957 end
958

959 end
960

961 function property=array h mean(struct)
962

963 property=zeros(1,length(struct));
964

965 for i=1:length(struct)
966

967 property(i)=struct(i).mean s h;
968

969 end
970

971 end
972

973 function property=array h median(struct)
974

975 property=zeros(1,length(struct));
976

977 for i=1:length(struct)
978

979 property(i)=struct(i).median s h;
980

981 end

126



A.6. CODES FOR DATA PROCESSING

982

983 end
984

985 function write txt files(lma,write dir)
986

987

988 addpath(write dir);
989

990 %processing sources times to let them in a OK format for Paulino
991

992 fullfilename=fullfile(write dir,'sources2database.txt');
993

994 disp('Opening .txt writed file...');
995 stringtimes=datestr(lma.sources time,'yyyy-mm-dd;HH:MM:SS');
996 fileID=fopen(fullfilename,'w');
997

998 if fileID == -1
999

1000 disp('Could not open file.');
1001 else
1002

1003 disp('File opened. Starting to print');
1004

1005 for i=1:length(lma.sources time)
1006

1007 fprintf(fileID, '%s;%f;%f\r\n',stringtimes(i,:),lma.slats(i),lma.slons(i));
1008

1009

1010 end
1011

1012 fclose(fileID);
1013

1014 disp('Printing ended and file closed.');
1015 end
1016 end
1017

1018 function [nesources,nsources]=nsourcesxchunks(chunksinfo)
1019

1020

1021 global addresses=chunksinfo.sources(chunksinfo.chunks w both);
1022

1023 nesources=zeros(1,length(global addresses));
1024

1025 for i=1:length(global addresses)
1026

1027 local addresses=global addresses{i};
1028

1029 nesources(i)=length(local addresses);
1030

1031 end
1032

1033 global addresses=chunksinfo.sources(chunksinfo.chunks only sources);
1034

1035 nsources=zeros(1,length(global addresses));
1036

1037 for i=1:length(global addresses)
1038

1039 local addresses=global addresses{i};
1040

1041 nsources(i)=length(local addresses);
1042

1043 end
1044

1045 end
1046

1047 function [sesumpower,ssumpower]=sumpowersinchunks(chunksinfo,lma)
1048

1049

1050

1051 global addresses=chunksinfo.sources(chunksinfo.chunks w both);
1052

1053 sesumpower=zeros(1,length(global addresses));
1054

127



A.6. CODES FOR DATA PROCESSING

1055 for i=1:length(global addresses)
1056 local addresses=global addresses{i};
1057

1058 pwr sumable = 10.ˆ(lma.pwr(local addresses)/10); %from dB to W
1059

1060 sesumpower(i)=10*log10((sum(pwr sumable))); %from W to dB
1061

1062 end
1063 global addresses=chunksinfo.sources(chunksinfo.chunks only sources);
1064

1065 ssumpower=zeros(1,length(global addresses));
1066

1067 for i=1:length(global addresses)
1068 local addresses=global addresses{i};
1069

1070 pwr sumable = 10.ˆ(lma.pwr(local addresses)/10); %from dB to W
1071

1072 ssumpower(i)=10*log10((sum(pwr sumable))); %from W to dB
1073

1074 end
1075 end
1076

1077

1078 %Reading data
1079 function sources data = import sourcesdata(filename)
1080 %IMPORTFILE Import numeric data from a text file as a matrix.
1081 % SOURCES DATA = IMPORTFILE(FILENAME) Reads data from text file FILENAME
1082 % for the default selection.
1083 %
1084 % SOURCES DATA = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
1085 % rows STARTROW through ENDROW of text file FILENAME.
1086 %
1087 % Example:
1088 % sources data = importfile('2017 10 06 10 30.txt', 2, 4856);
1089 %
1090 % See also TEXTSCAN.
1091

1092 % Auto-generated by MATLAB on 2018/07/27 12:20:39
1093

1094 % Initialize variables.
1095 delimiter = ' ';
1096 if nargin≤ 2
1097 startRow = 2;
1098 endRow = inf;
1099 end
1100

1101 % Format for each line of text:
1102 % column1: double (%f)
1103 % column2: double (%f)
1104 % column3: double (%f)
1105 % column4: double (%f)
1106 % column5: double (%f)
1107 % column6: double (%f)
1108 % column7: double (%f)
1109 % column8: double (%f)
1110 % For more information, see the TEXTSCAN documentation.
1111 formatSpec = '%f%f%f%f%f%f%f%f%*s%[ˆ\n\r]';
1112

1113 % Open the text file.
1114 fileID = fopen(filename,'r');
1115

1116 % Read columns of data according to the format.
1117 % This call is based on the structure of the file used to generate this
1118 % code. If an error occurs for a different file, try regenerating the code
1119 % from the Import Tool.
1120 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'EmptyValue', NaN, ...
'HeaderLines', startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1121 for block = 2:length(startRow)
1122 frewind(fileID);
1123 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'EmptyValue', NaN, 'HeaderLines', startRow(block)-1, 'ReturnOnError', false, ...

128



A.6. CODES FOR DATA PROCESSING

'EndOfLine', '\r\n');
1124 for col = 1:length(dataArray)
1125 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1126 end
1127 end
1128

1129 % Close the text file.
1130 fclose(fileID);
1131

1132 % Post processing for unimportable data.
1133 % No unimportable data rules were applied during the import, so no post
1134 % processing code is included. To generate code which works for
1135 % unimportable data, select unimportable cells in a file and regenerate the
1136 % script.
1137

1138 % Create output variable
1139 sources data = [dataArray{1:end-1}];
1140 end
1141 function sources header = import sources header(filename)
1142 %IMPORTFILE Import numeric data from a text file as a matrix.
1143 % SOURCES DATA = IMPORTFILE(FILENAME) Reads data from text file FILENAME
1144 % for the default selection.
1145 %
1146 % SOURCES DATA = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
1147 % rows STARTROW through ENDROW of text file FILENAME.
1148 %
1149 % Example:
1150 % sources data = importfile('2017 10 06 10 30.txt', 1, 1);
1151 %
1152 % See also TEXTSCAN.
1153

1154 % Auto-generated by MATLAB on 2018/07/27 10:45:10
1155

1156 % Initialize variables.
1157 delimiter = ' ';
1158 if nargin≤ 2
1159 startRow = 1;
1160 endRow = 1;
1161 end
1162

1163 % Format for each line of text:
1164 % column1: double (%f)
1165 % column2: double (%f)
1166 % column3: double (%f)
1167 % column4: double (%f)
1168 % column5: double (%f)
1169 % column6: double (%f)
1170 % column7: double (%f)
1171 % column8: double (%f)
1172 % column9: double (%f)
1173 % For more information, see the TEXTSCAN documentation.
1174 formatSpec = '%f%f%f%f%f%f%f%f%f%[ˆ\n\r]';
1175

1176 % Open the text file.
1177 fileID = fopen(filename,'r');
1178

1179 % Read columns of data according to the format.
1180 % This call is based on the structure of the file used to generate this
1181 % code. If an error occurs for a different file, try regenerating the code
1182 % from the Import Tool.
1183 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1184 for block = 2:length(startRow)
1185 frewind(fileID);
1186 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1187 for col = 1:length(dataArray)
1188 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1189 end
1190 end
1191

129



A.6. CODES FOR DATA PROCESSING

1192 % Close the text file.
1193 fclose(fileID);
1194

1195 % Post processing for unimportable data.
1196 % No unimportable data rules were applied during the import, so no post
1197 % processing code is included. To generate code which works for
1198 % unimportable data, select unimportable cells in a file and regenerate the
1199 % script.
1200

1201 % Create output variable
1202 sources header = [dataArray{1:end-1}];
1203 end
1204 function lisdata = import lis(filename)
1205 %IMPORTFILE Import numeric data from a text file as a matrix.
1206 % ISSLIS2017101916101610EVENTS = IMPORTFILE(FILENAME) Reads data from
1207 % text file FILENAME for the default selection.
1208 %
1209 % ISSLIS2017101916101610EVENTS = IMPORTFILE(FILENAME, STARTROW, ENDROW)
1210 % Reads data from rows STARTROW through ENDROW of text file FILENAME.
1211 %
1212 % Example:
1213 % ISSLIS2017101916101610events = ...

importfile('ISS LIS 20171019 1610 1610 events.txt', 2, 7);
1214 %
1215 % See also TEXTSCAN.
1216

1217 % Auto-generated by MATLAB on 2018/07/27 12:09:22
1218

1219 % Initialize variables.
1220 delimiter = ' ';
1221 if nargin≤ 2
1222 startRow = 2;
1223 endRow = inf;
1224 end
1225

1226 % Format for each line of text:
1227 % column1: double (%f)
1228 % column2: double (%f)
1229 % column3: double (%f)
1230 % column4: double (%f)
1231 % column5: double (%f)
1232 % column6: double (%f)
1233 % column7: double (%f)
1234 % column8: double (%f)
1235 % column9: double (%f)
1236 % column10: double (%f)
1237 % column11: double (%f)
1238 % column12: double (%f)
1239 % column13: double (%f)
1240 % column14: double (%f)
1241 % column15: double (%f)
1242 % column16: double (%f)
1243 % column17: double (%f)
1244 % For more information, see the TEXTSCAN documentation.
1245 formatSpec = '%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[ˆ\n\r]';
1246

1247 % Open the text file.
1248 fileID = fopen(filename,'r');
1249

1250 % Read columns of data according to the format.
1251 % This call is based on the structure of the file used to generate this
1252 % code. If an error occurs for a different file, try regenerating the code
1253 % from the Import Tool.
1254 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1255 for block = 2:length(startRow)
1256 frewind(fileID);
1257 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'TextType', 'string', ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1258 for col = 1:length(dataArray)
1259 dataArray{col} = [dataArray{col};dataArrayBlock{col}];

130



A.6. CODES FOR DATA PROCESSING

1260 end
1261 end
1262

1263 % Close the text file.
1264 fclose(fileID);
1265

1266 % Post processing for unimportable data.
1267 % No unimportable data rules were applied during the import, so no post
1268 % processing code is included. To generate code which works for
1269 % unimportable data, select unimportable cells in a file and regenerate the
1270 % script.
1271

1272 % Create output variable
1273 lisdata = [dataArray{1:end-1}];
1274 end
1275

1276

1277 function [min starttime on area, max endtime on area]=lisboundaries(fovinfo,lma)
1278

1279 %which file are we lookin in?
1280

1281 k=1; %i know "manually that in this case is the first interesting file
1282 coordinates=fovinfo.fov coordinates;
1283

1284 fovlats=coordinates(1,:);
1285 fovlons=coordinates(2,:);
1286

1287 minlat=lma.minlat;
1288 minlon=lma.minlon;
1289 maxlat=lma.maxlat;
1290 maxlon=lma.maxlon;
1291

1292 disp('Checking which points are inside the interesting area...');
1293 inside range index=intersect(intersect(find(fovlats>minlat),find(fovlats<maxlat)),intersect(find(fovlons>minlon),find(fovlons<maxlon)));
1294

1295 %check at when the lis will start to see and leave the area. This is not
1296 %exact due to the fact that maybe the centroids are outside but the fov
1297 %cell has some part inside or viceversa.
1298

1299 interestingfovtimes=[fovinfo(k).fovstart(inside range index); ...
fovinfo(k).fovend(insiderange index)];

1300

1301 min starttime on area=min(interestingfovtimes(1,:)); %minimum time where the lis ...
is sensing the area

1302 max endtime on area=max(interestingfovtimes(2,:)); %last time when LIS saw info ...
on the area

1303

1304 min starttime on area=datetime(1993,1,1)+seconds(min starttime on area);
1305 max endtime on area=datetime(1993,1,1)+seconds(max endtime on area);
1306

1307 %we are assuming that LIS will record until the last moment on the
1308 %interesting area. Truly, during this last time the LIS only would be
1309 %able to see the little, last, only "franja" of the area.
1310 end
1311

1312

1313

1314

1315 function [date,time,lat,lon] = importcorrected(filename)
1316 %IMPORTFILE Import numeric data from a text file as column vectors.
1317 % [DATE1,TIME,LAT,LON] = IMPORTFILE(FILENAME) Reads data from text file
1318 % FILENAME for the default selection.
1319 %
1320 % [DATE1,TIME,LAT,LON] = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads
1321 % data from rows STARTROW through ENDROW of text file FILENAME.
1322 %
1323 % Example:
1324 % [date1,time,lat,lon] = importfile('paulino.txt.txt',1, 1713);
1325 %
1326 % See also TEXTSCAN.
1327

1328 % Auto-generated by MATLAB on 2018/07/31 13:20:32
1329

131



A.6. CODES FOR DATA PROCESSING

1330 % Initialize variables.
1331 delimiter = ';';
1332 if nargin≤2
1333 startRow = 1;
1334 endRow = inf;
1335 end
1336

1337 % Format for each line of text:
1338 % column1: datetimes (%{yyyy-MM-dd}D)
1339 % column2: datetimes (%{HH:mm:ss}D)
1340 % column3: double (%f)
1341 % column4: double (%f)
1342 % For more information, see the TEXTSCAN documentation.
1343 formatSpec = '%{yyyy-MM-dd}D%{HH:mm:ss}D%f%f%[ˆ\n\r]';
1344

1345 % Open the text file.
1346 fileID = fopen(filename,'r');
1347

1348 % Read columns of data according to the format.
1349 % This call is based on the structure of the file used to generate this
1350 % code. If an error occurs for a different file, try regenerating the code
1351 % from the Import Tool.
1352 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...

delimiter, 'TextType', 'string', 'HeaderLines', startRow(1)-1, 'ReturnOnError', ...
false, 'EndOfLine', '\r\n');

1353 for block=2:length(startRow)
1354 frewind(fileID);
1355 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'TextType', 'string', 'HeaderLines', ...
startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1356 for col=1:length(dataArray)
1357 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1358 end
1359 end
1360

1361 % Close the text file.
1362 fclose(fileID);
1363

1364 % Post processing for unimportable data.
1365 % No unimportable data rules were applied during the import, so no post
1366 % processing code is included. To generate code which works for
1367 % unimportable data, select unimportable cells in a file and regenerate the
1368 % script.
1369

1370 % Allocate imported array to column variable names
1371 date = dataArray{:, 1};
1372 time = dataArray{:, 2};
1373 lat = dataArray{:, 3};
1374 lon = dataArray{:, 4};
1375

1376 % For code requiring serial dates (datenum) instead of datetime, uncomment
1377 % the following line(s) below to return the imported dates as datenum(s).
1378

1379 % date1=datenum(date1);
1380 % time=datenum(time);
1381 end
1382

1383

1384 function [dir list]=check for folders(read dir,dir list)
1385 disp('Looking for folders with HDF4 files inside');
1386 addpath(read dir); %current reading directory
1387 folderinfoprev=dir(read dir);
1388 folderinfo=folderinfoprev(¬ismember({folderinfoprev.name},{'.','..','.DS Store'})); ...

%.DS Store is a metadata file created by iOS environment
1389

1390 aretherefolders=cell2mat({folderinfo.isdir});
1391

1392 if any(aretherefolders)==true %check if there are folders inside the folder
1393

1394 namesarray={folderinfo(aretherefolders).name};
1395 %gives a cell array but in char
1396

1397 %foldernames=convertCharsToStrings(namesarray); %lets convert it to string

132



A.6. CODES FOR DATA PROCESSING

1398

1399 for i=1:length(namesarray)
1400 % new read dir(i)=fullfile(read dir,foldernames(i));
1401 new read dir=(fullfile(read dir,(namesarray{i})));
1402

1403 [dir list]=check for folders(new read dir,dir list); %if the folder contains ...
more folders, re-check

1404

1405 end
1406

1407 else
1408

1409 dir list=[dir list; read dir]; %if the folder is a file folder save its ...
directory and make it travel through the function

1410

1411

1412 end
1413

1414 disp('Read directories will be:');
1415 for i=1:size(dir list,1)
1416 disp(dir list(i,:));
1417 end
1418 disp(' ');
1419 end
1420

1421

1422

1423

1424

1425

1426 %NEW VERSION FUNCTIONS
1427 function ouput data = get LMA data(filename, startRow, endRow)
1428 %IMPORTFILE Import numeric data from a text file as a matrix.
1429 % OUPUT DATA = IMPORTFILE(FILENAME) Reads data from text file FILENAME
1430 % for the default selection.
1431 %
1432 % OUPUT DATA = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
1433 % rows STARTROW through ENDROW of text file FILENAME.
1434 %
1435 % Example:
1436 % ouput data = importfile('total LMA file noNoise.txt', 1, 4178);
1437 %
1438 % See also TEXTSCAN.
1439

1440 % Auto-generated by MATLAB on 2019/03/16 10:47:29
1441

1442 %% Initialize variables.
1443 delimiter = '\t';
1444 if nargin≤2
1445 startRow = 1;
1446 endRow = inf;
1447 end
1448

1449 %% Format for each line of text:
1450 % column1: double (%f)
1451 % column2: double (%f)
1452 % column3: double (%f)
1453 % column4: double (%f)
1454 % column5: double (%f)
1455 % column6: double (%f)
1456 % column7: double (%f)
1457 % column8: double (%f)
1458 % column9: double (%f)
1459 % For more information, see the TEXTSCAN documentation.
1460 formatSpec = '%f%f%f%f%f%f%f%f%f%[ˆ\n\r]';
1461

1462 %% Open the text file.
1463 fileID = fopen(filename,'r');
1464

1465 %% Read columns of data according to the format.
1466 % This call is based on the structure of the file used to generate this
1467 % code. If an error occurs for a different file, try regenerating the code
1468 % from the Import Tool.

133



A.6. CODES FOR DATA PROCESSING

1469 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', ...
delimiter, 'TextType', 'string', 'EmptyValue', NaN, 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1470 for block=2:length(startRow)
1471 frewind(fileID);
1472 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, 'TextType', 'string', 'EmptyValue', NaN, ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1473 for col=1:length(dataArray)
1474 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1475 end
1476 end
1477

1478 %% Close the text file.
1479 fclose(fileID);
1480

1481 %% Post processing for unimportable data.
1482 % No unimportable data rules were applied during the import, so no post
1483 % processing code is included. To generate code which works for
1484 % unimportable data, select unimportable cells in a file and regenerate the
1485 % script.
1486

1487 %% Create output variable
1488 ouput data = [dataArray{1:end-1}];
1489 end
1490 function output data = import LIS total data(filename, startRow, endRow)
1491 %IMPORTFILE Import numeric data from a text file as a matrix.
1492 % OUTPUT DATA = IMPORTFILE(FILENAME) Reads data from text file FILENAME
1493 % for the default selection.
1494 %
1495 % OUTPUT DATA = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from
1496 % rows STARTROW through ENDROW of text file FILENAME.
1497 %
1498 % Example:
1499 % output data = importfile('ISS LIS.txt', 1, 216837);
1500 %
1501 % See also TEXTSCAN.
1502

1503 % Auto-generated by MATLAB on 2019/03/16 11:00:14
1504

1505 %% Initialize variables.
1506 if nargin≤2
1507 startRow = 1;
1508 endRow = inf;
1509 end
1510

1511 %% Format for each line of text:
1512 % column1: double (%f)
1513 % column2: double (%f)
1514 % column3: double (%f)
1515 % column4: double (%f)
1516 % column5: double (%f)
1517 % column6: double (%f)
1518 % column7: double (%f)
1519 % column8: double (%f)
1520 % column9: double (%f)
1521 % column10: double (%f)
1522 % column11: double (%f)
1523 % column12: double (%f)
1524 % column13: double (%f)
1525 % column14: double (%f)
1526 % column15: double (%f)
1527 % column16: double (%f)
1528 % column17: double (%f)
1529 % column18: double (%f)
1530 % column19: double (%f)
1531 % For more information, see the TEXTSCAN documentation.
1532 formatSpec = ...

'%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%16f%f%[ˆ\n\r]';
1533

1534 %% Open the text file.
1535 fileID = fopen(filename,'r');
1536

134



A.6. CODES FOR DATA PROCESSING

1537 %% Read columns of data according to the format.
1538 % This call is based on the structure of the file used to generate this
1539 % code. If an error occurs for a different file, try regenerating the code
1540 % from the Import Tool.
1541 dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', '', ...

'WhiteSpace', '', 'TextType', 'string', 'EmptyValue', NaN, 'HeaderLines', ...
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1542 for block=2:length(startRow)
1543 frewind(fileID);
1544 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, ...

'Delimiter', '', 'WhiteSpace', '', 'TextType', 'string', 'EmptyValue', NaN, ...
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

1545 for col=1:length(dataArray)
1546 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
1547 end
1548 end
1549

1550 %% Close the text file.
1551 fclose(fileID);
1552

1553 %% Post processing for unimportable data.
1554 % No unimportable data rules were applied during the import, so no post
1555 % processing code is included. To generate code which works for
1556 % unimportable data, select unimportable cells in a file and regenerate the
1557 % script.
1558

1559 %% Create output variable
1560 output data = [dataArray{1:end-1}];
1561 end
1562

1563 function [rad dischargealt] = ...
typical radiance at height(DISCHARGE ALT,tolerance,lma,lis,chunksinfo)

1564

1565

1566 rad dischargealt.medians = [];
1567 rad dischargealt.averages = [];
1568 counter = 0;
1569 for i = 1:length(chunksinfo.chunks w both)
1570

1571 chunk address = chunksinfo.chunks w both(i);
1572

1573 local sources = chunksinfo.sources{chunk address};
1574

1575

1576 if any(lma.salts(local sources)>DISCHARGE ALT-tolerance) ...
1577 && any(lma.salts(local sources)<DISCHARGE ALT +tolerance) %The ...

heights of the sources is comprised in the tolerance
1578

1579 counter = counter +1;
1580

1581 local events = chunksinfo.events{chunk address}; %access the content of ...
the cell at that address;

1582

1583 local rads = lis.erad(local events);
1584

1585 median rads = median(local rads);
1586 average rads = mean(local rads);
1587

1588 rad dischargealt.medians(counter) = median rads;
1589 rad dischargealt.averages(counter) = average rads;
1590

1591 end
1592

1593 rad dischargealt.alt = DISCHARGE ALT;
1594 rad dischargealt.tol = tolerance;
1595 rad dischargealt.nbins = counter;
1596 end
1597

1598 end

135



Bibliography

[1] H. J. Kramer. ISS Utilization: LIS (Lightning Imaging Sensor) on STP-H5’s investigations of
DoD. Retrieved from https://directory.eoportal.org/web/eoportal/satellite-missions/i/iss-lis.

[2] NASA,CHRC. ISS Lightning Sensors Data Sets. Retrieved from
https://lightning.nsstc.nasa.gov/data/data iss lis.html.

[3] Hugh J. Christian, Richard J. Blakeslee, and Steven J. Goodman. Lightning Imaging Sensor (US)
for the Earth Observing System. NASA, February 1992.

[4] P. M. Bitzer, H. Christian. Timing Uncertainty of the Lightning Imaging Sensor. J. Atmos.
Oceanic Technol., 32, 453–460, https://doi.org/10.1175/JTECH-D-13-00177.1

[5] Richard J. Blakeslee. Lightning Imaging Sensor (LIS) on ISS and Plans for Sustained Ground
Measurements in Support of GLM Cal/Val. Joint MTG LI Mission Advisory Group and GOES-R
GLM Science Team Workshop, Rome, Italy. May 2015

[6] E.P. Krider. Atmospheric Electricity On-line Course. University of Arizona, 2015. Retrieved
from: http://www.atmo.arizona.edu/students/courselinks/spring15/atmo589/ATMO489 on-
line/CONTENTS.html.

[7] Blumenfeld, J. New Lightning Imaging Sensor to be Installed on the International Space Station
Retrieved from https://earthdata.nasa.gov/lis-on-iss.

[8] S. Goodman, D. Mach, W. Koshak, R. Backslee. Algorithm Theoretical Basis Document. Center
for Satellites Applications and Research. September 24, 2010.

[9] R. J. Blakslee, H. Christian et al. Lightning Imaging Sensor (LIS) for the International Space Sta-
tion (ISS): Mission Description and Science Goals. XV International Conference on Atmospheric
Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A.

[10] S.J. Goodman et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmospheric Re-
search 125–126 (2013) 34–49.

[11] C. Lennon, L. Maier. LIGHTNING MAPPING SYSTEM NASA, Florida.

[12] R.J. Thomas et al. Observations of VHF Source Powers Radiated by Lightning. Geophysical
Research Letters, Vol. 28, NO. 1, pages 143-146, January 1,2001.

[13] F. Fabró, J. Montanyà et al. Analysis of energetic radiation associated with 1 thunderstorms in
the Ebro delta region in Spain. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024573.

[14] The HDF Group. HDF User’s Guide. Retrieved from https://www.hdfgroup.org/solutions/hdf4/,
June 2017.

[15] NetCDF 4.6.1. An introduction to NetCDF Retrieved from:
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf introduction.html.

[16] Blakeslee Richard J., Douglas M. Mach, Michael F. Stewart, Dennis Buechler and Hugh Christian.
2017. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station
(ISS) Provisional Science Data. Dataset available online from the NASA Global Hydrology Center
DAAC, Huntsville, Alabama, U.S.A. DOI: http://dx.doi.org/10.5067/LIS/ISSLIS/DATA204

136



BIBLIOGRAPHY

[17] H. Christian, M. McCook et al. A Lightning Primer. Retrieved from
https://lightning.nsstc.nasa.gov/primer/index.html. September 2018.

[18] R. J. Thomas, Paul L. Krehbiel et al. Comparison of Ground-based 3-dimensional lightning map-
ping observations with satellite-based LIS observations in Oklahoma Geophysical Research Let-
ters, vol. 27 nº 12, pages 1703-1706, June 15, 2000.

[19] Liu Feng et al. The Study of Active Atoms in High-Voltage Pulsed Coronal Discharge by Optical
Diagnostics. 2005 Plasma Sci. Technol. 7 2851

[20] Servei Meteorològic de Catalunya. Normals Climàtiques Recents. Retrieved from
www.meteo.cat/wpweb/climatologia/serveis i dades climatiques/normals climatiques recents/.
April 2019.

[21] P André et al. The calculation of monatomic spectral lines’ intensities and composition in plasma
out of thermal equilibrium; evaluation of thermal disequilibrium in ICP torches. J. Phys. D: Appl.
Phys. 30 (1997) 2043–2055.

[22] E.V. Koryukina. Calculation of the Emission Spectra of Atoms and Ions in the External Electric
field. 2nd International Congress on radiation physics, high current electronics and modification
of materials. Tomsk Polytechnic University (2006).

[23] C. Trassy, A. Tazeem. Simulation of atomic and ionic absorption and emission spectra for thermal
plasma diagnostics: application to a volatilisation study in a plasma jet. Spectrochimica Acta Part
B: Atomic Spectroscopy 54 (1999) 581]602.

137




	Introduction
	Description of Sensors
	INTERNATIONAL SPACE STATION - LIGHTNING IMAGING SENSOR 
	International Space Station - LIS
	LIS: instrument description
	Event Grouping Process
	Technical properties

	LIGHTNING MAPPING ARRAY
	Principle of Operation
	Ebre Lightning Mapping Array


	Sensors' Data Handling
	ISS-LIS HIERARCHICAL DATA FORMAT FILES
	LIS_ HDF_ processor.m
	LIS_ vs_ LMA_ comparator.m

	LMA DATA
	LMA_ zoom7.sci


	LIS data analysis using LMA as reference
	OVERVIEW OF GATHERED DATA
	Space-Time distributions of detections
	Influence of excited pixels' position on the CCD
	Section summary

	INFLUENCE OF VHF SOURCES' PROPERTIES ON ITS LIS DETECTIVITY
	Hypothesis and analysis description
	Sources' Height Influence on Detectivity
	Sources' Maximum Power influence on Detectivity
	Density of sources in the time bins
	Section Summary

	ANALYSIS OF THE FLASH DURATION CONCORDANCE BETWEEN LIS AND LMA SENSORS
	Flash Duration Analysis
	Section summary


	Electric arc emissions for LIS calibration
	Minimum Radiance Emissions
	Relation peak voltage – radiance emitted
	Direct relation
	Other approaches


	Conclusion and further work
	Appendix APPENDIX
	Geostationary Lightning Mapper description
	Night vs. Day distribution of LIS during 2017 period
	Detections' properties influence on LIS detectivity from a typical value approach
	Sources density
	Sources' height
	Sources' Power
	Section summary

	Extra Figures
	Mean sources' height
	Histogram distributions from a data-point point of view

	User Guide for data the processing codes
	Codes for data processing
	LIS_HDF_processor.m
	LIS_vs_LMA_comparator.m





