
Object Relational Mapping and API
with Loopback 4

Final Degree Thesis

Escola Tècnica Superior
d’Enginyeria de Telecomunicacions de Barcelona

by:

Guillem Llucià i Turu

Supervised by:
Jose Luis Muñoz

Barcelona, September 2019

Abstract

Nowadays API are a part of our day-to-day. They are so integrated to our daily life we use them
without even thinking about it. And we could not think of a world without them. Search engines,
digital commerce, digital forums, are just an example of our routinary use of API.

Object Relational Mapping is a technique to ’persist’ data stored in this API applications into
databases.

LoopBack 4 is a new API framework supported by StroongLoop (IBM). It is the fourth version
of this framework. It is still on developing ways.

The goal of this project is to understand how does LoopBack implements the other two con-
cepts above. To have an insight on how a back-end works, how databases work, and how the
framework persist the data on them. And finally to create a complete documentation so anyone
could understand how ORM is implemented in LoopBack 4 from scratch.

In the course of the project we studied and implemented some explanatory examples on how
relations work in LoopBack 4. This involves not just the models, but datasources, controllers and
repositories. And afterwards we have inspected how this relations get stored inside a relational
and a non-relational database.

1

Resum

Avui en dia les API formen part del nostre dia a dia. Estan tan integrades en les nostres rutines que
les utilitzem sense ser-ne conscients. Buscadors d’internet, comerços digitals, fòrums digitals, són
només alguns dels exemples de l’ús rutinari que tenen les API.

L’Object Relational Mapping és una tècnica usada per fer persistir les dades usades per aque-
stes API dins de bases de dades.

LoopBack 4 és un framework per a desenvolupar API amb el suport de StroongLoop (IBM).
És la quarta versió del framework i la més nova. És per això que encara s’està desenvolupant.

L’objectiu d’aquest projecte és entendre com LoopBack 4 implementa els dos conceptes ante-
riors. D’aconseguir una percepció de com funciona un back-end, de com funcionen les bases de
dades i com el framework hi guarda allà les dades. Finalment crear una documentació completa
des d’on qualsevol pugui entendre com implementar ORM en LoopBack 4 des de zero.

Durant el projecte hem estudiat i implementat uns exemples per explicar com funcionen les
relacions en LoopBack 4. Això no només implica models; també inclou datasources, controladors
i repositoris. Un cop implementats en LoopBack hem mirat aquestes relacions queden reflectides
dins d’una base de dades relacional, i una de no-relacional.

2

Resumen

Actualmente les API forman parte de nuestro día a día. Están tan integradas en nuestras rutinas
que las usamos sin ser ni tan solo conscientes de ello. Buscadores de internet, comercios digitales
o foros digitales, son solo alguno de los ejemplos de este uso rutinario de las API.

El Object Relational Mapping es una técnica usada con para persistir los datos usados por estas
API.

LoopBack 4 es un framework para desarollar API con el soporte de StrongLoop (IBM). Esta
es la cuarta versión del software y la más nueva. Aún sé está desarrollando.

El objetivo de este proyecto es entender como LoopBack 4 implementa los dos conceptos
mencionados anteriormente. De conseguir una percepción de como funciona un back-end, de
como funcionan las bases de datos, y de como el framework guarda allí los datos. Finalmente
crearemos una documentación completa para que alguien pueda entender el ORM en Loopback 4
des de cero.

Durante el proyecto hemos estudiado e implementado unos ejemplos para explicar como fun-
cionan las relaciones en LoopBack4. Esto no solo implica modelos; también incluye datasources,
controladores y repositorios. Una vez implementados en Loopback, veremos como estas rela-
ciones quedar plasmadas dentro de una base de datos relacional y una de no relacional.

3

Acknowledgments

This thesis would not have been possible without the assistance of my tutor Jose Luis Muñoz.

Thanks to the friends who have crossed their path with mine during these years, without them
I would not arrived this far.

Also thanks to my family specially both my parents, without their unwavering support I defi-
nitely would be here.

4

Revision history and approval record

Revision Date Objective

0 20/09/2019 Document Creation

1 3/10/2019 Document Revison

2 06/10/2019 Document Final Revision

Document distribution list:

Name e-mail

Guillem Llucià i Turu guillucia@gmail.com

Jose Luis Muñoz Tapia jose.munoz@entel.upc.edu

Written by: Reviewed and approved by:

Date 20/09/2019 Date 06/05/2019

Name Guillem Llucià Name Jose Luis Muñoz

Role Author Role Supervisor

5

Contents

Abstract 1

Resum 2

Resumen 3

Acknowledgments 4

Revision history and approval record 5

1 Introduction 10

1.1 Objectives . 10

1.2 Requirements and specifications . 10

1.3 Work Plan . 11

1.4 Deviation and setbacks . 11

2 Concepts 12

2.1 Object Relational Mapping . 12

2.2 Databases . 12

2.2.1 Relational Databases . 12

2.2.1.1 One to One Relation . 13

2.2.1.2 One to Many Relation . 14

2.2.1.3 Many to Many Relation . 14

2.2.2 Non-Relational Databases . 15

2.2.2.1 Motivation . 15

2.2.2.2 Structure . 15

2.2.3 Relational Databses vs Non-Relational Databases 16

2.2.3.1 Which is better? . 16

6

2.3 Docker . 17

2.3.0.1 What is Docker? . 17

2.3.0.2 Comparing Containers and Virtual Machines 17

2.4 Loopback 4 . 17

2.4.1 CLI . 18

2.4.2 Dependency Injection . 18

2.4.3 DataSource . 19

2.4.4 Connectors . 19

2.4.5 Juggler . 19

2.4.6 Repositories . 19

2.4.7 Inversion of Control . 20

2.4.8 Models . 20

2.4.8.1 Model Concept . 20

2.4.8.2 Features of Models . 20

2.4.8.3 Types of Models . 20

2.4.9 Controller . 21

2.4.10 Relations . 21

2.4.10.1 hasOne Relation . 21

2.4.10.2 hasMany Relation . 21

2.4.10.3 belongsTo Relation . 22

3 Development 23

3.1 Introduction . 23

3.2 PostgreSQL . 23

3.2.1 Creating our Database . 23

3.2.2 DataSource configuration . 24

3.2.3 Model . 24

3.2.4 Repository and Controller . 24

3.2.5 Migrate Schema . 24

3.2.6 Implementing a UUID for Our Models 24

3.2.7 Running the App . 25

3.3 MongoDB . 26

3.3.1 Creating our database . 26

7

3.3.2 Configuring the Datasource . 26

3.3.3 Running the App . 26

3.4 Relations . 28

3.4.1 Customer-Order Example . 28

3.4.1.1 Customer Model . 28

3.4.1.2 Order and OrderWithRelations 29

3.4.2 CustomerWithRelations . 29

3.4.2.1 Repositories with Relations 29

3.4.2.2 Target (Order) Repo CRUD API 30

3.4.2.3 Source (Customer) Repository CRUD API Modification 30

3.4.2.4 Target (Order) Repository CRUD API Modification 31

3.4.2.5 Source (Customer) Controller 31

3.4.2.6 Target (Order) Controller . 31

3.4.2.7 Relation Controller: CustomerOrderController 31

3.4.3 Category Example . 31

3.4.3.1 Category Model . 31

3.4.3.2 Category Repository . 32

3.4.3.3 Category Controller . 32

3.4.4 Testing Relations in our Databases . 33

3.4.4.1 PostgreSQL . 33

3.4.4.2 MongoDB . 35

3.4.4.3 Nested Relations . 35

3.5 Migrations . 35

3.5.1 Migration at Boot Time . 36

3.5.2 Database Explicit Migration . 36

4 Budget 37

4.1 Equipment . 37

4.2 Salary . 37

4.3 Total . 37

5 Conclusions 38

5.1 Future Lines of Work . 38

8

List of Figures

1.1 Gantt Diagram . 11

2.1 SQL Structure Example . 13

2.2 Relations Example . 13

2.3 One to One Relation . 13

2.4 One to Many Relation . 14

2.5 Many to Many Problem . 14

2.6 Many to Many Relation correctly implemented 15

2.7 Non-Relational Database Structure . 16

2.8 Container Schema . 17

2.9 Virtual Machine Schema . 17

2.10 Loopback Schema . 18

2.11 Juggler . 19

2.12 Inversion of Control Concept . 20

2.13 hasOne Relation in LoopBack 4 . 21

2.14 hasMany Relation in LoopBack 4 . 22

9

Chapter 1

Introduction

1.1 Objectives

This project aims to study, understand and write down a documentation on how Object Relational
Mapping works in the Loopback 4 framework. The main objective is to create a documentation
guide, and didactic material that will help someone understand how Object Relational Mapping
works in Loopback 4 almost without previous knowledge about databases nor Loopback.

In order to do so there are some middle steps or secondary but necessary objectives. We must
acquire a certain level of general knowledge about databases. Also we must learn not just about
the ORM ways of the framework but also a more generic scope about how loopback 4 works. And
to achieve the last point we will also have to learn a bit about JavaScript and TypeScript.

1.2 Requirements and specifications

To develop this project we have used the following technologies:

• TypeScript programming language, which compiles to JavaScript.

• Loopback 4 framework.

• Docker to run databases images.

• MongoDb database.

• PostgreSQL database.

• LaTeX, XeLaTeX, to write documentation.

10

1.3 Work Plan

This project has been structured in three phases as seen in the figure 1.1.

Figure 1.1: Gantt Diagram

• Phase one: Studying and understanding the different technologies used in this project (seen
in the Requirements and Specifications section). This requires a lot of time since there are a
lot of new technologies to learn from scratch.

• Phase two: The second phase is dedicated to, once understood the technologies, designing
and programming the environments and examples to later document them.

• Phase three: The third phase is dedicated to documenting all the knowledge gathered during
the first phase and illustrate it with examples programmed during the second phase.

1.4 Deviation and setbacks

During the realization of this thesis we have encountered some incidents that complicated it’s
development. The setbacks and its consequences are listed below:

• Poor Loopback 4 documentation: As Loopback 4 is still on developing ways, its docume-
nation is poor, unstable, and confusing. There are lots of omissions and gaps that made the
learning and understanding of the framework rough and time consuming. This leaded us to
shorten the scope of the project.

• Sick leave: I had an accident that lead to surgery with a long-time rehabilitation that took
me away from the project for almost two months.

11

Chapter 2

Concepts

2.1 Object Relational Mapping

Object-relational mapping (ORM, O/RM, and O/R mapping tool) [2] in computer science is a pro-
gramming technique for converting data between incompatible type systems using object-oriented
programming languages. This creates, in effect, a "virtual object database" that can be used from
within the programming language.

The heart of the problem involves translating the logical representation of the objects into an
atomized form that is capable of being stored in the database while preserving the properties of the
objects and their relationships so that they can be reloaded as objects when needed. If this storage
and retrieval functionality is implemented, the objects are said to be persistent.

2.2 Databases

A database [1] is a collection of information that is organized so that it can be easily accessed,
managed and updated.

There are two big families of Databases: Relational and Non-Relational databases.

We will proceed to explain them and discuss them so we can understand which one to use in
every occasion.

2.2.1 Relational Databases

• In a relational database [7] we have tables where we find fields (columns) and we can fill it
with records (Rows). It can be seen in figure 2.1.

• The fields create the schema

• Each Record must have a value (it can be null) for every field.

• All records must follow the schema.

12

id name email

1 Maximilian Klein max@test.com

2 Manuel Lorenz manu@test.com

3 John Doe jdoe@test.com

4

Fields

Records

Figure 2.1: SQL Structure Example

But what happens if we have two different Tables with different objects and we would want to
link them?

For instance we have a table with customers and a table with products and we want to relate
them.

id name email

1 Maximilian Klein max@test.com

2 Manuel Lorenz manu@test.co
m

3 John Doe jdoe@test.com

4

id title price description

1 Book 12.99 Exciting book

2 Chair 95.99 Comfy chair

3

Figure 2.2: Relations Example

There are different kind of relations:

2.2.1.1 One to One Relation

• The ’source’ table contains a field where we store the id of the ’target’ table.

– When a key from another table is stored, it is called a foreign key.

– While we call the id from our tables local keys.

One to oneOne to one

UserUser ContactDataContactData

id

name

contact_data_id

id

name

contact_data_id

id

email

phone

Local key

Foreign key

Figure 2.3: One to One Relation

13

2.2.1.2 One to Many Relation

• The ’target’ table contains a field where we store the id of the ’source’ table.

One to manyOne to many

CustomerCustomer OrderOrder

id

name

contact_data_id

id

name

email

id

description

price

customer_id

Figure 2.4: One to Many Relation

2.2.1.3 Many to Many Relation

When trying to implement a ’Many to Many Relation’ we find the following problem:

Following the user and roles example:

• We can not predict how many roles will a user have nor how many users will hold one
specific role, there’s no way we can create a fitting schema.

• Creating the tables with "blank" spaces would be highly inefficient and it would be limited.

id name email role1 role2 ... role?

1
Maximil

ian
Klein

max@test.c
om

director sales ... mkt

2
Manuel
Lorenz

manu@test.
com

sales - … -

3
John
Doe

jdoe@test.c
om

mkt - ... -

4 John
Smith

jsmith1@te
st.com

IT admin ... -

id role user1_id user2 ... userN

1 director 1 90 ... -

2 mkt 3 27 ... -

4 sales 2 12 ... -

5 IT 4 6 ... -

6 admin 4 6 ... -

Figure 2.5: Many to Many Problem

14

The solution is to create a third table where we store the relations between the other two using
their id’s.

Many to manyMany to many

UserUser RoleRole

id

name

email

id

title

description

rights

UserRolesUserRoles

id

customer_id

role_id

Foreign Keys

Figure 2.6: Many to Many Relation correctly implemented

2.2.2 Non-Relational Databases

2.2.2.1 Motivation

Relational databases are designed to be orthogonal and to not repeat data. This can be really
’storage-efficient’ but when it comes to data reading it can be very process consuming and slow as
it may have to access multiple tables.

Later, on the internet era, the need of processing queries in a faster way appeared. If we know
which queries will be the most asked, we can just store them directly in a "table" so we do not
need to access all the different tables each time.

Under this idea non-Relational databases [7] are born.

2.2.2.2 Structure

In non relational databases we have ’collections’. In a collection we store ’documents’. Docu-
ments do not need to follow a schema.

Another important change is that we do not use relations.

We just create another collection with the information of the two other collections we want to
relate.

• That way we can serve much more many requests.

• It duplicates data, besides the obvious problem, there is also some complications if we ever
want to modify some data as we will to change more than one collection.

15

{id:1, name: ‘Max’, email: ‘max@test.com’}

{id:2, name: ‘Manu’, email: ‘manu@test.com’}

{id:1, title: ‘Chair’, Price: 49.99}

{id:2, title: ‘Book’, Price: 12.99’}

{Id: aa1, customer:{id:1, name: ‘Max’, email: ‘max@test.com’}, pro:duct:{id:1, title: ‘Chair’, Price:
49.99} }

{Id: bba1, customer:{id:2, name: ‘Manu’, email: ‘manu@test.com’}, product{id:2, title: ‘Book’, Price:
12.99’} }

{Id: bbdda1, customer:{id:2, name: ‘Manu’, email: ‘manu@test.com’}, product{id:2, title: ‘Book’, Price:
12.99’}, {id:1, title: ‘Chair’, Price: 49.99}}

…

Figure 2.7: Non-Relational Database Structure

2.2.3 Relational Databses vs Non-Relational Databases

Relational

• First kind of databases.

• Orthogonality of data does not duplicate data but it makes the queries difficult and slow.

• Has a schema.

• Uses relations.

• Can not escalate horizontally.

Non-Relational

• Not orthogonal, duplicates data, sacrificing storage in order to serve faster.

• Does not use a schema.

• Does not use relations.

• Allows both vertical and horizontal escalation.

2.2.3.1 Which is better?

It will depend on your project. There is no "absolute" winner. You must understand both ways and
choose whichever adapts better to your necessities.

16

2.3 Docker

As Docker is just a tool we used in order to carry out our project, that’s why we won’t study it
very thoroughly but instead just give a general notion of what it is in this section.

2.3.0.1 What is Docker?

Docker [3] is what is called a Container. And a container is a standard unit of software that
packages up code and all its dependencies so the application runs quickly and reliably from one
computing environment to another.

A Docker container image is a lightweight, standalone, executable package of software that
includes everything needed to run an application: code, run-time, system tools, system libraries
and settings.

2.3.0.2 Comparing Containers and Virtual Machines

Containers and virtual machines have similar resource isolation and allocation benefits, but func-
tion differently because containers virtualize the operating system instead of hardware. Containers
are more portable and efficient.

Figure 2.8: Container Schema Figure 2.9: Virtual Machine Schema

2.4 Loopback 4

LoopBack 4 [6] is a framework oriented to design Web APIs. It is built over NodeJs and Typescript
technology. It is ready for production environments and to serve REST API. The framework is
recent and it lacks documentation, our way of study has been through tutorials and peaking into
it’s font code.

Loopback has a modular and extensible structure with lots of characteristics which make him
innovative and competitive. We can design an API as a component, for example: activity reg-
istry, messaging, authentication, monotorization, etc. It is a good practice in LB4 to separate the
functionalities of our API in components.

17

Loopback has integrations with data fonts. Some of them are maintained by StrongLoop and
others by the community. As we can see in the figure 2.10, it has connectors to databases of the
SQL and the non-SQL type, it also has connectors to exterior services as GPRC, SOAP and REST,
among others.

Loopback 4
Framework

API Clients Resources
SQL &
noSQL

API
Endpoints

Figure 2.10: Loopback Schema

We will proceed to explain the most useful characteristics and some software patterns used.

2.4.1 CLI

Loopback has a CLI which auto-generates code. Here are some of its commands:

• $ lb4 model: It is used to generate a model. We specify its name, attributes, types, and
properties. It also generates documentation for the model.

• $ lb4 datasource: Adds the configuration for datasources and installs the required packages
to establish the connection with them.

• $ lb4 controller: Generates the controllers and auto-completes the stubs with the CRUD
methods.

• $ lb4 repository: Generates the repositories from the selected datasources.

2.4.2 Dependency Injection

Loopback 4 uses a technique called Dependency Injection. We can inject dependencies using the
constructor or the setter. This way, the class is not responsible for instantiating the dependency.
The main perks of using this pattern are:

• High-level modules do not depend on low-level modules.

• Code is separated from the low-level implementation.

• Depends on abstractions (interfaces).

• Reusable modules.

• Easy to test.

18

2.4.3 DataSource

Datasources are LoopBacks way of connecting to sources of data. Data can be in a database,
memory, other APIs, message queues and more.

The datasource class represents the connector once it is configured. This inherits from the
Juggler and contains the connector.

The functionality of the datasource is to configure the connector using a configuration file.

2.4.4 Connectors

The Connector is the agent responsible to communicate with the database, API REST or SOAP,
and allows us to abstract from the low level implementation.

There are many connectors supported by StrongLoop that allows to connect to almost every
database.

2.4.5 Juggler

The Juggler is defined as ORM which allows to interact with the databases, REST APIs and other
kind of data.

In other words: it is a common interface between all connectors that allows to abstract
the Datasource from the application’s functionality. We can use the same model for different
datasources.

Sadly the Juggler is not aware of relations. This adds a lot of complexity to the project if it
requires lots of them as they need to be specified not only in the code of the models, but in the
code of the repositories and controllers.

We can see it in the figure 2.11.

SQLSQL

JugglerJuggler

Connectors

noSQLnoSQL

RESTREST

......

Databases,
services

define()
ModelModel

DataSource

The model is not aware
of where data will be
stored.

The juggler adapts our
model to a common
interface with methods
like create, delete,
modify… Each connector has its

own client, driver, or
petition to acces to
the data.

Figure 2.11: Juggler

2.4.6 Repositories

The class repository is an abstraction of the Juggler and the connector. It is usually called from
the controller to access (create, edit, delete, consult...) the data.

19

2.4.7 Inversion of Control

Loopback is designed with Inversion of Control.

The IoC is a software design principle in which the flux of programming gets inverted respect
other traditional methods.

The workflow of the application is not controlled by the programmer. Instead of calling li-
braries when we need them, the framework ’calls our code’.

Therefore, the operation of our application is already implemented. We just need to implement
the ’details’.

Your code

Library

lib

Framework

Your
Code

code

Figure 2.12: Inversion of Control Concept

2.4.8 Models

2.4.8.1 Model Concept

A model describes the shape of business domain objects like a mold.

For example: Customer, Address, Order...

Defines a list of properties with name, type, and other constraints.

2.4.8.2 Features of Models

Models describe only the shape of data. Behavior such as CRUD operations are not defined
in the model, but in the repositories. Also, a single model can be used with multiple different
repositories.

When mapped in a relational database, the model could be seen as the "table". As in relational
databases, in LB4 apps we can define relationships between models (more later).

2.4.8.3 Types of Models

There are two types of Models:

• Value Object: Which dont have an identity (ID) because its equality is based on the
structural value. Two Value Objects will be the same if they share the same properties. A

20

postal address would fit this case, two addresses are the same if they share the same street
number, street name, city, and zip code values.

• Entity: They require an object identity (ID) and its equality is based on this identity. A
Customer would fit this case as two people might have the same name but they will be the
same if they are referencing to the same ID.

2.4.9 Controller

A Controller is a class that implements the operations (business logic) of an HTTP/REST API.

Here we specify the paths or endpoints where we will find the operations. Usually the Con-
troller calls other modules such as repositories (which contain connectors), but also third party
applications, or services.

2.4.10 Relations

Relations are the way of linking models. Loopback 4 currently supports 3 kinds of relations:

2.4.10.1 hasOne Relation

A hasOne [5] relation denotes a one-to-one connection of a model to another model through ref-
erential integrity. The referential integrity is enforced by a foreign key constraint on the target
model which usually references a primary key on the source model and a unique constraint on
the same column/key to ensure one-to-one mapping. This relation indicates that each instance of
the declaring or source model has exactly one instance of the target model. Lets take an example
where an application has models Supplier and Account and a Supplier can only have one Account
on the system as illustrated in the diagram below.

The diagram in figure 2.13 shows target model Account has property supplierId as the foreign
key to reference the declaring model Suppliers primary key id. supplierId needs to also be used in
a unique index to ensure each Supplier has only one related Account instance. To add a hasOne
relation to your LoopBack application and expose its related routes, you need to perform the
following steps

Supplier
id:string

customerid: string
Account ? : Account

Account
id: string

customerId: string
accountManager: string

Figure 2.13: hasOne Relation in LoopBack 4

2.4.10.2 hasMany Relation

A hasMany [4] relation denotes a one-to-many connection of a model to another model through
referential integrity. The referential integrity is enforced by a foreign key constraint on the target

21

model which usually references a primary key on the source model. This relation indicates that
each instance of the declaring or source model has zero or more instances of the target model.
For example, in an application with customers and orders, a customer can have many orders as
illustrated in the diagram below.

The diagram shows target model Order has property customerId as the foreign key to reference
the declaring model Customers primary key id.

Customer
id:string

customerid: string
orders: Order[]

Order
id: string

customerId: string
name: string

Order
id: string

customerId: string
name: string

Order
id: string

customerId: string
name: string

Figure 2.14: hasMany Relation in LoopBack 4

2.4.10.3 belongsTo Relation

As its name suggests this relation denotes that the model is a part of a bigger model. The bigger
model can contain one or more than one of the small model. This relation is used in the ’other
side’ of the two relations to reinforce the referential integrity.

22

Chapter 3

Development

3.1 Introduction

In the previous section we have explained the basic concepts to understand what will follow.

In this section we will discuss the code used in LoopBack 4 to correctly implement some ORM
functionalities , and then we will proceed to see how do they affect to the databases. We will also
see how to create our databases with docker and how to peak inside them.

We will study a PostgreSQL as an example of a relational database and MongoDB as an exam-
ple of a non-relational database.

For more information about this contents you can reference to the annex under the same title.

3.2 PostgreSQL

3.2.1 Creating our Database

First of all we must have a database to analyze. To create it we use dockers as it is a simple and
clean way to run services in our machine. Here is how we created our PostgreSQL database:

$ docker run --name some-postgres\

-v "$(pwd)"/databases/postgres:/var/lib/postgresql/data \

-e POSTGRES_PASSWORD=password -e POSTGRES_USER=username \

-p 5432:5432 -d postgres

Once we have the image running:

$ docker exec -it container_id psql -U username

psql (11.5 (Debian 11.5-1.pgdg90+1))

Type "help" for help.

username=# CREATE DATABASE database;

The previous command will execute psql in our container and create a database.

23

3.2.2 DataSource configuration

The simplest way to configure our datasource is using the CLI functionality: lb4 datasource in our
app directory.

3.2.3 Model

For our first approach we will create a simple model without any relation, just to see how it gets
translated in our SQL database.

To do so, the easiest way is, again, using the CLI.

3.2.4 Repository and Controller

As we don’t include any relations in our first example and we just want to see how the API maps
the information in our database, we will just go with the default options given by the CLI.

3.2.5 Migrate Schema

Before we start the application, we will modify our index.ts file so it automatically creates a schema
in our database based on the models we have. This is important as we start our application without
an schema in the database, we will get errors. This will be seen later.

3.2.6 Implementing a UUID for Our Models

When working with a database we will need an ID to identify the data we store.

As we do not want the user of our application to be ’annoyed’ by this kind of task, we will
implement the default generation of uuid.

First we install the package with:

$ npm install --save @types/uuid

To do so we will use a third-party library named ’uuid’. So in all our models we shall include
it:

1 import {v4 as uuid} from 'uuid';

Then we should go to the ’id’ property and set it to string (uuid generates strings!) and write
the following lines:

1 @property({
2 type: 'string',
3 id: true,
4 //add this line

5 default: () => uuid(),
6 })
7 id?: string;

This has to be made before creating the other classes, or else, we will have to modify a few
lines in other parts of the code.

24

3.2.7 Running the App

We can run our application with the following command:

myapp$ npm start

Then we connect to the docker.

$ docker exec -it ec psql -U user

We check for existing databases

1 user=# \l
2 List of databases
3
4 Name | Owner | Encoding | Collate | Ctype | Access privileges
5 -----------+-------+----------+------------+------------+-------------------

6 database | user | UTF8 | en_US.utf8 | en_US.utf8 |
7 template0 | user | UTF8 | en_US.utf8 | en_US.utf8 | =c/user +
8 | | | | | user=CTc/user
9 user | user | UTF8 | en_US.utf8 | en_US.utf8 |

We switch to ’database’
1 user=# \c database
2 You are now connected to database "database" as user "user".
3 database=#

And then check for relations
1 database=# \dt
2 List of relations
3 Schema | Name | Type | Owner
4 --------+------+-------+-------

5 public | todo | table | user
6 (1 row)

But the table is empty!

1 database=# SELECT * FROM todo;
2 id | name
3 ----+------

4 (0 rows)

Now if we have our server running we can send a post request and LoopBack will create a
todo object for us.

To do so LoopBack has a web interface but we can do it also with a curl command:

$ curl -X POST "http://[::1]:3000/todos" -H "accept:

application/json" \

-H "Content-Type: application/json" \

-d "{\"id\":0,\"title\":\"Database Tutorial\",\"desc\":\

"Make a tutorial about databases and lb4\","isComplete\":false}"

{"id":0,"title":"Database Tutorial","desc":"Make a tutorial about\

databases and lb4","isComplete":false}

Now if we check our database:
1 database=# SELECT * FROM todo;
2 id | title | desc | iscomplete
3 ----+--------+--------+------------

4 0 | string | string | t

25

The info is correctly stored there.

If we try to insert the same value twice we get a 500 error.

{"error":{"statusCode":500,"message":"Internal Server Error"}}

3.3 MongoDB

As LoopBack is designed in a modular way, the steps are practically identical to what we have
seen for PostgreSQL. We will just mention what’s different.

3.3.1 Creating our database

We will also use Docker

$ docker run -d --name some-mongo \

-v "$(pwd)"/databases/mongo:/data/db -p 27017:27017 -d mongo

3.3.2 Configuring the Datasource

We will also use the CLI but we will choose the MongoDB option when asked.

3.3.3 Running the App

We start our server:

1 npm start

Then we connect to the docker.

$ docker exec -it db mongo -U user

Then we check for existing databases

1 > show dbs

2 admin 0.000GB
3 config 0.000GB
4 local 0.000GB

We proceed to send a POST request.

$ curl -X POST "http://[::1]:3000/todos" -H "accept:\

application/json" -H "Content-Type: application/json" \

-d "{\"id\":0,\"title\":\"Database Tutorial\",\"desc\":\"Make a\

tutorial about databases and lb4\", \"isComplete\":false}"

{"id":0,"title":"Database Tutorial","desc":"Make a tutorial about\

databases and lb4", "isComplete":false}

26

And then check our database:
1 > show dbs

2 admin 0.000GB
3 config 0.000GB
4 example 0.000GB
5 local 0.000GB
6 database 0.000GB

Now the database exists!

And we can find the ’todo’ object we stored:

1 db.Todo.find()
2 { "_id" : 0, "title" : "Database Tutorial", "desc" : "Make a tutorial about databases and lb4","isComplete" : false }

27

We could also test it with the GET request:

And we can find the ’todo’ object we stored:

$ curl -X GET "http://[::1]:3000/todos/0" -H "accept:\

application/json"

{"id":0,"title":"Database Tutorial","desc":"Make a tutorial about\

databases and lb4", "isComplete":false}

3.4 Relations

We will illustrate some kinds of relations by using two examples:

1. Customer-Order example: it will illustrate the relations HasMany, and Belongto.

2. Category Example: it will illustrate the recursive relation.

We will not talk about the HasOne, as it is implemented in a very similar way as the HasMany,
Belongs to.

3.4.1 Customer-Order Example

We will follow a didactic way to easy understand the meaning of the new lines we are adding.

3.4.1.1 Customer Model

1 // src/models/customer.model.ts

2 import {Order} from './order.model';
3 import {Entity, property, hasMany} from '@LoopBack/repository';
4
5 @model()
6 export class Customer extends Entity {
7 @property({ type: 'number', id: true }) id: number;
8 @property({ type: 'string', required: true }) name: string;
9 @hasMany(() => Order) orders?: Order[];

10
11 constructor(data: Partial<Customer>) { super(data); }
12 }

The definition of the hasMany relation is inferred by using @hasMany

The decorator takes in a function resolving the target model class constructor and optionally a custom
foreign key to store the relation metadata.

28

3.4.1.2 Order and OrderWithRelations

1 // src/models/order.model.ts

2 import {Entity, model, property} from '@LoopBack/repository';
3 @model()
4 export class Order extends Entity {
5 @property({ type: 'number', id: true, required: true }) id: number;
6 @property({ type: 'string', required: true }) name: string;
7 @belongsTo(() => Customer) customerId: number;
8 constructor(data?: Partial<Order>) { super(data); }
9 }

10 export interface OrderRelations {
11 // describe navigational properties here

12 customer?: Customer;
13 }
14 export type OrderWithRelations = Order & OrderRelations;

Notice that:

• The foreign key property (customerId) in the target model is added via a belongsTo relation.

• To be able to navigate from the target (order) to the source (customer) we need to add a new property.

• This property is added with the help of an interface and the type OrderWithRelations is who includes the
navigational property.

3.4.2 CustomerWithRelations

Now we also add a navigational property to create the CustomerWithRelations type:

1 // src/models/customer.model.ts

2 import {Order, OrderWithRelations} from './order.model';
3 import {Entity, property, hasMany} from '@LoopBack/repository';
4
5 @model()
6 export class Customer extends Entity {
7 @property({ type: 'number', id: true }) id: number;
8 @property({ type: 'string', required: true }) name: string;
9 @property({ type: 'boolean', default: false }) isDelivered: boolean;

10 @hasMany(() => Order) orders?: Order[];
11 constructor(data: Partial<Customer>) { super(data); }
12 }
13
14 export interface CustomerRelations {
15 // navigational properties

16 orders?: OrderWithRelations[];
17 }
18
19 export type CustomerWithRelations = Customer & CustomerRelations;

Finally, replace Customer by our new type CustomerWithRelations in the property of the interface
OrderRelations.

3.4.2.1 Repositories with Relations

To configure the relation we need to do the following on the source repository:

1. In the constructor of your source repository class, use Dependency Injection to receive a getter1

function for obtaining an instance of the target repository.

2. Declare a property with the factory function type:
HasManyRepositoryFactory<targetModel, typeof sourceModel.prototype.id>

3. Call the createHasManyRepositoryFactoryFor function in the constructor of the source repository class
with the relation name (decorated relation property on the source model) and target repository instance and
assign it the previously declared property.

1We need a getter function, accepting a string repository name instead of a repository constructor, or a repository
instance, in order to break a cyclic dependency between a repository with a hasMany relation and a repository with the
matching belongsTo relation.

29

3.4.2.2 Target (Order) Repo CRUD API

The following CRUD APIs are now available in the constrained target repository factory orders for instances
of customerRepository:

• create for creating a target model instance belonging to customer model instance.

• find finding target model instance(s) belonging to customer model instance.

• delete for deleting target model instance(s) belonging to customer model instance.

• patch for patching target model instance(s) belonging to customer model instance.

• For example, we can create an order where the orderData is created in a "constrained repository"
for the customerId:

1 customerRepositoryInstance.orders(customerId).create(orderData);

• For updating (full replace of all properties on a PUT endpoint for instance) a target model:

– You have to directly use the target model repository.

– In this case, the caller must provide both the foreignKey value and the primary key (id).

– Since the caller already has access to the primary key of the target model, there is no need to
go through the relation repository.

– The operation can be performed directly on DefaultCrudRepository of the target model
(OrderRepository in our example).

– In our example this full replacement can be used to change the customer of an order:
1 orderRepositoryInstance.replaceById(id: 2, data: {name: "tv", isDelivered: false, customerId: 124 });

3.4.2.3 Source (Customer) Repository CRUD API Modification

The current code (called juggler) that auto-generates the CRUD API for repositories is not currently aware
of relations. As a result, we will have to override the find() and findById() functions created by default
by the juggler to get the related Order object for each Customer.

1 // After the constructor:

2 async find(filter?: Filter<Customer>, options?: Options): Promise<CustomerWithRelations[]> {
3 // Prevent juggler for applying "include" filter, it is not aware of LB4 relations

4 const include = filter && filter.include;
5 filter = {...filter, include: undefined};
6 const result = await super.find(filter, options);
7 // poor-mans inclusion resolver, this is a temporary implementation

8 await Promise.all(result.map(async r => { r.orders = await this.orders(r.id).find(); }));
9

10 return result;
11 }

1 async findById(id: typeof Customer.prototype.id, filter?: Filter<Customer>, options?: Options)
2 : Promise<CustomerWithRelations> {
3
4 const include = filter && filter.include;
5 filter = {...filter, include: undefined};
6 const result = await super.findById(id, filter, options);
7 // poor-mans inclusion resolver, this is a temporary implementation

8 result.orders = await this.orders(result.id).find();
9

10 return result;
11 }

Now when you get a Customer, a orders property will be included that contains the related Orders.

Notice that the inclusion resolver is a temporary implementation, this should be handled by DefaultCrudRepo

30

3.4.2.4 Target (Order) Repository CRUD API Modification

We will have to do the same on the Target (order) Repository so it includes the source (customer).

3.4.2.5 Source (Customer) Controller

We can create the default REST Controller with CRUD functions with the CLI.

We will modify the deletemethod to erase all the orders inside a customer in case it gets deleted. This
way we will not have objects in our database pointing to a non-existent object.

1 export class CustomerController {
2 constructor(
3 @repository(CustomerRepository)
4 public customerRepository : CustomerRepository,
5 @repository(OrderRepository) public orderRepository : OrderRepository,
6) {}
7 // other methods

8 // ...

9 // ...

10 @del('/customers/{id}', {
11 responses: {
12 '204': {
13 description: 'Customer DELETE success',
14 },
15 },
16 })
17 async deleteById(@param.path.string('id') id: string): Promise<void> {
18 await this.orderRepository.deleteAll({customerId : id});
19 await this.customerRepository.deleteById(id);
20 }

3.4.2.6 Target (Order) Controller

In the Target controller we can just go with the default REST Controller with the CRUD functions generated
with the CLI.

3.4.2.7 Relation Controller: CustomerOrderController

LoopBack 4 good practices urges us to create a separate Controller to manage the constrained repositories.

In the CustomerOrderController we can call the underlying constrained repository CRUD APIs
and expose this related models in our routes

3.4.3 Category Example

Consider an e-commerce application that has Categories, each Category may have several sub-categories
and each sub-category may have also sub sub-categories

3.4.3.1 Category Model

The model for category can be defined like this:

31

1 // src/models/category.model.ts

2 export class Category extends Entity {
3 @property({ type: 'number', id: true, generated: true }) id?: number;
4 @hasMany(() => Category, {keyTo: 'parentId'}) categories?: Category[];
5 @belongsTo(() => Category) parentId?: number;
6 constructor(data?: Partial<Category>) { super(data); }
7 }
8
9 export interface CategoryRelations {

10 categories?: CategoryWithRelations[];
11 parent?: CategoryWithRelations;
12 }
13
14 export type CategoryWithRelations = Category & CategoryRelations;

3.4.3.2 Category Repository

The natural repository one that code would be:

1 // src/repositories/category.repository.ts (bad definition)

2 export class CategoryRepository extends DefaultCrudRepository<Category,typeof Category.prototype.id,CategoryRelations> {
3 public readonly parent: BelongsToAccessor< Category, typeof Category.prototype.id >;
4 public readonly categories: HasManyRepositoryFactory< Category, typeof Category.prototype.id >;
5
6 constructor(
7 @inject('datasources.db') dataSource: DbDataSource,
8 @repository.getter(CategoryRepository) protected categoryRepositoryGetter: Getter<CategoryRepository>) {
9 super(Category, dataSource);

10 this.parent = this.createBelongsToAccessorFor('parent', categoryRepositoryGetter);
11 this.categories = this.createHasManyRepositoryFactoryFor('categories', categoryRepositoryGetter);
12 }
13 }

But if we keep this code and carry on with the example we will get a Circular dependency error. To fix
it:

1 // src/repositories/category.repository.ts (fix)

2 export class CategoryRepository extends DefaultCrudRepository<Category,typeof Category.prototype.id,CategoryRelations> {
3 public readonly parent: BelongsToAccessor< Category, typeof Category.prototype.id >;
4 public readonly categories: HasManyRepositoryFactory< Category, typeof Category.prototype.id >;
5
6 constructor(@inject('datasources.db') dataSource: DbDataSource) {
7 super(Category, dataSource);
8 this.parent = this.createBelongsToAccessorFor('parent', Getter.fromValue(this)); // to break circular dep
9 this.categories = this.createHasManyRepositoryFactoryFor('categories', Getter.fromValue(this));

10 }
11 }

3.4.3.3 Category Controller

We can generate the controller with the CLI, and then add a modification to de @del method to erase all
the subcategories inside a category, in case the parent gets deleted. We do this to avoid having objects in
our database linked to a non-existent object. We could just "clear" the link between them, that would be a
plausible solution too.

32

1 // src/controller/category.parent.controller.ts

2 export class CategoryParentController {
3 constructor(@repository(CategoryRepository) protected categoryRepository: CategoryRepository) { }
4 @get('/categories/{id}/parent')
5 async getCustomer(@param.path.number('id') id: number): Promise<Category> {
6 return await this.categoryRepository.parent(id);
7 }
8
9 @del('/categories/{id}', {

10 responses: {
11 '204': {
12 description: 'Category DELETE success',
13 },
14 },
15 })
16 async deleteById(@param.path.string('id') id: string): Promise<void> {
17 // @param.query.object.

18
19 await this.categoryRepository.deleteAll({parentId: id}); // To delete all subcategories.
20 await this.categoryRepository.deleteById(id);
21 }
22 }

3.4.4 Testing Relations in our Databases

We will proceed to test our code and see how the relations affect in our database.

3.4.4.1 PostgreSQL

The first step will be start our server and create a customer with a post request:

$ npm start

$ curl -X POST "http://[::1]:3000/customers" -H "accept: application/json" -H "Content-Type:

application/json" -d "{\"name\":\"John Smith\"}"

And then we will check in our database to see if the object has been created.

1 database=# SELECT * FROM customer WHERE name = 'John Smith';
2 id | name

3 --------------------------------------+------------

4 99e554eb-d699-4e49-b4b6-73d2cd0f3b2f | John Smith
5 (1 row)

LoopBack will create the relation in the database by storing the ID of a customer inside an order, so it
is normal that the schema in this database does not contain anything about orders.

Once we have a Customer we will check if the get request is working

$ curl -X GET "http://[::1]:3000/customers" -H "accept: application/json"

[{"id":"99e554eb-d699-4e49-b4b6-73d2cd0f3b2f","name":"John Smith","orders":[]}]

We can see how orders is an array, but it is empty.

Now let’s add a order associated with this customer through the CustomerOrder controller.

$ curl -X POST "http://[::1]:3000/customers/99e554eb-d699-4e49-b4b6-73d2cd0f3b2f/order"\

-H "accept: */*" -H "Content-Type:

application/json" -d "{\"name\":\"Earl Grey\"}"

{

"id": "7dc908c0 -9838-4d36-b912 -0086962dbff6", "name": "Earl Grey",

"customerId": "99e554eb-d699-4e49-b4b6-73d2cd0f3b2f"

}

33

If we check the database:
1 database=# SELECT * FROM "order" WHERE customerId = '99e554eb-d699-4e49-b4b6-73d2cd0f3b2f';
2 id | name | customerid

3 --------------------------------------+-----------+--------------------------------------

4 7dc908c0-9838-4d36-b912-0086962dbff6 | Earl Grey | 99e554eb-d699-4e49-b4b6-73d2cd0f3b2f
5 (1 row)

Here we can see how the object has two ID’s stored, one of its own, and the other from the object it
belongs to (foreign key).

Now we will check if customers will accept more orders.

$ curl -X POST "http://[::1]:3000/customers/99e554eb-d699-4e49-b4b6-73d2cd0f3b2f/order" \

-H "accept: */*" -H "Content-Type: application/json" -d "{\"name\":\"Kettle\"}"

And we will also check if the get request in /customers/id works fine and returns an array of orders:

$ curl -X GET "http://[::1]:3000/customers/99e554eb-d699-4e49-b4b6-73d2cd0f3b2f" \

-H "accept: application/json"

{"id":"99e554eb-d699-4e49-b4b6-73d2cd0f3b2f","name":"John Smith","orders":

[{"id":"7dc908c0 -9838-4d36-b912 -0086962dbff6","name":"Earl Grey",

"customerId":"99e554eb-d699-4e49-b4b6-73d2cd0f3b2f"},{"id":"d78fb7d5-f769-4a11\

-aff4-a298f2997c86","name":"Kettle",

"customerId":"99e554eb-d699-4e49-b4b6-73d2cd0f3b2f"}]}

The app returns the array with all the orders that are related to our customer!

Now let’s test the recursive relation. First we will create a ’Category’ object.

$ curl -X POST "http://[::1]:3000/categories" -H "accept: application/json"\

-H "Content-Type:

application/json" -d "{\"name\":\"Humour\"}"

{

"id": "5d764111-fbd3 -455c-b183 -0147e9bbf39a",

"name": "Humour"

}

And then we will create another category which will be a subcategory of the first one.

$ curl -X POST "http://[::1]:3000/categories" -H "accept:

application/json" -H "Content-Type: application/json" -d "{\"name\":\"Dark Humour\",\

"parentId\":\"5d764111-fbd3 -455c-b183 -0147e9bbf39a\"}"

{

"id": "9c6fd1e3 -00a6-4f99-b169-2f22f187c18a",

"name": "Dark Humour",

"parentId": "5d764111-fbd3 -455c-b183 -0147e9bbf39a"

}

In our database:

1 \dt

2 List of relations
3 Schema | Name | Type | Owner
4 --------+----------+-------+----------

5 public | category | table | username
6 public | customer | table | username
7 public | order | table | username
8 (3 rows)

1 database=# SELECT * FROM "category";
2 id | name | parentid

3 --------------------------------------+-------------+--------------------------------------

4 5d764111-fbd3-455c-b183-0147e9bbf39a | Humour |
5 9c6fd1e3-00a6-4f99-b169-2f22f187c18a | Dark Humour | 5d764111-fbd3-455c-b183-0147e9bbf39a

34

We can see here, how lb4 manages this recursive relation in Postgres.

It creates the field parentId where it will store the id with the foreign key of the parent category. If it is
empty it means it does not have a parent id.

3.4.4.2 MongoDB

Now we will create the same objects in a Mongo database to see how LoopBack manages relations in non
relational databases.

The Customers will look like this:
1 > db.Customer.find()
2 { "_id" : "1f22dbc4-9534-43c5-a4d5-7906c98fb1e3", "name" : "John Smith" }

And the orders will look like this:
1 > db.Order.find()
2 { "_id" : "a3709b12-e16a-40a4-add1-46365ce59359", "name" : "Earl Grey",
3 "customerId" : "1f22dbc4-9534-43c5-a4d5-7906c98fb1e3" }

And the recursive relations look like this:
1 > show collections

2 Category

3 > db.Category.find()
4 { "_id" : "e711b72d-94ff-46d9-9b7b-0b141202b870", "name" : "Humour" }
5 { "_id" : "535c3e21-5d54-4533-839f-22738ae77386", "name" : "Dark Humour",
6 "parentId" : "e711b72d-94ff-46d9-9b7b-0b141202b870" }
7
8 { "_id" : "0af20cff-593c-4778-8fcc-8230b6d1cae5", "name" : "Absurd Humour",
9 "parentId" : "e711b72d-94ff-46d9-9b7b-0b141202b870" }

We can see that in a non-relational db lb4 decides to store the data in a very similar way than in the
relational database. The only difference is that the empty fields in a relational database (ex: parentId when
the category is not a subcategory) will not be found in the mongo database.

3.4.4.3 Nested Relations

A nested relation would be a model which had a hasOneRelation or hasManyRelation with an other model
already having a relation of this kind with a third model.

Due to lack of both time and documentation we were not able to make work a nested relation.

3.5 Migrations

The ’app.migrateSchema()’ function is used to make migrations.

This functiona accepts an object of the shape ’SchemaMigrationOptions’. It is described like this:

35

1 export interface SchemaMigrationOptions extends Options {
2 /**

3 * When set to 'drop', schema migration will drop existing tables and recreate
4 * them from scratch, removing any existing data along the way.

5 *

6 * When set to 'alter', schema migration will try to preserve current schema
7 * and data, and perform a non-destructive incremental update.

8 */

9 existingSchema?: 'drop' | 'alter';
10
11 /**

12 * List of model names to migrate.

13 *

14 * By default, all models are migrated.

15 */

16 models?: string[];
17 }

So if we call our migrateSchema function like this:

1 await app.migrateSchema({existingSchema: 'drop', models:['Customer', 'Order']});

We are explicitly calling auto-migrate function. Otherwise we should call:

1 await app.migrateSchema({existingSchema: 'alter', models:['Customer', 'Order']});

Although it seems that this last feature it’s not fully implemented yet, at least for the connectors we
have seen.

3.5.1 Migration at Boot Time

The entry point for the application is the index.ts file in which you have the following lines of code:

1 // src/index.ts

2 await app.boot(); // searches and binds artifacts
3 await app.start();

We can call migrateSchema to make migrations at boot time:

1 // src/index.ts

2 await app.boot(); // searches and binds artifacts
3 await app.migrateSchema(); // migrates the Models to the databases creating the tables
4 await app.start();

However, it is usually better to have more control about the database migration and trigger the updates
explicitly.

3.5.2 Database Explicit Migration

The order of table creation is important to make the migrations:

1 // src/migrate.ts

2 // Replace the following line:

3 await app.migrateSchema({existingSchema});
4
5 //with:

6 await app.migrateSchema({
7 existingSchema,
8 // The order of table creation is important.

9 // A referenced table must exist before creating a foreign key constraint.

10 // For PostgreSQL connector, it does not create tables in the right order.

11 // Therefore, this change is needed.

12 models: ['Customer', 'Order'],existingSchema: {'alter'} //. 'alter' or 'drop'
13 });

Then, to create the tables for Customer and Order, execute the following:

myproject$ npm run build

myproject$ npm run migrate

36

Chapter 4

Budget

.

4.1 Equipment

Object Price
Laptop 950 e

4.2 Salary

To calculate an approximation of the salary we will assume that a junior engineer earns about 10e per
hour. The duration of this project has been about 19 weeks with a weekly dedication of 25h. This gives us
the approximate amount of 5750e .

4.3 Total

Concepto Coste
Laptop 950 e
Salary 4750 e
Total 5700 e

37

Chapter 5

Conclusions

This project has been about documenting how the LoopBack 4 framework manages its ORM, by doing
so we have touched some areas and technologies other than LoopBack itself. Here are the conclusions
extracted from them:

• SQL vs Non-SQL: There is no absolute winner between them. The better choice will depend on the
use you plan to give to them.

• Docker is a clean and quite simple solution to run services in a machine witout worrying about
breaking things.

• JavaScript can be used not just in the front-end but also in the back-end.

About LoopBack 4 we can say:

• It lacks documentation: And the little you can find is very chaotic. This is a serious problem when
talking about a framework. It is really difficult to make any progress in this disinformation situation.

• It lacks support on the ORM:

– Even though there are a lot of connectors (every principal database has support from Loop-
Back), they lack on functionalities, migrations are poorly resolved as the migration without
data-loss does not work. This could end up in production data loss.

– The Juggler is not aware of relations. This means we have to manage them on each controller
and repository. By each relation we must edit a bunch of files and it is tedious. This could be
"easily" automatized by the framework.

– There are problems with nested relations as commented before.

That being said, we must consider this framework is still developing, and it has lots of other func-
tionalities which are better resolved than its ORM. If we aim to have a simple API it is a good option to
consider.

Also I would like to give my personal evaluation. It has been a great opportunity to learn about SQL,
MongodB, API, JavaScript, TypeScript, ORM, and LoopBack. I knew near to nothing about all them at the
beginning of this project and now I have a very valuable insight about them.

5.1 Future Lines of Work

This project could be extended in the following ways:

38

• Continuing the documentation on LoopBack 4. There so many more great functionalities offered by
the framework yet to be explored, and documented.

• Contributing the LoopBack community by designing a support for the migrations for LoopBack 4.

• Exploring other frameworks and compare them.

39

Bibliography

[1] Database . https://searchsqlserver.techtarget.com/definition/database . Last access 2019.

[2] ORM . en.wikipedia.org/wiki/Object-relational-mapping. Last access 2019.

[3] Docker. https://www.docker.com/. Last access 2019.

[4] Has Many Relation. https://github.com/strongloop/loopback-next/blob/master/docs/site/HasMany-
relation.md. Last access 2019.

[5] Has One Relation. https://github.com/strongloop/loopback-next/blob/master/docs/site/hasOne-
relation.md. Last access 2019.

[6] LoopBack 4. https://loopback.io/doc/en/lb4/. Last access 2019.

[7] Academind. SQL and non-SQL . https://youtu.be/ZS_kXvOeQ5Y, 2018. Last access 2019.

40

