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ABSTRACT

During spring 2016 and spring 2017, a vertically pointing, S-band Frequency Modulated Continuous Wave

radar (UMass FMCW) was deployed in northern Alabama under the auspices of the Verification of the

Origins of Rotation in Tornadoes Experiment (VORTEX)-Southeast. In total, ;14 weeks of data were

collected, in conditions ranging from quiescent clear skies to severe thunderstorms. The principal objective of

these deployments was to characterize the boundary layer evolution near the VORTEX-Southeast domain.

In this paper, we describe intermediate results in service of this objective. Specifically, we describe updates to

the UMass FMCW system, document its deployments for VORTEX-Southeast, and apply four automated

algorithms: 1) a dealiasing algorithm to the Doppler velocities, 2) a fuzzy logic scatterer classification scheme

to separate precipitation from nonprecipitation observations, 3) a brightband/melting-layer identification

algorithm for stratiform precipitation, and 4) an extended Kalman filter–based convective boundary layer

depth (mixing height) measurement algorithm for nonprecipitation observations. Results from the latter

two applications are qualitatively verified against retrieved soundings from a collocated thermodynamic

profiling system.

1. Introduction

The spatiotemporal variability of the atmospheric

boundary layer (BL) regulates atmosphere’s ability

to generate and sustain severe thunderstorms. The

atmospheric BL is defined by Stull (1988) as ‘‘that part

of the troposphere that is influenced by the presence of

the earth’s surface, and responds to surface forcings

with a time scale of about an hour or less.’’ BL evolution

poses significant challenges for numerical weather pre-

diction (NWP) because both its vertical and horizontal

inhomogeneities are unresolved by most operational

NWP models (e.g., Stensrud 2007). Additionally, the

BL is difficult to observe over large horizontal areas via

remote sensing instruments; scanning ground-based

sensors (e.g., Melnikov et al. 2013) are inhibited by
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terrain blockage, while spaceborne sensors find up-

welling radiation from the BL mostly overwhelmed by

radiation from the free atmosphere (i.e., the layer

above the BL). There are several ground-based tech-

nologies such as multichannel microwave radiome-

ters (e.g., Rose et al. 2005), infrared spectrometers

(Knuteson et al. 2004a,b), and water vapor lidars (e.g.,

Spuler et al. 2015) that are able to provide temperature

and/or water vapor profiles through the BL at high

temporal resolution. The review paper by Wulfmeyer

et al. (2015) provides an overview of these differ-

ent methods. However, these instruments all have

strengths and weaknesses, and in particular are often

compromised during precipitating conditions. Thus,

complementing these technologies with a ground-

based vertically pointing radar can reveal additional

details about the evolution and character of the BL.

While BL profiling is commonly accomplished using

UHF profilers (Angevine et al. 1994), the use of S-band

(;10 cm wavelength) radars for BL profiling is also

generally accepted practice (Gossard 1990; Wilczak

et al. 1995). Like theUHF band, the S band straddles the

Bragg regime (which dominates in clear air at wave-

lengths shorter than 10 cm) and the Rayleigh regime

(which dominates in most classes of precipitation at

wavelengths longer than 10 cm). Bragg scatter becomes

increasingly important at wavelengths longer than

10 cm, but is still dominated by Rayleigh scatter in both

UHF and S bands when precipitation is present.

Therefore, S-band radar is useful both for clear-air BL

studies and precipitation studies, a property that led to

its adoption in the U.S. National Weather Service

Radar—1988 Doppler (WSR-88D; Crum and Alberty

1993). While the WSR-88D was primarily designed for

monitoring precipitation, its S-band radar observations

can be used for real-time monitoring of the convective

boundary layer (CBL), where insect concentrations

and Bragg scatter illuminate the horizontal structures

within the CBL (Gossard and Strauch 1983; Gossard

1990; Eaton et al. 1995; Melnikov and Zrnić 2017;

Richardson et al. 2017). WSR-88D observations of

the BL, however, are limited to within approximately

80 km of the WSR-88D by its volume coverage pattern

(Heinselman et al. 2009; Melnikov et al. 2011, 2013;

Richardson et al. 2017). For reference, in clear air

mode, the WSR-88D currently scans nine elevation

angles ranging from 0.58 to 6.48 in a step-spiral pattern

(VCP 35; Banghoff et al. 2018), and has range and az-

imuthal resolutions of 250m and 1.08, respectively.
From radar observations of precipitation in the BL,

there is also information to be gained regarding pre-

cipitation microphysical processes. Falling precipitation

undergoes a multitude of changes owing to freezing,

melting, evaporation, collision, coalescence, and other

microphysical processes (e.g., Fabry et al. 1992; Fabry

and Zawadzki 1995; White et al. 2002; Ikeda et al.

2005; Pruppacher and Klett 2010; Emory et al. 2014;

Giangrande et al. 2016). Vertical cross sections (re-

constructed RHI plots) of WSR-88D observations can

be generated fromWSR-88D volume coverage patterns

(e.g., Brown et al. 2005), but this evolution is captured at

relatively coarse temporal (;5min) and vertical (;100–

1000m) intervals—the latter increases with distance

from the radar. Analytical techniques such as quasi-

vertical profiling (QVP; Ryzhkov et al. 2016) can be used

to generate time series of reflectivity BL profiles with

higher vertical resolution (;100m at altitudes less than

2km above radar level) than the reconstructed RHIs.

However, the QVP technique does not alleviate the tem-

poral coarseness of the WSR-88D volumes, nor does it

produce estimates of vertical velocity over the radar site.

In this study, we describe a scatterer identification

scheme for data collected in northern Alabama over

several weeks by a vertically pointing, S-band radar with

high temporal (;16 s) and vertical (;5m) resolution.

This categorization scheme will enable us to isolate

specific types of echoes within the overall dataset for

further study. After first dealiasing the observations

and separating the observations into hydrometeor and

hydrometeor-free categories, we further divide the

hydrometeor category into convective and stratiform

subcategories, and apply a modified operational

brightband identification (BBID) algorithm (Zhang

et al. 2008) to delineate the melting layer (ML). Within

the hydrometeor-free category, we use an extended

Kalman filter–based method (Lange et al. 2015) to

objectively identify the CBL depth in a pretornadic

environment.

A comprehensive review of the use of vertically

pointing radar in hydrometeor-free BL studies is pro-

vided by Gossard (1990). In summary, vertically point-

ing radars have revealed multiple finescale layers within

the CBL, often with differing refractive properties and

stability. During the morning transition following sun-

rise, the CBL generally increases in depth with time as

buoyant thermals rise away from Earth’s surface, erod-

ing the capping inversion and residual layer from below

via turbulent mixing at the BL/free atmosphere inter-

face (also called the entrainment zone; Stull 1988;

Fig. 1a). The success of individual thermal plumes in

penetrating the top of the CBL depends on the ther-

modynamic properties of the plume, the properties of

the internal CBL structure (which can be detected us-

ing some types of vertically pointing radars and pro-

filers; e.g., Fig. 1b), and the strength of the capping

inversion. Depending on the stability of the overlying
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free atmosphere, penetration of the capping inversion

may initiate severe convection. Continued ingestion

of unstable BL air by a convective storm in a favor-

able thermodynamic environment can strengthen and

sustain a severe storm’s updraft, leading to increased

potential for vorticity stretching, mesocyclogenesis,

and ultimately tornadogenesis within the storm (Weisman

and Klemp 1982; Rasmussen and Blanchard 1998; Atkins

et al. 1999; Markowski and Richardson 2009; Nowotarski

et al. 2011).

The Verification of the Origin of Rotation in Torna-

does Experiment–Southeast (hereinafter VORTEX-

SE) experiment was instigated to intensively investi-

gate tornadoes, their environments, and their societal

impact in the southeastern United States (Koch 2016;

Rasmussen and Koch 2016). Among the science ob-

jectives outlined for this project was characterization of

BL evolution and precipitation microphysical pro-

cesses over the VORTEX-SE domain (Fig. 2a). In this

paper, we report on data collection in northern

Alabama by a vertically pointing, S-band, BL profiling

radar during VORTEX-SE in 2016 and 2017 in service

of this objective, and some data quality control and

enhancement techniques applied to these data. The

purposes of this paper are 1) to update the description

of the radar system, 2) to document its 2016 and 2017

VORTEX-SE deployments in northern Alabama, 3) to

describe quality control procedures applied to these

data, 4) to describe a precipitation/nonprecipitation

classification scheme developed using the VORTEX-

SE data, and 5) to provide an example application for

each classification. Specifically, we will demonstrate

5a) a melting-layer identification for the precipitation

observations and 5b) an extended Kalman filter–based

CBL/mixing height detection algorithm applied to the

nonprecipitation observations. This study should be

considered to be a progress report of a larger effort

toward a more comprehensive characterization of the

CBL over the VORTEX-SE domain.

2. The UMass FMCW radar

a. Instrument description

The University of Massachusetts Frequency Modu-

lated Continuous Wave radar (hereinafter UMass

FMCW) was constructed at the Microwave Remote

Sensing Laboratory (Eaton et al. 1995; _Ince et al. 2000,

2003). UMass FMCW is a vertically pointing, S-band,

pulse compression, single-polarized, BL profiling radar

with exceptionally fine range-gate spacing (5.0m) and

temporal resolution (as fine as 1 s; Table 1). While

UMass FMCW is mounted on a truck for mobility

(Fig. 2), it is not designed for rapid deployment. In-

stead, UMass FMCW is typically deployed at a fixed

site for a period of weeks or months, operates off line

(A/C) power, and automatically collects a continuous

series of observations of the BL directly above the in-

strument. Prior to VORTEX-SE, UMass FMCW was

deployed during other BL observation programs such

as the 1999 Cooperative Atmosphere–Surface Ex-

change Study (CASES-99; _Ince et al. 2000; Poulos

et al. 2002; _Ince et al. 2003) and the International H2O

Project (Weckwerth et al. 2004) to infer BL stratifi-

cation (Frasier et al. 2002; Demoz et al. 2006; Lange

et al. 2015) and insect concentration (Contreras and

Frasier 2008).

During VORTEX-SE, UMass FMCW operated as

follows: over a 1.34-s interval, 256 frequency modulated

sweeps were collected to produce a Doppler spectrum.

Fourteen such spectra, spanning a 16.1-s interval, were

then averaged and moments were calculated from the

averaged spectra. Reflectivity (h;m21) was estimated

from system signal-to-noise ratio (SNR) using the radar

equation [e.g., Doviak and Zrnić 1993, their Eq. (4.16)]

and nominal system parameters (Table 1). Linear radar

reflectivity factor (z;mm6m23) was calculated from h,

FIG. 1. (a) Conceptual model of the diurnal evolution of the

continental CBL (annotated here as the ‘‘Mixed layer’’) in the

absence of precipitation. The image is provided through

the courtesy of Kluwer Academic Publishers and is based on a

figure from Stull (1988). (b) SNR measurements from the ver-

tically pointing, S-band UMass FMCW from 1117 UTC 10 Apr

to 1116 UTC 11 Apr 2017 at Scottsboro. Start and end times

match local sunrise.
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and radial (vertical) Doppler velocity w and spectrum

width sw were calculated from the Doppler spectra.

Examples of these moments, plotted in time–height

space, are shown in Figs. 3a–d. In a change from

previous field campaigns, the Doppler spectra were

also recorded for VORTEX-SE. During CASES-99

(Poulos et al. 2002) and IHOP_2002 (Weckwerth et al.

2004), a lower pulse repetition frequency (20Hz) was

used, and the resulting Doppler spectra (confined to a

Nyquist interval of 60.5m s21) were not retained.

b. Deployment during VORTEX-SE

For the 2016 VORTEX-SE field campaign, UMass

FMCW was deployed at the Tennessee Valley Re-

search and Extension Center (operated by Auburn

University) near Belle Mina, Alabama (Figs. 2a,b),

(latitude: 34.69048N, longitude: 86.88158W) approxi-

mately 22 km west-southwest of Huntsville, Alabama.

This site was selected because of its relative freedom

from nearby clutter targets, its ‘‘upstream’’ location

from the Huntsville domain, and collocation with

other VORTEX-SE meteorological measurement

systems, including the Collaborative Lower Atmo-

spheric Mobile Profiling System (CLAMPS; Wagner

et al. 2019) and NOAA supplemental upper-air mea-

surements (Lee et al. 2018, 2019). UMass FMCW op-

erated almost continuously from 1 March to 30 April

2016 (Frasier and Waldinger 2016). Only a handful of

observation discontinuities, and only one more than

24 h in length, occurred during this period (Fig. 4).

Most of these data gaps resulted from temporary power

or communications outages or from overheating of the

UMass FMCW signal processing computer when the

external air temperature exceeded 278C. In the latter

case, automated observations typically resumed once

the external air cooled.

During the 2017 VORTEX-SE field campaign,

UMass FMCW and CLAMPS were instead deployed at

the Scottsboro, Alabama, municipal airport (latitude:

TABLE 1. Selected parameters of the UMass FMCW radar system

as configured for VORTEX-Southeast.

Parameter Value

Frequency 2.92GHz

Bandwidth 30MHz

Sweep rate (PRF) 190.735Hz (2016)

287.224Hz (2017)

Amplifier type Traveling wave tube (2016)

Solid state GaN (2017)

Transmitted power (continuous) 250W

Antenna gain 34 dB

Compression gain 50.2 dB

Noise level 297.4 dBm

3-dB beamwidth 3.58
Max unambiguous range 5.0 km

Max unambiguous velocity 64.9m s21 (2016)

67.3m s21 (2017)

Sampling period 1.34 s

Averaging period 16.1 s

Range resolution 5.0m

FIG. 2. (a)Approximate boundary (red dashed line) of theVORTEX-SEdomain, and the deployment sites (starred) forUMass FMCW

in northern Alabama during the 2016 and 2017 field campaigns. (b) The UMass FMCW deployed at the Tennessee Valley Research and

Extension Center near Belle Mina in 2016. (c) The UMass FMCW deployed at the Scottsboro municipal airport in 2017. A collocated

Portable In Situ Precipitation Station (Dawson et al. 2017) sits beside the truck.
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34.68728N, longitude: 86.00508W; Figs. 2a,c). This site

was selected to align with the objectives of VORTEX-

SE pertaining to terrain influences on tornadogenesis.

Scottsboro is located west (nominally upstream) of the

southern Cumberland terrain range (known locally as

Sand Mountain), where a regional maximum in torna-

dogenesis events has been documented (Lyza and

Knupp 2018). UMass FMCW operated at Scottsboro

from 10 March to 1 May 2017, with only a few gaps in

data coverage (Frasier et al. 2017) (Fig. 5). The most

significant gap (12–15 March 2017) resulted from an

extended connectivity outage. In total, UMass FMCW

observations spanning ;108 days were collected in

northern Alabama over the two years of VORTEX-SE

field operations.

c. Observation quality control

The UMass FMCW dataset included the Doppler

spectra and four primary variables: logarithmic reflec-

tivity factor Z (dBZ), SNR, w, and sw (Figs. 3a–d,

respectively). Some data quality issues and artifacts

were addressed at the spectrum level, and others were

addressed in the moments data.

First, the 2016 Doppler spectra contained spurs

resulting from interference from high-voltage switching

power supplies in the traveling wave tube (TWT) am-

plifier (Waldinger et al. 2017; Waldinger 2018). These

spurs manifest as spurious peaks in the Doppler spectra

(e.g., Fig. 6a). A median filtering method was used to

ameliorate most of these spurs (e.g., Fig. 6b), but some

strong spurs persisted and were visible in the moments

data as false echoes appearing a constant height in each

variable (e.g., Fig. 7). In the presence of strong scat-

tering, it was impossible to separate the spurs from

the backscattered signal. While the spurs generally

appeared at the same range gate, they drifted in fre-

quency over time, making the application of a notch

filter inadvisable. At the time of this writing, the au-

thors are exploring image processing techniques to

more effectively remove these spurs prior to moment

FIG. 3. UMass FMCW observations of (a) reflectivity factor (dBZ), (b) raw Doppler radial velocity (m s21),

(c) spectrumwidth (m s21), and (d) SNR (dB) from 1600 to 1700UTC 3Apr 2017 above the Scottsboro airport. The

end of a stratiform precipitation event with an evident melting layer (around 2.8 km AGL) can be seen, following

which at least two elevated, turbulent layers (at approximately 1.0 and 1.5 kmAGL) are visible in the hydrometeor-

free air. Derived quantities (e) spectrumwidth texture (m s21) and (f) dealiasedDoppler radial velocity (m s21) are

also shown.
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calculation (Rocadenbosch et al. 2018). For the moment,

gates consistently affected by these spurs have simply

been flagged for discrimination in later study. Another

phenomenon known as ‘‘horizon glow’’—artificially

enhanced echoes within the lowest 700m (Fig. 4)—

resulted from low-frequency receiver saturation in the

TWT at short ranges (i.e., low altitudes). The receiver

saturation appears as a relatively continuous echo that

FIG. 4. UMass FMCW reflectivity (dBZ) observed during the 2016 VORTEX-SE field observation campaign.
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fades from 215 to 230 dBZ over the 50–700m AGL

layer (Figs. 4 and 7a). The scatterer identification al-

gorithm (described later) was developed using only

observations from 2017, collected after the TWT

amplifier was replaced and these two types of arti-

facts were no longer an issue.

Second, Doppler radial (vertical) velocity observa-

tions were dealiased using an image processing technique

FIG. 5. As in Fig. 4, but for the 2017 campaign.
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called quality guided path unwrapping (Herráez et al.

2002), for which a robust Pythonmodule exists (van der

Walt et al. 2014). In testing, it was found that this al-

gorithm, applied in two dimensions (time and height),

performed well on UMass FMCW vertical velocity

observations in moderate to heavy precipitation. Ad-

ditional, manual corrections to the dealiased Doppler

velocity fields were necessary in the power spur–

contaminated 2016 data (e.g., Fig. 7f), and in 2016 and

2017 data at times when radials were saturated by oc-

casional echoes from unknown, highly reflective targets

(likely low-flying aircraft at the Scottsboro airport;

not shown).

Because the spatial variability (texture) of some var-

iables can be used to distinguish some echo classes

(Gourley et al. 2007; Lakshmanan et al. 2010; Penide

et al. 2013), we also calculated the textures of the four

main UMass FMCW variables. The texture T (spatial

variability in the vertical) of a variable f at a height index

h over a kernel size n is given by the root-mean-square-

difference formula:

T( f
h
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

(n21)/2

i52(n21)/2

( f
h
2 f

h1i
)2

n

vuuuut
. (1)

This texture formula is the same as that given by

Gourley et al. [2007, their Eq. (1)] but reduced to a

single (vertical) spatial dimension. A threshold of

T(sw) . 0.2m s21 was found by inspection to be useful

for demarcating contaminated precipitation observations

(e.g., Fig. 8e). We did not dealias w at gates flagged by

this method.

3. Scatterer classification and applications

a. Separation of precipitation and nonprecipitation
observations using fuzzy logic

Radars operating at S band (i.e., around 3GHz)

straddle two principal scattering regimes depending on

the atmospheric conditions above the instrument. Un-

der ‘‘clear-air’’ (i.e., nonprecipitating, bioscatterer-free)

conditions, most scattering is in the Bragg regime, which

is governed by the equation

h’ 0:38C2
nl

21/3 , (2)

where h is reflectivity, l is the radar wavelength, and

C2
n is the structure parameter for the refractive index

n (e.g., Gossard 1990).

When scattering is dominated by hydrometeors and

bioscatterers (e.g., Contreras and Frasier 2008) in the

FIG. 6. UMass FMCW (a) raw and (b) median filtered spectral power (dB) as a function of

Doppler velocity and height at 0914 UTC 31 May 2016 above Belle Mina. Application of a

median filter to the raw spectra reduces the amplitude of most of the TWT power spur artifacts,

but some stronger spurs (e.g., at 1.3 and 3.9 km AGL) persist. Some velocity aliasing can be

seen at and above 3.0 km AGL (the top of the melting layer). Downward acceleration of

precipitation can be seen within the melting layer (2.6 to 3.0 km AGL).
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Rayleigh regime (D , l/10, where D is the particle di-

ameter), reflectivity is governed by the equation

h’
p5

l4
jKj2z , (3)

whereK is the complex dielectric constant of water, and

z is the linear reflectivity factor of water spheres [e.g.,

Doviak and Zrnić 1993, their Eq. (4.31)]. Because the

radar straddles these two very different scattering re-

gimes, and because we wish to study the precipitation

and nonprecipitation observations using different means,

it is advantageous to automatically segregate regions

dominated by precipitation and nonprecipitation by

means of a scatterer classification algorithm. For exam-

ple, it is necessary to isolate nonprecipitation observa-

tions in order to study the development of the convective

BL in the absence of precipitation. As a second example,

the UMass FMCW Doppler spectra collected near the

surface can be compared to observations of drop size

distributions from a collocated Parsivel2 disdrometer

(Dawson et al. 2017), requiring isolation of gates con-

taining precipitation.

Manual separation of precipitation and non-

precipitation observations in such a large dataset is

subjective and time consuming. A number of studies

have examined the problem of automatically dis-

criminating precipitation and nonprecipitation echoes

in observations from ground-based, single-polarized,

S-band radars. In general, their focus has been on

conically scanning radars, retaining precipitation ob-

servations while discarding nonprecipitation echoes

such as those generated by anomalous propagation,

ground clutter, bioscatterers, and nonmeteorological,

nonbiological scatterers such as smoke and chaff

(Fulton et al. 1998; Grecu and Krajewski 2000; Steiner

and Smith 2002; Kessinger et al. 2003; Zhang et al.

2004; Lakshmanan et al. 2007, 2010). Because it points

vertically, anomalous propagation and ground clut-

ter are not significant issues for the UMass FMCW.

FIG. 7. As in Fig. 3, but for observations from 0900 to 1000 UTC 31 Mar 2016 over Belle Mina, showing an

intermittent precipitation/virga event. The melting layer can be seen at 3.0 km AGL, and the top of the CBL

is evident at about 2.0 km AGL, following the cessation of rain. These data were collected prior to the solid state

amplifier upgrade and show the effects of power spurs (appearing as spurious echoes at constant height, e.g., at 1.3

and 3.9 km AGL) in all of the fields. These spurious echoes cause the automated dealiasing algorithm in (f) to fail

from 0900 to 0920 UTC, below the precipitation.
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While bioscatterer echoes were often observed by

the UMass FMCW, smoke and chaff releases were

not documented during either the 2016 or 2017

deployments.

Using a simple Z threshold to separate Bragg and

Rayleigh scatter-containing gates (e.g., Ralph 1995)

proved problematic, as there was significant overlap be-

tween the two regimes at the S band within the CBL

(spanning roughly from 235 to 10dBZ). While heavy

precipitation was relatively easy to distinguish using

Z alone, regions of light precipitation, in-cloud precipi-

tation, clouds, or strong Bragg scatter often fell into this

ambiguous classification. Instead, we chose to use the

generalized fuzzy logic technique described byGourley

et al. (2007). Fuzzy logic is a natural choice for this

classification problem, as it has been extensively em-

ployed in scatterer classification schemes for polari-

metric observations (Gourley et al. 2007; Park et al.

2009; Chandrasekar et al. 2013). Fuzzy logic was also

used to discriminate nonprecipitation echoes in WSR-

88D observations (Kessinger et al. 2003) before the na-

tionwideWSR-88D dual-polarization upgrade of 2012–13.

BecauseUMass FMCW is a vertically pointing, single-

polarized radar, polarimetric quantities used in WSR-

88D hydrometeor classification algorithms (Park et al.

2009) were not available. The Gourley et al. (2007)

technique, while developed for C-band polarimetric

radar, is agnostic to the choice of band, polarimetry,

and variables used in the classification. The only re-

quirement is that sufficient differences exist in the

measured variables between the classes to be assigned

that their probability density functions (PDFs) have

relatively small overlap. A user ‘‘trains’’ the algorithm

using known examples of the desired classes. In this

case, multihour subsets of UMass FMCW observations

of known precipitation and nonprecipitation were iso-

lated and used to generate the respective PDFs. The

9-h ‘‘precipitation’’ subset of the UMass FMCW

data was composed of examples of stratiform, con-

vective, and warm rain (i.e., no ice processes). The 9-h

‘‘nonprecpitation’’ subset contained observations of

precipitation-free air, bioscatterer activity, or Bragg

scatter in the CBL (Fig. 9). These two sets of training

data were chosen to capture a plausible range of the

FIG. 8. As in Fig. 3, but for 0400–0500 UTC 28 Mar 2017, depicting a transition (at about 0430 UTC) from

convective to stratiform precipitation around 0435 UTC. It can be seen that the heaviest convective precipitation

is associated with relatively high spectrum width texture [in (e)] at and above 3 km AGL.
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measured and derived variables, and contained obser-

vations spanning the 2017 deployment period in order

to account for any long-term variation in the radar’s

performance. The fuzzy logic algorithm used in this

study was trained on the four primary variables in the

UMass FMCW data: Z, dealiased w (wd), SNR, and sw,

as well as their respective textures (Gourley et al. 2007).

Because UMass FMCW is a vertically pointing radar,

and has relatively low power sidelobes (with the first

at 231dB relative to the main lobe), ground clutter

contamination (as in Gourley et al. 2007) is not a signif-

icant issue. Therefore, no ground clutter category was

defined. One additional category, ‘‘no data,’’ was defined

for those observations that were censored by the UMass

FMCWsignal processor for falling below the threshold of

minimum detectable signal [298.7 dBm (Table 1), which

ranges from about 255dBZ at 100m AGL to 238dBZ

at 1km AGL and 234dBZ at 5km AGL]. Such data

are signified by a ‘‘flag’’ value of Z 5 299.0dBZ.

The Gaussian kernel density estimators (KDEs;

Silverman 1986) were generated using the scikit-learn

(Pedregosa et al. 2011) package for Python (Fig. 10). As

in Gourley et al. (2007), the probability density func-

tions (PDFs) were generated by summing together the

individual Gaussian KDEs, then normalizing such that

the area under each PDFwas equal to unity. The overlap

area of the PDFs was used to assign weights to each

variable for each class. The smaller the PDF overlap

area, the better a discriminator the variable was, and the

larger the weight assigned to that variable.

The three variables found to have the largest weights

were (in descending order)Z, SNR, and sw (Figs. 10a,c,d).

Dealiased radial velocity (wd; Fig. 10b) and all four

texture fields (not shown) were found to have relatively

small weights in comparison with the top three fields.

The PDF for wd for nonprecipitation exhibited artifi-

cially inflated ‘‘wings’’ close to the edges of the radar

Nyquist interval (67.3m s21; Fig. 10b). The wings were

associated with low-SNR clear-air observations and

could be eliminated by applying an SNR threshold.

However, some low-SNR precipitation observations

were also removed by this method (e.g., in contaminated

precipitation observations near the top of the domain,

or in fog and drizzle, not shown). Since this classifica-

tion technique was intended to be applied to the entire

dataset without any threshold values known a priori,

we elected to retain these low-SNR observations of wd

in the training dataset. Therefore, despite previous

studies that showed its potential power as a pre-

cipitation discriminator (Ralph et al. 1996), wd was not

included in the set of variables used to make the scat-

terer classifications in these data.

Once the gates were classified as predominantly pre-

cipitation or nonprecipitation using the PDFs for Z,

SNR, and sw, the resulting fields were despeckled

using a 3 3 3 median filter. This procedure eliminated

erroneous classification of high-reflectivity point targets

(likely bioscatterers) in the hydrometeor-free BL as

precipitation. Since the median filter also removed most

of the isolated no-data gates from the classification field,

FIG. 9. As in Figs. 3a–d, but for 2100–2200 UTC 3 Apr 2017, showing the growth of the CBL.
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the no-data gates were restored to the classification field

following this procedure. Examples of the resulting

classifications, generated from the UMass FMCW ob-

servations shown in Fig. 3 and Figs. 7–9, are shown in

Fig. 11.

This classification scheme was applied to all of the

2016 and 2017UMass FMCWobservations (Figs. 12 and

13). We have applied the classification scheme based

exclusively on 2017 UMass FMCW data naively to the

2016 data to assess the effects of the amplifier replace-

ment (Waldinger et al. 2017). On first glance, the clas-

sification scheme algorithm appears to be working fairly

well, with high-reflectivity regions and narrow zones at

the top of the CBL (lightly precipitating cumulus)

classed as precipitation. There are, however, a few is-

sues of note. First, in the 2016 data (e.g., Figs. 11b and

12), the spurious echoes from the TWT power spurs are

clearly misclassified as precipitation. Both the 2016 and

2017 observation periods were about seven weeks in

length and collected during the same season (March–

April), so we expect the percentages of gates classified

as precipitation and nonprecipitation to be compara-

ble. However, 23.6% of all UMass FMCW observa-

tions from 2016 are classified as precipitation (Fig. 12),

whereas only 7.6% of those from 2017 are (Fig. 13). If

the gates known to be affected by power spurs and

receiver saturation (section 2c) are eliminated from

the 2016 calculation, the percentage of precipitation-

classified gates decreases to 7.8%, a value nearly

identical to that from 2017. This difference reinforces

the notion that additional quality control needs to be

performed on the UMass FMCW spectra collected in

2016 (e.g., Fig. 6)—work that is ongoing at the time of

this writing.

Second, some regions near the top of the convective

BL are classified as precipitation (e.g., Fig. 11a from

1640 UTC onward, Fig. 11d), but it is unclear whether

the received echoes are from Bragg scatter, in-cloud

precipitation, or a combination of the two. While verti-

cal velocity oscillates from positive to negative in these

regions (Fig. 9b), suggesting that Bragg scatter from

refractive index turbulence at the tops of quasi-periodic

FIG. 10. Normalized probability density functions for (a) reflectivity (dBZ), (b) dealiasedDoppler radial velocity

(m s21), (c) spectrum width (m s21), and (d) SNR (dB) for precipitation (blue curves) and nonprecipitation (red

curves). The normalized area where the two curves overlap (representing ambiguous classification) is shaded in

dark gray.
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thermal plumes is the dominant scattering mechanism,

cloud bases (Fig. 14) were detected by a collocated

Vaisala, Inc., CL31 ceilometer (Figs. 2b,c) in some in-

stances (e.g., Fig. 14b), raising the possibility that in-cloud

precipitation may also be present as has been observed in

some tropical cumulus studies (e.g., Knight and Miller

1998). Additionally, the magnitude of the subsidence

(24ms21) exceeds that of the ascent (12ms21) (Fig. 9b),

reinforcing the notion that gravity is pulling small pre-

cipitation particles earthward. We conclude that in such

instances, when cloud bases (considered a precondition

for precipitation) are not detected by the Vaisala cloud

base detection algorithm (Ravila and Räsänen 2004),

Bragg scatter is beingmisclassified as precipitation (e.g.,

Fig. 14a). However, when cloud bases and asymmetric

subsiding motion are detected (e.g., Fig. 14b), we be-

lieve that in-cloud precipitation may be present but

indistinguishable from Bragg scatter (mantle echoes)

(e.g., Knight and Miller 1998). In the former case,

the precipitation classification is incorrect, but in the

latter, it is partially correct. Unfortunately, corre-

sponding WSR-88D polarimetric observations for the

case depicted in Figs. 9b and 14b (not shown) do lit-

tle to resolve the ambiguity owing to their relatively

coarse vertical and temporal resolution. This result

highlights the difficulty in differentiating S-band Bragg

scatter from Rayleigh scatter in the CBL (Ralph et al.

1995; Knight and Miller 1998), even with high-

resolution S-band radar observations.

b. Melting-layer (brightband) identification in
precipitation

In preparation for converting Doppler spectra asso-

ciated with precipitation into drop size distributions,

for comparison with those from a collocated OTT

Hydromet GmbH Parsivel2 disdrometer, we further

subdivide the precipitation regions into frozen and

liquid hydrometeor classes. Within the UMass FMCW

precipitation observations, a ‘‘bright band’’ of en-

hanced Z (Austin and Bemis 1950), indicating the

FIG. 11. Scatterer classification based upon the UMass FMCW observations shown in (a) Fig. 3, (b) Fig. 7,

(c) Fig. 8, and (d) Fig. 9. White regions correspond to nonprecipitation observations, blue regions correspond to

precipitation, and red pixels represent data points censored by the UMass FMCW signal processor.
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presence of water-coated ice particles within the ML,

was frequently observed in stratiform precipitation.

In addition to serving as a natural separator of fro-

zen and liquid hydrometeor classes, the bright band

strongly signifies nonconvective, stratiform precipi-

tation rather than convective precipitation (Fabry and

Zawadzki 1995; Rosenfeld et al. 1995; Biggerstaff and

Listemaa 2000; Gourley and Calvert 2003; Qi et al. 2013).

FIG. 12. Scatterer classifications based upon the 2016 UMass FMCW observations (Fig. 4).
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Several methods have been proposed for automated

detection of the ML using single-polarized radar ob-

servations; we focus on those employing derived ver-

tical profiles of S-band reflectivity to determine a

single, representative ML identification for the col-

umn directly above the radar (Sánchez-Diezma et al.

2000; Zhang et al. 2008), as opposed to those utilizing

information from a volume surrounding the radar to

FIG. 13. As in Fig. 12, but based on the 2017 observations (Fig. 5).
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ascertain horizontal variability in ML height and thick-

ness (Gourley and Calvert 2003).

Our method for BBID is patterned after that formu-

lated by Zhang et al. (2008) for stratiform regions; the

reader is referred to their paper for details. The principal

differences in the present study are 1) we used measured

vertical profiles of reflectivity from the UMass FMCW

radar rather than vertical profiles of reflectivity derived

from a volume coverage pattern, 2) we used estimated

freezing-level height from an independent, collocated

instrument rather than an operational numerical model

fields as a first guess for the top of the ML, and 3) we

used vertical velocity data fromUMass FMCW to check

the retrieved ML. The latter method is novel because

the WSR-88D, for which the BBID technique of Zhang

et al. (2008) was designed, typically does not collect

vertical velocity data above the radar site. The down-

ward acceleration of the melting particles can serve as a

check of the UMass FMCW-derived BBID. For sim-

plicity, we assumed only a single ML, excluding any

double- or multiple-brightband structures (Ikeda et al.

2005; Martner et al. 2007; Emory et al. 2014).

The BBIDwas performed sequentially in time. Zhang

et al.’s (2008) BBID algorithm requires a first guess for

the altitude of the top of theML. In their algorithm, the

first guess is the 08C height extracted from NOAA

Rapid Refresh model temperature analyses. In our

implementation, at each UMass FMCW observation

time, the 08C height was derived from the Atmospheric

Emitted Radiance Interferometer (AERI; Knuteson

et al. 2004a,b) optimal-estimation (AERIoe; Turner

and Löhnert 2014) product of the Collaborative Lower
Atmospheric Profiling System (Wagner et al. 2019).

CLAMPS was collocated with UMass FMCW for

both the 2016 and 2017 VORTEX-SE field campaigns

(Turner 2016, 2017; Lyza et al. 2018). The CLAMPS

temperature profiles are derived from downwelling radi-

ance measurements collected by the onboard AERI, and

have root-mean-square errors of less than 1.0K in clear-

sky conditions up to 5km AGL when compared with ra-

diosonde temperature profiles (Turner and Löhnert 2014).
One drawback to using CLAMPS temperature profiles for

this purpose is that the hatch covering the AERI closes

during precipitation to protect the instrument from water

ingress. Therefore, CLAMPS T profiles are typically not

available during precipitation, when BBID is performed.

In these instances, we linearly interpolated the 08C height

from the ‘‘good’’ (blue dots in Fig. 15) CLAMPST profiles

to the first BBID time. The CLAMPS 08C height some-

times exhibited substantial changes during lengthy pre-

cipitation events, which made it inadvisable to simply take

the last retrieval prior to hatch closure. The height of the

08C level over the Belle Mina site used in 2016 (altitude:

180mMSL) ranged from 0 to 4.4kmAGL, with a median

height of 3.3km AGL. The 08C level over the 2017

Scottsboro site (altitude: 198m MSL) ranged from 0 to

4.9km AGL, with a median height of 3.0km AGL.

The algorithm proceeds as does that of Zhang et al.

(2008) from this point on. The UMass FMCW pre-

cipitation classification (e.g., Figs. 11–13) was used to

constrain the BBID to precipitation regions only. To

reduce unsteadiness in the identified MLs with time, the

brightband top and bottom time series are smoothed

using a 5-min rolling average with a triangular window.

The length of the window is comparable to the update

period of the WSR-88D. Identified MLs are shown in

Figs. 16 and 17 for two example rain events observed at

the Scottsboro airport during the 2017 campaign. The

first (Fig. 16) is a 10-h, mostly stratiform precipitation

event on 3 April 2017 [prior to intensive operating

FIG. 14. Scatterer classification based upon the UMass FMCW observations shown in (a) Fig. 3 and (b) Fig. 9,

overlaid with the first (light-gray dots), second (medium-gray dots), and third (black dots) cloud-base detections

from a collocated Vaisala C31 ceilometer.
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period (IOP) 3A; Fig. 16d], and the second (Fig. 17) is a

mixed convective–stratiform precipitation event on

27 April 2017 (prior to IOP 4A; Fig. 17d). TheML in the

former event is relatively uniform in thickness and

height (Fig. 16c) when compared with that derived from

the latter event (Fig. 17c), despite its longer duration.

The mean and standard deviations of the ML depth in

the 3 April 2017 event are 125 and 78m, respectively.

The mean and standard deviations of the ML depth in

the 27 April 2017 event are 90 and 89m, respectively.

These differences are likely the result of the more con-

vective, unsteady character of the 27 April 2017 event

relative to the 3 April 2017 event (Fabry and Zawadzki

1995). In heavy, convective precipitation on 27 April

2017, the BBID sometimes failed to identify an ML al-

together (e.g., around 0830 and 0930 UTC in Fig. 17c).

To validate the identified ML, we compared the bot-

tom of the ML as determined by the BBID with the

vertical gradient of dealiased Doppler velocity =zwd. The

latter quantity is expected to reach a maximum value in

the bottom half of the ML, as the internal ice matrices of

melting snow particles collapse and the now-liquid rain-

drops accelerate to terminal velocity (White et al. 2002).

As with the brightband top and bottom, the time series of

maximum =zwd was smoothed using a 5-min rolling av-

erage with a triangular window. The Pearson correlation

coefficient between the heights of the brightband bottom

and the brightband top were 0.94 and 0.91 for the 3 April

2017 and 27 April 2017 events, respectively (Figs. 18a,c),

indicating that the two quantities fluctuate in concert,

as expected, and that the BBID algorithm is working

properly. The Pearson correlation coefficient between

the heights of the brightband bottom and the height of

maximum =zwd were 0.58 and 0.62 for the 3 April 2017

and 27 April 2017 events, respectively (Figs. 18b,d).

Thesemodest correlation coefficients imply amoderately

FIG. 15. Time series of the height of the 08C level (km AGL) from CLAMPS AERIoe

temperature profiles collected during VORTEX-SE in (a) 2016 (at Belle Mina) and (b) 2017 (at

Scottsboro). Semitransparent blue or red dots indicate freezing-level heights from AERIoe re-

trievals flagged as good or suspect quality, respectively. Suspect heights were not used in this study.
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FIG. 16. (a) UMass FMCW reflectivity (dBZ) and (b) dealiased radial (vertical) velocity during a mostly strat-

iform precipitation event on 3 Apr 2017 (prior to IOP 3A). (c) Corresponding scatterer classification (as in Fig. 11),

CLAMPS 08C level (black dots), melting layer (yellow fill) identified using the BBID algorithm, and height of

maximum vertical gradient in dealiased Doppler velocity (magenta line). (d) Reflectivity (dBZ) measured at an

elevation angle of 0.58 by the WSR-88D at Hytop, Alabama (KHTX), at 1429 UTC 3 Apr 2017. Range rings and

azimuth spokes are 20 km and 308 apart, respectively.
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strong linear relationship between the height of the

brightband bottom and the height of maximum

downward acceleration of the precipitation particles.

Other factors are likely increasing the dispersions of

these two quantities, including turbulence and mi-

crophysical processes such as collision, coalescence, ag-

gregation, and breakup, which would modify the shapes

of the Doppler spectra (Fabry and Zawadzki 1995).

FIG. 17. (a)–(c) As in Figs. 16a–c, but for a mixed convective/stratiform precipitation event from 0600 to 1300 UTC

27 Apr 2017 (prior to IOP 4A). (d) As in Fig. 16d, but at 0828 UTC 27 Apr 2017.
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We consider the moderately strong relationship be-

tween these two variables further evidence that the

BBID algorithm is working as expected, and that fro-

zen, liquid, and mixed-phase hydrometers are being

successfully separated.

c. CBL depth estimation using an extended Kalman
filter-based technique

One of the stated objectives of VORTEX-SE was

assessment of model representation of the BL structure

and evolution prior to severe storms, via comparison

with high vertical and temporal resolution observations

(Rasmussen 2015) such as those provided by UMass

FMCW. In this context, we now turn our attention to the

nonprecipitation observations identified using our scat-

terer classification algorithm, which make up the vast

majority (.90%) of the observations by UMass FMCW

during 2016 and 2017. (Figs. 12 and 13). Within this

section, we assumed that Bragg scatter was the pre-

dominant mechanism generating echo in these regions,

even though UMass FMCW can detect bioscatterers

(Contreras and Frasier 2008) and some regions of Bragg

FIG. 18. Scatterplot of (left) brightband bottom height vs brightband top height and (right) brightband bottom

height vs height of maximum vertical gradient of dealiased Doppler velocity for the precipitation events depicted

in (a),(b) Fig. 16 and (c),(d) Fig. 17.
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scatter may be misclassified as light precipitation (e.g.,

Fig. 14a).

A substantial number of studies, summarized by

Seibert et al. (2000), detail the use of backscattered

signal for CBL depth (or mixing height) detection.

Lange et al. (2015) described a technique for automatic

identification of the top of the CBL in UMass FMCW

reflectivity observations using an extended Kalman

filter (EKF)-based technique. This technique, which is

based on former works of Rocadenbosch et al. (1998,

1999) in the lidar field, is predicated upon the as-

sumption that in the vicinity of the mixed layer (ML)–

to–free troposphere (FT) transition, the reflectivity

decays as a complementary error function [erfc(z) 5
12 erf(z)] with height. At lidar frequencies, the entire

ML provides strong returns (White et al. 1999; Cohn

and Angevine 2000), so that the erfc(z) model accept-

ably fits both the ML and ML-to-FT transition layers.

At S-band frequencies, however, the reflectivity profile

is expected to exhibit a local maximum at the top of the

CBL (e.g., Fig. 5f of _Ince et al. 2003). We therefore

restrict our fitting of the erfc model to only the ML-to-

FT transition layer in the UMass FMCW reflectivity

profiles. In other words, the upper tail of the erfc

function is matched to the reflectivity maximum, and

the lower tail is matched to the FT reflectivity. Use of

the EKF is beneficial because it maintains feature

continuity over time and performs strong noise rejec-

tion. Performance of this technique has been evaluated

against parameterizations in the Weather Research

and Forecasting (WRF) numerical model under dif-

ferent synoptic conditions, and validated against lidar

observations (Banks et al. 2015, 2016).

The filter operates by minimizing the error between

the state vector parameterizing the model function and

the true atmospheric one in a mean-square error sense

over time. For a given time series of UMass FMCW

reflectivity profiles, the EKF algorithm accepts a first

guess for the CBL top height at the initial time (CBLH,

as part of the state vector being initialized), and a small

set of parameters describing, for example, the expected

uncertainty of this initial guess and expected standard

deviation of the CBLH around its mean value. The filter

combines this information along with run-time estimates

of the observation noise covariance matrix into its re-

cursive loop. At each recursive step the filter iterates one

step forward through the time series, fitting an erfc(z)

function to a smoothed version of the reflectivity profile

(themedian-filtered version of Fig. 6b) at each time. The

EKF estimates the CBLH as the inflection point in the

vertical derivative of the fitted reflectivity profile.

An example of this algorithm applied to a 2-h subset

of the 2016 UMass FMCW reflectivity observations is

shown in Fig. 19a. On this date (31 March 2016), the

CBL redeveloped in the wake of morning convective

storms, and a tornadic storm formed east of Belle Mina

later in the evening (LaFleur et al. 2018). It can be seen

that the EKF-retrieved CBL depth underwent several

fluctuations from 2200 31 March to 0000 UTC 1 April

(Fig. 19a). For the 2016 data, the EKF algorithm was

modified to avoid identifying the spurious echo artifact

at 1.3 km AGL from the TWT power spur as being the

top of the BL. It can be seen that algorithm successfully

avoids misidentifying this artifact as the top of the BL

at all but a handful of time steps, and then only at those

time steps when the CBLH appears to coincide legiti-

mately with the spur-contaminated height (Fig. 19a).

The CBLH increased steadily from about 500m at 2210

to 1.2 km at 2245 UTC, coincident with a period of

sustained upward vertical motion (Fig. 19b) and cloud-

free skies (Fig. 19c). Following the reappearance of

clouds at 2240 UTC, the CBLH exceeded the cloud

base height until 2300 UTC, indicating entrainment.

Both the CBLH and cloud base height time series be-

come highly variable, possibly owing to in-cloud tur-

bulence (Grimsdell and Angevine 1998). Both covary

moderately until 0000 UTC 1 April. It can be seen

in the reflectivity (Fig. 19a) and vertical velocity

(Fig. 19b) data that in-cloud precipitation is likely oc-

curring in intermittent episodes over the radar site

from 2300 to 0000 UTC, leading to enhanced vertical

variability in both quantities. These processes are in

accordance with the conceptual model presented in

Fig. 1a (Stull 1988).

The thermodynamic CBL can be delineated in several

different ways (Seidel et al. 2010). In general, the CBL

is expected to exhibit well-mixed characteristics in

both potential temperature and moisture (Stull 1988;

Garratt 1992). We choose to inspect the vertical gra-

dient of virtual potential temperature (=zuy), which is

expected to be near 0Kkm21 within the CBL and lo-

cally maximized at the top of the CBL (Stull 1988;

Seidel et al. 2010). We generated profiles of =zuy from

the coincident CLAMPS thermodynamic retrievals for

the time series shown in Fig. 19a (Fig. 19d). The height

of the local maximum in CLAMPS =zuy above the well

mixed layer (stars in Fig. 19d) compares well to the

CBL depth determined from the UMass FMCW re-

flectivity observations by the Lange et al. (2015) EKF

technique (crosses in Fig. 19d), with a root-mean-

square difference of 170m. The estimates differ

markedly, however, before 2220UTC, with EKF-based

CBL top heights too low, well below the cloud base

height (Fig. 19c) and embedded within the well-mixed

CBL (i.e., where =zuy ;0Kkm21; Fig. 19d). This early

period may correspond to the spinup time of the EKF,
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FIG. 19. (a) UMass FMCW reflectivity (dBZ) and (b) Doppler radial (vertical) velocity (m s21) from 2200 to

2300 UTC 31 Mar 2016 over Belle Mina. The plus signs denote CBL top heights as determined by the EKF-based

algorithm of Lange et al. (2015). (c) Vaisala CL31 attenuated backscatter coefficient (m21 sr 21) and cloud-base

height detections (black and blue open circles). (d) Vertical gradient of virtual potential temperature calcu-

lated from the CLAMPS profiles. The black plus signs denote the same heights shown by the plus signs in (a),

interpolated to the CLAMPS profile times.
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which was initialized at 2200 UTC. Excluding the pe-

riod 2200–2220 UTC reduces the root-mean-square

difference in CBLH calculated using the two methods

to 130m.

The CBLH tracking technique of Lange et al. (2015)

holds promise for a more comprehensive, objective

characterization of BL evolution over the VORTEX-

SE domain. Application of this EKF-based algorithm

to nonprecipitation observations spanning the entire

2016 and 2017 UMass FMCW VORTEX-SE datasets,

as well as comparable datasets collected during other

field campaigns, will be the subject of a future paper.

4. Conclusions

We developed a scatterer identification algorithm for

observations collected during VORTEX-SE by a verti-

cally pointing, S-band, single-polarized FMCW radar.

This algorithm automatically separated UMass FMCW

observations of precipitation and nonprecipitation and

allowed for further identification of salient BL features

of interest to the VORTEX-SE cohort. The products

produced by our postprocessing include

1) dealiased vertical velocities in precipitation,

2) classification of UMass FMCW observations into pre-

cipitation, nonprecipitation, and no-data categories,

3) brightband top and bottom heights, allowing for

separation of frozen, melting, and liquid hydrome-

teors in stratiform precipitation, and

4) convective boundary layer heights in nonprecipitation.

These products serve as a stepping stone toward a

comprehensive characterization of the BL over north-

ern Alabama during early spring. It may also be possible

to add additional subclasses to the scatterer identifica-

tion algorithm within the nonprecipitation class, spe-

cifically refractive index turbulence and biological

scatterers (insects, birds, and bats), both of which

were frequently sampled by UMass FMCW. At the

time of this writing, these products are being used to

derive conceptual models of CBL growth over the

VORTEX-SE domain, and to estimate precipitation

drop size distributions that can be verified by collo-

cated disdrometer observations (Dawson et al. 2017)

(Fig. 2c). Results from these two projects will be the

subject of future papers.

Acknowledgments. This work was funded by NOAA

Grants NA15OAR4590231 and NA16OAR4590208;

Dr. Kevin Knupp of the University of Alabama Hunts-

ville played critical facilitating roles in the deploy-

ment of the UMass FMCW in both 2016 and 2017.

Drs. Temple Lee and Bruce Baker of NOAA secured

the use of land and electricity at the Belle Mina de-

ployment site in 2016. The Python packages Matplotlib

(Hunter 2007), scikit-image (van der Walt et al. 2014),

scikit-learn (Pedregosa et al. 2011), cl2nc (http://

github.com/peterkuma/cl2nc by Peter Kuma), and Py-

ART (Helmus and Collis 2016) were used in the

preparation of this paper, and Dr. Robert Jackson of

Argonne National Laboratory provided the code for the

texture calculations. CommSensLab is a María-de-
Maeztu Unit of Excellence funded by the Agencia

Estatal de Investigación (Spanish National Science

Foundation). The sixth author’s participation was

supported via Spanish Government–European Re-

gional Development Funds project TEC2015-63832-P.

The authors gratefully acknowledge the substantive

comments of three anonymous reviewers; the paper

was markedly improved as a result of their interactions.

REFERENCES

Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-

layer depth and entrainment zone characterization with a

boundary-layer profiler. Bound.-Layer Meteor., 68, 375–385,

https://doi.org/10.1007/BF00706797.

Atkins, N. T.,M. L.Weisman, and L. J.Wicker, 1999: The influence

of preexisting boundaries on supercell evolution. Mon. Wea.

Rev., 127, 2910–2927, https://doi.org/10.1175/1520-0493(1999)

127,2910:TIOPBO.2.0.CO;2.

Austin, P. M., and A. C. Bemis, 1950: A quantitative study of

the ‘‘bright band’’ in radar precipitation echoes. J. Meteor.,

7, 145–151, https://doi.org/10.1175/1520-0469(1950)007,0145:

AQSOTB.2.0.CO;2.

Banghoff, J. R., D. J. Stensrud, and M. R. Kumjian, 2018: Con-

vective boundary layer depth estimation from S-band dual-

polarization radar. J. Atmos. Oceanic Technol., 35, 1723–1733,
https://doi.org/10.1175/JTECH-D-17-0210.1.

Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M.

Baldasano, 2015: Performance evaluation of the boundary-

layer height from lidar and the weather research and fore-

casting model at an urban coastal site in the north-east Iberian

Peninsula. Bound.-Layer Meteor., 157, 265–292, https://

doi.org/10.1007/s10546-015-0056-2.

——, ——, J. M. Baldasano, F. Rocadenbosch, A. Papayannis,

S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-

layer variables to PBL schemes in the WRF model based on

surface meteorological observations, lidar, and radiosondes

during the HygrA-CD campaign. Atmos. Res., 176–177, 185–

201, https://doi.org/10.1016/j.atmosres.2016.02.024.

Biggerstaff, M. I., and S. A. Listemaa, 2000: An improved scheme

for convective/stratiform echo classification using radar re-

flectivity. J. Appl. Meteor., 39, 2129–2150, https://doi.org/

10.1175/1520-0450(2001)040,2129:AISFCS.2.0.CO;2.

Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A.

Flickinger, and D. Sirmans, 2005: New WSR-88D volume

coverage pattern 12: Results of field tests. Wea. Forecasting,

20, 385–393, https://doi.org/10.1175/WAF848.1.

Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013:

Recent advances in classification of observations from dual

polarization weather radars. Atmos. Res., 119, 97–111, https://

doi.org/10.1016/j.atmosres.2011.08.014.

NOVEMBER 2019 TANAMACH I ET AL . 2243

http://github.com/peterkuma/cl2nc
http://github.com/peterkuma/cl2nc
https://doi.org/10.1007/BF00706797
https://doi.org/10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2
https://doi.org/10.1175/JTECH-D-17-0210.1
https://doi.org/10.1007/s10546-015-0056-2
https://doi.org/10.1007/s10546-015-0056-2
https://doi.org/10.1016/j.atmosres.2016.02.024
https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
https://doi.org/10.1175/WAF848.1
https://doi.org/10.1016/j.atmosres.2011.08.014
https://doi.org/10.1016/j.atmosres.2011.08.014


Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and

entrainment zone thickness measured by lidars and wind-

profiling radars. J. Appl. Meteor., 39, 1233–1247, https://doi.org/

10.1175/1520-0450(2000)039,1233:BLHAEZ.2.0.CO;2.

Contreras, R. F., and S. J. Frasier, 2008: High-resolution observa-

tions of insects in the atmospheric boundary layer. J. Atmos.

Oceanic Technol., 25, 2176–2187, https://doi.org/10.1175/

2008JTECHA1059.1.

Crum, T. D., andR. L. Alberty, 1993: TheWSR-88D and theWSR-

88D operational support facility. Bull. Amer. Meteor. Soc., 74,

1669–1687, https://doi.org/10.1175/1520-0477(1993)074,1669:

TWATWO.2.0.CO;2.

Dawson, D. T., and Coauthors, 2017: Overview of Purdue’s

mobile disdrometer operations during VORTEX-SE 2016-

2017. 38th Conf. on Radar Meteorology, Chicago, Illinois,

Amer. Meteor. Soc., 23A.2A, https://ams.confex.com/ams/

38RADAR/meetingapp.cgi/Paper/321195.

Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002

during IHOP_2002: Convective-scale measurements at the

profiling site. Mon. Wea. Rev., 134, 294–310, https://doi.org/

10.1175/MWR3054.1.
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