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Abstract

In this project, we develop a Finite Element Method (FEM) formulation that

solves the cardiac electrophysiological problem of a three dimensional piece of tissue.

This problem is modeled by an electromechanical model that includes the activation

of a tension that depends on the cell’s transmembrane potential and induces the

contraction of the tissue. After applying an implicit time discretization, we end with

a nonlinear system that depends on the position and potential at each node. This

system is solved using the Newton-Raphson’s method at each time iteration. Using

this resolution methodology, we present a full implicit scheme. We also implement a

faster and less accurate way of solving the coupled system with a staggered scheme:

first computing the change of potential, and then actualizing the position of every

node. Then, we simulate the electrophysiological model to observe the effect of the

grid affects on the results. Finally, using the staggered algorithm, we simulate the

propagation of a plane wave and the subsequent tissue contraction.
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Figure 1: Structure of the heart. From [1].

1 Introduction

Nowadays, about a third of the world’s deaths are associated to cardiovascular diseases.

These diseases can be related to problems in the veins and arteries, which produce heart

attacks and strokes, or to problems in the heart’s contraction and, consequently, with the

correct expulsion and distribution of the blood to our body.

The heart’s contraction is produced by a change in the membrane potential of the my-

ocytes, the muscular cardiac cells. An electrical pulse is originated on the sinusoidal node,

our natural peacemaker. Then the wave is propagated along the tissue using the cardiac

fibers that are composed by myocytes. This electrical wave is a result of the movement of

different ions along the cells. The change of ions concentrations induces a contraction of

the fibers, and consequently, to the whole heart’s contraction, first on the atria and then

on the ventricles, structure that we can see in Fig. 1.

These phenomena can be studied based on experimental data. For the mechanics, the

ultrasounds permit the observation of the change of positions for every layer of muscle,

whereas for the electrophysiology, optical mapping is applied and only permits to observe
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the potential on the surface of the heart. To study the coupling phenomena, we can also

simulate the hearts movement applying numerical methods to electromechanical models.

This implementation gives us the advantage that both, the electrophysiology and the

mechanics, are given at each point of the tissue. This simulations also permit us to

check if the models that describe the coupling are well assumed, an consequently, a better

understanding on how is this electromechanical coupling.

To obtain the simulations, we will need an electrical model for the wave propagation, a

mechanical model for the stretch of the fibers, an finally, a coupling of the two models

that can simulate how the change of potential induces a movement and/or how the stretch

of the cells affects on some ionic channels. There are many proposals to model these

situations such as the ones we can find on [3] and [4].

1.1 Physiology of a cardiac myocyte

Since the principal function of the heart is to pump the blood, the majority of its cells

are muscular cells, called myocytes. They have a length of 80− 100µm and a diameter of

10− 20µm. As we said, these cells respond with a mechanical movement to the electrical

pulse.

1.1.1 Electro physiology

The myocytes have a selective permeability membrane that permits the circulation of

Na+, Ca2+, K+ and Cl− ions through the ionic channels that open or close depending

on the potential difference between the inside and outside of the cell at each instant.

When it is at resting state, the membrane potential is about −85mV . Upon electrical

stimulation, this potential increases above a potential threshold and the cell produces a

response called action potential. The amplitude of this answer is of 130mV approximately

as can be observed in Fig. 2. Systems with this behaviour are called excitable and present

two main characteristics. They have an attractor fixed point where all the orbits always

return, after an small path if the stimulus strength was under a threshold, or after a larger

one otherwise. In our case, this fixed point is the resting state. The second characteristic is
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Figure 2: Action potential of a myocyte. From [2].

that after a big orbit, the system needs to stay in the fixed point for a while before an other

high stimulus. This can be translated in the heart’s system by: after an electrical wave

and consequently, a contraction, the tissue needs to be at resting state before producing

the next action potential.

The action potential has a particular form depending on the ion flux in the cell. Firstly,

at phase 0, we see very fast entrance of the sodium ions (Na+). Secondly, at phase 1,

the cell ejects the potassium and chlorine ions (K+ and Cl−). To equilibrate it, at phase

2, calcium ions (Ca+2) enter into the cell that produces the cell contraction. Once the

calcium injection has finished, at phase 3, potassium ions emerge producing a decreased

on the potential, that returns to the diastole or resting state at phase 4.

1.1.2 Mechanical response

As we previously said, the entrance of calcium ions generates the contraction. This

entrance produces an openning of the Ryanodine Receptors that are located at the sar-

coplasmic reticulum, where the concentration of calcium is 1000 times larges than in the

cytosol. This process is known as calcium induced release. When the concentration at

the cytosol increases the calcium ions stack to a protein called troponim C, changing its

form and generating the contraction on the muscular fiber. In Fig. 3, we can observe how

these variables: potential, calcium concentration and contraction, are related. Due to
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Figure 3: Potential, calcium concentration and contraction relation. From [14]

the fact of this fiber-direction dependency and the combination of contractile and passive

material, the cardiac tissue presents a high anisotropy on the contraction.

1.2 Objectives

The main objective of this thesis is to develop a code that simulates a three dimensional

piece of cardiac tissue from the electrical and mechanical perspectives.

To do so, we will consider 2 coupled simplified models: one for the electrophysiology of

the myocytes and an additive formulation of the passive, induced by the tissue movement,

and active deformation, produced by the change of potential at each point of the tissue,

and we will apply the Finite Element Method to simulate them for a period of time.

First, we will solve it just for the electrical case, and then we will add to the resolution

the mechanical terms.

Finally, we will compare the obtained results changing the parameters that will descrive

our models.
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Figure 4: Electric scheme of the myocyte membrane. From the article [2]

2 Constitutive model of electromechanics

In this section, we will describe the models considered for the electromechanical behaviour

of the myocardial tissue.

2.1 Electrophysiological model

As we said in section 1.1.1, the myocytes membrane has a selective permeability that

permits the transport of ions through channels. This implies a difference between ions

concentrations and, consequently, in a difference of potentials between the inside and the

outside of each cell.

To model this behaviour, we can assimilate the cells membrane to a capacitor that stores

electrical charge. For this reason, we can suppose that our cell follows the electrical scheme

that presented in Fig. 4.

The two currents that we have to take into account are the one produced by the ions

concentrations Iion and the other one that represents the stored charge on the membrane.

Since total charge is conserved, Iion + Ic = 0.

On the other hand, we know that the stored charge is Q = CmVm where Cm is the

capacitance and Vm is the potential’s difference. We also have that the current is the
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charge per unit of time and the capacitance is constant along the time. Thus we end with

Ic =
dQ

dt
= Cm

dVm
dt

(1)

Substituting in the charge conservation equation:

Cm
dVm
dt

+ Iion = 0 (2)

where Vm = Vi − Ve is the membrane voltage, i.e. the difference between the interior and

exterior potentials.

For each type of ion X, we will model their currents using the expression IX = gX(Vm −

VNernst,X), where VNerst,X is the Nerst potential and gX = 1/rX is the membrane conduc-

tance for the X ion. The Nerst potential can be written as:

VNernst,X = Vi,X − Ve,X =
kBT

q
ln(ce,X/ci,X) (3)

where Vi,X and Ve,X are the resulting interior and exterior potentials for the X ion, ci,X

i ce,X are the interior and exterior concentrations, kB is the Bolzmann’s constant, T the

temperature and q = z|e| is the charge for one ion (z is the Valence and |e| is the electron

electrical charge).

The first model that considered this expressions for the ionic currents, was the Hodgkin-

Huxley model on the 1952, that was applied to neurons. Thus, the total ionic charge

is:

Iion =
∑
X

gX(Vm − VX) (4)

After that, following the same formulation, more models where developed as the Noble

model [5] on the 1962 and the Beeler-Reuter model [6] on the 1977. Nowadays, there exist

a lot of models that include all kinds of cells that we can find on the humans heart. We

can see some examples in [7].

On this report we will consider a simpler model, presented in [8], that will only include

potassium and sodium ions. This will give us a similar to small animals hearts signal.

Since there is no calcium phase 2 (Fig. 2) does not exist, what implies an action potential

with a triangular form as we can see in Fig. 5.
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Figure 5: Action potential of a rat. From [9]

We will consider the following action potential:

dV

dt
= −INa + IK + Istim

Cm
(5)

where Istim is the stimulus originated in the sinusoidal node.

To simulate the ionic gates opening, we will use a smoothed Heaviside function Sε(V ) as

we can see in Fig. 6,

Sε(V ) =
1 + tanh

(
V−Vc
ε

)
2

−−→
ε→0

S(V ) =

 1 V > VC

0 V < VC
(6)

The potassium ionic current will be modeled by the Eq. (7), that is an increasing line

when the potential is under a threshold (VC) and is a constant function when otherwise.

The sodium, INa, behaves in the other way, and depends on the probability of the gate

for being open, h(V ) that follows its own coupled ode as we can see in Eq. (8) and Eq.
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Figure 6: Smoothed Heaviside function S(V ).

(9). We can see this currents represented for h = 1 at Fig.7.

ĨKε =
IKε
Cm

=
1

τ0

[
S(V ) + (1− S(V ))

V

VC

]
−−→
ε→0

ĨK(V ) =

 1
τ0

V > VC

1
τ0

V
VC

V < VC
(7)

ĨNaε =
INaε
Cm

= −S(V )h

τA
−−→
ε→0

ĨNa(V ) =

 −h/τA V > VC

0 V < VC
(8)

dh

dt ε
=

1− S(V )− h
τ−(1− S(V )) + τ+S(V )

−−→
ε→0

dh

dt
(V ) =

 −h/τ+ V > VC

(1− h)/τ− V < VC
(9)

To induce a longer response of the system we will introduce an stimulation current Istim

to simulate the current that generates the sinusoidal node, that will only depend on the

time, and it will be T-periodic as we can see in Fig. 7).

Ĩstim(t) =
Istim
Cm

(t) =

 H t (mod T) < tt

0 otherwise
(10)

where H is the intensity of the stimulus, tt the amplitude and T the period.

As in many other situations in biology [10], the cardiac cells behave as an excitable system.

They have a fixed point, the resting situation, and when we apply small perturbation, an

small pulse, they return very fast to the fixed point. On the other hand, when a more

intense pulse that makes it increase above a threshold, VC , the system responds with a

more extensive orbit, and needs to stay into fixed point for a while to return to repeat it.

This property can be seen in Fig. 8.
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Figure 7: Graphical representations of INa, IK and Istim for h = 1

Then, each cell electric comportment will we model by the following system of equations.

dV

dt
= gV (V, h, t) = −S(V ) + [1− S(V )]V/Vc

τ0

+
S(V )h

τA
+ Istim(t) (11)

dh

dt
= gh(V, h, t) =

1− S(V )− h
τ−[1− S(V )] + Sτ+

(12)

In Fig. 9, we can see its representation for T = 400 ms. Since the tissue will we formed

by cardiac cells, we will have to add a term that models its coupling between cells. The

different ions flow from one cell to the other through the gap junctions. This phenomenon

gives rise to diffusion on the membrane’s potential, which can be mathematically described

as:
∂V

∂t
= ∇ · (D∇V )− gV (V, h,x, t) (13)

where D is the diffusion that depends on the direction of the fibers.

Since the pulse is only applied to part of the domain and then propagated, Istim will also

depend on the position. In our case we will impose that the pulse is given on the {X = 0}
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Figure 8: Numerical test of the excitability of the system, obtained results with initial

conditions V0 with values between 0.2 and 1.4 and h0 = 1.

Figure 9: Electrical model for T = 400 ms.

side of the tissue.

Finally, since we consider that there no flux of electrical current (ions) to the surround-

ing medium we will impose natural Neumann conditions on the whole boundary , i.e.

D∇V (x, t)) = 0 ∀(x, t) ∈ δΩ× (0, tend].

2.2 Mechanical model

As has been described in [13], the spatial motion of a body that has initial positions X

(material coordinates), can be described using the spatial motion map as x = ϕ(X, t) :
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Ω0 ×R→ Ωt, where Ω0 is the initial domain and Ωt is the deformed domain a time t.

Then, the deformation gradient F is defined as the spatial derivative of the deformation

map with respect to the initial configuration X, that is, F = ∇Xϕ where the jacobian is

J = det(F).

Another important variable in the mechanic study is the Cauchy-Green deformation tensor

C, that defines relevant strain measures and is computed as C = Ft·F. Finally, I1 = tr(C)

is the first strain invariant.

As we previously said, the myocardial tissue is an hyperelastic material. This property

can be mathematically described using the Clausius-Planck form of the second law of

thermodynamics, that reads

Dint =
1

2
S : Ċ− Ψ̇− S0θ = [S− 2∂CΨ] : Ċ− S0θ ≥ 0, (14)

where Dint is the dissipation of the internal energy, S is the second Piola-Kirchoff stress

tensor, Ψ is the strain energy density function (SEDF), S0 is the material form of the

internal dissipation and θ is the entropy. In our case, we will make two assumptions: the

thermal effects will be negligible, so S0 and θ will be omitted; and the material will be

assumed as perfectly elastic, leading to the degeneration of the inequality of Eq. (14) into

(S− 2∂CΨ) : Ċ = 0 (15)

As C, and consequently Ċ can be different to zero, the first term should be null, thus, in

this case the second Piola-Kirchoff stress tensor is

S = 2
∂Ψ

∂C
(16)

Given this tensor, the first Piola-Kirchoff can be obtained by pulling it back to the refer-

ence configuration, i.e. P = F ·S. Using Eq. 16, the first Piola-Kirchoff stress tensor can

be also described as a function of SEDF, resulting of the following expression

P =
∂Ψ

∂F
(17)

We will consider a classical Neo-Hookean SEDF model to define the energy, Ψ(C) =

Ψvol(J) + Ψich(C). Therefore, the energy function reads

Ψ(C) =
1

2
λ ln2(J)− 1

2
µ ln(J) +

1

2
µ[I1 − 3] (18)
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where λ and µ are the Lamme parameters which describe the mechanical properties of

a material. By deriving this expression by C, we obtain the second Piola-Kirchoff stress

tensor S, and consequently, the first Piola-Kirchoff stress tensor P

S = [λ ln(J)− µ]C−1 + µI⇒ P = [λ ln(J)− µ]F−1 + µF (19)

2.3 Coupling electromechanics

In the previous section we were discussing the mechanical response that the body has to a

deformation, that is called passive reaction. To induce a mechanical contraction from the

change of potential, we will include and additive active stress to the first Piola-Kirchoff

stress tensor, P = Ppas + Pact, where Ppas is equal to P from Eq. (19). To generate this

active reaction, we base our model on the propose of Nach and Panfilov [4], as we can

see in [11] and [12]. We assume that an increase on the membrane potential induces a

contraction F act that acts along the fiber direction f0. This contractile force F act presents

a twitch-type behaviour with an smooth transition as we can see in Fig. 10. To have this

behaviour, we modeled using a Heaviside function ε(V ) that is ε0 for V under a threshold

(V̄ ) and ε∞ otherwise.

Pact = F act(V )f0 ⊗ f0 (20)

dF act

dt
= ε(V )[kF (V − Vr)− F act] (21)

ε(V ) = ε0 + (ε∞ − ε0)e−e
−ξ(V−V̄ )

(22)

where kF controls the saturation of F act, Vr is the resting potential and V̄ is the limit

value above which contraction is initiated.

Finally, we can model the tissue mechanics of the coupled model using the balance equa-

tion obtained from the principle of virtual work in continuum mechanics, that balances

the rate of change of the linear momentum with the divergence of the momentum flux,

∇ ·P + Fϕ = 0 in Ω (23)

where Fϕ is the momentum source and is equal to zero since it characterizes volume forces

such as gravity, that we assume to be negligibly small.
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Figure 10: Graphical representation of the active force for the central node and a stretch

for kF = 15

3 Numerical implementation

In this section, we will describe the discretized formulation in space, with finite element

method, and in time, with an implicit Euler, used to implement the simulation of the

coupled electromechanical model on the three dimensional tissue with initial configuration

Ω0.

3.1 Full implicit coupled resolution of the problem

We define as the strong form of our problem the following mechanical and electro-

physiological balance equations in they residual form, where we had not considered the

strech-induced change in the propagation speed, what makes D constant,

Rϕ(V, ϕ) = ∇ · (Pact(F act(V )) + Ppas(ϕ)) = 0 (24)

RV (V, h,X, t) =
∂V

∂t
−∇ · (D · ∇V )− gV (V, h,X, t) = 0 (25)
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in Ω(t) × (0, tend]. Where ˙F act = gF (F act, V ) and ḣ = gh(V, h) and with the following

Dirichlet and Neumann boundary conditions,

ϕ = ϕ̄ on ΓϕD

V = V̄ on ΓVD

P · n = T̄ϕ on ΓϕV

(D · ∇V ) · n = T̄V on ΓVN

where ϕ̄ and V̄ are prescribed values for the unknowns, n is the outward normal unitary

vector to the boundary Γ and T̄ϕ and T̄V are the prescribed fluxes on the boundary.

Recalling the Hilbert spaces we define:

Sϕ = {ϕ ∈ H1(Ω)|ϕ = ϕ̄ on ΓϕD}

SV = {V ∈ H1(Ω)|V = V̄ on ΓVD}

Vϕ = {ϕ̃ ∈ H1(Ω)|ϕ̃ = 0 on ΓϕD}

SV = {Ṽ ∈ H1(Ω)|Ṽ = 0 on ΓϕD}

3.1.1 Weak form of the problem

In order to find the weak form of the problem, we consider two functions: ϕ̃ ∈ Vϕ and

Ṽ ∈ VV , and we integrate its product with Rϕ and RV along the spatial domain Ω, that

will be Ωt∗ at the time instant t∗. Applying the divergence theorem and imposing the

boundary conditions to δΩ = ΓϕD ∪ ΓϕN = ΓVD ∪ ΓVN we end with the weak form of the

problem.

∫
Ω

∇ϕ̃(x) : P dΩ−
∫

ΓϕN

ϕ̃(x)T̄ϕ dΩ = 0∫
Ω

Ṽ
∂V

∂t
dΩ +

∫
Ω

∇Ṽ · (D · ∇V ) dΩ−
∫

Ω

Ṽ gV (V, h,x, t) dΩ−
∫

ΓVN

Ṽ (x)T̄V dΩ = 0

As T̄ϕ = 0 and T̄V = 0, from now on we will delete this terms.

21



3.1.2 Space discretization

Considering a finite elements space discretization Ω = ∪nEleme=1 Ωe with nodes {xi}nNodesi=1 we

define a linear basis {Ni(x)}nNodesi=1 such that Ni(xj) = δij.

To find the finite elements solution we will approximate the position map and potential

scalar function at each time instant t∗ as

ϕ(X, t∗) ≈ ϕh(x, t∗) =

nNodes∑
j=1

(ϕxj (t
∗), ϕyj (t

∗), ϕzj(t
∗))TNj(x)

V (x, t) ≈ V h(x, t) =

nNodes∑
j=1

Vj(t)Nj(x)

To consider these approximations, we substitute in the terms of weak form , and also

write ϕ̃ and Ṽ with the same basis notation. As the weak form has to we accomplished

∀ϕ̃ ∈ Vϕ and ∀Ṽ ∈ VV , it has to we accomplished ∀Ṽ = (Ṽ1, ...ṼnNodes) ∈ RnNodes and

∀ϕ̃ = (ϕ̃x1 , ϕ̃
y
1, ϕ̃

z
1, ...ϕ̃

z
nNodes

) ∈ R3×nNodes . So, finding (ϕ, V ) in the weak form will be

equivalent to find them such that

∫
Ω

∇Ni : (Pact(F act(V h)) + Ppas(ϕh)) dΩ = 0

nNodes∑
j=1

V̇j

∫
Ω

NiNj dΩ +

nNodes∑
j=1

Vj

∫
Ω

∇Ni · (D · ∇Nj) dΩ−
∫

Ω

NigV (V h, hh, t) dΩ = 0

∀i = 1, ..., nNodes.

3.1.3 Time discretization

In this section we will discuss the resolution of the following system of ODEs

Rϕ = Gϕ(ϕ(t),V(t),Fact(t)) = 0

RV = MV̇(t) + KV(t)−GV(V(t),h(t)) = 0
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where the matricial and vectorial components are

Gϕ
I =

∫
Ω

∇Ni : (Pact(F act(V h(t))) + Ppas(ϕh(t))) dΩ dΩ

MKL =

∫
Ω

NkNl dΩ

KKL =

∫
Ω

∇Nk · (D · ∇Nl) dΩ

GV
K =

∫
Ω

NkgV (V h, hh)dΩ +

∫
Ω

Nk
Istim
C

dΩ

Now, we will uniformly discretize the time considering the notation tn = n∆t, using the

Euler’s implicit scheme. Then, at each time iteration, we will compute (ϕn+1,Vn) as the

solution of

Rϕ,n = Gϕ(ϕn+1,Vn+1,Factn+1
) = 0 (26)

RV,n =
M

∆t
(Vn+1 −Vn) + KVVVn+1 −GV(Vn+1,hn+1) = 0 (27)

3.1.4 Procedure to solve the discretized system

Since it is a system of non-linear functions, at each time iteration will use the Newton-

Raphson’s method to find the zero of Eq. (26) and Eq. (27).

As we have seen in the previous sections, these functions also depend on two time depen-

dent variables, that are described by their own ODEs. To compute them at each time

step we also use the Euler’s implicit scheme and we find the analytical solutions F act,n+1

and hn+1 as we can see in the following development.

F act,n+1 − F act,n

∆t
= ε(V n+1)[kF (V n+1 − Vr)− F act,n+1]

⇒ F act,n+1 =
F act,n + ∆tε(V n+1)kF (V n+1 − Vr)

1 + ∆tε(V n+1)
(28)

hn+1 − hn

∆t
=

1− S(V n+1)− hn+1

τ−(1− S(V n+1)) + τ+S(V n+1)

⇒ hn+1 =
(τ−(1− S(V n+1)) + τ+S(V n+1))hn + 1− S(V n+1)

τ−(1− S(V n+1)) + τ+S(V n+1) + ∆t
(29)

To sum up, we will apply the following scheme to find an approximate solution at each

time iteration:
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1. Given (ϕn,Vn,Fact,n,hn) from the previous time step, we define (0ϕn+1, 0Vn+1) =

(ϕn,Vn),

2. While ||(Rϕ,n(kϕn+1, kVn+1, kFact,n+1),RV,n(kVn+1, khn+1))|| > tol,

(a) We compute (k+1Fact,n+1k+1hn+1) using Eq. 28 and Eq. 29,

(b) We update the variables (k+1ϕn+1, k+1Vn+1) applying the Newton-Raphson’s

method, k+1ϕn+1

k+1Vn+1

 =

 kϕn+1

kVn+1

−
∂(Rϕ,n, RV,n)

∂ϕ, V

−1

·

 Rϕ,n

RV,n


where the partial derivatives and the residual expressions are evaluated at

(kϕn+1, kVn+1, kFact,n+1khn+1).

Thus, to iterate the Newton-Raphson’s algorithm, we will have to compute the partial

derivatives of the residual equations.

∂(Rϕ,n, RV,n)

∂ϕ, V
=

 Kϕ,ϕ Kϕ,V

KV,ϕ KV,V


Since we do not consider stretch activated channels and stretch-induced change in the

propagation speed, RV will never depend on ϕ, so ∂RV

∂ϕ
= KV,ϕ = 0. In the other cases,

Kϕ,ϕ
I,J =

∫
Ω

∇NI ·
∂P

∂F
∇NJdΩ

Kϕ,V
I,L =

∫
Ω

∇Ni ·
∂Pact

∂V
Nl dΩ

KV,V
K,L = 1/∆t

∫
Ω

NkNl dΩ +

∫
Ω

∇Nk · (D · ∇Nl) dΩ +

∫
Ω

Nk
∂gv
∂V

NldΩ

3.2 Staggered resolution of the coupled problem

A more simplified, but faster alternative way of computing how the wave propagation

affects into the contraction for a case that does not take into account the stretch activity

channels and the stretch-induced change in the propagation speed, is a staggered resolu-

tion of the problem. In this case, we first solve the potential problem and then we apply

the results to the mechanical one. The iterative structure of it at each time step is:
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1. Given (ϕn,Vn,Fact,n,hn) from the previous time step, we define (0ϕn+1, 0Vn+1) =

(ϕn,Vn),

2. While ||RV,n(kVn+1, khn+1))|| > tolV ,

(a) We compute k+1hn+1 using Eq. 29,

(b) We update the variables k+1Vn+1 applying the Newton-Raphson’s method,

k+1Vn+1 = kVn+1 −KVV−1
RV,n

where the partial derivative and the residual expression are evaluated at (kVn+1

, khn+1).

3. While ||(Rϕ,n(kϕn+1,Vn+1, kFact,n+1)|| > tolϕ,

(a) We compute (k+1Fact,n+1 using Eq. 28 ,

(b) We update the variables k+1ϕn+1 applying the Newton-Raphson’s method,

k+1ϕn+1 = kϕn+1 −Kϕϕ−1Rϕ,n

where the partial derivative and the residual expression are evaluated at (kϕn+1,

Vn+1, kFact,n+1).

Note that in this case, we can also solve the electrophysiological problem for all the time

steps, and then we can apply this data to solve the mechanical solution.

Another advantage is that, we can consider different time steps for the two resolutions

(∆tV < ∆tϕ) if we do not want so much detail on the mechanical part. We can solve the

electrical part, and after that solve the mechanical part actualizing the position every n

iterations of the electrical solution, then ∆tϕ = n∆tV .
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Parameter VC ε τ0 τA τ− τ+

Value 0.1 0.005 150 6 60 12

Table 1: Used parameter for the electrophysiological model

Parameter kF Vr V̄ ε0 ε∞ ξ ν E

Value 15 0 0.1 1 0.1 100 0.35 100

Table 2: Used parameter for the simulations of the coupled electromechanical model

4 Results

In this section we will present the resulting simulations of the electrical model, and of the

coupled electromechanical model for a 3cm × 3cm × 0.5cm cardiac tissue. For the first

model, we will consider 3 different meshes of cubic elements. For the second case, we will

apply the staggered methodology that we explained in section 3.2 to the plane wave.

For the simulations we used the parameters that we can see in Tab. 1 and Tab. 2.

4.1 Electrophysiological model

In this case, we studied the convergence of the solution for electric model for an isotropic

case considering 3 cubic meshes with different element sizes: ∆x = 0.5/2cm then 12 ×

12×2 = 288 elements, ∆x = 0.5/3cm then 18×18×3 = 972 elements and ∆x = 0.5/4cm

then 24× 24× 4 = 2304 elements.

As initial conditions, we considered that Ω ∩ {x = 0} was equal to (V0, h0) = (0.2, 0.4)

and (V0, h0) = (0, 0) otherwise.

As result we had the expected results as we can see in Fig. 11 and Fig. 13. In the first

one, the change of potential in the central node (located at (1.5, 1.5, 0.25)) as function of

time is represented for the 3 different meshes. We can observe the convergence for the

finest mesh to an smoother curve that behaves as Fig.9. In the second one, we represent

the potential in the whole tissue in 4 different time instants using the finest mesh. We

can see that the electrical wave propagates along the tissue in a sharped front, the highest

potential covers all the tissue and then it returns to the resting state in a smoother way.
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Figure 11: Potential as a function of time for the central node for 3 different meshes.

Figure 12: Simulation of the electrophysiological model at t0 = 0ms, t600 = 60ms, t1200 =

120ms and t1800 = 180ms.
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4.2 Resolution of the coupled model

In this section we tried to develop a code that computed the resolution using the full

implicit methodology, but at the end of the project, due to errors in the code, simulations

did not converge to a solution. Instead of the full implicit resolution, we finally applied

the staggered method that was explained in section 3.2.

In this case, we applied the same initial conditions for the electrical part, we fixed the

node with initial coordinates (Lx/2, Ly/2, 0), and we fixed the x and y movements for the

nodes above, i.e. the ones with initial coordinates (Lx/2, Ly/2, n/6) with n = 1, 2, 3.

The obtained results, that we can see in Fig. 13 and Fig. 14, show us how the change of

potential affects on the contraction of muscle. We can observe that acts after the electrical

wave front passes and turns back to the initial position when the potential returns to the

resting state.
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Figure 13: Simulation of the potential for the electromechanical model at t60 = 60ms

(first row), t90 = 120ms (second row) and t120 = 120ms (third row).

Figure 14: Simulation of the active tension for the electromechanical model at t60 = 60ms

(first picture), t90 = 120ms (second picture) and t120 = 120ms (third picture).
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5 Conclusions and future work

In this project, we implemented a FEM code that solves the electrophysiological problem

on a three dimensional piece of tissue. Even though it has some errors in the coding, we

raised and develop a code that solves using a full implicit method the electromechanical

model. We also present a faster, but less accurate alternative using a staggered method-

ology: first computing the potential and then using it to compute the variation of shape

of the tissue due the active tension that is induced by this change.

As future work, we can state a lot of possibilities.

First of all, of course, solving the errors that has the full implicit algorithm and compare

its results with the ones that the staggered algorithm offers, searching the accuracy limits

of the last one.

We can also use more realistic electromechanical models that include the concentration of

calcium as a variable, as we know that is what really causes the activation of the active

tension, and/or that include how the contraction affects on the potential propagation,

with stretch activity channels or the stretch-induced change in the propagation speed.

Another possible continuation of the project, could be to simulate more interesting situ-

ations as spiral waves, that are closely related to tachycardia and its transition to fibril-

lation.

Finally, we could also use this methodology to simulate the electromechanical wave prop-

agation on a more realistic geometry as they did in [11] and in [12].
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