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Abstract  

Conducting polymers typically exhibit different oxidation states, which are easily 

interchangeable among them by means of the application of an electrical potential. In this work, 

we present a theoretical and experimental study to regulate the pore size of poly(3,4-

ethylenedioxythiophene) (PEDOT) films doped with ClO4
– ions by controlling their oxidation 

state. More specifically, different bulk and surface PEDOT models have been evaluated applying 

2D- and 3-D periodic boundary conditions to density functional theory calculations. In highly 

oxidized PEDOT films, calculations predict that the incorporation of dopant ions increases the 

separation between neighboring chains, causing a structural re-organization. Thus, the calculated 

average pore size, which has been modeled as a structural defect in 2D surface models, increases 

by 15.1%. This increment is consistent with experimental measures of the nanopore size in 

PEDOT films with enhanced porosity, which reflect a difference of 25.2% between the oxidized 

and reduced forms. This superficial phenomenon could easily be used to retain and release 

controlled drugs through the application of different electric potentials.  
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Introduction 

The ability to create controlled interfaces, such as nonporous and nanoperforated membranes, 

has been an important topic of study during the last decade, particularly in the biomedical 

field.[1-4] Among them, polymeric free-standing nanomembranes (from 1 up to 100 nm thick) 

have emerged as versatile elements for biomedical applications such as overlapping therapy, 

burn wound infection treatment, antimicrobial platforms, scaffolds for tissue engineering, drug-

loading and delivery systems, biosensors, etc.[5-7] Moreover, the utilization of electrically 

conducting materials and devices for biomedical and biotechnological applications has become 

an interesting topic to the community due their potential applications.[8-10] In fact, intrinsically 

conducting polymers (ICPs) are perceived as suitable candidates for these biomedical devices 

because of both their luminescence properties,[11] electrical[12, 13] behavior and 

biocompatibility.[14, 15] These interesting properties were previously exploited on the use of 

ICP as electro-chemo-mechanical actuators that can be envisaged as artificial muscles.[16-21] 

Recently, new nanomembranes were created for biomedical and biotechnological applications 

using ICPs based on poly(thiophene) and its derivatives.[22] Moreover, a novel methodology 

was developed to create nanoperforated nanomembranes[23] to fix biological material in a well-

defined nano-holes, thus, increasing the potential applicability of those nanomembranes.[4] 

Taking into account the state-of-the-art, an interesting application can be envisaged for 

nanoporous ICP ultra-thin membranes as a potential drugs releaser by controlling the nanopore 

size. More specifically, the release of drugs immobilized inside the nanopores could be regulated 

by changing the nanopore size through the electro-chemo-mechanical properties of ICPs. In 

some circumstances, ICP films can be considered as motors driven by reversible electrochemical 

reactions (Faradaic motors).[24, 25] Thus, electrons are extracted from or injected to polymeric 
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chains during the reactions generating positive or negative chains, respectively, while hydrated 

counterions (i.e. anions or cations accompanied with water molecules) are exchanged between 

the polymeric matrix and the electrolyte to keep the charge balance inside the film (Fig. 1a). 

Such electronic and ionic charge transport processes cause conformational movements in the 

polymer chains that, together with the compositional variation inside the polymeric matrix (i.e. 

entrance and scape of hydrated ions), guarantee film volume variations during reversible 

oxidation and reduction reactions (swelling and shrinking, respectively). Within this context, it 

should be mentioned that this electrochemically induced actuation mechanism was recently used 

to regulate the drug delivery from polyester microfibres loaded with poly(3,4-

ethylenedioxythiophene) (PEDOT) nanoparticles, which exhibited a volume variation of 17% 

upon the application of electric pulses, increasing the porosity of the microfibers.[26]   

 

Fig. 1. (a) Reaction induced swelling/shrinking of an ICP film. (b) Preparation of porous 

PEDOT growing NaCl crystals on the surface of the film and etching them with water. 
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Concepts relating the volume variation of macroscopic ICP films with oxidation and reduction 

reactions (i.e. with the doping level) can be extrapolated to microscopic nanopores and 

nanoperforations for regulating the transport of medium size molecules in drug delivery 

applications. Indeed, chemical and physical properties of ICPs are, in general, intimately related 

with their doping level.[27] For example, experimental and theoretical studies on oxidized 

(doped) and reduced (dedoped) PEDOT showed important structural differences (e.g. the inter-

chain distance was shorter for the latter than for the former).[28, 29] Moreover, the cohesion 

between polymer chains was found to increase when dopant ions are intercalated among 

them.[30] Within the context of structure-electronic properties relationships, theoretical 

calculations on ICPs are usually conducted using either oligomers with a growing number of 

repetitive units or applying periodic boundary conditions (PBC) along the direction of growth of 

the polymer chain (1D-PBC),[31-34] while more complex solid state calculations with 2D- or 

3D-PBC approaches have been scarcely reported.[35, 36] The main goal of this work is to 

evaluate the influence of the doping level on the pore size of ICP films combining advanced 

theoretical approaches based on 3D-PBC models and experimental measures.   

In this work, we use full 2D- and 3D-PBC density functional theory (DFT) calculations to 

conduct a differential investigation on the structural and electronic changes induced by the 

doping level. Furthermore, the influence of the doping level on the micro-pore size of porous 

anodically polymerized PEDOT has been experimentally characterized by scanning electron 

microscopy (SEM). Results, which have allowed us to check the viability on the pore-size 

control, are expected to assist for regulating the release of drugs immobilized inside the pores by 

controlling their diameter through the doping level. 
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Methods 

Materials. 3,4-ethylenedioxythiophene (EDOT) and acetonitrile of analytical reagent grade 

were purchased from Sigma-Aldrich and used as received, without further purification. 

Anhydrous LiClO4, analytical reagent grade from Aldrich, was stored in an oven at 70 °C before 

use in electrochemical experiments. Milli-Q water grade (0.055 S/cm) was used in all synthetic 

processes. 

Synthesis of porous PEDOT films. PEDOT films were prepared by chronoamperometry 

under a constant potential of 1.40 V and adjusting the polymerization charge to 0.55 C. 

Electrolytic cells made of three-electrode one-compartment were used for all polymerizations 

under nitrogen atmosphere (99.995% in purity) at 25 ºC. Stainless steel AISI 316 sheets of 1.0  

1.5 cm2 were used as working and counter electrodes in combination with a reference electrode 

of Ag|AgCl containing a KBr saturated aqueous solution (Eº = 0.222 V vs. standard hydrogen 

electrode at 25 ºC). To avoid interferences during the electrochemical analyses, before each trial 

the working and counter electrodes were cleaned with ethanol, after that with acetone, and dried 

in an air-flow.  

The electrolytic cell was filled with 40 mL of a 10 mM acetonitrile solution of EDOT 

monomer with 0.1 M LiClO4 as doping electrolyte. The experimental set-up for this anodic 

polymerization was described in previous work.[37] PEDOT porous film were achieved by the 

growing and etching stages of NaCl crystals on the surface of the previously obtained PEDOT 

film using a simple methodology, which is sketched in Fig. 1b. First, NaCl crystals were grown 

by plunging the prepared films in a 20% w/v salt aqueous solution during 5 s and, subsequently, 

dried in a desiccator overnight. After this, the porous surface was obtained by removing the 
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grown salt crystals from PEDOT/NaCl films by plunging in water overnight and drying in a 

desiccator for at least 24 h. Hereafter, the resulting porous PEDOT films are denoted PEDOT/p. 

Chemical characterization of oxidized-reduced PEDOT/p films. 

FTIR spectra of PEDOT/p films were recorded on a FTIR Jasco 4100 spectrophotometer. 

Attenuated total reflection accessory with a diamond crystal (Specac model MKII Golden Gate 

Heated Single Reflection Diamond ATR) were used to place the samples. A total of 64 scans 

were performed between 4000 and 600 cm-1 ( 4 cm-1 of resolution) for each sample. 

Raman spectra of PEDOT films were recorded using a Renishaw inVia Qontor confocal 

Raman microscope with 785 nm laser excitation and a nominal 300mW output power directed 

through a microscope (specially adapted Leica DM2700 M microscope) to the sample. The 

scattered light is collected and directed to a spectrometer with a 1200 lines·mm-1 grating. The 

laser power was adjusted to 1% of its nominal output power with an exposure time of 10 s. Each 

spectrum was collected with 3 accumulations. 

Surface characterization of oxidized-reduced PEDOT/p films. Two different oxidation 

states were obtained by applying two different potentials to the porous PEDOT/p film. 

Specifically, chronoamperometries (CA) were conducted applying a constant potential of +1.1 

(oxidation) and –1.1 (reduction) V for 10 s to PEDOT/p films to obtain oxidized and reduced 

porous PEDOT films (hereafter PEDOT/poxd and PEDOT/pred respectively). These experiments 

were made in cells of three electrodes under a nitrogen atmosphere at 25 ºC.  

The doping Level (dl) of oxidized and reduced PEDOT/p layers were determined by cyclic 

voltammetry (CV) using an aqueous solution of 0.1 M LiClO4. The initial and final potential 

were –0.5 V, while the reversal potential was +1.1 V. The scan rate was set to 100 mV s-1. 
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Electrochemical estimation of the doping level (dl) was carried out using the following 

equation:[38] 

2	
 (1) 

where Qox is the charge associated to the oxidation process derived from the latter CV, and Qpol 

is the total charge used for the PEDOT film deposition at the generation time. 

Film thickness measurements were carried out using a Dektak 150 stylus profilometer (Vecco, 

Plainview). Several scratches were intentionally caused on the films to allow the film thickness 

measurement. Imaging of the film was conducted using the following optimized setting: tip 

radius = 2.5 µm, stylus force = 1.5 mg scan length = 3 mm and a scan resolution of 0.33 µm. 

Two different measures were obtained: (a) the vertical distances (l), which is the difference 

between the polymer and substrate height without any average; (ii) the surface roughness (Ra) as 

the arithmetical mean deviation of the assessed profile. The density of both reduced and oxidized 

polymers was determined by the flotation method from CCl4 + C2H5I mixtures. 

The X-ray diffraction (XRD) experiments were performed by using Bruker D8 Advance X-ray 

diffractometer with a monochromatic Cu radiation (λ = 1.5406 Å). Polymer powders were 

deposited in a silicon wafer and then were fixed by vacuum grease. Finally the fixed PEDOT 

powder was used in powder XRD measurement. 

Scanning electron microscopy (SEM) studies were performed to examine the surface 

morphology of the prepared films. Dried samples were placed in a Focused Ion Beam Zeis Neon 

40 scanning electron microscope operating at 5 kV, equipped with an energy dispersive X-ray 

(EDX) spectroscopy system. The average pore size of each system was obtained statistically 

from a set of 200 measures distributed among 20 SEM pictures of a total of 3 different samples 

each. 
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Theoretical calculations. Surface nanopore expansion/constriction associated to the reversible 

transition between dedoped and doped PEDOT systems have been examined by means of six 

different models covering the three possible states (i.e. bulk, raw surface and nanopored surface). 

Firstly, two bulk structures were simulated. These consisted of eight EDOT repeated units 

distributed in two chains, which grew along the lattice vector c using a 3D-PBC approach. In one 

of them, four ClO4
– anions were introduced in order to simulate the doped bulk at an ideal 

doping level of 0.5. Initial coordinates were obtained from a previous crystallographic study 

using 1D-PBC approach.[30] The other four systems were used to model PEDOT surfaces, 

which were build starting from the previous optimized bulk system but adding a vacuum region 

of 45 Å along lattice vector b. In this case, two of the models simulated the raw surface while the 

other two simulated the porous nanomembrane. This was achieved building four different 

supercells: the two simulating the raw surface were based on two repeating bulk units along c-

direction (doped and dedoped), and the other two were made of two repeating units along c-

direction while only one along a-direction, thus leaving an empty space replicating the porous 

surface (doped and dedoped).  

All calculations were based on the DFT in the standard Kohn−Sham formalism, as 

implemented in the SIESTA package[39, 40] with PBC. The generalized gradient approximation 

(GGA) was used on the calculation of exchange-correlation energy employing the 

Perdew−Burke−Ernzerhof (PBE) functional.[41] All atoms were represented by the Troullier-

Martins norm-conserving pseudopotentials[42] and a numerical double-ζ basis set with 

polarization function. Initial structures were allowed to relax under PBC by means of conjugate 

gradient minimization. Thus, the atom coordinates were optimized until the forces acting on each 

atom were smaller than 0.04 eV/Å, using a mesh cutoff of 350 Ry. Sampling of the irreducible 
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Brillouin zone was performed according to the scheme proposed by Monkhorst and Pack[43] 

with a k-points mesh made of 644 and 614 for the bulk and surface models, respectively.  

 

Results and Discussion 

Dedoped and doped bulk structures. Fig. 2 compares the structures obtained for the dedoped 

and ClO4
- doped bulk PEDOT models (hereafter named b-dedoped and b-doped model, 

respectively) after optimization using the 3D-PBC DFT approach. Since the unit cell angles were 

freely optimized, all resulting systems present a triclinic symmetry. However, some angles show 

very close values to higher crystal symmetry. In those cases, the crystal unit cell will be denoted 

as quasi- the closest symmetry. Table 1 compares the structural parameters for both systems with 

experimental values. Although the calculated b-dedoped model presents a quasi-monoclinic 

unitary cell (γ = 81.9º) with α = 89.7º and β = 90.0º, the obtained interlayer and interchain 

distances can be easily compared with the experimental orthorhombic unitary cell presented by 

Tran-Van et al.[44] In that work, the two most intense diffraction peaks at 7.87 and 10.52 Å of a 

dedoped PEDOT film were assigned to the distances of periodic structure along lattice vector c 

(i.e. polymer repeat distance along the chain) and a (i.e. parallel interchain distance, dR), 

respectively. Those values are in very good agreement with the theoretical parameters of 7.90 

and 10.28 Å obtained for the b-dedoped system in this work, respectively (Table 1). 

Furthermore, the inter-chain stacking distance (minimum distance between two adjacent chain 

planes of thiophene rings, dH) obtained in this work for the simulated model of dedoped PEDOT 

was 3.44 Å, while the 020 reflection plane (b/2) was 3.68 Å. The latter distance can be 

associated to the third most intense peak of the X-ray diffractogram of Tran-Van et al.[44] with 

an angle of 25.9º and 3.43 Å. This value is also pretty similar to the stacking distance reported 
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for the tosylated-doped PEDOT in a orthorhombic crystal [28]. Also, the torsion between lattice 

direction a and the plane of PEDOT chain due to interactions between adjacent PEDOT layers 

reported in the literature with values of 8.1º[29] and 10º,[45]  are similar to the value calculated 

for the b-dedoped model of 14.7º. As in general the concordance between the calculated and 

experimental values is very good for the bulk models, the 2D-PBC approach described in the 

Methods section is expected to represent satisfactorily the PEDOT surface. 

 

Table 1. Calculated Values of the Crystal Structures, Supercell Volume (V), Inter-chain 

Stacking Distance (dH) and theParallel Interchain Distance (dR) of Dedoped and Doped PEDOT. 

The meaning of dH and dR is sketched in Fig. 2. 

 
Supercell 

(Å) 
Angles (º) 

V  

(Å3) 
Unit cell (Å) 

dH 

(Å) 

dR  

(Å) 

b-dedoped 

DFT 

 a =10.28 

 b = 7.37 

 c =15.80 

α = 89.7 

β = 90.0 

γ = 81.9 

1185.2 

 a =10.28 

 b =7.37 

 c =7.90 

3.44 10.28 

exp.[44]    

 a =10.52 

 b =6.86 

 c =7.86 

3.43 10.52 

b-doped 

DFT 

 a =12.64 

 b =6.59 

 c =15.48 

α = 86.3 

β = 88.3 

γ = 66.6 

1183.5 

 a = 12,54 

 b =6.59 

 c =7.74 

3.14 12.64 
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exp.a,[28]    

 a =14.0 

 b =6.8 

 c =7.8 

3.4 14.0 

a Tosylate-doped PEDOT. 

 

 

Fig. 2. Top and Side Views of the Optimized (a) Dedoped and (b) Doped PEDOT Bulk 

Models as Derived from 3D-PBC DFT Calculations. dH and dR chain distance are also shown. 

 

From the theoretical and experimental parameters reported in Table 1, comparison of PEDOT's 

dedoped and doped structures reflects a compactness in the stacking distance of 0.3 Å, but also a 

significant increase in PEDOT inter-chains distances of 2.36 Å. The latter is clearly due to the 

disposition of the dopant perchlorate anions. Moreover, it is also observed a small elongation of 

0.16 Å along the axis of growth on the doped polymer. 
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Dedoped and doped surface structures. Optimized structures of two multilayers with a large 

buffer along the lattice vector b to model a polymer surface were obtained using the 2D-PBC 

DFT approach. Table 2 lists the structural parameters of dedoped PEDOT and ClO4
– doped 

PEDOT surface systems (hereafter s-dedoped and s-doped, respectively). An expected small 

contraction, which is due to the loss of periodicity in one of the crystallographic lattice direction, 

is observed. Furthermore, there is an important crystal restructuring with a change in the main 

angles of the unitary cell. Indeed, we can see how the quasi-monoclinic dedoped bulk crystal 

becomes almost a quasi-orthorhombic system on the calculated surface model, the γ angle 

increasing from 81.9º to 86.8º, meanwhile the other two unit cell angles remains close to 90º. In 

contrast, in the s-doped system γ increases from 66.6º to 73.2º while the cells maintains the 

triclinic geometry.  

 

Table 2. Calculated Values on the Optimized Surface Structures of the Supercell’s Vectors 

(Distances and Angles in Å and º, respectively), Volume (V; in Å3), Inter-chain Stacking 

Distance (dH; in Å) and Parallel Interchain Distance (dR; in Å) of Dedoped and Doped PEDOT of 

Raw Surface Models (s-) and Nanopored (np-) Surface Models. 

Surface Slaba  Angles V dH dR 

 a b c  α β γ    

s-dedoped 20.40 6.48 15.67  91.1 89.9 86.8 2069 3.24 10.20 

s-doped 24.51 6.44 15.44  85.0 87.1 73.2 2325 3.22 12.26 

np-dedopedb 20.50 6.54 15.67  90.4 89.8 92.0 2096 3.27 10.18d 

np-dopedb 23.38 6.54 15.43  85.6 87.1 74.6 2362 3.27 12.18d 

a Only the slab surface dimensions are considered. There is a buffer of about 45 Å along b lattice vector in all 
systems. b The slab supercell distances along c lattice vector is divided by two to be compared with the s- models, 
which are holding only 4 EDOT units along c lattice vector.  d Averaged dR distances.   
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Overall, a reduction on the interchain distances is observed when comparing bulk and surface 

models, which is mainly due to the periodicity reduction. Indeed, s-dedoped presents a large 

reduction (−5.8%) on the dH interchain distance (perpendicular to the surface), whereas on the 

other lattice direction (dR) the reduction on the interchain distances is slightly lower (−2.4%). 

Furthermore, s-doped presents different figures than s-dedoped when is compared with the b- 

doped crystal. Specifically, the dH interchain distance increases about +2.5% meanwhile dR is 

compacted on about −3% when is compared with b-doped model.  

The doping effect on the surface models leads to a supercell volume increase of 12.4%. The 

slab volume was calculated following the general unit cell volume formula (V= abc) but 

considering the b lattice vector as the double of the interchain dH distance. This figure comes 

from the necessary distance increase between parallel PEDOT chains (dR) to accommodate the 

perchlorate dopant ions into such interchain space with a ∆dR=2.06 Å, which represents an 

increment of 20%. Similar figures were obtained when comparing b-dedoped and b-doped 

models with ∆dR = 2.19 Å (21 % increase).  

 

Nanopored surface structure. Fig. 3 shows the optimized structure of dedoped and ClO4
- 

doped nanopored polymer surface models (hereafter np-dedoped and np-doped, respectively), 

which were obtained using a 2D-PBC DFT approach. The two models are made of two 

nanopored multilayered systems with a large buffer along b lattice vector and a crystal defect 

induced by 4 EDOT units missing in both layers. In order to accommodate the defect we doubled 

the supercell along c lattice direction (8 EDOT units) compared with the s-dedoped and s-doped 

surface models (4 EDOT units). Table 2 lists the structural parameters of both nanopored 
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structures. The supercell dimension has been normalized to be compared with the s-surface 

models holding only 4 EDOT units along c lattice vector.  

As it can be seen, there are not much structural differences in the slab surface dimensions due 

to the presence of a nano-pore defect in the surface. It is observed a slight increment on the b 

lattice vector (1%) when the np-models are compared with the corresponding s-models and, in 

addition, a short contraction along a lattice vector is detected for the np-doped system. 

Consequently, a very similar volume increment is observed for both s- and np-doped systems 

(12.4 % and 12.7 %, respectively) with respect to the s- and np-dedoped models.  

 

Fig. 3. Top and Side Views of the Optimized Nanopored (a) Dedoped (np-Dedoped) and (b) 

Doped (np-Doped) PEDOT Surface Models as Derived from 2D-PBC DFT Calculations. 

 

On the other hand, the pore dimensions are much more affected on the surface model because 

of the distribution of the dopant anions. Fig. S1 (see supplementary information) shows the 

surface pore reconstruction in a supercell of 22 slabs and the pore dimension for both np-
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models. Despite of a short contraction of the pore along the a lattice vector (~1.1 Å) there is a 

large increment of 3.3 Å along c lattice vector, which leads to 32.5 % of the pore-surface 

increment after np-dedoped system doping (i.e., 15.1 % of circular pore-diameter increment). 

This large surface increment would allow to release potentially immobilized drugs inside the 

surface of dedoped PEDOT after doping, enabling the control on drug release by regulating the 

doping level. 

 

Table 3. Averaged Inter-Ring Dihedral Angle (θ; º), Intrachain S∙∙∙S Distance ( ; Å), 

Interchain S∙∙∙S Distances ( ; Å), and Shortest Cl∙∙∙Cl distances (dCl-Cl; Å) for the Optimized 

Bulk (b-), Raw Surface (s-) and Nanopored Surface (np-) Models of Dedoped and Doped 

PEDOT. 

Surface θ   dCl−Cl 

b-dedoped 177.1±1.2 4.47±0.00 3.56±0.00 4.78±0.00 - - - 

b-doped 176.7±1.4 4.45±0.00 3.38±0.04 4.47±0.05 5.21±0.00 4.93±0.00 5.33±0.00 

s-dedoped 174.2±3.3 4.44±0.00 3.40±0.00 4.80±0.00 - - - 

s-doped 175.3±3.2 4.46±0.00 3.38±0.00 4.96±0.04 5.09±0.00 4.65±0.00 5.38±0.00 

np-dedoped 170.0±2.7 4.44±0.00 3.53±0.01 4.70±0.06 - - - 

np-doped 174.7±3.5 4.44±0.00 3.41±0.01 4.89±0.01 5.05±0.13 4.69±0.02 4.57±0.28 

 

 
Structural differences among models. Table 3 compares selected structural parameters for all 

the calculated dedoped and doped PEDOT models. Interestingly, notable distortions from 

planarity are observed on the inter-ring dihedral angles (θ) of PEDOT chains, which are defined 

by the S–C–C–S sequence. More specifically, the averaged inter-ring dihedral angle is getting 
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further away from the ideal anti conformation (θ = 180º) as the model is losing periodicity (i.e. θ 

= 177.1º, 174.2º, and 170.0º for the b-, s- and np-dedoped models, respectively). Similar 

behavior is observed on doped models with averaged inter-ring dihedral angles of θ= 176.7º, 

175.3º and 174.7º for the b-, s- and np-systems, respectively.  

 

 

Fig. 4. Detail of (a) S∙∙∙S Distances and (b) Cl∙∙∙Cl Distances on the Side View of (a) b-Dedoped 

and (b) b-Doped Models of PEDOT. Glassy ClO4
- Represents the Closest Virtual Image.  

 

Fig. 4 shows intra- and intermolecular distances measured between sulphur and chlorine atoms 

within the supercell. Intramolecular S∙∙∙S distances present close values among all optimized 

systems (  = 4.45 ± 0.05 Å), differences being attributed to the planarity degree of the 

polymer chain previously discussed. On the other hand, comparison of the intermolecular S∙∙∙S 

distances for b- and s-dedoped models reveals a short reduction of both ,  and ,  (see 

Fig. 4). This observation is consistent with a compaction effect, which was previously discussed. 

Similarly, some reorganization is observed for np-doped, in which the S∙∙∙S distances take larger 

values, especially on the ,  distance, due to the distortions induced by the periodicity break 
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along chain axis and the subsequent reorganization of the repetitive units closest to the 

crystallographic defect. Nevertheless, the obtained inter-chain S∙∙∙S distances are significantly 

lower than those previously reported from 1D-PBC DFT calculations on PEDOT doped with 

ClO4
- ions (d = 5.89 Å).[30] Thus, the present study indicates that compaction effect is larger 

than reported in previous works. 

Table 3 lists the three closest Cl∙∙∙Cl distances among pairs of ClO4
– ions for the doped 

PEDOT models, while Fig. 4 shows their location within unit cell. It is observed that compaction 

effect on parallel chains also leads to the reorganization of the dopant ions, which is reflected by 

differences in their Cl∙∙∙Cl distances. Specifically, dCl-Cl,1 and dCl-Cl,2 (see Fig. 4) present some 

reduction when the periodicity of the surface is lost. However, the distance involving one virtual 

dopant ion (dCl-Cl,3), which corresponds to the closest periodic image, presents a major 

reorganization. This has been attributed to the pore surface defect, with a reduction of about 0.76 

Å when is compared with the b-doped model. 

 

Table 4. HOMA Aromaticity Index for All Dedoped and Doped PEDOT systems. 
System b-dedoped b-doped s-dedoped s-doped np-dedoped np-doped 

HOMA 0.607 0.550 0.696 0.558 0.711 0.576 

HOMAc
a - - - - 0.710 0.573 

HOMAp
b - - - - 0.713 0.588 

a PEDOT chains without any crystallographic defect; b PEDOT chains that have been shortened because of the 
surface pore modelling. 

 

Table 4 lists the averaged Harmonic Oscillator Model of Aromaticity (HOMA index) for all 

systems under study. HOMA[46] index allows to quickly and easily assign the aromatic 

character of any system based on the C–C and C–S bond length alternation pattern along the π-
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system. This methodology has been previously used to study the aromaticity of different 

thiophene based polymers.[47] Within this context, the HOMA index is equal to zero for a 

Kekulé structure formed by a typical aromatic system with single and double bonds arranged 

alternatively, whereas it is equal to 1 for systems with all bonds equal to the optimal aromatic 

values. The inspection of the HOMA indexes shows an increase on the aromaticity values as the 

models loss the periodicity, and less interaction with their virtual images is observed. Also, a 

general loss of aromaticity is shown on all doped models when they are compared with the 

corresponding dedoped models.  

It is known that dopant molecules induce important changes on the single and double bond 

alternation pattern favoring the Kekulé structure, exhibiting a transition from aromatic to 

quinoid-like structure, and thus, reducing the HOMA aromaticity index.[29, 36] Similarly, the 

HOMA index is affected by the pore defect when the aromaticity index of the two different 

PEDOT chains contained in the np-models, are compared. These correspond to the indexes 

calculated considering independently the chains that are next to the pore (HOMAp in Table 4) 

and the chains that are out of the pore (HOMAc in Table 4). Although it is observed a minimum 

loss of aromaticity for the np-dedoped model, this effect becomes more pronounced for the np-

doped model with an increase of 2.6 % on the HOMA value. 

 

Surface morphological study. Theoretical calculations discussed in previous sub-sections 

show important changes in the volume and in the surface area of the nanopores when dedoped 

(reduced) PEDOT coverts into doped (oxidized). In order to measure experimentally the 

variation on the porous size with the doping level (i.e. oxidation state) a morphological 

comparison between PEDOT/pred and PEDOT/poxd films was conducted. Doping level values (dl) 
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were obtained by CV on both PEDOT/pred and PEDOT/poxd films. PEDOT/poxd film presents a dl 

value of 0.42, close to those observed in most of the polythiophene derivatives,[27] whereas the 

reduced film shows a dl value of 0.06, low enough to be helpful on the pore size comparison 

among both polymers. 

In order to obtain the two films at different dl, several steps had to be performed. Initially, a 

PEDOT sample was obtained by anodic polymerization. Fig. 5a, which displays a representative 

SEM micrograph of such pristine PEDOT film, shows small aggregates connected by dense 

networks of thin fiber-like structures. Thus, the as prepared PEDOT surface presents a porous 

morphology, facilitating the dopant ions movement during oxidation and reduction processes. In 

order to facilitate the measurement of the pore size, the surface porosity was enhanced by 

immersing the pristine PEDOT film in a NaCl aqueous solution (Fig. 1b), which resulted in the 

formation micrometric salt crystals on the film surface. Fig. 5b shows a representative SEM 

micrograph of the resulting PEDOT/NaCl film. As it can be seen, NaCl crystals with a regular 

and parallelepiped-shape grew among already existing conducting polymer clusters, enhancing 

the size of the surface cavities. Indeed, the porosity enhanced by this methodology only affects 

the film surface. Further characterization of PEDOT/NaCl films is provided in Fig. S2, which 

shows SEM micrographs and EDX spectra of two specific surface film points that allow 

perfectly differentiating between the salt crystals and the polymer matrix. Although the PEDOT 

surface initially acts as a template, the crystal growing process causes structural distortions. 

Microcrystals were rinsed from the surface with water whilst their induced cavity remains (Fig. 

1b), resulting in a bolstered porous PEDOT/p film. Thus, pores from pristine PEDOT converts 

into a set of larger pores once the NaCl crystals are removed from the surface. The surface 

porosity enhancement will facilitate doping and dedoping processes. The new pores obtained 
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from rinsed NaCl crystals are located on the surface of PEDOT film with an observed size on the 

macropore length-scale (Fig. 5). Since this process is previous to doping level adjustment of each 

sample, initial film macroporosity won't interfere on the experimental measurement of the final 

nanopore size that will be done at a lower length-scale. 

 

Fig. 5. Representative SEM micrographs of (a) pristine PEDOT and (b) PEDOT/NaCl films 

(scale bar: 10 m).  

The enhanced porous PEDOT/p film was reduced and oxidized by chronoamperometry at a 

constant potential of –1.1 and 1.1 V, respectively, to obtain the PEDOT/pred (dl = 0.06) and 

PEDOT/poxd (dl = 0.42) films. Representative SEM micrographs of PEDOT/pred and PEDOT/poxd 

films with a magnification of 200,000 are displayed in Figs. 6a, and 6b, respectively. Clusters of 
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similar globular structures are observed in both films, even though the pore size is apparently 

larger for PEDOT/poxd than for PEDOT/pred. The enhanced porosity of the precursor PEDOT/p 

film allows faster movements for the dopant ions during the both reduction and oxidation steps. 

The scape of the ClO4
– ions from the PEDOT matrix in the reduction process leads to a more 

compact porous structure than its oxidized form, in which the dopant ions enter into the polymer 

matrix. The thicknesses and roughness of PEDOT/pred and PEDOT/poxd has been determined by 

contact profilometry. The thicknesses of dedoped and doped films are l ≈ 4.8 and l ≈ 6.3 μm, 

respectively, whereas the roughnesses are Ra ≈ 1.0 and Ra ≈ 2.1 μm, respectively. It is observed a 

similar film thickness in both films, although we can still see a different roughness that might 

show a higher micro-porosity on doped film. 
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Fig. 6. Representative SEM micrographs (left, magnification: 200k, scale bar: 100 nm) and 

nanopores size histogram derived from SEM measurements (right) of (a) PEDOT/pred and (b) 

PEDOT/poxd films.  

 
FTIR spectra of both PEDOT/poxd and PEDOT/pred are shown in Fig. S3a (supplementary 

information). The comparative analysis presents an IR band at 985 cm-1, which is assigned to C–

S bond vibration [48], and the 1420 cm-1 band that is assigned to the symmetric stretching of the 

C=C bond. Within the oxyethylene ring the IR bands at approximately 1087 and 1215 cm-1 

corresponds to the C–O–C bond stretching [48, 49], meanwhile the band at 1369 cm-1 is assigned 

to the CH2 bending [44]. Furthermore, Raman spectra were taken from both PEDOT/poxd and 

PEDOT/pred films (Fig. S3b). The Raman bands located at approximately 576, 698, 857, 991, 

and 1561 cm-1 are assigned to the C-O-C, C-S-C, O-C-C, oxyethylene ring deformations and 

CH2 bending, respectively. Moreover, the band at 1368 and 1434 cm-1 are assigned to the Cα-Cβ 

stretching and the Cα=Cβ symmetrical bond stretching of the thiophene ring, respectively [50]. 

Interestingly, a red shift of about 20 and 4  cm-1 on the Cα-Cα inter-ring stretching (1271 cm-1) 

and Cα=Cβ antisymmetric stretching (1517 cm-1) of PEDOT/pred are observed, when it is doped. 

This is due to the PEDOT ability to change from aromatic-like structure to quinoid-like structure 

when doped with ClO4
-. The π-electrons becomes more delocalized in the quinoid-like structure 

due to the increase of planarity between two consecutive PEDOT rings, and thus with an increase 

of the system conductivity [49]. 

X-ray diffraction (XRD) patterns of PEDOT powder at different doping levels are shown in 

Fig. 7. The diffraction peak at scattering angles (2θ) of 6.20º and 6.14º can be ascribed to the 

(100) planes of the PEDOT/pred and PEDOT/poxd, respectively [28]. Thus, the parallel interchain 

distances (along a crystal axis, dR) of both samples are very close with values of 14.2 and 14.4 Å, 
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respectively. Comparing with the value of 12.64 Å derived from the theoretical model used in 

this work (Table 1) it appears to underestimate the theoretical dR distances in ~10%, which may 

lead to a lower threshold on the nanoporous size estimation. The diffraction hump centered about 

2θ ≈ 12º corresponds to the Si wafer and the vacuum grease used mounting the XRD samples. 

From the diffraction patterns, it is observed that both dedoped and doped samples presents a very 

low crystallinity of ~ 5% that can be evaluated by the relationship between the crystalline peaks 

area and the total area under the diffraction pattern [51]. 

 

Fig. 7. XRD patterns of PEDOT/pred (dedoped, black line) and PEDOT/poxd (doped, red line) 

films. 

The density of PEDOT/pred and PEDOT/poxd has been obtained by means of the flotation 

method with values of 1.69 and 1.73 g/cm3, respectively. The PEDOT/pred density is close to the 

theoretical density calculated by the b-dedoped crystal (d=1.57 g/cm3), however, the PEDOT/poxd 

system present a much lower density than that on the b-doped theoretical crystal (d=2.13 g/cm3). 

Still, before a direct comparison among theoretical and experimental density values some 

considerations have to be taken. Synthetized reduced and oxidized PEDOT films are 

semicrystalline polymers with a low degree of crystallinity (~5%, see above), and consequently, 

with a higher percentage of amorphous domains. The density of the crystalline domain is 
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typically larger than that on the amorphous domain since the polymer chains are more tightly 

packed than the amorphous region [52]. Thus, the measured density of PEDOT will be expected 

to be an intermediate value between both domains. On the other hand, synthetized films present 

some different doping level that is not equal to the idealized theoretical system. So, after 

correcting the amount of dopant ions (dl=0.06) the density of b-dedoped system is 1.64 g/cm3, in 

good agreement with the experimental value. However, the high density value obtained by the b-

doped system can be explained not only by its doping level difference with the synthetized film 

(dl = 0.42 instead of 0.50) but for the 10% of error in the length of parameter a on the crystal unit 

cell (see above). After correcting both points a theoretical density of ~1.80 g/cm3 is obtained, 

which is close to the experimental value. 

Three different samples of PEDOT/pred and PEDOT/poxd were used to measure the average 

pore size, which was 22.8 ± 3.0 and 28.6 ± 4.7 nm, respectively. Although both theoretical and 

experimental values points qualitatively to an increment of the pore surface upon oxidation, there 

is a clear quantitative difference. Thus, the increment of the pore size observed experimentally is 

25.2% (56.9% of pore-surface increment) while that derived from theoretical calculations is 

15.1% (32.5% of pore-surface increment). Obviously, this difference has been attributed to the 

different length-scales of theoretical calculations (~ 1.5 nm) and experimental measures (~ 30.0 

nm) but also due to the ~10% of error evaluating dR of np-doped system, which after correction 

will lead to close values (~21%  of pore size increment) to those experimentally observed.  

Material properties may change dramatically when are reduced to nanoscale dimensions. In 

fact, from roughly about 100 nm and below, materials break a size barrier below which the 

quantum effects and electronic energy becomes relevant. Thus, materials on nanoscale can show 

very different properties compared to what they show on a macroscale. In this work, 
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experimental pores were found and measured on the nanoscale, where the dimension of the 

nanofibers is similar to the observed nanopores (Fig. 6) and below 100 nm. Thus, it is expected 

that quantum effects will have a noticeable importance on the material organization and 

nanopores formation among the nanochains of PEDOT. Even though there is a factor of ~20 

between the theoretical simulated nanopores size and its experimental measurement, theoretical 

model (at quantum level of calculation) used to study the PEDOT surface chains organization 

due to the presence of a nano-void becomes a good model to capture all the quantum 

interactions. However, important phenomena happening during the oxidation-reduction steps, 

such as the surface-clustering of EDOT fibers, changes in the crystallographic system of the 

surface, and the ion diffusion in and out from the EDOT-matrix, might influence on the 

magnification of the porosity observed when the oxidized and reduced surface films are 

compared at the nanometric scale with the simulated values. 

 

Conclusions 

The influence of the oxidation state on the pores size has been studied in PEDOT films using 

theoretical calculations and experimental measures. b-, s- and np-dedoped and doped models 

have been simulated under periodical boundary conditions at the DFT level. The quasi-

monoclicic structure obtained for b-dedoped PEDOT evolves towards a triclinic system after 

doping with ClO4
– anions. Although the s-models of PEDOT keep structures similar to those b-

models, the volume of s-doped is 12.5% higher than that of s-dedoped. Besides, np-models 

maintain structural similarities with s-models, the incorporation of ClO4
– dopant anions causing 

important changes in the supercell dimensions. Moreover, the size of the pore created as a 

structural defect in the np-dedoped model increases by 15.1% in the np-doped one (~21 % after a 
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cell parameter correction). The structural tendencies predicted by theoretical calculations have 

been confirmed by experimental observation. More specifically, the average pore size of PEDOT 

porous films has been compared after chronoamperometric reduction and oxidation. The 

averaged pore size of PEDOT/poxd is 25.2 % larger than that of PEDOT/pred. This important 

change on the surface porosity of the PEDOT matrix under different oxidation states allows 

foreseeing important potential applications on the load and release of drugs controlled by the 

oxidation state of the polymeric matrix. 
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