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Abstract

The following Master Thesis analyses a group theoretical property called amen-

ability, which consists in the existence of a finite measure defined on all subsets

of a group. This property is studied in a group of piecewise linear homeo-

morphisms of the interval [0, 1], Thompson’s group F , which to this date rep-

resents one of the biggest problems in the theory of amenability. The project

consists of four chapters. The first chapter introduces the basic ideas in the

theory of amenability. In particular, some criteria and characterizations of

this concept are presented. The second chapter studies non-amenable groups.

Namely, it introduces a weaker idea than amenability, which studies how far

is a group from being amenable. The third chapter introduces Thompson’s

group, and several tools to work with it. It also presents its most important

properties in relation to amenability. Finally, the last chapter contains some

of the most relevant results with respect to Følner sets in F , along with some

original computations for possible candidates to be Følner sequences in this

group.
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CHAPTER

1
Introduction

An amenable group is a group that can be assigned a finitely additive finite measure

which is also invariant through the action of the group on itself by left translation. The

concept was introduced by John von Neumann [24] in 1929 , as a result of his study on the

Banach-Tarski paradox. This is a well known paradox in modern mathematics, and states

the following:

Theorem 1.1 (Banach, Tarski.[3]). Let B be a ball in R3. There exists a partition of B in
sets A1, . . . , An, B1, . . . , Bm ⊂ B, and isometries σ1, . . . , σn, τ1, . . . , τm of R3 such that

n⋃
i=1

σiAi = B =
n⋃
i=1

τjBj .

In other words, a ball can be decomposed into pieces, which can be rearranged into

two balls equal to the original one. The proof of the paradox uses the Axiom of Choice,

and thus, when it was presented, the result was quite controversial, and strongly criticized.

Some of the sets appearing in the partition are non-measurable, so the theorem is not con-

tradictory, but just counter intuitive. Indeed, the theorem could not be true if all subsets in

the partition were measurable, as it would be

µ(B) =
∑

µ(Ai) +
∑

µ(Bi) =
∑

µ(σiAi) +
∑

µ(τjBj) = 2µ(B),

and this contradicts the fact that µ(B) > 0.
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1. INTRODUCTION

Banach and Tarski also proved that the paradox is not true in the real line or the plane.

Von Neumann noticed that the paradox does not depend so much on the underlying set,

but on the group of transformations which acts on it. In particular, he realizes that the

group of isometries of R3 contains a non-abelian free subgroup, but this does not happen in

dimensions one or two; in fact, he finds new paradoxes in these low dimensions, by using

larger groups of transformations which actually contain non-abelian free subgroups.

One can generalize the idea of the paradox via isometries acting on the ball to any

group acting on any set, by just changing the corresponding terms in the statement of the

theorem. This is called a paradoxical decomposition, and a set admitting a paradoxical

decomposition with respect to a groupG is calledG-paradoxical. Any group acts on itself

by left translation, and it is possible to see that a paradoxical decomposition on a group of

transformations (with respect to this action) can be transferred to the set upon which it acts

(with a small number of fixed points). The Banach-Tarski paradox relies on the fact that

the free group in two generators is paradoxical. With a bit of effort, its decomposition can

be transferred to the ball.

Thus, the study of these decompositions can be reduced to the case of paradoxical

groups, and here is why Neumann introduces amenability: as we mentioned, a measure

defined on all subsets of the group implies that there cannot be a paradoxical decomposition

on this group. Tarski showed in 1936 that, in fact, this is a characterization of paradoxical

decompositions:

Theorem 1.2 (Tarski). Let G be a group acting on a set X , and let E ⊆ X . The following
are equivalent:

1. E is not G-paradoxical.

2. There exists a finitely additive measure µ : P(X)→ [0,∞] such that µ(E) = 1, and
µ(gA) = µ(A) for any g ∈ G,A ⊆ X .

As with paradoxes, a measure on a groupG can be transferred to aG-invariant measure

on a set upon which it acts, and so this set will neither be G-paradoxical. Thus, again, the

study of paradoxical decompositions can be reduced to groups admitting this kind of finite

measure on all subsets, i.e., amenable groups.

Amenability has many other equivalent definitions, which allows to use and mix many

different techniques from distinct parts of mathematics. In this project we will mostly focus

on a combinatorial characterization of amenability, introduced by the danish mathematician
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Enrich Følner in 1955 [11]. Følner proves that amenability is equivalent to the existence of

a sequence of subsets of the group which do not change too much when another element

of the group acts on them. Even though Følner does not refer to it, it is remarkable that his

ideas are quite similar to those introduced by L. Ahlfors on Riemannian geometry twenty

years before (1935), with the concept of regularly exhaustible surfaces. Følner’s work

changes completely the perspective of the problem: instead of working with measures, all

the effort is directed to finding these subsets in the group.

One of the biggest unsolved problems in the theory of amenability is to see whether a

particular group, Thompson’s group F , is amenable. This group is defined as a family of

homeomorphisms of the interval [0, 1], satisfying some properties that reduce it to a finitely

generated group. It was introduced by Richard Thompson in the 1960’s, along with other

two groups, a bit bigger but defined similarly: T and V . These are all discrete groups

which have really interesting properties, and were introduced as counterexamples to some

existing conjectures. The original notes by Thompson are unpublished, but an article by

Cannon, Floyd and Parry [8], which contains most of the basic definitions and properties

of these groups, has become a classical reference to the topic.

All the existing criteria to check amenability fails when applied to the group F , and

thus this group motivates the development of the theory of amenability. It is conjectured

that F is not amenable, and its study seems to tell that this is correct, but there is not a

formal proof of this fact yet. Several authors have claimed to solve the problem, but all the

proofs presented contained mistakes which could not be avoided. In 2009, E. Shavgulidze

[21] claimed to have a proof that F is amenable, and Moore [18] gave another proof of

the amenability of F in 2012. On the other hand, A. Akhmedov [1] presented a proof that

F is not amenable in 2013. Errors have been found in all these proofs, so the problem

remains open. It is also remarkable that, in 2004, to celebrate the 40 years of Thompson’s

group, there was a conference treating all the big questions related to F , along with possible

methods for solving these questions.

The project consists in four main chapters, and some conclusions. In the first chapter,

we make an introductory approach to amenability, some of its most important characteriza-

tions and criteria, and its relation with other properties of the group, such as commutativity

or growth. In the next chapter we use Følner’s theorem to study non-amenable groups, and

somehow measure how far they are from being amenable. From here on, we stop study-

ing amenability as a general property, and we focus in Thompson’s group F . In the third

3



1. INTRODUCTION

chapter, we introduce the group, along with its presentation and diagrams. We prove some

of its most important properties and relate them to amenability. Finally, in the last chapter,

we search for Følner sequences in F . We first introduce the best Følner sets to date, in-

troduced by Belk and Brown, and then some original work: computations of the boundary

ratios of different sequences of sets, mostly coming from the presentation of F , among

others. Even though we achieved the goal of computing the ratios for the proposed sets,

the results obtained are negative, and far from improving the bound obtained by Belk and

Brown. Despite this fact, our work highlights the combinatorial difficulty in computing

these ratios, even for simple sets.

The reader is encouraged to read the project linearly, although most of the results in

the chapter about Thompson’s group can be read without any background on the other

chapters.

It is recommended for the reader to be familiar with group theory, and know some

basics in graph and measure theory, but one does not need much more than this. Some

comments will be made about the Banach-Tarski paradox, but the ideas presented in this

introduction should be enough to understand these comments. The author will not develop

this theory further, as he already did this in his Bachelor Thesis. This document is not

available online, but the author will gladly sent it to anyone interested. It is in spanish,

though. The reader interested in this topic is also invited to check the book by Wagon on

the Banach-Tarski paradox [23], which contains pretty much all existing information on

the topic.

Finally, remark that we will assume the Axiom of Choice throughout all this project,

as the existence of non-measurable sets depends on this axiom, and thus without it, the

problem we are considering might not make sense. In any case, all results which make

explicit use of this axiom will be marked with (AC).
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CHAPTER

2
Amenability

2.1 Definition
Note that a group acts on itself by left translation. An amenable group is one that admits a

finite measure, defined on all subsets, and which is invariant by this action.

Definition 2.1. A group G is amenable if there exists a finite measure µ : P(G) → [0, 1],
such that

1. µ(G) = 1.

2. µ is finitely additive, i.e., if A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B).

3. µ is translation invariant, i.e., µ(gA) = µ(A) for all g ∈ G, A ⊆ G.

In a more general fashion, one can define an amenable action analogously, but asking

for the measure to be invariant by the given action. The importance of the amenability of

the action by left translation is that it implies amenability for any other action of the group:

Proposition 2.2 (AC). Let G be an amenable group acting on a non-empty set X . Then,
there is a finitely additive, G-invariant measure ν : P(X)→ [0, 1], such that ν(X) = 1.

Proof. Let µ be the measure in G. Choose x ∈ X and define

ν(A) = µ({g ∈ G : gx ∈ A}).

Then, ν(X) = µ(G) = 1 and, since h → gh is a bijection in X , if A ∩ B = ∅, it is
ν(A ∪B) = ν(A) + ν(B). Left invariance of ν follows from left invariance of µ.

5



2. AMENABILITY

There are some basic examples of amenable and non-amenable groups:

Example 2.3 (Finite groups are amenable). LetG be a finite group. For anyA ⊂ G, define
µ(A) = |A|

|G| . We have that µ(G) = 1. Given g ∈ G, we know that h → gh is a bijection
from A to gA, so |gA| = |A|, and thus µ(A) = µ(gA). For the finite additivity, note that
if A ∩B = ∅, then |A ∪B| = |A|+ |B|.

Example 2.4 (The free group on two generators is not amenable). It is enough to find
a paradoxical decomposition of F2 = 〈σ, τ〉, and apply the idea in the beginning of the
introduction.

Let W (ρ) be the set of words in F2 starting with ρ, for ρ ∈ {σ±1, τ±1}. Note that

σ−1W (σ) = {1} ∪W (τ) ∪W (τ−1) ∪W (σ),

and we can do this analogously with τ . Then,

W (σ−1) ∪ σ−1W (σ) = F2 = W (τ−1) ∪ τ−1W (τ),

and so, if there was a measure µ on F2 with the desired properties, it would be

µ(F2) = µ(W (σ)) + µ(W (σ−1)) + µ(W (τ)) + µ(W (τ−1) =

= µ(σ−1W (σ)) + µ(W (σ−1)) + µ(τ−1W (τ)) + µ(W (τ−1) = 2µ(F2).

But µ(F2) = 1, so we reach a contradiction. Thus, F2 is not amenable.

Now, what happens when we look for measures on other infinite groups? The reader is

encouraged to try to find a left invariant measure on Z, the “smallest” infinite group, to see

that this is not an easy task. To solve this, we will introduce several characterizations of

amenability, which provide easier criteria to check, and also different perspectives on the

topic. Apart from this, we will study some ways to transfer amenability from one group to

another. Some of the following results will depend on the Axiom of Choice, and so they

will not provide explicit measures, but only their guarantee their existence.

2.2 Left Invariant Means
The idea of our first characterization will be that the existence of a measure is equivalent

to the existence of some kind of “averaging operator”, just like the Lebesgue measure and

integral are related in Rn. Let us do this formally:

Given an amenable group, we can define a linear functional with similar properties to

the integral in R. Let G be a group, and let B(G) = {f : G → R : f is bounded}. Then,

6



2.3 Operations preserving amenability

B(G) is an R-vector space under pointwise addition and scalar multiplication. Since all

subsets of G are measurable, all functions in B(G) are also measurable. Finally, note that

G acts on B(G), by

(g.f)(x)→ gf(x) = f(g−1x).

The same process used to construct the Lebesgue integral in R turns out to be useful in this

scenario. We define first the “integral” on simple functions, then on non-negative functions,

using the supremum, and finally we extend this to any bounded function. Thus, we obtain

a linear functional, F : B(G) → R (that depends on the measure), which by construction

verifies:

1. F (f) ≥ 0 if f ≥ 0.

2. F (χG) = 1, where χG is the characteristic function of G.

3. F (f) = F (gf), i.e., F is invariant by the action of G.

A linear functional with this properties is called a Left Invariant Mean (LIM). It can be

shown that

inf{f(g) : g ∈ G} ≤ F (f) ≤ sup{f(g) : g ∈ G},

so F works as some kind of average of the function.

Conversely, if we have a left invariant mean F , we can define a measure µ in P(G) as

µ(A) = F (χA). It is easy to see from the properties of F that µ is indeed a measure. This

proves the following theorem:

Theorem 2.5. A group G is amenable if and only if it admits a left invariant mean on
B(G).

The importance of this idea is that it gives a new perspective on how to approach the

problem of finding a measure, by focusing on the functions G→ R, instead of the subsets

in P(G). In particular, it allows us to use tools from functional analysis, as we will see

soon in the proof of Følner’s theorem.

2.3 Operations preserving amenability
Here we use several techniques which allow us to obtain amenable groups from other amen-

able groups. We will use Tychonoff’s theorem:

7



2. AMENABILITY

Theorem 2.6 (Tychonoff. (AC)). The arbitary product of compact spaces is compact.

In particular, since [0, 1] is compact, the function space [0, 1]X = {f : X → [0, 1]}
is also compact with the product topology. This will be quite useful, due to the following

property of compact spaces:

Definition 2.7. A collection of sets F has the finite intersection property if, for any finite
subcollection {F1, . . . , Fn} ⊂ F, it is

n⋂
i=1

Fi 6= ∅.

Proposition 2.8. Let X be a compact topological space. Then, for any collection F of
closed subsets of X we have that, if F has the finite intersection property, then⋂

F∈F
F 6= ∅.

We call this the compactness principle. The idea will be to find families of closed sets

of almost invariant measures. We will apply the compactness principle to these families,

in order to find a measure in the intersection, which will end up being the desired invariant

measure.

Let us also introduce direct unions of groups:

Definition 2.9. A directed system of groups is a family of groups, {Gα : α ∈ I} such
that for each α, β ∈ I there exists γ ∈ I such that Gα, Gβ are both subgroups of Gγ . The
group G =

⋃
α∈I Gα is called the direct union of the directed system.

In particular, any group is the direct union of their finitely generated subgroups: no-

tice that if A and B are finitely generated subgroups, then 〈A ∪ B〉 ≤ G is also finitely

generated, so finitely generated subgroups form a directed system whose direct union is

precisely G.

With these ideas, we are ready to present the most important operations preserving

amenability:

Theorem 2.10. 1. (AC) A subgroup of an amenable group is amenable.

2. If N is a normal subgroup of the amenable group G, then G/N is amenable.

3. If N → G → H is a short exact sequence of groups, and N,H are amenable, then
G is amenable.

8



2.3 Operations preserving amenability

4. (AC) If G is the direct union of a directed system of amenable groups {Gα : α ∈ I},
then G is amenable.

5. Abelian groups are amenable.

Proof. 1. Let µ be a measure on G, and let H be a subgroup of G. Let M be a set
which contains a unique element from each of the right cosets of H in G. Then, we
can define ν : P(H)→ [0, 1] by

ν(A) = µ
(⋃
{Ag : g ∈M}

)
.

Then, ν(H) = µ(G) = 1. If A ∩ B = ∅, then {Ag : g ∈ M} ∩ {Bg : g ∈ G} = ∅,
and since µ is finitely additive, so is ν. The left invariance of ν is deduced from the
left invariance of µ.

2. Note that G acts on G/N . Using Proposition 2.2, we can obtain a G-invariant meas-
ure on G/N . It is straightforward to check that this measure is also G/N -invariant.

3. We identify H with G/N to make the proof simpler. Let ν1, ν2 be measures on
N,G/N respectively. Given A ⊆ G, let us define fA : G→ R by

fA(g) = ν1(N ∩ g−1A).

We see first that if g1N = g2N , then fA(g1) = fA(g2), and so fA induces a mapping
in G/N . Indeed, if g1N = g2N , then g−12 g1 = h ∈ N . Thus, hN = N , and we get

fA(g2) = ν1(N ∩ g−12 A) = ν1(N ∩ hg−11 A) = ν1(h(N ∩ g−11 A)) =

= ν1(N ∩ g−11 A) = fA(g1).

Hence, fA induces f̂A : G/N → R. SinceG/N is amenable, it admits a left invariant
mean, Fν2 . Define µ : P(G) → [0, 1] as µ(A) = Fν2(f̂A). First of all, note that, for
all g ∈ G,

fG(g) = ν1(N ∩ g−1G) = ν1(N) = 1 = χG(g),

and so fG = χG. Hence,

µ(G) = Fν2(f̂G) = Fν2(χ̂G) = Fν2(χG/N ) = 1.

For the finite additivity, notice that if A ∩ B = ∅, then g−1A ∩ g−1B = ∅ for any
g ∈ G, and fA∪B = fA + fB , so f̂A∪B = f̂A + f̂B . Applying linearity of Fν2 we
obtain finite additivity of µ. Finally, for left invariance, notice that

fgA(h) = fA(g−1h) = gfA(h).

Since Fν2 is left invariant, so is µ.

9



2. AMENABILITY

4. Let G =
⋃
α∈I Gα be a directed union of amenable groups, and let µα be a measure

in Gα. By Tychonoff’s theorem, [0, 1]P(G) is compact. For each α ∈ I , let Mα

be the set of finitely additive measures µ : P(G) → [0, 1] such that µ(G) = 1 and
µ(gA) = µ(A) for each g ∈ Gα. We know that this set is not empty, since one
can see that µ defined by µ(A) = µα(A ∩ Gα) is in Mα. It can be shown that
Mα is closed in [0, 1]P(G) (if a function does not verify a condition, then one can
“change” the function a bit so that the condition is still not verified). The collection
{Mα : α ∈ I} has the finite intersection property: by definition, given α, β, there
exists γ such that Gα, Gβ ⊂ Gγ . If µ is invariant by Gγ , then µ is also invariant by
Gα and Gβ , and so ∅ 6= Mγ ⊆ Mα ∩Mβ . Finally, by Proposition 2.8, there exists
µ ∈

⋂
α∈I Mα. This measure is G-invariant, finitely additive and µ(G) = 1.

5. This proof is not finished, but it is convenient to place this result here. Since any
group is the direct union of its finitely generated subgroups, using (4) we can reduce
this case to finitely generated abelian groups. We have a complete classification of
these groups: they are finite direct sums of copies of Z and Z/niZ, with ni ∈ N.
Direct sums of amenable groups are amenable by (3), since A → A ⊕ B → B is a
short exact sequence. Z/nZ is finite for all n ∈ N, so these groups are amenable.
It is left to show that Z is also amenable. We will do this very soon using Følner’s
theorem, although it can also be done directly using the compactness principle.

Note that (1) is not trivial: at first sight, we could try to restrict the measure to the

subgroup, or divide everything by its measure, but the subgroup could have measure 0.

This is solved by “copying” a subset A ⊂ H into each coset, and giving A the measure of

the union of all copies in G.

The proof of (3) partitions a subset A ⊂ G into the intersections with each coset, and

then gives as a measure to A the average (using the LIM on G/H) of the measures on each

coset (using the measure in H).

Finally, the proof of (4) provides a good example on how the compactness principle is

applied to get a measure.

This theorem is really useful to prove amenability in most common groups. For in-

stance, from (3) and (5), one gets:

Corollary 2.11. Solvable groups are amenable.

Statements (1) and (4) also imply that a group will be amenable if and only if all of its

finitely generated subgroups are amenable, and so we can reduce our study to the finitely

generated case without missing any information.

10



2.3 Operations preserving amenability

We can define a class of groups formed by those that can be obtained using the opera-

tions in the previous theorem. These are known as elementary groups:

Definition 2.12. The class of elementary groups EG is the smallest class of groups con-
taining finite and abelian groups, and such that:

1. If G ∈ EG, and H is a subgroup of G, then H ∈ EG.

2. If H CG and G ∈ EG, then G/H ∈ EG.

3. If H CG,and both H and G/H are in EG, then G ∈ EG

4. If G =
⋃
Gα is a direct union of groups, and Gα ∈ EG for each α, then G ∈ EG.

Theorem 2.10 states that the class of elementary groups is contained in the class of

amenable groups, denoted by AG. It was a long open problem whether this inclusion was

strict, that is, whether there was an amenable group which could not be obtained from a

finite or abelian group through these operations. This was solved by Grigorchuk [13] in

1985 who found a group in AG \EG. This group was found as a group of transformations

of the (infinite) rooted binary tree, and it was introduced as a counter-example for another

conjecture, namely the Milnor-Wolf Conjecture, about growth in groups.

Another long open conjecture was whether being amenable was equivalent to not con-

taining a copy of the free group on two generators. This was known as the Day-Von Neu-

mann conjecture, and it was proven false by Ol’Shanskii [20] in 1980. He found a non-

amenable group in which every element has finite order, and so this group cannot contain

a copy of a free group. Thus, both inclusions are strict:

EG ( AG ( NF.

Nevertheless, the Day-Von Neumann conjecture is true for groups of euclidean transform-

ations, due to the following theorem of Tits:

Theorem 2.13 (Tits Alternative [22]). LetG be a subgroup ofGLn(K), the group of n×n
matrices with coefficients in the field K. If K has characteristic 0, then either G contains
a free subgroup of rank 2 or G is almost solvable (i.e., G contains a solvable normal
subgroup with finite index).

Remark that almost solvable groups are amenable: ifHCG is solvable, there is a short

exact sequence

H → G→ G/H,

11



2. AMENABILITY

where H is solvable and G/H finite, and so both are amenable. This is relevant because,

again, amenability was in fact motivated by the Banach-Tarski paradox, where the groups

acting are groups of euclidean transformations.

2.4 Følner’s characterization

The theorem in this section is the main tool used in Geometric Group Theory to work with

amenability. We will first prove the theorem in a more general setting, and then restrict

ourselves to the finitely generated case, where we can relate it to locally finite Cayley

graphs. This will be the framework where we will work from here on, and it will allow us

to change our mindset into a more combinatorial one.

2.4.1 Følner’s theorem

We will assume for simplicity that the groups we are considering are discrete, and that they

are equipped with the counting measure, given by

µ(A) =

{
|A| if A is finite,
+∞ otherwise.

Using this measure, we can construct normed spaces of linear mappings G → R,

such as l1(G) or l∞(G), and use tools from functional analysis. The following results

and proofs can be generalized to locally compact groups, which can be equipped with the

Haar measure. It is remarkable that this measure is only defined on the Borel algebra of

G (algebra generated by closed sets in G), and not necessarily on P(G), so the existence

of this measure does not guarantee that the group will be amenable. Moreover, neither the

Haar measure nor the counting measure have total measure one (in general), so again, their

existence does not guarantee that the group will be amenable.

Følner’s idea is to find finite sets that do not change too much when a generator of

the group acts on them. These sets will admit a measure (since they are finite), which is

almost invariant by the action of the group. Then, we will use a compactness principle to

extend these measures to an invariant one defined on the whole group. This idea is quite

simple, but changes completely the point of view of the problem. Note that a measure

which is invariant by generators will also be invariant by any element of the group, since

the element can be written as a word in the generators.

12



2.4 Følner’s characterization

Let us formalize all these ideas. Recall that the symmetric difference of A and B,

A4B = (A \B) ∪ (B \A)

is the set of elements that are either in A or in B, but not in both.

Definition 2.14. Let G be a discrete group, and let X ⊂ G be a generating set. A Følner
sequence for X is a sequence of finite non-empty sets (Fn), such that, for any generator
g ∈ X ,

lim
n→∞

|gFn4Fn|
|Fn|

= 0.

Equivalently, we have the following condition:

Definition 2.15. A discrete group G satisfies the Følner condition if for every finite X ′ ⊆
X and ε > 0, there exists a finite non-empty subset F ⊆ G such that for each g ∈ X ′ we
have

|gF4F |
|F |

< ε.

Proposition 2.16. A group G with generators X contains a Følner sequence if and only if
it satisfies the Følner condition.

Proof. Suppose G satisfies the condition, and write X =
⋃
nXn as an ascending union of

finite sets, X1 ⊂ X2 ⊂ . . . Set εn = 1/n, n ∈ N. By Følner’s condition, for each n ∈ N
there exists a finite subset Fn such that for every g ∈ Xn we have |gFn4Fn|/|Fn| ≤ 1/n.
Now, given g ∈ X , there exists Xm such that g ∈ Xk for k ≥ m. By construction,
|gFn4Fn|/|Fn| ≤ 1/n→ 0.

Conversely, suppose that G has a Følner sequence, (Fn). Given ε > 0, there exists
n0 such that, if n ≥ n0, then |gFn4Fn|/|Fn| < ε for all g ∈ X , so G satisfies Følner’s
condition.

We will treat both conditions equivalently. In the practice, finding a Følner sequence

can be easier, but in some proofs it is more convenient to use Følner’s condition.

The importance of these ideas is that they characterize amenability:

Theorem 2.17 (Følner [11]). A group is amenable if and only if it satisfies Følner’s condi-
tion.

Proof. The backward implication is just a compactness principle argument. It is enough to
find a measure which is invariant by generators.

Let {Fn : n ∈ N} be a Følner sequence. For each n > 0, let Mn be the set of finitely
additive measures µ : P(G)→ [0, 1] such that µ(G) = 1 and, for all g ∈ X,A ⊆ G, it is

|µ(gA)− µ(A)| ≤ |gFn4Fn|
|Fn|

.

13



2. AMENABILITY

Let us check that Mn 6= ∅ for all n > 0:
Define µn : P(G) → [0, 1] as µn(A) = |A∩Fn|

|Fn| . Then, clearly µn is finitely additive
and µn(G) = 1. For the other condition, observe that, given g ∈ X,A ⊆ G, we have that,
since g defines a bijection in G, it is |g(A ∩ Fn)| = |A ∩ Fn|. Moreover,

g(A ∩ Fn) = (g(A ∩ Fn) ∩ Fn) ∪ (g(A ∩ Fn) \ Fn) ⊆
⊆ (gA ∩ Fn) ∪ (gFn \ Fn) ⊆ (gA ∩ Fn) ∪ (gFn4Fn).

Hence, |A ∩ Fn| ≤ |gA ∩ Fn|+ |gFn4Fn|, and so

|A ∩ Fn| − |gA ∩ Fn| ≤ |gFn4Fn|.

A similar argument shows that

|gA ∩ Fn| − |A ∩ Fn| ≤ |gFn4Fn|.

Thus, we obtain

|µn(gA)− µn(A)| =
∣∣∣∣ |gA ∩ Fn| − |A ∩ Fn||Fn|

∣∣∣∣ ≤ |gFn4Fn||Fn|
.

Hence, µn ∈Mn 6= ∅.
Now, by Tychonoff’s Theorem, [0, 1]P(G) is compact. It can be seen that each Mn is

closed in [0, 1]P(G) (same idea as in Thm 2.10(4). Moreover, since |gFn4Fn|
|Fn| → 0, we

can choose a subsequence (ni)i∈N, ni → ∞, such that Mni+1 ⊂ Mni for all i ∈ N. In
particular, the family Mni will have the finite intersection property, and so there exists
µ ∈ ∩i>0Mni . By construction, µ is G-invariant.

For the right implication, the proof will be based on the Hahn-Banach Separation The-
orem.

Theorem 2.18 (Hahn-Banach Separation Theorem (AC)). Let A and B be non-empty and
convex subsets of a real normed vector space V . Furthermore, assume that A and B are
disjoint and that A has an interior point. Then there is a hyperplane that separates A and
B.

Let

Φ := {f ∈ l1(G) : f ≥ 0 is finitely supported and ||f ||1 =
∑
g∈G
|f(g)| = 1},

Claim. If G is amenable, then for every finite A ⊂ G, ε > 0 there exists f ∈ Φ such that
||f − af ||1 ≤ ε for all a ∈ A.

14



2.4 Følner’s characterization

Suppose this is not the case, and let be A ⊂ X , ε > 0 such that for every f ∈ Φ

there is some a ∈ A with ||f − af ||1 > ε. Now, the set {f − af : f ∈ Φ} is convex,
and it is bounded away from zero (since every element is at distance at least ε). By the
Hahn-Banach Separation Theorem, there exists a linear functional m̃ ∈ l1(G)∗ and t > 0

such that m̃(f − af) ≥ t > 0 for all f ∈ Φ. Now, since l1(G)∗ ∼= l∞(G), there exists
m ∈ l∞(G) such that 〈f − af,m〉 =

∑
x∈G(f − af)(x)m(x) ≥ t for all f ∈ Φ. Then, for

any y ∈ G, if we choose f = χy, it is

〈χy − aχy,m〉 =
∑
x∈G

χy(x)m(x)− χy(a−1x)m(x) =

= m(y)−m(ay) = m(y)− a−1m(y) ≥ t > 0.

On the other hand, since G is amenable, there exists a left invarian mean M : B(G)→ R,
and M induces a left invariant mean on l∞(G). By the properties of M , we have that
M(m − a−1m) ≥ t > 0, which contradicts the fact that M is left invariant. Hence, the
claim holds.

Now, we see that G satisfies Følner’s condition. Let A ⊂ X, ε > 0. By the claim, there
is f ∈ Φ such that, for all a ∈ A,

||f − af ||1 =
∑
g∈G
|f(g)− f(a−1g)| ≤ ε

|A|
.

Since f is finitely supported, we can write f =
∑n

i=1 ciχFi , for a descending family
F1 ⊃ F2 ⊃ · · · ⊃ Fn and ci > 0. Then, it is

∑
ci|Fi| = ||f ||1 = 1. Finally, if

g ∈ aFi4Fi, then f(g) and f(a−1g) are in different layers of the representation of f .
Hence, |f(g)− af(g)| ≥ ci, and so for all a ∈ A,

n∑
i=1

ci|aFi4Fi| ≤
∑
g∈G
|f(g)− af(g)| = ||f − af ||1 ≤

ε

|A|
=

ε

|A|

n∑
i=1

ci|Fi|.

Thus,
n∑
i=1

∑
a∈A

ci|aFi4Fi| ≤ ε
n∑
i=1

ci|Fi|.

Hence, there is at least one term in the first sum (in i) such that
∑

a∈A |aFi4Fi| ≤ ε|Fi|,
and so

|aFi4Fi| ≤
∑
b∈A
|bFi4Fi| ≤ ε|Fi|

implies that |aFi4Fi|
|Fi| ≤ ε for all a ∈ A, so G satisfies Følner’s condition.

Corollary 2.19. Z is amenable.

15



2. AMENABILITY

Proof. Z = 〈1〉 has a Følner sequence, given by Fn = {−n, . . . , n}. It is clear that
|(1 + Fn)4Fn| = 2, and |Fn| = 2n+ 1. Hence,

lim
n

|(1 + Fn)4Fn|
|Fn|

= lim
n

2

2n+ 1
= 0.

In particular, Z is amenable. This completes the proof of Theorem 2.10(5).

Notice that Følner sequences are defined for a group with a generating set, so one

could ask whether having a Følner sequence depends on the generating set that we choose.

Følner’s theorem guarantees that these sequences are equivalent to the existence of a meas-

ure, so we know that if Følner’s condition is satisfied for a generating set, then it is satisfied

for any generating set. Nevertheless, we do not need Følner’s theorem for this. We will

prove that being amenable is quasi-isometry invariant.

2.4.2 Some comments on Cayley graphs and boundaries.

Følner sequences are intimately related with the Cayley graph of a group.

Recall that, for a finitely generated group, and a finite symmetric set of generators X ,

we can define the Cayley graph Γ(G,X), whose vertices are the elements of G, and two

vertices a, a′ will share an edge, labelled e = (a, a′, g) if there exists a generator g ∈ X
such that a′ = ga.

Any graph is a metric space, and so this provides a distance (and thus a topology) to

our finitely generated group G. Nevertheless, there are several ways to define the boundary

of a set in Γ (apart from the topological one). We present here the ones that we will use:

The inner boundary of a subset C ⊆ Γ, denoted ∂XC, is the set of elements that can

leave C when multiplied by an element in X . Formally,

∂XC = {a ∈ C : there exists g ∈ X such that ga /∈ C}.

The outer boundary of C ⊂ Γ is the set of elements outside C that can enter C when

multiplied by an element in X:

∂′XC = ∂X(Γ \ C) = {a ∈ Γ \ C : there exists g ∈ X such that ga ∈ C}.

In particular, ⋃
x∈X

(xA4A) = ∂XA ∪ ∂′XA.
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2.4 Følner’s characterization

We also have the Cheeger boundary, as the set of edges joining C to Γ \ C:

∂#X = {(a, a′, g) ∈ E : a ∈ C, a′ ∈ Γ \ C}.

and the k-boundary: the points of C at distance at most k from Γ \ C:

∂kXC = {a ∈ C : there exist g1, . . . , gk ∈ X ∪ {e} such that g1 . . . gka /∈ C}.

Nevertheless, these are all equivalent for our purposes:

Proposition 2.20. Let G be a finitely generated group with generators X , and |X| = N .
Let A ⊂ G be finite. Then,

1. 1
2N |∂XA| ≤ |∂

′
XA| ≤ 2N |∂XA|.

2. |∂XA| ≤ |∂#XA| ≤ 2N |∂XA|.

3. For every k ∈ N, there exists a constant C = C(k) > 0 such that C|∂kXA| ≤
|∂XA| ≤ |∂kXA|.

Proof. 1. By definition, any point in the inner boundary is connected to a point in the
outer bundary. Since a point can have up to 2N neighbours, we obtain the right
inequality. The left inequality is deduced from the fact that ∂′XA = ∂X(Γ \A).

2. For the right inequality, again, if an edge is in ∂#XA, then one of its ending points
must be in ∂XA, and there can be up to 2N edges for each point in ∂XA. For the left
one, any point in |∂XA| must have at least one edge connecting it to Γ \ C.

3. Clearly ∂XA ⊆ ∂kXA, so we have the right inequality. For the left one, remark that
a path going from A to Γ \ A must go through ∂XA at some point. Thus, the k-
boundary is contained in the union of all the balls of radius k centered at some point
in ∂XA and, by transitivity, all these balls have the same cardinality. Letting C be
this cardinality, the inequality follows.

We can define Følner sequences for any of these boundaries, as sequences of finite sets

(Fn) such that, for some finite generating set X ,

lim
n→∞

|∂XFn|
|Fn|

= 0,

and the previous proposition guarantees that being a Følner sequence for a particular bound-

ary implies being Følner for any of the other boundaries. Thus, we may use any boundary

in Følner’s theorem to check amenability, and it will apply the same.
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2. AMENABILITY

2.4.3 Quasi-isometry invariance

To see how to work with Følner’s idea and Cayley graphs, let us show one of the properties

that are most relevant to group theorists about amenability: it is invariant through quasi-

isometries.

Definition 2.21. Let (X, d), (X ′, d′) be metric spaces. A quasi-isometry is a map f : X →
X ′ such that there exists g : X ′ → X (called quasi-inverse) and a constant C > 0 so that,
for any x, y ∈ X,x′, y′ ∈ X ′,

1. d′(f(x), f(y)) ≤ Cd(x, y) + C,

2. d(g(x′), g(y′) ≤ Cd′(x′, y′) + C,

3. d(x, g(f(x))) ≤ C,

4. d′(x′, f(g(x′))) ≤ C.

We say that X and X ′ are quasi-isometric, or coarse equivalent, if there exists a quasi-
isometry f : X → X ′. It is straightforward to check that being quasi-isometric is an equi-
valence relation.

Proposition 2.22. Given a group G and two symmetric generating sets, X,X ′, (G, dX)

and (G, dX′) are quasi-isometric.

Proof. Write the elements in X as words in elements of X ′. Let L be the longest length
of any of these words. Then, id : G → G satifies d(g, h) ≤ Ld′(g, h). In a similar
fashion, there is L′ > 0 such that d′(g, h) ≤ L′d(g, h). Clearly, d(g, id(g)) = 0. Using
C = max{L,L′} we have all conditions.

It would be desirable that Følner sequences were preserved through quasi-isometries,

but this does not happen in general: the image of a Følner could be really different from the

original sequence. For instance, connectivity need not be preserved, so we could get very

big boundaries. To solve this connectivity problem, we use balls around the images: given

a set A, we will use

Z =
⋃
x∈A

B(f(x), C).

Let us first introduce a short lemma:

Lemma 2.23. Given a quasi-isometry f : G→ H , and y ∈ H ,

f−1(y) ⊂ B(g(y), C).

Proof. If f(x) = y, then d(x, g(y)) = d(x, gf(x)) ≤ C.
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2.4 Følner’s characterization

Theorem 2.24. Let G,H be finitely generated groups, and let f : G → H be a quasi-
isometry. If G is amenable then H is amenable.

We use inner boundaries, although as we mention, this is not restrictive.

Proof. Let K = |B(x,C)| be the cardinal of a radius C in G (which does not depend on
x ∈ G). By lemma 2.23, at most K elements in our finite set A have the same image, so

|f(A)| ≥ |A|
K
,

and then also

|Z| ≥ |A|
K
.

Let us look at the boundaries now. Given y ∈ ∂Z, by definition there exists y′ /∈ Z such
that d(y, y′) = 1 (they are joined by a generator.) Then, for all x ∈ A, since y′ /∈ Z,

d(f(x), y′) ≥ C + 1.

Also, as y ∈ Z, there is x0 ∈ A such that d(f(x0), y) ≤ C. Using triangle inequality,

d(f(x0, y
′)) ≤ d(f(x0), y) + d(y, y′) = C + 1,

so it must be d(f(x0), y
′)) = C + 1 and so d(f(x0), y) = C.

Now, let us go back to G. Let x = g(y), x′ = g(y′). We claim that x′ /∈ A. To see this,
notice that

d(f(x′), y′) = d(f(g(y′)), y′) ≤ C,

and d(y, f(A)) ≥ C + 1, so f(x′) /∈ f(A). Nevertheless,

d(x0, x
′) ≤ d(x0, x) + d(x, x′) ≤ d(x0, x) + d(g(y), g(y′)) ≤
≤ d(x0, x) + Cd(y, y′) + C = d(x0, x) + 2C,

and
d(x0, x) = d(x0, g(y)) ≤ d(x0, g(f(x0))) + d(g(f(x0)), g(y)) ≤

≤ C + Cd(f(x0), y) + C ≤ C2 + 2C.

Thus, d(x0, x
′) ≤ C2 + 4C. Let L = C2 + 4C,M = |B(f(x0), C)|. From our work, we

get
|∂Z|
M
≤ |∂LA|.

And so,
|∂Z|
|Z|
≤ |∂

LA|
M |Z|

≤ K|∂L|
M |A|

So now, if Fn is a Følner sequence in G, with ratio K|∂LA|
M |A| small enough (which we

can find, because of Proposition 2.20), we can make the quotient as small as we need.
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2. AMENABILITY

2.5 Growth, cogrowth and amenability
The growth rate of a group is a measure of how many words appear when we consider

longer and longer words from an alphabet of generators. If this rate is not too large, then

the balls in our Cayley graph will be Følner sets, and so our group will be amenable.

Nevertheless, the converse is not true: there are amenable groups with large growth rate.

To solve this problem, there is a refinement of the concept of growth, called cogrowth,

which characterizes amenability: The idea is to count the number of words of the free

group that vanish when they are interpreted in G. We state the main results of this theory,

but we will not prove them.

We will only work with finitely generated groups, but as we mentioned this is not

restrictive.

2.5.1 Growth

Given a finitely generated group G and a set of generators X , define the length of a re-

duced word ω as the word length of the shortest representative of ω as a word in X , i.e.,

lX = dX(g, e). This length defines a metric in G, so we can consider balls BX(n) =

{ω : lX(ω) ≤ n}. With this in mind, let us define the growth function:

Definition 2.25. Let X be a finite symmetric subset of generators of a group G. The
growth function for G with respect to X , γGX : N → N, is defined by γGX(n) = |BX(n)|,
the number of words in G of length at most n.

Recall that a function f is said to be dominated by a function g if there are constants

α, β > 0 such that f(x) ≤ αg(βx) for all x ∈ Domf . We will denote this by f � g. If

f � g, and g � f , we will say that f and g are asymptotically equivalent, and write

f ∼ g. It is easy to show that this is an equivalence relation. The first thing we show is that

all growth functions of a group are equivalent.

Proposition 2.26. Let X,X ′ be two finite symmetric generating subsets of G. Then, γGX ∼
γGX′ .

Proof. Since changing generators is a quasi-isometry, lX(ω) ≤ C · lX′(ω) for some C >

0. In particular, BX′(n) ⊆ BX(Cn), and γX′(n) ≤ γX(Cn). Symmetry yields the
equivalence.

Thus, asymptotically, it does not matter which generating subset we choose, and so we

can drop the subscript X .
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Another important property is that γ is submultiplicative, that is,

γ(m+ n) ≤ γ(m)γ(n).

This happens because a word of length n+m can be seen as a concatenation of two words

of lengths m and n. This property implies that γ(n) ≤ γ(1)n, and so γ is always bounded

by an exponential function. We will say thatG has exponential growth if γGX is equivalent

to an exponential function for some generating set X (and thus for every). Otherwise,

we will say that G has subexponential growth. The following proposition characterizes

exponential growth:

Proposition 2.27. 1. limn γ(n)1/n exists, and limn γ(n)1/n = inft a
1/t
t

2. G has exponential growth if and only if lim γ(n)1/n > 1.

Proof. Fix t ∈ N and, for each n > 0, write n = qt + r, 0 ≤ r < t. Remark that
q = q(n), r = r(n) depend on n. Since γ is submultiplicative,

γ(n)1/n ≤ γ(t)q/nγ(r)1/n.

Since r < t, and t is fixed, we deduce from n = qt+ r that

lim
n

q

n
=

1

t
.

And thus, for all t > 0,
lim sup

n
γ(n)1/n ≤ a1/tt .

In particular, lim sup γ(n)1/n ≤ inft a
1/t
t . On the other hand, inf γ(n)1/n ≤ lim inf γ(n)1/n,

so the limit exists and the first statement is proven.
For the second part, let λ = limn γ(n)1/n. We know that

γ(n)1/n > inf
n
γ(n)1/n = λ,

so if λ > 1, then γ(n) ≥ λn and γ has exponential growth. Conversely, if γ ∼ exp(n),
there exist c, c′ > 0 such that exp(n) ≤ cγ(c′n) for all n > 0. Then, one can see that

λ = lim
n
γ(n)1/n ≥ lim

n

1

c
exp(

n

c′n
) > 1.

Definition 2.28. The growth rate of a group G with generators X is defined as

ωX(G) = lim
n
γGX(n)1/n

The uniform growth rate is defined as

ω(G) = inf
X
ωX(G).
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2. AMENABILITY

In groups with subexponential growth, the balls around the identity form a Følner se-

quence:

Theorem 2.29. Groups with subexponential growth are amenable.

Proof. First, we claim that for all ε > 0 there exists k ∈ N such that |Bk+1| − |Bk| ≤
1 + ε. We argue by contradiction: suppose there is ε > 0 such that for all k ∈ N it is
|Bk+1| ≥ |Bk|(1 + ε). Then, for any n ∈ N, we have that |Bn| ≥ |B1|(1 + ε)n, and so
γ(n) dominates an exponential function, so we reach a contradiction.

Now, given ε = 1
n > 0, let k ∈ N be such that |Bk+1| − |Bk| ≤ 1 + 1

n . Then,

0 ≤ |∂XBk|
|Bk|

≤ |Bk+1| − |Bk|
|Bk|

=
|Bk+1|
|Bk|

− 1 ≤ 1

n
,

and so (Bk)k is a Følner sequence.

This also gives us a proof that abelian groups are amenable (and in fact the Følner sets

that we used in Corollary 2.19 were these balls in Z). To see this, we just need to check

that finitely generated abelian groups have subexponential growth. Note that, if we have a

generating set X = {g1, . . . , gr}, then the number of words of length n are the words of

the form gm1
1 , . . . , gmr

r such that
∑
mi ≤ n. In particular, each mi ∈ [−n, n], so we have

2n+ 1 options for each mi. This implies that γX(n) � (2n+ 1)r, so abelian groups have

polynomial growth, and so again, they are amenable.

Groups of subexponential growth are not only amenable. They satisfy a stronger defin-

ition:

Definition 2.30. A groupG is supramenable if, for any nonemptyA ⊆ G, there is a finitely
additive, left-invariant measure, µ : P(G)→ [0,∞] with µ(A) = 1.

In particular, choosing A = G we deduce that supramenability implies amenability. It

can be seen that groups containing a free semigroup cannot be supramenable, and just like

in the amenability case, there are examples of groups not containing free semigroups that

are neither supramenable.

Again, we may ask whether there are groups that are amenable but not supramenable.

Grigorchuk found p-groups which are amenable, do not contain free semigroups and are

not supramenable.

By Tarski’s Theorem, a group G will be supramenable if and only if no non-empty

subset of G is paradoxical.
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Proposition 2.31. If G has subexponential growth, G acts on X , and A is a nonempty
subset of X , then E is not G-paradoxical.

Proof. We do this by contrapositive. Suppose E is G-paradoxical, with E = ∪giAi =

∪hjBj . We can define transformations F1 : E →
⋃
iAi ⊂ E, given by F1(g) = g−1i g if

g ∈ giAi, and F2 : E →
⋃
j Bj ⊂ E, given by F2(g) = h−1j g if g ∈ hjBj . By the defin-

ition of a paradoxical decomposition, F1, F2 are well defined, and F1(E) ∩ F2(E) = ∅.
Now, we can obtain 2n different functions Hi, as strings of length n of compositions of F1

and F2. These functions have the property that, if i 6= j, then Hi(E) ∩Hj(E) = ∅. To see
this, let p be the first position in the string of F1’s and F2’s in whichHi andHj differ. Since
F1 and F2 have disjoint images, the images ofHi andHj after the pth position are also dis-
joint. Now, for each x ∈ E, the set {Hi(x)} has 2n different elements, and eachHi(x) is of
the form ωx, where ω is a word of length n composed by elements g1, . . . , gn, h1, . . . , hm.
Thus, γ(n) dominates an exponential function, and so G has exponential growth.

Corollary 2.32. If G is exponentially bounded, then G is supramenable.

Proof. SinceG acts on itself by left translation, we can apply the previous theorem to check
that no non-empty subset of G is paradoxical. By Tarski’s Theorem, for each nonempty
subset E, there exists a finite G-invariant measure normalizing E.

2.5.2 Cogrowth

Let G = 〈a1, . . . , ar : b1, . . . , bs〉 be a finitely presented group. Then, G ∼= Fr/N , where

N is the normal closure of {b1, . . . , bs}. From a word of length n, we can obtain 2r − 1

words of length n+1 (we are not allowed to use the inverse of the first symbol of the word).

Let En be the set of words in Fr of length at most n. Then,

|En| = 1 +
n∑
k=1

(2r)(2r − 1)k−1 =
r(2r − 1)n − 1

r − 1
,

and so we have that |En|1/n
n−→ 2r − 1.

Notice also that for the set S = {a1, . . . , ar}, we have that π(En) ⊂ BS(n) (the length

of a word can only decrease when π is applied), and so |π(En)| ≤ γS(n). All these ideas

motivate the following definition:

Definition 2.33. Let G = 〈S : R〉 be a finitely presented group, and let N be the normal
closure of R. We define the cogrowth function of the presentation, γ̃(n) = |N ∩ En|.

Thus, γ̃ counts the number of words in En that vanish when they are interpreted in G.

As with the growth function, the best way to work with this concept is to use the sequence

γ̃(n)1/n, and consider its limit. If G = Fr, then N = {e}, so γ̃(n) = 1 for all n.
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On the other hand, if G has subexponential growth, then there exists some g ∈ G such

that |π−1(g) ∩ En| ≥ |En|/|π(En)|. Indeed, if not,

|En| <
∑

g∈π(En)

|En|
|π(En)|

= |En|.

This g represents a coset in Fr/N , so there are at least this many words vanishing when

applying π(En), and so |N ∩ En| ≥ |En|
|π(En)| ≥

|En|
γ(n) . Thus, we obtain:

|En| ≥ γ̃(n) ≥ |En|
γ(n)

.

Since G has subexponential growth, γ(n)→ 1, and we have that

lim γ̃(n)1/n = lim |En|1/n = 2r − 1.

This only ilustrates the behavior of γ̃ in the extreme cases. In general, there is the

following result:

Theorem 2.34. Let G be a group with a fixed presentation using 2 ≤ r < ∞ generators.
Then,

1. lim γ̃(n)1/n exists.

2. 1 ≤ lim γ̃(n)1/n ≤ 2r − 1.

3. lim γ̃(n)1/n = 1 if and only if there are no relations in the presentation (G = Fr.)

4. If lim γ̃(n)1/n > 1, then
√

2r − 1 < lim γ̃(n)1/n ≤ 2r − 1.

Definition 2.35. Let G be a finitely presented group. Given a presentation of G, the
cogrowth of the presentation is defined as

η =
log
(
lim γ̃(n)1/n)

)
log(2r − 1)

.

The previous theorem shows that η ∈ {0} ∪ (1/2, 1], η = 0 if and only if there are no

relations on the presentation, and η = 1 if G has subexponential growth. This last value of

η gives another characterization for amenability:

Theorem 2.36. Let G be a finitely generated group. Then, G is amenable if and only if
η = 1 for all presentations of G with finitely many generators.

Finally, as a Corollary, we can define η(G) as the infimum of η over all presentations

with finitely many generators. Then, the following theorem reunites generalizes many ideas

that we already proved:
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Corollary 2.37. A group G is amenable if and only if η(G) = 1. G has no free subgroups
of rank 2 if and only if η(G) ≥ 1/2. G has a free subgroup of rank 2 if and only if
η(G) = 0.
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CHAPTER

3
Uniform non-amenability

From now on, we will focus on amenability using Følner sets. As we learnt in last

chapter, given a particular set of generators, a group will be amenable if and only if we

can find a Følner sequence for these generators. For non-amenable groups we can never

find Følner sequences, but we can still compute the ratio of a finite set and its boundary,

and study how close to zero we can get. This will give us an idea on “how close to being

amenable” our group is. We will define the Følner constant as the infimum of this ratio

among all possible finite sets and families of generators. We will study how it behaves

through some operations and compute it for some particular cases. Finally, we will find

groups that are not amenable but have uniform Følner constant equal to zero.

Throughout all this chapter we will be working with the inner boundary, but working

with other boundaries is similar. This chapter is based on the article [2].

3.1 The Følner constant

Let us formalize the ideas in the introduction.

Definition 3.1. Given a finitely generated group G, and a finite generating set X of G, we
define the Følner constant

FølXG = inf

{
|∂XA|
|A|

: A ⊆ G finite.
}
,
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3. UNIFORM NON-AMENABILITY

and the uniform Følner constant, as

Føl G = inf
X

FølXG.

Følner’s theorem states that a group G will be amenable if and only if FølXG = 0 for

some (and thus for every) generating set X . If the group is not amenable, then having a

lower bound on FølXG for some X does not give us any information, since a different set

of generators could achieve a lower bound. To get a number which only depends on the

group, we introduce Føl G. Remark that if a group is amenable, then it will be Føl G = 0,

but the converse need not be true: it could be possible to get a sequence of generators,

(Xk)k such that FølXk
G→ 0 when k →∞, and so this would mean that Føl G = 0, even

if for each set of generators FølXG is positive. This idea provides a stronger property than

non-amenability:

Definition 3.2. A finitely generated groupG is called uniformly non-amenable if Føl G >

0.

At the end of this chapter we will see that, indeed, there are non-amenable groups

which are not uniformly non-amenable.

Recall that, as in Theorem 2.29, the balls of radius n can be used as Følner sets in

groups with subexponential growth. This same idea can be applied in general to get an

upper bound on Føl G:

Proposition 3.3. Let G be a finitely generated group, and let X be a finite generating set.
Then,

FølXG ≤ 1− 1

ωX(G)
,

and so
Føl G ≤ 1− 1

ω(G)
.

Proof. Note that ∂XBX(n) ⊆ BX(n) \BX(n− 1). Hence, for all n ∈ N,

FølXG ≤
|BX(n)| − |BX(n− 1)|

|BX(n)|
≤ 1− |BX(n− 1)|

|BX(n)|
.

On the other hand,

|BX(n)|1/n =

(
|BX(n)|
|BX(n− 1)|

· |BX(n− 1)|
|BX(n− 2)|

· . . . · |BX(1)|
|BX(0)|

)1/n

≥
n

inf
k=1

|BX(k)|
|BX(k − 1)|

,
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3.1 The Følner constant

and taking limits,

inf
n

|BX(n)|
|BX(n− 1)|

≤ lim
n
|BX(n)|1/n.

Joining both results, we deduce

FølXG ≤ 1− 1

ωX(G)
.

This holds for all X , so we also get the bound for Føl G.

Just as we saw before, if the growth rate is 1 (subexponential growth) for some gen-

erating set, then our group will be amenable. Now we also get a bound for groups of

exponential growth.

We will now study how these constants behave through subgroups and quotients, but

before this, let us introduce a lemma explaining how the ratio |∂A||A| behaves when dividing

our set into connected components:

Lemma 3.4. Let Γ be a Cayley graph of a finitely generated group, and let A be a finite
subset of G. If we have a partition A = A1 ∪ · · · ∪ An such that ∂A = ∂A1 ∪ · · · ∪ ∂An,
then it is

n
min
i=1

|∂Ai|
|Ai|

≤ |∂A|
|A|
≤ n

max
i=1

|∂Ai|
|Ai|

.

Proof. Recall the following property of real numbers: If ab ≤
c
d , then

a

b
≤ a+ c

b+ d
≤ c

d
.

Using fractions |∂Ai|
|Ai| the proof follows.

It is also remarkable that if |A| = 1, then |∂A||A| = 1. These two results simplify our

study to connected Følner sets, since getting bounds for each connected component also

gives a bound for the whole set.

3.1.1 Subgroups

We will study subgroups in two parts: we first consider the case in which the generators of

H can be extended to a system of generators of G, and then we will generalize this to work

with any system of generators of H .

First of all, notice that adding a generator adds edges to the Cayley graph, and so it can

only increase the boundary of a finite set. This provides a trivial bound:
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3. UNIFORM NON-AMENABILITY

Lemma 3.5. Let G be a finitely generated group, X finite generating system and g ∈ G.
Let Y = X ∪ {g}. Then,

FølXG ≤ FølYG.

Proof. For any finite A ⊂ G, we have ∂XA ⊆ ∂YA, and so |∂XA||A| ≤
|∂Y A|
|A| .

This idea can be used for subgroups whose generating set extends to a generating set

of the whole group. The idea for this is to abuse the fact that a group admits a partition into

cosets. In our case, the Cayley graph of the group will be made of copies of the Cayley

graph of the subgroup, and thus will allow us to compare the Følner constants.

Theorem 3.6 (First Subgroup Theorem). Let G be a group, and let X = {x1, . . . , xn} be
a finite generating system of G. Let m < n, and let H be the subgroup of G generated by
Y = {x1, . . . , xm}. Then,

FølXG ≥ FølYH.

Proof. We need to show that for any finite A ⊂ G, it is |∂XA||A| ≥ FølYH .
Let A be a finite subset of G, and let y1, . . . , yk be representatives of the cosets inter-

secting A. Define Ai = A ∩ yiH , the intersection with each of these cosets. Note that
Ai 6= ∅.

The Cayley graph Γ(H,Y ) is a subgraph of Γ(G,X). Moreover, if we only consider
edges labelled in Y , then Γ(G,X) consists of disjoint copies of Γ(H,Y ) (one for each
coset). Note that y−1i Ai is a finite subgraph in H , and applying y−1i maintains the size of
the boundary. Hence,

|∂YAi|
|Ai|

=
|∂Y (y−1i Ai)|
|y−1i Ai|

≥ FølYH.

Now, by Lemma 3.5,

|∂XA|
|A|

≥ |∂YA|
|A|

=

∑
i |∂YAi|∑
i |Ai|

≥ FølYH.

This simple result is already quite useful to obtain lower bounds. We have the follow-

ing:

Proposition 3.7. Let G be a finitely generated group that admits a surjective homomorph-
ism φ : G→ F2. Then,

Føl G ≥ Føl F2.
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3.1 The Følner constant

Proof. Let X = {x1, . . . , xn} generate G. Given 1 ≤ i 6= j ≤ n, the subgroup
〈φ(xi), φ(xj)〉 in F2 is either cyclic or free of rank 2. As φ is surjective, we can find
generators xi, xj such that 〈φ(xi), φ(xj)〉 is free of rank 2, and so 〈xi, xj〉 must be a free
non-abelian subgroup of G (if there was any relation in 〈xi, xj〉, it would also appear in
〈φ(xi), φ(xj)〉, but this is free). The result follows from the First Subgroup Theorem.

We will soon compute Føl F2, and check that it is bigger than 0, so that this bound is

not trivial. This will tell us that, in particular, G is not amenable, but we already knew this,

since such a G must contain a free non-abelian subgroup, as shown in the proof.

Remark that the theorem does not give us bounds on the uniform Følner constants,

since we could have generating systems of G for which no subset generates H .

In general, this theorem does not allow us to compare the Følner constants of any sets of

generators inH andG. The same proof does not work in the general case, since the Cayley

graphs are not directly related to each other. The solution will be to write generators of H

in terms of the generators of G, and the price to pay is getting a slightly worse bound.

Theorem 3.8 (Second Subgroup Theorem). Let G be a finitely generated group, X =

{x1, . . . , xn} a generating system for G. Let H ≤ G be a subgroup, generated by Y =

{y1, . . . , ym}. Let L be the maximum length of the yi as words in X . Then,

FølXG ≥
1

1 +mL
FølYH.

Proof. Let A ⊂ G be finite. We can follow the proof just like in the last theorem, to see
that

FølYH ≤
|∂YA|
|A|

The problem is that we can not directly compare this to FølXG. Nevertheless, every ele-
ment in ∂YAi can be joined with a point outside Ai using some yj . Let us write yj as a
word wj in the generators X (i.e., a path in Γ(G,X)), and let L = max l(wj). This path
must go through some vertex in ∂XA (because it leaves A at some point), and this is not
the final vertex of the path. Let z ∈ ∂XA. It may be that z ∈ ∂YA; otherwise, there are at
most l(ωj)− 1 ≤ L− 1 ways in which a path ωj may pass through z withouth z being the
initial or final vertex.

Hence, a vertex z ∈ ∂XA corresponds at most to

1 +
m∑
j=1

(l(ωj)− 1) ≤ 1 +mL,
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3. UNIFORM NON-AMENABILITY

different vertices in ∂YA, and each vertex in ∂YA has one corresponding vertex in ∂XA.
This implies that

|∂YA| ≤ 1 +
m∑
j=1

(l(ωj)− 1)|∂XA| ≤ (1 +mL)|∂XA|.

This is true for any finite subset of G, so the statement follows.

Again, remark that this does not give us a bound on the uniform Følner constants. This

is due to the fact that, in general, the number and the maximum length of yi as words need

not be bounded for different sets of generators of G.

It is important to notice that these two theorems also prove that amenability is preserved

through subgroups, since FølXG = 0 will imply FølYH = 0 for any generating Y .

3.1.2 Quotients

Let us now study the behavior on quotients.

Before stating the main theorem, let us prove a helping lemma. We are going to divide

a subset π(A) = B ⊆ G/N on layers, depending on how many elements of A go to each

coset. Formally, given A ⊂ G, B = π(A), define the i-level subset of B as

Bi = {b ∈ G/N : |π−1(b) ∩A| ≥ i} ⊆ B

Clearly, this is a descending sequence with B = B1 and Bi = ∅ for i > |A|.

Lemma 3.9. Let b, c ∈ G/N such that dX′(b, c) = 1, i.e., such that there exists x′ = π(x)

with bx′ = c. Suppose b ∈ Bi, c ∈ Bj \Bj+1 for some i > j ≥ 0. Then,

|∂XA ∩ π−1(b)| ≥ i− j.

The following lemma will help to provide a lower bound for the boundary of A based

on neighbours that are in different Bi.

Proof. Let a1, . . . , ai be i different points in π−1(b) ∩ A. Then, the points a1x, . . . , aix
are all in π−1(c), but at most j of them can be also in A, because c ∈ Bj \ Bj+1. Hence,
at least i− j points in π−1(b) ∩A must be in ∂XA.

Theorem 3.10. Let G be a finitely generated group with generators X . Let N be a normal
subgroup of G, with projection π : G→ G/N , and define X ′ = π(X). Then,

FølXG ≥ FølX′G/N,

and also
Føl G ≥ Føl G/N.
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Proof. The second statement is easily deduced from the first: for any generating system
X ⊂ G,

FølXG ≥ FølX′G/N ≥ Føl G/N,

and so
Føl G = inf

X
FølXG ≥ Føl G/N.

For the first statement, note that

FølX′G/N ≤
|∂X′Bi|
|Bi|

for all non-empty Bi. Also, |A| =
∑

i i(|Bi| − |Bi−1|) =
∑

i |Bi|, so

FølX′G/N ≤
∑

i |∂X′Bi|∑
i |Bi|

=

∑
i |∂X′Bi|
|A|

Now it is only left to prove that ∑
i

|∂X′Bi| ≤ |∂XA|.

Let b ∈ ∂X′Bi, and let i0 = |π−1(b) ∩ A| ≥ i be the number of preimages of b. In order
to apply the previous lemma, we look for the neighbour of b that has the least number of
preimages: let

i1 = min
x′∈X′

{j : bx′ ∈ Bj \Bj+1}.

Then, since b has i0 preimages in A, and it has a neighbour with exactly i1 preimages, b
contributes to

∑
i |∂X′Bi| either zero if i0 ≤ i1 (all its neighbours are in Bi), or i0 − i1

otherwise (since b appears in all sets ∂X′Bj for all j = i1 + 1, . . . , i0). Now, by Lemma
3.9, the preimage of b must have at least i0 − i1 points in ∂XA, so∑

i

|∂X′Bi| ≤ |∂XA|.

Again, this proves in particular that amenability is preserved through quotients, as we

had already shown, but it is a stronger result, since it gives a more general bound.

3.2 The Følner constant on the free group
Any finitely generated group is a quotient of a free group of finite rank, so computing the

Følner constant of these groups will provide upper bounds for the Følner constant, using

Theorem 3.10.
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First of all, we have a direct upper bound using the growth rate (Proposition 3.3). The

growth rate of the free group is 2k − 1, as it was computed at the beginning of Section

2.5.2.

Lemma 3.11. Let Fk = 〈x1, . . . , xk〉 be a free group of rank k, and letXk = {x1, . . . , xk}.
Then,

Føl Fk ≤ FølXk
Fk ≤

2k − 2

2k − 1
.

We are going to show that these are actually equalities. First we show the second

equality, for Xk, and then we show that this generating set always achieves the minimum

value for the følner constant. Recall that Γ(Fk, Xk) is an infinite tree in which every vertex

has degree 2k.

Figure 3.1: Cayley graph of a Free group of rank 2, F2 = 〈x, y〉.

Let us define some concepts that will provide a new way to study the boundary:

Definition 3.12. Let A be a finite subset of Fk, and let a ∈ A. The valence of a ∈ A is
defined as the number of neighbours of a in A, i.e., the value of |A ∩Na|.

A finite subset A ⊆ Γ is complete if all its vertices have valence 2k or 1. Equivalently,
A is complete if all the points in its boundary have valence 1.

Informally, A is complete if, for any vertex in the boundary, there is only a way back

to A, and for a non-boundary vertex, all its neighbours in Γ are in A. Let us first prove

the result for complete graphs, since it allows for a better separation between boundary and

interior.

Lemma 3.13. If A is a complete finite subset of Fk, then

|∂Xk
A|

|A|
>

2k − 2

2k − 1
.
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Proof. By Lemma 3.4, we may assume that A is connected. Let Vi be the number of
vertices of A of valence i. Since A is a tree, |E(A)| = |V (A)| − 1, and so (V1 + V2k) −
(V1+2kV2k)/2 = 1. Hence, V1 = 2+(2k−2)V2k. Then, |A| = V1+V2k = 2+(2k−1)V2k.
And since |∂Xk

A| = V1, we deduce

|∂Xk
A|

|A|
=

2 + (2k − 2)V2k
2 + (2k − 1)V2k

>
2k − 2

2k − 1
.

In the case that our subset is not complete, we can just extend it to get a complete one,

and this will not worsen the bound:

Proposition 3.14. For any finite subset A ⊂ Fk, it is

|∂Xk
A|

|A|
>

2k − 2

2k − 1
.

Proof. Again, we may assume that A ⊂ Fk is connected. Denote N(A) as the number of
vertices in A with valence different from 1 and 2k. Let us argue by induction on N(A). If
N(A) = 0, then A is complete, and the result holds.

Suppose N(A) = K and the statement is true for all sets B with N(B) < K. Let v be
a vertex of valence l, with 1 < l < 2k. Let A′ be the set obtained by adding to A all the
other 2k−l neighbours of v that are not inA, along with their respective edges. Then, these
new vertices belong to ∂Xk

A′, so |∂Xk
A′| = |∂Xk

A|+ 2k− l− 1 and |A′| = |A|+ 2k− l.
Moreover, now N(A′) = N(A)− 1, and so by induction hypothesis

|∂Xk
A′|

|A′|
=
|∂Xk

A|+ 2k − l − 1

|A|+ 2k − l
>

2k − 2

2k − 1
,

and we conclude
|∂Xk

A|
|A|

>
2k − 2

2k − 1
.

This gives a lower bound on FølXk
Fk, and it is the same as the upper bound given by

the growth rate. Thus, we get

Corollary 3.15.

Føl Fk =
2k − 2

2k − 1
.

Let us now compute Føl Fk. To do this, we just need to study how changing the base

affects to the Følner constant.
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Proposition 3.16. One has

Føl Fk =
2k − 2

2k − 1
.

Proof. Let Y be a finite generating system for Fk. Let π : Fk → Zk be the abelianization
map, and Y ab = π(Y ). Since Y ab generates Zk, there exist y1, . . . , yk ∈ Y such that
π(y1), . . . , π(yk) ∈ Y ab are linearly independent, and so they generate a subgroup of Zk

which is isomorphic to Zk. Then, H = 〈y1, . . . , yk〉 is a subgroup of Fk which must
be isomorphic to Fk, since it maps onto Zk, which cannot be generated by less than k
elements. By the First Subgroup Theorem,

FølY Fk ≥ Føl{y1,...,yk}H =
2k − 2

2k − 1

This happens for any generating set Y in Fk, and we know that the bound can be achieved,
by Corollary 3.15, so the statement follows.

Proposition 3.17. Let G be a finitely generated group which admits a generating system
with k ≥ 2 elements. Then, FølXG ≤ 2k−2

2k−1 , and equality holds if and only if G is free with
basis X .

Analogously, Føl G ≤ 2k−2
2k−1 and equality holds if and only if G is free of rank k.

Proof. Since G has k generators, clearly ωX(G) ≤ 2k − 1, and so we get the bound in the
statement from Proposition 2.20.

For the second part, we have already proven that if G is free on X , then the equality
holds. For the converse, if FølXG = 2k−2

2k−1 , it needs to be ωX(G) ≥ 2k − 1, and so
ωX(G) = 2k−1. A result from Koubi [17] states that this is only possible if G is free with
basis X .

Combining this with the bounds given by subgroups and quotients, the Følner constant

gives some information about the rank of G and the maximum free quotients that it may

have . These ideas also provide bounds on some families of groups, such as virtually free

groups, hyperbolic groups and Burnside groups. We do not include them here, but the

curious reader is referred to the original article [2] to find more information.

3.3 Non-amenable groups that are not uniformly non-amenable

Define Qm, the set of marked m-generated groups, as the family of all quotients of the

free group F (X), where X is a fixed free generating set with |X| = m. This can also be

seen as the set of normal subgroups of F (X), or the Cayley graphs Γ(F (X)/N,X).
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3.3 Non-amenable groups that are not uniformly non-amenable

We can define a metric on Qm, thus making it a topological space. Let N1, N2CF (X)

be two normal subgroups, and let Ci be the Cayley graph for F (X)/Ni, i = 1, 2. Define a

metric

D(N1, N2) = inf{ 1

n+ 1
: BC1(n) is isometric to BC2(n)}.

In this sense, two groups will be close to each other if we can find large isometric balls

in their corresponding Cayley graphs.

This is a metric indeed: two groups will be at distance 0 if and only if the balls are the

same for all n ∈ N, i.e., if the corresponding Cayley graphs are isomorphic (and thus the

groups). For the triangle inequality, one just needs to notice that if we have isomorphisms

φ1 : BC1(n1)→ BC2(n1) and φ2 : BC2(n2)→ BC3(n2), then for n = min{n1, n2} there is

an isomorphism φ : BC1(n)→ BC3(n). Choosing n1, n2 so that they define the distances,

D(N1, N3) ≤
1

n+ 1
≤ 1

n1 + 1
+

1

n2 + 1
= D(N1, N2) +D(N2, N3).

This distance allow us to define limits on Qm. For instance, if N1 ≤ N2 ≤ . . . is an

ascending sequence, then the limit group will be G/(∪∞k=1Ni). This is due to the fact that

more and more relations are being added, and so paths are closing in the Cayley graph of

G; the limit group will be the one having all these relations and no more. Similarly, if

N1 ≥ N2 ≥ . . . is decreasing, then the limit group will be G/(∩∞k=1Ni). In this case, we

are taking relations away at each step, so the limit group will be the one containing only

those relations that belong to every Ni.

These limits do not exist in general, but there is a bound depending on the upper limit:

Proposition 3.18. Let G = F (X)/N be the limit group of a sequence {Gk}k∈N, with
Gk = F (X)/Nk, for k ≥ 1. Then,

FølXG ≥ lim sup
k

FølXGk.

Proof. Let C,Ck be the Cayley graphs of G,Gk relative to X , and let ε > 0. Since FølXG
is an infimum, there exists a finite setA ⊂ G such that FølXG ≤ |∂XA||A| < FølXG+ε. Since
A is finite, it is bounded, and so there is n = n(A) ∈ N such thatA ⊂ BC(n). Again, since
Gk → G, there is K = K(n) > 0 such that for any k > K(n) it is D(Nk, N) < 1

n+2 .

Thus, for k > K(n), the balls BC(n + 1) and BCk
(n + 1) are isometric. Let φk be the

corresponding isometry. Let Ak = φk(A) ⊂ Gk. Then,

FølXG ≤
|∂XAk|
|Ak|

=
|∂XA|
|A|

< FølXG+ ε.

From this we get FølXGk < FølXG + ε for any k > K(n). Thus, lim supk FølXGk ≤
FølXG.
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3. UNIFORM NON-AMENABILITY

This proposition provides a way to study the Følner constants of a very well known

family of groups: the Baumslag-Solitar groups, with presentation

BS(p, q) = 〈a, t : tapt−1 = aq〉.

For instance, BS(1, 1) = Z2. These are the simplest examples of a construction that can

be performed on a group: given a group G with presentation G = 〈S : R〉, subgroups

J,K ≤ G and an isomorphism α : J → K, then an HNN-extension of G is a group with

presentation

G∗α = 〈S, t : R, tjt−1 = α(j) ∀j ∈ J〉.

In the case of BS(p, q), the underlying group is Z = 〈a〉, and the subgroups are J =

〈ap〉,K = 〈aq〉.
One of the most useful lemmas involving this construction is Britton’s lemma: using

the relations, we can write any element ω ∈ G∗α as

ω = g0t
ε1g1t

ε2 . . . gn−1t
εngn, gi ∈ G, εi = ±1.

Britton’s lemma states the following:

Lemma 3.19 (Britton). Let ω ∈ G∗α be a word written as before. Suppose that

1. n = 0 and g0 6= 1 ∈ G, or

2. n > 0 and there are no subwords of the form tjt−1, with j ∈ J nor of the form
t−1kt, with k ∈ K.

Then, ω 6= 1 in G∗α.

This lemma turns out to be really powerful when checking whether we can do cancel-

lations in an HNN-extension, or when trying to prove that a subgroup is free:

Proposition 3.20. If p, q > 1, then BS(p, q) contains a free group on two generators.

Proof. We claim that 〈t, a−1ta〉 is free on two generators.
Let ω = (a−1ta)n1tn2 . . . tnk−1(a−1ta)nk be a word in 〈t, a−1ta〉. We may assume it

is of this form by conjugating if necessary. Britton’s lemma states that ω = 1 if and only if
ω is trivial, or it contains some subword of the form t−1apxt or taqyt−1 for some x, y ∈ Z.
But this is never possible, since all the a appearing have exponent ±1. Hence, ω cannot
contain any subword of the given forms, and so ω 6= 1. Thus, the subgroup is free.

38



3.3 Non-amenable groups that are not uniformly non-amenable

In particular, if p, q > 1, thenBS(p, q) is not amenable. Nevertheless, not all Baumslag-

Solitar groups are amenable:

Proposition 3.21. BS(1, 2) is amenable:

Proof. There is a short exact sequence

1→ Z
[

1

2

]
α−→ BS(1, 2)

β−→ Z→ 1

where α sends 1
2n → tnat−n, and β sends a → 1 and t → t. Both Z[12 ] and Z are

abelian, and thus amenable, so, by Theorem 2.10(3), BS(1, 2) is also amenable.

When p, q are relatively prime, BS(p, q) is non-hopfian, i.e., it has a proper quotient

which is isomorphic to itself. Abusing this property we can find a sequence of generators

whose Følner constants tend to zero, and so this proves that the uniform constant must be

zero:

Proposition 3.22. If p, q > 1 are relatively prime, then the group BS(p, q) is a non-
amenable group with Føl BS(p, q) = 0.

Proof. We deduce from Lemma 3.20 that BS(p, q) is not amenable. We want to apply
Proposition 3.18 with Gk = BS(p, q) for all k ∈ N, in order to get an upper bound for
Føl BS(p, q).

Denote G = BS(p, q). Consider the homomorphism φ : G → G sending φ(a) = ap

and φ(t) = t. We claim that this homomorphism is surjective. Clearly the elements t, ap

are in the image, and so also aq is. By Bezout’s lemma, there exist x, y ∈ Z such that
xp + yq = 1, and thus, a = apx+yq = (ap)x(aq)y is also in the image. Since both
generators are in the image, the map is surjective.

Now, letNi = kerφi, i ≥ 1. Then,N1 ≤ N2 ≤ . . . , and by first isomorphism theorem,
G/Nk

∼= G for all k ≥ 1. Let L = G/ ∪∞k=1 Nk be the limit group. We claim that L is
amenable. Consider the homomorphism ψ : L → Z = 〈t〉 sending a → 1 and t → t. A
word is in the kernel if and only if the total sum of the exponents of the t’s in the word
is zero, hence the kernel is generated by {t−natn : n ∈ Z}. These elements commute in
BS(p, q) and thus also in L, so kerψ is abelian. We then have a short exact sequence

0→ kerψ → L→ Z→ 0,

so L is an extension of an abelian group by a cyclic one, and thus L is amenable. In
particular, FølXL = 0, and by the previous theorem,

0 ≥ FølXL ≥ lim sup
k

FølXF2/Nk ≥ 0

But as we mentioned, F2/Nk
∼= G for all k ∈ N, so Føl G = 0.
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3. UNIFORM NON-AMENABILITY

This theorem can be generalized to HNN-extensions, with a proof that works essen-

tially the same:

Theorem 3.23. Let A = 〈x1, . . . , xm : R〉 be an amenable group with relations R. Let
µ, ν : A→ A be injective homomorphisms such that:

1. µ ◦ ν = ν ◦ µ;

2. µ(A) ∪ ν(A) generate A.

Then, for the group G = 〈t, A : t−1µ(xi)t = ν(xi)〉 it is Føl G = 0.
Moreover, if µ(A) ∪ ν(A) 6= A, then G is a non-amenable group with Føl G = 0.

Proof. Define Φ: G → G by Φ(t) = t,Φ(xi) = µ(xi) for each i = 1, . . . ,m. Using (i)
we can prove that Φ is a homomorphism:

Φ(ν(xi)) = µ(ν(xi)) = ν(µ(xi)) = t−1µ2(xi)t = Φ(t−1µ(xi)t).

By (ii), the generators appear in the image, and thus Φ is surjective.
Define Ni = ker Φi, and consider the limit L = G/ ∪∞i=1 Ni. We claim that L is

amenable: as before, we can consider the map L→ Z sending xi → 1 and t→ t. Proving
that the kernel of this map is amenable suffices, since then L is an extension of an amenable
group by Z and thus it will be amenable. Denote K to be the kernel of this map. Let us
show that any finitely generated subgroup of K is amenable.

Any finitely generated H C K is generated by conjugates of elements of the form
t−nxit

n. Using the relation t−1µ(xi)t = ν(xi) ∈ A, we can find l ∈ N so that Φ(l)(h) ∈ A
for all generating h ∈ H . Since A is amenable, Φl(H) ≤ A, and Φ is an isomorphism in
L, H must be amenable, and by Theorem 2.10(4) so will be K.

For the second statement, it is clear that G is an HNN-extension of A, and using Brit-
ton’s lemma one can see that the subgroup 〈b, b−1tb〉 is free for any b ∈ A \ (µ(A) ∪
ν(A)).

This finishes our study of amenability as a general property. From here on, we will

introduce a particular group, Thompson’s group F , study how to apply the theory on this

group, and get our hands dirty trying to look for Følner sets here.
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CHAPTER

4
Thompson’s group F

Thompson introduced in the 1960′s three different discrete groups of piecewise linear

bijections of the interval [0, 1], with several interesting properties. One of the biggest un-

solved problems in the theory of amenability is whether one of Thompson’s groups, F ,

is amenable or not. In this chapter we are going to introduce this group, along with two

presentations of it, and some different interpretations of its elements, which will provide

us with different ways to study the group. With these tools, we will talk about its proper-

ties, mostly in relation to amenability, and some of its subgroups. Finally, we will make a

couple of comments about the other two Thompson groups, T and V .

4.1 Definition and realizations of F .
Thompson’s group F is introduced as a group of piecewise linear homeomorphisms of the

interval [0, 1]. The points where a map is not differentiable will be called breakpoints. The

set of breakpoints will always be discrete, and so, in the case that our interval is compact,

also finite.

Definition 4.1. Thompson’s group F is the group of piecewise linear homeomorphisms of
the interval [0, 1] such that:

1. They are orientation-preserving.

2. In the pieces where the maps are linear, the slope is always a power of 2.

41



4. THOMPSON’S GROUP F

3. The breakpoints are dyadic, i.e., they belong to the set D ×D, where D = [0, 1] ∩
Z[12 ].

An element of F can be defined by a finite set of breakpoints, and extended linearly on

the intervals between them. For instance, the breakpoints

(a1, b1), . . . (ak, bk)

represent the element sending linearly each interval (ai, ai+1) to (bi, bi+1), i = 1, . . . , k−1.

The three conditions in the definition can be translated into conditions on these breakpoints:

1. Condition 1 implies that the breakpoints must be in ascending order (in both coordin-

ates).

2. Condition 2 imposes that bi+1−bi
ai+1−ai must be a power of 2 for each i = 1, . . . , k − 1.

3. Condition 3 states that each ai, bi must be of the form m
2n for some m,n ∈ Z.

It is straightforward to check that F is in fact a group: the identity is in F , it is closed

under composition and inverses can be obtained using breakpoints (b1, a1), . . . , (bk, ak).

Example 4.2. The set of breakpoints [(14 ,
1
2), (12 ,

3
4)] represents the element

f(t) =


2t if 0 ≤ t ≤ 1

4 ,

t+ 1
4 if 1

4 ≤ t ≤
1
2 ,

t
2 + 1

2 if 1
2 ≤ t ≤ 1.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Definition 4.3. Given f ∈ F , we define the support of f as the set of points t ∈ [0, 1]

such that f(t) 6= t.

In the previous example, the support is the whole open interval (0, 1). The support

will always be a disjoint union of open intervals, so it has a relatively simple shape, and

that makes it easy to work with. For instance, any two elements will commute on the

complement of the support, and this set will behave nicely.

One of the beautiful things about this group is that it can be interpreted in several

different ways, and so there are many approaches to working with it. Here we will introduce

some of them, namely the binary tree representations (along with other similar versions),

and two presentations of F .
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4.1 Definition and realizations of F .

4.1.1 Binary trees.

As we already mentioned, an element of f is defined by its breakpoints. These breakpoints

define two subdivisions of the unit interval (one with the [ai, ai+1], and another with the

[bi, bi+1]), in such a way that the element sends the first subdivision into the other. Thus,

we can also define elements as two dyadic subdivisions of the interval having the same

number of pieces. Binary trees are a nice tool for working with subdivisions and, as we

will see, they also behave very well with the operation in F .

Definition 4.4. A rooted binary tree is a tree starting with a distinguished vertex, called
the root, so that, if the tree has more than one vertex, then the root is the only vertex with
valence 2, and the other vertices either have valence 3 (nodes) or 1 (leaves).

A caret is a rooted binary subtree with only two edges. It consists of a node (or the
root) along with the two vertices coming down from it and the corresponding edges.

Figure 4.2: A rooted binary tree with a bold caret.

Any dyadic subdivision of the interval can be represented using a (deep enough) binary

tree, where each leaf represents an interval in the subdivision. This can be seen in the

following figure:

[0, 1]

[0, 1
2
]

[0, 1
4
]

[0, 1
8
] [ 1

8
, 1
4
]

[ 1
4
, 1
2
]

[ 1
4
] [ 1

4
, 3
8
]

[ 1
2
, 1]

[ 1
2
, 3
4
]

[ 1
2
, 5
8
] [ 5

8
, 3
4
]

[ 3
4
, 1]

[ 3
4
, 7
8
] [ 7

8
, 1]

Figure 4.3: Dyadic subdivision of the interval in 8 subintervals of the same size.

Definition 4.5. A tree pair diagram is a pair of rooted binary trees with the same number
of leaves.
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4. THOMPSON’S GROUP F

Using the idea at the beginning of the section, any tree pair diagram represents an

element in F : the subintervals in the left tree are sent to the subintervals in the right tree

having the same leaf number.

Example 4.6. The element in Example 4.2 can be represented by the tree pair diagram

0 1

2 0

1 2

Here the interval [0, 14 ], in leaf 0, is sent to the interval [0, 12 ]. Analogously, [14 ,
1
2 ] is sent to

[12 ,
3
4 ], and [12 , 1] goes to [34 , 1].

Remark. If we have two carets hanging from the same leaf in both trees, this caret can
be deleted without changing the element. This is due to the fact that, even if having the
caret represents a deeper subdivision of the interval, this happens in both the original and
target intervals, so the images are the same. For instance, the following pair tree diagrams
represent the same element:

In particular, a tree pair diagram having the same tree in both sides must be the identity.
This makes sense, since it sends linearly each subinterval to itself.

Tree diagrams exhaust all possible elements in F :

Proposition 4.7. Given an element in F , there is a tree diagram representing it.

Proof. Consider f ∈ F with breakpoints [(a1, b1), . . . (ak, bk)]. Let n ∈ N be sufficiently
big so that each ai can be written as a dyadic number with denominator 2n. Let m ∈ N
work the same way for the bi.

Then, we can subdivide the interval in 2n pieces of the same length, and this subdivision
will be represented by a balanced tree of depth n, i.e., a tree where all the leaves are at
distance n from the root. We do the same for m, but now we have a different number of
leaves in both trees, so we need to either add or cut some carets.

Suppose that the interval [ai, ai+1] has length li
2n . If f has slope 2ri in this interval, then

the length of [bi, bi+1] will be 2ri li
2n . Writing si = ri + m − n, then a quick computation

will convince us that
bi+1 − bi =

2ri li
2n

=
2si li
2m

.
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4.1 Definition and realizations of F .

So now, it is the sign of si that will tell us which subtree has more leaves, and so where we
need to add carets:

1. If si > 0, then [bi, bi+1] has more leaves. Subdividing si times each leaf in [ai, ai+1],
we get li2si new leaves, as in the target interval, and all at the same depth, so that the
slope stays the same in the whole subinterval.

2. If si = 0, then both subtrees will have the same number of leaves, and there is no
need to subdivide.

3. If si < 0, then we can proceed as in 1, but now subdividing (−si) times the leaves
in [bi, bi+1].

An example of this construction will clarify the proof:

Example 4.8. Let f ∈ F be defined by the breakpoints [(14 ,
1
2), (12 ,

5
8), (34 ,

7
8)].

0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1
0

0.13

0.25

0.38

0.5

0.63

0.75

0.88

1

Figure 4.4: Graph of f .

Using the notation of the previous proof, we have n = 2,m = 3, so we begin with two
balanced trees with these depths:

First of all, the interval [0, 14 ] is sent to [0, 12 ]. The domain interval consists of 1 leaf in
the left tree, and the target interval has 4 leaves. Hence, we need to subdivide the first leaf
in the left tree twice.

The second intervals, [14 ,
1
2 ]→ [12 ,

5
8 ], have one leaf in each tree, so there is no need to

subdivide.
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4. THOMPSON’S GROUP F

The third intervals, [12 ,
3
4 ]→ [58 ,

7
8 ] have one leaf in the leaf tree and two in the right, so

we have to subdivide once the corresponding leaf in the left tree.
Finally, the last intervals [34 , 1] → [78 , 1] have one leaf in each tree, so we do not need

to subdivide.
Hence, we obtain the following tree diagram:

Finally, we can reduce this diagram to obtain:

As mentioned in the remark, several tree diagrams can represent the same element of

F . Nevertheless, if we restrict to reduced diagrams, this representation is unique:

Proposition 4.9. Every element of F has a unique reduced tree diagram.

Proof. Note that the tree diagram of an element f ∈ F is determined by the domain tree.
Moreover, if a domain tree is contained in one another, T ⊂ T ′, then the tree diagram with
domain tree T must be a reduction of the tree diagram with domain tree T ′. Thus, it is
enough to show that the set of all possible domain trees f has a minimum element under
inclusion.

Define as standard dyadic intervals those which can be obtained as a leaf, i.e., those
of the form [ k2n ,

k+1
2n ]. Let us call a standard dyadic interval regular if f maps it linearly

onto a standard dyadic interval (that is, if it is mapped to a leaf). Then, a tree T is a
possible domain tree for f if and only if all its leaves are regular. Note that this property
is preserved through intersections: if some tree has a regular leaf, then all other trees can
delete whatever they have under that same node. We conclude that the set of possible trees
is closed under intersections, and thus it has a minimum element.

Working with tree diagrams makes some operations easier than using functions. For

composition, given f, g ∈ F with pair diagrams [L,R], [L′R′], notice that if R = L′, then
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4.1 Definition and realizations of F .

the composition g ◦ f is simply represented by [L,R′], as it sends the subdivision in L to

R = L′, and then g sends precisely this subdivision to R′.

In the case that R 6= L′, we just need to put these trees into a bigger one. To do this,

we use a clarifying lemma:

Lemma 4.10. Given two binary trees, there exists a least common multiple, that is, a
unique minimal tree containing both of them. As a result, any two dyadic subdivisions of
[0, 1] always contain a common subdivision.

Proof. Add to each tree the missing carets from the other one.

Adding carets on the same leaf of both trees in a tree diagram will not change the

element, so we can always do this without any trouble.

Notation. For simplicity’s sake, due to the fact that, if f = [L,R], g = [L′, R′], then the
product [L,R][L′, R′] represents the composition g ◦ f , we will denote the product

fg = g ◦ f

so that the group F acts on [0, 1] on the right, as (x)(fg) = g(f(x)).

Example 4.11. Let f, g be given by the following tree pair diagrams:

We can add carets to obtain the least common multiple of the middle trees without
changing the elements:

And the product fg will be given by the trees outside:
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4. THOMPSON’S GROUP F

With this in mind, the inverse is quite easy to do: if f has diagram [L,R], then f−1 has

diagram [R,L]. This is simply because ff−1 = [L,L] has the same tree in both sides, so

it must be the identity.

4.1.2 Presentations of F

We are about to introduce an infinite and a finite presentation for F . The proofs are a bit

technical, and we are mostly interested in finding the final presentation, so we will just state

the results, talk about the ideas behind, put some example and sketch the most interesting

proofs.

Theorem 4.12. F has a presentation

〈x0, x1, x2, . . . : x−1k xnxk = xn+1 for k < n.〉

To prove the theorem, let G be the group defined by the presentation, and let us find an

isomorphism Θ: G→ F .

There exists a group homomorphism Θ: G → F sending each generator xn to the

element fn defined by the breakpoints[(
1− 1

2n
, 1− 1

2n

)
,

(
1− 3

2n+2
, 1− 1

2n+2

)
,

(
1− 1

2n+1
, 1− 1

2n+2

)]
This element can be represented using the following tree diagram:

The element in Examples 4.2 and 4.6 is precisely f0. It is straightforward to see that

F satisfies the relations in G. This can be seen in the following Figure 4.6 for the case

f2 = f−10 f1f0:
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4.1 Definition and realizations of F .

(a) f−1
0 (b) f1 (c) f0

Figure 4.6: The relation f2 = f−1
0 f1f0.

4.1.2.1 Positive words

We may rewrite the given presentation so that it does not involve inverses:

〈x0, x1, x2, . . . : xnxk = xkxn+1 for k < n.〉

This defines a monoid, called the monoid of positive words, which we will denote

as P , consisting of words that can be obtained using only the generators xi, and not any

inverses.

Notice that, in a positive word, the relations allow us to move the generators with higher

indices to the right, at the cost of increasing its index by one, and so this allows us to write

elements of P in a particular way:

Theorem 4.13. Any element of P can be written as a word of the form

xa00 x
a1
1 . . . xann

for some n ∈ N and non-negative integers ai.

Tree diagrams of positive words can be easily constructed. To do this, let us introduce

the concepts of all-right tree and leaf exponent:
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4. THOMPSON’S GROUP F

Definition 4.14. An all-right tree is a binary tree where each caret hangs from the right
tree of the previous one.

We define the right stalk of a binary tree as the maximal all-right subtree hanging from
the root.

Definition 4.15. Given a binary tree, enumerate the leaves from left to right starting at 0.
For each leaf i, the i-th exponent of the tree is defined as the number of times we can go
up right from that leaf, before reaching the right stalk.

Figure 4.7: A binary tree with bold right stalk.

Example 4.16. In Figure 4.7, the right stalk of the tree is the bold all-right tree, and count-
ing how many times we can go to the right from each leaf before arriving to the right stalk,
we see that the leaf exponents are

a0 = 1, a1 = 1, a2 = 0, a3 = 1, a4 = 0, a5 = 0, a6 = 0, a7 = 0.

The importance of these ideas lays on the fact that leaf exponents determine positive

elements in F :

Proposition 4.17. An element in Θ(P ), of the form fa00 fa11 . . . fann can be represented by a
tree diagram [L,R], where L is a tree with leaf exponents a0, . . . , an and R is an all-right
tree with the same number of carets.

Proof. One can check that the definition of the generators fi satisfies this condition. Then,
multiplying by a generator adds a caret on the i-th leaf of the left tree, and so it increases
ai by 1. Arguing by induction concludes the result.

And having a way to represent tree diagrams of positive elements, we have essentially

shown that Θ is surjective, i.e., that the fi generate F :
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4.1 Definition and realizations of F .

Theorem 4.18. Θ: G → F is surjective. More in detail, every element of F admits an
expression of the form

fa00 . . . fann f−bnn . . . f−b00 .

where ai, bi are non-negative integers.

Proof. Let f ∈ F have tree diagram [L,R], where both L,R have n leaves. Let T be an
all-right tree with n leaves. Then, f can be interpreted as the product of the elements with
tree diagrams [L, T ] and [T,R]. From the previous proposition, we deduce that the first
of these is a positive element, p = fa00 . . . fann , and the second is the inverse of another
positive element, q = f b00 . . . f bnn , so f = pq−1 is the image of:

xa00 . . . xann x
−bn
n . . . x−b00 .

This gives us a method for finding a formal expression of an element from its tree

diagram. The problem here is that this form is not unique, due to the fact that an element

can admit different tree diagrams. Nevertheless, as we proved in Proposition 4.9, there is a

always a unique reduced diagram, and it can be seen that this corresponds to a normal form

of the elements of F :

Theorem 4.19. Every element of F can be expressed uniquely as

fa00 . . . fann f−bnn . . . f−b00 .

where ai, bi are non-negative integers, exactly one of an, bn is non-zero, and

ai 6= 0, bi 6= 0⇒ ai+1 6= 0 or bi+1 6= 0.

We do not formalize the proof, but give some ideas on why this works:

Proof. The presented form can always be achieved using the relations since, if none of
ai, bi, ai+1, bi+1 6= 0, we can use the relation

xkxn → xn−1xk

to bring an xi, x−1i to the middle of the word, so that they cancel, at the cost of reducing by
one the higher coefficients.

Then, one can check that the correspondence between tree pair diagrams and seminor-
mal forms sends reduced diagrams to normal forms, and so by the uniqueness of the re-
duced diagram, the normal form must be unique.

To see this correspondence, consider a tree with an exposed caret whose leaves are
labelled i and i + 1. If we look at the leaf exponents of this tree, they will be ai 6= 0,
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but ai+1 = 0. Then, in a non-reduced diagram, both trees will have an exposed caret
with the same labels (i.e., if this caret can be deleted), and so it will be ai, bi 6= 0 and
ai+1 = bi+1 = 0, so the word can be reduced using the previous idea, and thus it does
not correspond to the normal form. Conversely, it is possible to see that if the word is in
normal form, then no reductions can be done in the tree diagram.

Example 4.20. Consider the element f30 f2f5f7f
−1
6 f−12 f−10 ∈ F . Since a0, b0 6= 0, but

a1 = b1 = 0, using the relations we get

f30 f2f5f7f
−1
6 f−12 f−10 = f20 f1f4f6f0f

−1
0 f−15 f−11 = f20 f1f4f6f

−1
5 f−11 .

Now, it is a1, b1 6= 0 and a2 = b2 = 0, so again,

f20 f1f4f6f
−1
5 f−11 = f20 f3f5f1f

−1
1 f−14 = f20 f3f5f

−1
4

and this corresponds to the normal form of the word.
If we look at the tree diagrams for each of these expressions, then the initial expression

corresponds to the following diagram, whose first caret is exposed:

We can reduce it to another one, where again, another caret is exposed

and reducing it again we get
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which is a reduced diagram. Returning a word from the leaf exponents, as in Theorem
4.17, we obtain

f20 f2f3f5f
−1
4 .

This is the normal form that was found at the beginning of the example.

This finishes the proof of Theorem 4.12.

Theorem 4.21. Θ: G→ F is injective.

Proof. If two elements in G had the same image, we could obtain the normal form of this
image in F . Then, we could use the relators in G to get to the same normal form (now in
G) for these two elements, and so this allows to go from one element to the other using
only the relators in G. Thus, they are the same element.

Notation. From now on we drop the notation of the fi in F , and we will simply name the
generators xi ∈ F .

4.1.3 The finite presentation

The former presentation has both infinite generators and relations, but there is also a finite

presentation for F :

〈x0, x1 : [x0x
−1
1 , x−10 x1x0], [x0x

−1
1 , x−20 x1x

2
0]〉.

The idea of reducing the number of generators is clear: using the relations enough times,

we can write

xn = x−10 xn−1x0 = x−20 xn−2x
2
0 = · · · = x

−(n−1)
0 x1x

n−1
0 .

The relations might still look a bit weird though. Nevertheless, using the notation of the

previous generators for clarity, then this presentation is just

〈x0, x1 : x2x0 = x0x3, x3x0 = x0x4〉.

So what it says is that it is enough to keep the first two relations using x0, and then the

remaining relations are deduced from these two.

We will not prove here that this really is another presentation for F , because it does not

introduce any new ideas, but the existence of a finite presentation will be quite relevant in

our next chapter, in order to talk about the ideas introduced in Chapter 2. In any case, this

can be done by finding an isomorphism between the two presentations, which corresponds
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to checking that all relations in each presentation can be achieved using the ones in the

other presentation. This is trivial in one direction, and the other direction can be done

inductively.

4.1.4 Forest diagrams

Forest diagrams are another realization of F , introduced by Belk and Brown in [4]. The

idea comes from considering F as a family of piecewise homeomorphisms on infinite in-

tervals, instead of [0, 1].

Definition 4.22. The group PL2(R+) is the family of all piecewise-linear, orientation-
preserving, homeomorphisms f of [0,∞) satisfying:

1. In the pieces where f is linear, the slope is always a power of 2.

2. f has only finitely many breakpoints, each of which has dyadic coordinates.

3. The rightmost segment of f is of the form f(t) = t+m, for some m ∈ Z.

Proposition 4.23. PL2(R+) is isomorphic to F .

Proof. Let ψ : [0,∞)→ [0, 1] be defined piecewise linearly sending the interval [k, k + 1]

to [2
k−1
2k

, 2
k+1−1
2k+1 ]. It is straightforward to check that the map f → ψ−1fψ is an isomorph-

ism F → PL2(R+) (it is well defined, preserves identity and composition, and has an
inverse map f → ψfψ−1.

Under this compositions, the generators xn ∈ F are mapped to functions xn : [0,∞]→
[0,∞] such that:

1. xn is the identity in [0, n].

2. xn sends [n, n+ 1] linearly onto [n, n+ 2].

3. xn(t) = t+ 1 for t ≥ n+ 1.

1 2 3 4 5

2

4

6

(a) Image of x0.

1 2 3 4 5

2

4

6

(b) Image of x1.

1 2 3 4 5

2

4

6

(c) Image of x2.
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Definition 4.24. A binary forest is a sequence (T0, T1, . . . ) of finite binary trees. A binary
forest is bounded if only finitely many of the trees Ti are non-trivial.

A bounded binary forest corresponds to a dyadic subdivision of the positive real line.

Each tree Ti represents an interval [i, i + 1], and each leaf represents an interval in the

subdivision. Just like with tree diagrams, a pair of binary forests represents an element

in PL2(R+), where the interval in the i-th leaf of the upper forest is sent linearly to the

interval corresponding to the ith leaf in the lower forest.

Figure 4.9: A binary forest diagram.

In the previous figure, the interval correspondance of the leaves is the following:

[0, 14 ]→ [0, 1]

[14 ,
1
2 ]→ [1, 32 ]

[12 , 1]→ [32 , 2]

[1, 32 ]→ [2, 3]

[32 , 2]→ [3, 4]

It is quite easy to change from tree diagrams to forest diagrams and viceversa: we just need

to remove the right stalk of the tree diagram and turn around the right tree.

(a) Tree diagram of x0. (b) Forest diagram of x0.

Just like before, pairs of opposing carets can be deleted without changing the element,

and the reduced forest diagram is unique.
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The way generators act on forest diagrams is the following: given an element f ∈ F ,

a forest diagram for xnf can be obtained by attaching a caret to the roots of trees n and

n+ 1 in the top forest of f .

Example 4.25. If f is the element in Figure 4.9, then we have forest diagrams:

(a) x0f . (b) x1f . (c) x2f .

Apart from these diagrams, Belk and Brown also use pointed forest diagrams. Now,

instead of PL2(R+), we consider the whole real line.

Definition 4.26. Let PL2(R) be the group of piecewise-linear, orientation-preserving self-
homeomorphims f of R such that

1. In the pieces where f is linear, the slope is a power of 2.

2. f has finitely many breakpoints, each of which is dyadic.

3. The leftmost and rightmost segments of f are respectively of the form f(t) = t+m

and f(t) + n, for some m,n ∈ Z.

Proposition 4.27. PL2(R) is isomorphic to F .

Proof. Let Ψ: R→ (0, 1) be defined piecewise linearly, sending

k → 2k+1 − 1

2|k|+1
.

That is, Ψ sends 0 to 1/2, 1 to 3/4, 2 to 7/8, etc.
Then, f → ΨfΨ−1 is a group isomorphism.

We can find new diagrams for the elements of PL2(R).

Definition 4.28. A pointed binary forest is a sequence of finite binary trees (Ti)i∈Z.

We mark the tree T0 with an arrow. Here we only care about bounded pointed forests,

as we will always have finitely many breakpoints. The (infinitely many) trees not appearing

in the figures are trivial.
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Figure 4.12: A pointed binary forest.

Any pointed binary forest represents a subdivision of the real line, where the tree Ti
represents a subdivision of the interval [i, i + 1]. Hence, any pair of bounded pointed

binary forests represents an element in PL2(R). We call this representation the pointed

binary forest diagram.

Figure 4.13: A pointed forest diagram.

Again, it is easy to go from tree diagrams to pointed forest diagrams: in this case, we

remove the whole stalk, both left and right, and put the arrow in the first subtree hanging to

the right of the root:

(a) Tree diagram. (b) Pointed forest diagram.

The generators act on these diagrams in the following way: x0 changes the position of

the arrow in the top tree to the right, and x1 puts a caret between the arrow tree and the next

one, and puts the arrow in this new tree.

Example 4.29. Let f be the element in Figure 4.13 Then, diagrams for x0f and x1 look
like this:
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(a) x0f (b) x1f

In general, xi puts a caret between trees i−1 and i. This makes sense from the relations:

as xi = x1−i0 x1x
i−1
0 , the arrow moves i − 1 positions forward, then x1 puts a caret in this

position, and the arrow goes back to the inital position.

4.2 Properties of F

Now that we have different tools for working with F , let us study some of the properties

that make it an interesting group. To begin with, let us take a look at the torsion in F :

Proposition 4.30. F is torsion free.

Proof. If f 6= id, let P ∈ [0, 1] be the smallest point in the support of f . The right slope
of f at P must be 2k for some k 6= 0, and so fn has right slope at P equal to 2nk, and thus
fnk 6= id.

This, along with the fact that elements with disjoint support commute, imply that F

contains Zn as a subgroup for all n ∈ N, and even the infinite direct sum, ⊕∞i=1Z. The

study of the subgroups in F is relevant in relation to amenability: finding a non-amenable

subgroup would answer negatively our question on amenability, and put an end to the

problem.

4.2.1 Growth

Since F is finitely generated, we can study its growth. Recall that, even if the growth

function is different for different sets of generators, these are all asymptotically equivalent.

F grows exponentially, due to the fact that it contains a free submonoid.

Proposition 4.31. The monoid generated by {x−10 , x1} is free.

58



4.2 Properties of F

Proof. A general word in this monoid is of the form

xa11 x
−1
0 xa21 . . . x−10 xan1 ,

where ai ≥ 0, i = 1, . . . , n. We can put this word in the normal form in F , moving the
x−10 to the right, and getting

xa11 x
a2
2 . . . xann x

−(n−1)
0 .

This normal form depends only on the values of the ai, so it is different for different words
in the monoid. Hence, it follows that the monoid is free.

Corollary 4.32. F has exponential growth.

Proof. Using generators x0, x1, the free submonoid contains 2n words of length n in the
generators, so the growth function of F is lower bounded by an exponential function.

Another way to prove this fact is showing that the norm of an element is asymptotic-

ally equivalent to the number of carets in the reduced tree diagram representation. It is a

well known fact that this is a Catalan number, and this sequence grows as 4n. A deeper

explanation can be found in [7].

The exact value of the growth rate in F is still unknown, although there is a lower

bound on the growth rate for the generating set {x0, x1}.

Theorem 4.33 (Guba [15]). The growth rate of the group F in generators {x0, x1} is not
less than 3+

√
5

2 ≈ 2.618034

To obtain this bound, Guba constructs an automata in F , and counts the number of

words of a given length expelled by the automata.

In particular, since F is not subexponential, this result does not give any information

on its amenability.

4.2.2 n-Transitivity

The idea here is that the “fractal” structure of the dyadic intervals in [0, 1] makes it so that

F has many disjoint subgroups which are isomorphic to the whole F . Let us formalize

these ideas.

Lemma 4.34. Let a/2n be a dyadic number, with a > 0, and let b be another integer with
a ≤ b. Then, the interval [0, a/2n] can be divided into b intervals, all of them having as
length a power of 2 (although the power may be different for each interval).
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Proof. We can divide [0, a/2n] into a subintervals of length 1/2n. Now since b ≥ a, we
can subdivide this intervals (by the middle) as many times as necessary, and the length will
remain a power of 2.

Theorem 4.35. Let 0 = x0 < x1 < . . . xn = 1, 0 = y0 < y1 < . . . yn = 1, be dyadic
numbers in [0, 1]. Then, there exists a map f ∈ F such that f(xi) = yi for all i = 1, . . . , n.

Proof. Assume the intervals [xi, xi+1], [yi, yi+1] have lengths ai/2ni and bi/2mi . We may
assume without loss of generality that ai ≤ bi. We can subdivide [yi, yi+1] into bi subin-
tervals of length 1/2mi , and by the previous lemma, we can also subdivide [xi, xi+1] into
bi subintervals with length a power of 2. Now, we can construct our element linearly on
each of these subintervals, for each i = 1, . . . , n. The element obtained will have dyadic
breakpoints, and the slopes will be powers of 2, so it will be in F .

This proves that, essentially, all the dyadic subintervals of [0, 1] look the same, and one

can move between them using elements of F . We can refer to this property by saying that

F acts n-transitively on [0, 1] ∩ Z[12 ].

This has important consequences. Using this we can show that F contains many dis-

joint subgroups which are isomorphic to itself, namely, the subgroups of elements with

support in a dyadic subinterval. Denote F [a, b] the set of elements with support in [a, b].

Theorem 4.36. Let a < b be dyadic numbers in [0, 1], then F [a, b] ∼= F .

Proof. The details are a bit technical, but the idea is the following: we can always find an
orientation preserving affine function α sending bijectively [0, 1] → [a, b] and preserving
dyadics. Then, we can define a map Φα : F → F [a, b] as

Φαf(t) =

{
α−1fα(t) if t ∈ [a, b]

t otherwise .

By construction, Φα(f) ∈ F [a, b], it is a homomorphism (due to the fact that f ∈ F [a, b]

sends [a, b]→ [a, b]) and Φ−1α = Φα−1 , so it is an isomorphism.

As a corollary, using the fact that elements with disjoint support commute, F also

contains as subgroups all its finite direct products, Fn, n ≥ 1, and the direct sum
⊕∞

k=1 F .

One could think that this could be useful for finding a paradoxical decomposition of F ,

and prove that it is not amenable. It is a nice exercise to try finding one, and see how this is

not as simple as it seems. This is due to the fact that, even if the elements of F can stretch

and contract parts of [0, 1], the total length is preserved, in the sense that f([0, 1]) = [0, 1]

for any f ∈ F .
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4.2.3 Abelianization and the commutator subgroup

Let us study now some properties of F related to commutativity.

Proposition 4.37. The abelianization of F is Z2. Moreover, F ′ = [F, F ] is the set of
elements having slope 1 at the endpoints of [0, 1].

Proof. Since F can be generated by two elements, the abelianization must be a quotient
of Z2. Thus, if we find a surjective map φ : F → Z2, then kerφ must be the commutator
[F, F ], and Z2 the abelianization.

Define φ : F → Z2 by f → (k, l), where k is the right slope of f at 0, and l is the left
slope at 1. φ is a homomorphism, because the slope is multiplicative, and it is surjective,
because any pair of slopes can be achieved. The kernel of this map is precisely the set
described in the statement.

In particular, this shows that F is not simple. Nevertheless,

Theorem 4.38. The commutator of F is simple.

This has very important consequences for F , but the proof is long and technical, so we

decide to skip it. The curious reader can check two different proofs in [7] and [8]. The first

thing we deduce is the following:

Corollary 4.39. F is not solvable nor nilpotent.

So we cannot use the criteria in Theorem 2.10 to get information about amenability. In

fact, at the beginning of the next chapter we will prove that F is not elementary amenable,

which will complete this idea.

Another corollary of the simplicity of the commutator is related to proper quotients of

F . Before this, let us introduce a proposition regarding the structure of the center Z(F ).

Proposition 4.40. The center of F is trivial.

Proof. Let f ∈ Z(F ). Let S be the set of fixed points of x1, S = [0, 12 ] ∪ {1}. We claim
that S = f(S). This is because, if t ∈ S,

(x1 ◦ f)(t) = (f ◦ x1)(t) = f(t),

and so f(t) ∈ S. Conversely, if f(t) ∈ S, since f is injective,

(f ◦ x1)(t) = (x1 ◦ f)(t) = f(t)⇒ x1(t) = t,

and so t ∈ S.
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Because of this, it must be f(12) = 1
2 . By the same argument, every element in F

commuting with f stabilizes the fixed point set of f . In fact, as f ∈ Z(F ), this happens for
all elements. But now, by n-transitivity, given any two intervals there is an element taking
one to the other, and so the fixed point set of f must contain both intervals. This happens
for any two intervals, so the fixed point set of f must be the whole [0, 1], and f must be the
identity.

Theorem 4.41. Let Φ: F → G be a surjective homomorphism. Then either Φ is an
isomorphism or G is abelian.

Proof. Suppose Φ is not an isomorphism. Let x 6= 1, x ∈ ker Φ. Since x /∈ Z(F ) = {1},
there exists y ∈ F such that [x, y] 6= 1. Now, x ∈ ker Φ and yx−1y−1 ∈ ker Φ, so
[x, y] = x(yx−1y−1) ∈ ker Φ ∩ F ′. Then, {1} 6= ker Φ ∩ F ′ C F ′, and since F ′ is simple,
it must be F ′ ⊂ ker Φ, so Q ∼= F/ ker Φ is abelian.

Note that G corresponds to a quotient of F , so this theorem states that that all proper

quotients ofF are abelian. In particular, F is hopfian, so we can not use the idea in Theorem

3.22 to study amenability on F , or even its Følner constant.

We also get another property of F as a corollary, even though it is not related to amen-

ability:

Corollary 4.42. F is not residually finite.

Proof. Let x ∈ F ′, and Φ: F → G with G finite. By the previous result, G is abelian, so
F ′ ⊂ ker Φ and so it must be Φ(x) = 1. Hence, x can never be separated from 1.

4.2.4 Absence of free subgroups

Let us now prove that F has no free non-abelian subgroups. This result follows from the

initial definition of F , as a group of piecewise linear bijections. We will prove it in full

generality, because it is a consequence of the absence of free non-abelian subgroups in a

bigger group of this type of mappings.

Definition 4.43. We define PLF (R) as the set of piecewise-linear maps of R with finitely
many breakpoints.

Note that slopes can take any value, and the breakpoints need not be dyadic. It is clear

that F is a subgroup of PLF (R), so showing that there are no free subgroups in PLF (R)

suffices to show it for F . We will divide the proof in some lemmas:

Lemma 4.44. Let f, g ∈ PLF (R). Then,
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1. [f, g] has slope 1 at ±∞.

2. If f and g have slope 1 at ±∞, then [f, g] has bounded support.

3. If f(x) = x = g(x) for some x ∈ R, then [f, g] is trivial in a neighbourhood of x.

Proof. 1. This follows from the fact that slope is multiplicative.

2. The hypothesis implies that f(x) = x + a, g(x) = x + b for some a, b ∈ R near
infinity, so here it is [f, g](x) = x.

3. The slope of [f, g] is 1 around x, and x is fixed for f and g, so [f, g] = Id in a
neighbourhood of x.

Lemma 4.45. Let f ∈ PLF (R), and let a, b ∈ R such that [a, b] is contained in the
support of f . Then, there exists n ∈ Z such that fn(a) > b.

What this says is that, by applying enough times either f or f−1, we can surpass b

starting from a.

Proof. Suppose the connected component of the support of f containing [a, b] is (c, d).
Then, for t ∈ (c, d),

1. If f(t) > t, then fn(t)→ d, f−n(t)→ c.

2. If f(t) < t, then fn(t)→ c, f−n(t)→ d.

So, in particular, either fn or f−n must go beyond b at some point.

This lemma extends to the case where we use different elements in F .

Lemma 4.46. Let f, g ∈ PLF (R), and let [a, b] ⊂ supp f ∪ supp g. Then, there exists a
word in f, g such that w(f, g)(a) > b.

Proof. The idea here is that, repiting the previous lemma several times, we can move
through connected components of each f and g, and so combining both f and g we can
move through the union of the supports.

Let (ci, di), i = 1, . . . , k be intervals in R that correspond to components of either
supp f or supp g, and suppose that

[a, b] ⊂
k⋃
i=1

(ci, di).

63



4. THOMPSON’S GROUP F

and c1 < c2 < · · · < ck and d1 < d2 < · · · < dk. Then, a ∈ (c1, d1), and assume
wlog that this is a component of supp f . By the previous lemma, there is n1 such that
fn1(a) > c2. Now, (c2, d2) is a component in supp g, and fn1(a) ∈ (c2, d2), so we can
find n2 such that gn2fn1(a) > c3. Applying this repeatedly, we can jump through intervals
and reach b in a finite number of steps. This will give us the desired word in f, g.

Theorem 4.47. Let G be a subgroup of PLF ′(R). Then, either G is abelian or it contains
a copy of Z2.

Proof. If G is not abelian, let f, g ∈ G such that z = [f, g] 6= 1. Then,

supp z ⊆ supp f ∪ supp g.

Suppose that the connected components of supp f ∪ supp g are intervals (ai, bi), i =

1, . . . , k. Then all ai, bj are common fixed points of f and g, so by Lemma 4.44, z is
trivial in a neighbourhood of these points. Hence, if supp z ∩ (ai, bi) 6= ∅, there is [c, d]

such that
supp z ∩ (ai, bi) ⊂ [c, d] ⊂ (ai, bi).

Now, letW ⊆ 〈f, g〉 be the set of non-identity words in f and g whose support is contained
in a compact subset of supp f ∪ supp g. In particular, z ∈W , so W 6= ∅.

Let ω ∈W be a word whose support has non-empty intersection with a minimal num-
ber of components of supp f ∪ supp g. By the definition of W , there is i ∈ {1, . . . , k} such
that

supp ω ∩ (ai, bi) ⊆ [c, d] ⊆ (ai, bi),

and by Lemma 4.46, there is u ∈ 〈f, g〉 such that bi > u(c) > d.
Then, if t ∈ supp ω ∩ (ai, bi), it is u(t) ≥ u(c) > d, and so u(t) /∈ supp ω. Hence,

u−1ωu(t) = t, and so

supp ω ∩ supp u−1ωu ∩ (ai, bi) = ∅.

But then, the support of the commutator,

supp [ω, u−1ωu] ⊆ supp ω ∩ supp u−1ωu

and it also does not interesect (ai, bi), contradicting the minimality condition on ω. Thus, it
must be the identity, and so these two elements commute, thus generating a copy of Z2.

Corollary 4.48. Let G be a subgroup of PLF (R). Then, either G is metabelian (that is,
G′′ = {1}) or G contains a copy of Z2.

Proof. Note that G′ ≤ PLF ′(R). Applying the previous theorem, either G′ is abelian,
and thus G′′ = {1}, or G′ contains a copy of Z2. In the last case, since G′ ≤ G, also G
contains a copy of Z2.
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Corollary 4.49. F does not contain non-abelian free subgroups.

Proof. Free groups are not metabelian and neither contain copies of Z2.

The absence of free groups does not share any light on the amenability of F . Despite

this, if it is shown that F is amenable, it will be a torsion free, finitely presented counter-

example to the Day-Neumann conjecture.

4.2.5 Wreath products and Z o Z

Thompson’s group contains many copies of the wreath product Z o Z. Let us shortly in-

troduce this product in general, and then look at this particular example and how it is

embedded in F .

A wreath product is an special case of semidirect product: one of the factors is a direct

sum of a group with itself, indexed by the other factor, and this other factor acts on the sum

by permuting the coordinates in the sum.

Definition 4.50. Let H be a group and let G be a group acting on a set M . A (permuta-
tional) wreath product H oM G is the semi-direct product

⊕
m∈M H o G, where G acts

on
⊕

m∈M H by the permutations of the indices coming from its action on M .

Example 4.51. The lamplighter group, Z2 o Z is a semidirect product
⊕∞
−∞ Z2 o Z. One

could think of this group as having infinitely many lamps, and a lamplighter who can turn
them on and off. Every element of the group corresponds to a state of the set of lamps
(some on, some off), and a position for the lamplighter. There can only be finitely many
lamps on at the same time (since we work with a direct sum).

This group admits a finite presentation

〈a, t : a2, [t−iati, t−jatj ] for any i, j ∈ Z〉.

The generator a corresponds to the lamplighter, starting at position 0, and the generator
t corresponds to moving the lamplighter one step ahead. In this way, the element t−iati

moves the lamplighter to position i, changes the state of the lamp in this position, and then
takes the lamplighter back to its initial position. The relations mean that each lamp can
only be in two states (on and off), and that it does not matter the order in which we change
the state of the lamps.

This group is amenable, as it admits a short exact sequence

1→
∞⊕
−∞

Z2 → Z2 o Z→ Z→ 1,

and both Z,
⊕∞
−∞ Z2 are abelian and thus amenable.
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Thompson’s group contains many copies of a similar group: Z o Z, with presentation

〈a, t : [tiat−i, tjat−j ] for any i, j ∈ Z〉.

It works just like the lamplighter group, except for the fact that now the lamps can have

countably many states, indexed by Z, and tiat−1 adds one to the state of the lamp in

position i. We will denote ai = tiat−i.

The idea to find these group inside F is the following: choose an element only having

carets hanging from the same leaf in both trees. Then, conjugating by x0 will move those

same carets to the next leaf in both trees. So each leaf behaves like a lamp, and x0 works

as the lamplighter.

In this sense, we have as many subgroups of this type as things we can hang on a node;

this also means that these subgroups are really small in F .

Let us formalize this idea. The element x21x
−1
2 x−11 only has carets hanging from the

first right node.

Consider the subgroup G = 〈x0, x21x
−1
2 x−11 〉 ≤ F , and the map Φ: Z oZ→ G sending

t→ x0, a→ x21x
−1
2 x−11 .

(a) Φ(a) = x21x
−1
2 x−1

1 (b) Φ(a2) (c) Φ(a−1)

Theorem 4.52. Φ: Z o Z→ G is a group isomorphism.

Proof. The relations are satisfied: every pair Φ(ai),Φ(aj) commute because, as x1x22
hangs from a particular leaf, these elements have disjoint support. It is also surjective,
since x0, x1x22 generate G.

To check injectivity, one can see that, since Z o Z is a semidirect product, there is a
normal form

ar1i1 . . . a
rn
in
tm

where the ij , rk,m are integers and i1 < · · · < in.
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Each ai maps to the corresponding pair of trees in the ith position, and then tm moves
the root to the positionm, so the only way an element maps to the identity is if all exponents
r1 = · · · = rn = m = 0, i.e., if the element is the identity.

Using the amenability of these subgroups, we will try to see how their Følner sets

behave into F .

4.3 Other Thompson groups
Richard Thompson introduced another two groups T, V , with similar definitions to F . No

proofs are included, but the curious reader can find more information in [8].

Thompson’s group T is defined as the group of piecewise linear homeomorphisms of

the circunference S1, that are orientation preserving, send dyadics to dyadics, and have as

slope a power of 2 on each piece.

We can look at S1 as the interval [0, 1] with the endpoints identified. With this idea,

every element of F induces another element in T , so T contains F as a subgroup. Nev-

ertheless, T contains more elements apart from those from F , because now we are not

restricted to having f(0) = 0, or f(1) = 1, but just f(0) = f(1). An element in T \ F
could be the following:

0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1
0

0.13

0.25

0.38

0.5

0.63

0.75

0.88

1

Figure 4.17: An element in T \ F.

In fact, the group T admits a finite presentation using generators x0, x1 from F and

this new element. There is another version of tree diagrams for the elements of F : now,

the leftmost tree in the left tree may not go to the leftmost leaf in the right tree, so one must

mark this image of the leftmost leaf in the right tree.

The group T is not isomorphic to F , because it is not torsion free, as it contains the

element f(t) = t+ 1
2 .

The importance of group T lays on the fact that it is historically the first example of

a finitely presented infinite simple group. It is known that T is not amenable, because

67



4. THOMPSON’S GROUP F

it contains a non-abelian free subgroup, so this does not provide any information on the

amenability of F . The proof for this can be checked in [5][Corollary 4.4].

Thompson’s group V contains both T and F . It is defined analogously, as the group

of orientation preserving, right continuous bijections of S1 mapping dyadics to dyadics

and having as slopes powers of 2 on each piece. Again, it is clear the elements in T, F

have these properties, but now we are dropping continuity, so we can have elements like

the following:

0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1
0

0.13

0.25

0.38

0.5

0.63

0.75

0.88

1

Figure 4.18: An element in V \ T.

As T ⊂ V , we know that V is neither amenable. Just like T , this group is also finitely

presented and simple, and it has its own tree diagrams. Now, because of the lack of con-

tinuity, one needs to mark the target leaf where each leaf in the left tree goes, without any

restrictions.
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CHAPTER

5
Følner sets in F

Now that we know how to work with the group F , and its most important properties in

relation to amenability, let us see why checking whether F is amenable can be difficult. We

have seen that many of the most common tools for checking amenability fail when applied

to F . Here, we will introduce another one: the fact that F is not elementary amenable.

Then, we will dedicate the rest of the chapter to the study of Følner sets in F . Finding

these sets is a really hard task, due to a theorem from Moore, but we will still try to get

bounds on the Følner constant introduced in Chapter 3. We will introduce and prove the

best bound to date, obtained by Belk and Brown, and see why it is hard to get better bounds.

After this, we compute the ratios for other families, but we anticipate that our results are

negative, and far from improving the constant found by Belk and Brown.

5.1 What we know

Recall that F has no free non-abelian subgroups, as shown in Corollary 4.49, and it has

exponential growth, as proved in 4.33 so we cannot apply the criteria in Theorem 2.29.

Furthermore, the idea to compute the Følner constant of BS(2, 3) in Chapter 3 does not

work, because now, F is hopfian. We will prove now that F is not elementary amenable.

Recall the definition of elementary amenable groups in Chapter 2 There is another way

to introduce this class inductively, using ordinals: let EG0 be the class of all finite and
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5. FØLNER SETS IN F

abelian groups. Let α be an ordinal such that we have constructed all classes EGβ for

β < α. If α is a limit ordinal, we define

EGα =
⋃
β<α

EGβ

and if α is a succesor, we set EGα to be the class of all groups that can be obtained from

EGα−1 by taking (exactly) one time either a direct union or an extension of a group from

EGα−1, by either a finite or an abelian group.

Then, one can see that

EG =
⋃
{EGα : α is an ordinal.}

This definition allows us to use transfinite induction. We will take advantage of this to

prove the following:

Proposition 5.1. F is not elementary amenable.

Proof. Clearly F is not finite nor abelian, so F /∈ EG0. Moreover, F is finitely generated,
so it cannot be expressed as a nontrivial direct union (this is because every generating set
of F contains a finite generating set). Hence, the only way that F can appear in some EGα
is as a nontrivial group extension.

Assume that F does not belong to EGβ for β < α, and suppose there is a short exact
sequence

N → F → Q

where N,Q ∈ EGβ for some β < α.
Then, since F ′ is simple, it must be F ′ ⊂ N , and so N also contains copies of F .

But now, since EGβ is closed under taking subgroups, we get F ∈ EGβ , which is a
contradiction.

Thus, showing that F is amenable would give an example of a group in AG \EG, and

proving that F is not, an example of a group in NF \AG.

In order to study F , we will search for some Følner sets, and compute limits on the

boundary ratios, |∂An|
|An| , in order to get upper bounds for the Følner constant in F .

5.2 Følner sets in F

As introduced in Chapter 1, Følner sets are families that “do not change too much” through

the action of the generators. We can try finding Følner sets in F , but a theorem by Moore
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states that this is not going to be an easy task. It states that, if we actually find a Følner

sequence in F , then the size of the sets must grow insanely quickly.

Let us state the theorem formally. It is remarkable that Moore does not use the inner

boundary, but the symmetric difference boundary, defined as

|∂A| =
∑
x∈X
|xA4A|.

As we mentioned in the first chapter, this is equivalent to the inner boundary, so it does not

make that much of a difference. Define the function expp(n) recursively as

exp0(n) = n,

expp+1(n) = 2expp(n).

That is, expn(0) is an iterated exponential.

Theorem 5.2 (Moore [19]). For any finite symmetric generating set X ⊂ F , there is a
constant C > 1 such that if A ⊆ F satisfies |∂A||A| ≤ C

−n, then A contains at least expn(0)

elements.

So, in a Følner sequence, the sets must grow as fast as an iterated exponential. This

makes a hard task coming up with these kind of sets, and they also have attached a really

expensive computational cost.

The proof of this theorem is long, and out of the scope of this project, but a reference

is included for the curious reader. Although it treats elements as pairs of binary sequences,

these are just another way to express tree diagrams.

We deduce from this theorem that all the families that we will study in this chapter

will not be actual Følner sequences (as they do not grow sufficiently fast). Nevertheless,

computing the ratio between the size of the boundary and the set will give us upper bounds

for the Følner constant of F , as introduced in Chapter 2, for different sets of generators.

Notation. In this chapter we will call Følner sequence to any sequence of sets that we use
to compute bounds on the Følner constants of F . These are not actual Følner sequences (as
the limit of the boundary ratio does not go to zero), but it is just a matter of terminology.

First of all, it is remarkable that, since we have a lower bound from the growth in F ,

we can use Proposition 3.3 and Theorem 4.33 to deduce the following:

Proposition 5.3. The Følner constant of F for the generating set X = {x0, x1} satisfies

FølXF ≤ 1− 2

3 +
√

5
≈ 0.618034.

Note that this bound uses the inner boundary, and that we get it using as Følner sequence

the balls BX(n).
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5. FØLNER SETS IN F

5.2.1 Belk-Brown sets

To this day, the best existing bound for the Følner constant of F is the one obtained by

Belk and Brown. They also prove that it is hard to get a better bound, in the sense that

sets achieving it must be a bit strange. It is now a conjecture whether this better bound

actually exists (note that proving that it does not would immediately prove that F is not

amenable.) Let us take a look at the sets used by Belk and Brown, and formalize these

results. Remark that they also use a different boundary in their computations, namely the

Cheeger boundary,

∂A = {(a, a′, g) ∈ E : a ∈ A, a′ /∈ A},

the set of edges joining a set and their complement.

Once we have done the original proof by Belk and Brown, we will adapt their constant

for the inner boundary, in order to be able to compare it with the bound in Proposition 5.3.

Theorem 5.4 (Belk, Brown [4]).

inf{|∂A|
|A|

: A ⊂ F finite.} ≤ 1

2
.

Proof. It is enough to find a sequence of sets, Ak, so that

inf
k

|∂Ak|
|Ak|

=
1

2
.

Given n, k ∈ N, let Sn,k be the set of positive elements whose pointed forest diagram has
width at most n and whose trees have height at most k.

Claim.

lim
k

lim
n

|∂Sn,k|
|Sn,k|

=
1

2
.

First, we fix k ∈ N, and compute the limit for n. After this, we compute the second
limit in k.

Claim 1. For each k ∈ N, if f is randomly (uniformly) chosen in Sn,k, then

|∂Sn,k|
|Sn,k|

− 2P [x−11 f /∈ Sn,k]
n→∞−−−→ 0.

The boundary is the sum over all edges, so

|∂Sn,k|
|Sn,k|

= P [x0f /∈ Sn,k] + P [x−10 f /∈ Sn,k] + P [x1f /∈ Sn,k] + P [x−11 f /∈ Sn,k].
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For each of the generators, the number of incoming edges must be the same as the number
of outgoing edges, because of the symmetry of the set. Thus,

|∂Sn,k|
|Sn,k|

= 2P [x−10 f /∈ Sn,k] + 2P [x−11 f /∈ Sn,k]. (5.1)

Let us begin by computing the first term.
Note that the condition that x−10 f /∈ Sn,k is equivalent to the fact that the pointed tree

of f is the leftmost tree. For each n ∈ N, the number of trees in Sn,k is upper bounded by
n (all trees are trivial) and lower bounded by n

2k
(all trees are balanced with height k), so as

n→∞, the minimum number of trees goes to∞, and thus the probability that the pointed
tree of f is the leftmost one goes to zero. Hence,

|∂Sn,k|
|Sn,k|

− 2P [x−11 f /∈ Sn,k] = 2P [x−10 f /∈ Sn,k]
n→∞−−−→ 0.

Let us now compute the second term in equation 5.1.

Claim 2. Let f be a random pointed forest, with n leaves and height at most k. Then,

lim
n
P [x−11 f /∈ Sn,k] = pk,

where pk is the unique positive root of

t1,kpk + t2,kp
2
k + · · · = 1,

where tl,k is the number of trees with l leaves and height at most k.

Let fn be the number of binary (not pointed) forests with n leaves and height at most
k. These forests can be constructed by joining a forest with less leaves and a tree with the
missing leaves. Hence, there is a recurrence:

fn = t1,kfn−1 + t2,kfn−2 + · · ·+ t3,kfn−3 + . . .

Note that tn,k 6= 0 for 0 < n ≤ 2k and tn,k = 0 for n > 2k, so this sum is always
finite (namely, it has min{n, 2k} terms, which for n big enough is just 2k). By the theory
of linear recurrence equations (searching for solutions of the form qk for some q ∈ R),
it can be seen that fn is essentially of the form p−nk , where pk is the positive root of the
polynomial in the claim. In particular,

lim
n

fn−1
fn

= pk.

Now, let us define Rn to be the number of pointed binary forests with n leaves and height
at most k. To construct a pointed forest, we just need to choose a place to put the arrow.
Thus, we can construct a pointed forest by putting two binary forests side to side, and the
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arrow in the middle of them (for instance, in the first tree of the right forest). Hence, there
is another recurrence

Rn = f1fn−1 + f2fn−2 + . . . fnf0

Let R∗n be the number of pointed forests whose pointed tree is trivial. Using the same idea,
and leaving one leaf for the trivial tree, we have

R∗n = f0fn−1 + f1fn−2 + · · ·+ fn−1f0.

Then, the probability that the current tree is trivial corresponds to

R∗n
Rn

=
f0fn−1 + f1fn−2 + · · ·+ fn−1f0
f1fn−1 + f2fn−2 + . . . fnf0

.

With some computations, one can see that this ratio approaces pk as n → ∞, and so we
finally deduce

lim
n

|∂Sn,k|
|Sn,k|

= 2pk

for each k ∈ N.
It is left to see how these roots behave when k → ∞. Note that if we define the

polynomial
tk(x) = t1,kx+ t2,kx

2 + . . .

then by definition of pk, it is tk(pk) = 1.
If we have two trees of height at most k − 1, we can put one of them on the left leaf

of a caret, and the other one on the right leaf. This will give us a new tree with height at
most k. Moreover, the number of leaves in this new tree will be the sum of the leaves in
each of the previous trees. In fact, any tree with height at most k can be constructed this
way, except for the trivial tree. This gives a recurrence that can be expressed using the
generating polynomials, as

tk(x) = tk−1(x)2 + x

where x come from adding the trivial tree.
If we iterate t → t2 + c, we see that c = pk if and only if we arrive at 1 after k + 1

iterations (as it is tk(pk) = 1).
For instance, to get to 1 in one iteration, we have the golden ratio, c = −1+

√
5

2 , which
satisfies c2 + c = 1, so c = p1.

For p2, we look for a number such that t2(p2) = t1(p2)
2 + p2 = (p22 + p2)

2 + p2 = 1,
and so p2 is the positive root of the equation

p42 + 2p32 + p22 + p2 = 1.

numerically, p2 ≈ 0.557.
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As k grows, the parabola, y2 = x + c gets arbitrarily close to the line y = x. These
become tangent at c = 1

4 , so limk pk = 1
4 , and thus

lim
k

lim
n

|∂Sn,k|
|Sn,k|

= 2
1

4
=

1

2
.

And this concludes the proof.

Recall that this value is in terms of the Cheeger boundary. Nevertheless, notice that

we can compute the ratio for the inner boundary from this one: we do not care about the

boundary with x0, because it goes to zero. For x1, we only need to take away from this

ratio those elements which go out when multiplied by both x1 and x−11 (because we are

counting them twice).

This corresponds to elements for which the current tree of f is trivial (for x−11 ) and

those for which either the current tree or the next tree has height k − 1 (for x1).

Note that the probability that the current tree has height k − 1 is the same that the next

tree has height k − 1 (the limit cases are very few, and thus tend to zero), and the sum is

precisely 1
4 , as we computed. Thus, the probability that the next tree has height k− 1 must

be 1
8 .

On the other hand, the intersection we are looking for corresponds to elements for

which the current tree is trivial and the next tree has height k − 1. These are independent

events (for n big enough), so the probability of the intersection is the product. Hence, the

ratio of elements leaving by both x1 and x−11 is 1
4 ·

1
8 = 1

32 .

We conclude that the bound from Belk and Brown in terms of the inner boundary is

precisely 1
2 −

1
32 = 15

32 ≈ 0.46875.

Let us now take a look on why it is so hard to get a better bound than this:

Corollary 5.5. If T is a finite set of binary trees, which is close under taking subtrees, and
Sn,T is the set of poistive elements whose forest diagram has width at most n and trees in
T , then

|∂Sn,T |
|Sn,T |

>
1

2
.

Proof. Let ai be the number of trees in T with i leaves, and

a(x) = a1x+ a2x
2 + . . .

The same argument used before (under the hypothesis that T is closed under subtrees)
shows that

|∂Sn,T |
|Sn,T |

= 2p,
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where p is the positive root of the equation a(x) = 1. If k is the maximum height of a tree
in T , then ai ≤ ti,k (as T ⊆ Sn,k), and so a(x) ≤ tk(x) for all x ≥ 0. All the coefficients of
a(x), tk(x) are non-negative, so these two polynomials are increasing in (0,∞), and since
a(x) ≤ tk(x),it must be pk ≤ p (i.e., tk arrives to 1 before a does). Hence, p > 1/4.

Note that we can only apply this result if we express our set in terms of forest diagrams.

Anyway, most of the simple families that we can think of using forest or tree diagrams are

closed by subtrees. Computations for families which are not might get really messy, as

they might have really strange shapes.

Our approach in order to avoid this, is to define Følner sets in terms of the presentation.

We have not checked whether our sequences are closed by subtrees, though, as there is not

an easy transition from their expression to forest diagrams.

5.2.2 Følner sets from the presentation of F

The fact that Belk and Brown obtain such a great bound using a simple family of tree

diagram invites to check whether other simple sets also give good bounds. In our case,

we will look at simple sets coming from the presentation of F Remark that we can restrict

ourselves to sets of positive elements, as translating a set does not change the size of the

boundary.

5.2.2.1 Basic case

The first family that comes to mind when looking at the presentation is

An = {xa00 . . . xann : 0 ≤ a1, . . . , an ≤ n}.

This works as a Følner sequence in Zn, for instance. We can think of this set as an n+ 1×
n+ 1 box, where each point (a0, . . . , an) represents the element xa00 . . . xann . Even though

our finite presentation of F has generators x0, x1, any pair {x0, xi}, with i > 0, is another

finite generating system for F , since we can find x1 as

x1 = x0x2x
−1
0 = · · · = xi−10 xix

−(i−1)
0 .

Our work allows to compute the boundary ratio for any generating set of this form.

To compute thi ratio, just like in the proof above, we need to count how many elements

escapeAn when multiplied by x±10 or x±1i , i.e., their correspondent countributions to ∂An|.
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Just like before, it is enough to compute the ratios for x0 and xi, as these ratios will be the

same for its inverses because of the symmetry of the sets.

Let us begin with the case for x0.

Proposition 5.6. Let |∂x0An| be the number of elements in An which escape when multi-
plied by x0, i.e., elements x ∈ An such that x0x /∈ An. Then,

lim
n

|∂x0An|
|An|

= 0.

Proof. If xa00 . . . xann ∈ An, but x0xa00 . . . xann /∈ An, then it must be a0 = n. Hence,

|∂x0An|
|An|

=
(n+ 1)n

(n+ 1)n+1
=

1

n+ 1
→ 0.

Thus, almost all elements stay in An when multiplied by x0 or x−10 .

The study with xi, for i > 0 is not that easy, as now the subindex of this element will

change as we find the normal form. Note that when we multiply xi by an element, the

subindex i will increase as it goes through the word, until it finally finds the normal form

of the product.

There are two ways in which our element can leave An when multiplied by xi: if this

subindex increases until it becomes larger than n, or if this subindex stops in some xk,

before xn, and the exponent ak was already n. In the former case, we will say that the

element leaves from the right, and otherwise that it leaves from the top. (this makes sense

when understanding An as a box).

For instance, x0x1x2 ∈ A2, but x1x0x1x2 = x0x1x2x3 /∈ A2 is an example of an

element leaving from the right. On the other hand, x0x22 ∈ A2 but x1x0x22 = x0x
3
2 /∈ A2

represents the case of leaving from the top.

We will consider these two cases differently, as this helps the counting.

Let us start with the top case. We start counting how many elements leave from the top

while stopping in the last possible place:

Proposition 5.7. Let ai,n to be the number of elements in An that leave from the top in
place xn when multiplied by xi. Then,

ai,n =


0 if i > n,

1 if i = n,∑n
k=i−1 ak,n−1 if i < n.
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Proof. Consider an element xa00 . . . xann ∈ An, and xi ∈ F . There are three possible cases:

1. If i > n, then
xix

a0
0 . . . xann = xa00 . . . xann xi+a0+···+an

always leaves from the right. Hence, ai,n = 0.

2. If i = n, then the only way that the element leaves from the top in xn is if the
subindex does not grow at all and an = n, i.e.,{

an = n,

a0 = a1 = · · · = an−1 = 0.

Thus, an,n = 1.

3. If i < n, then it must be
i+ a0 + · · ·+ an−1 = n,

so a0 can take values from 0 to n − i. We consider each possible value of a0 separ-
ately:

If a0 = 0, we have xixa11 . . . xann . Note that only an can be equal to n, since∑n−1
j=0 aj = n− i. Moreover, in order for the product to leave An, it must be an = n

maximal. Hence, the number of elements leaving here is the same as the number of
elements leaving in the case xi−1xa10 . . . x

an−2

n−1 x
n−1
n−1, and this is precisely ai−1,n−1.

For a0 = 1, the element is of the form x0x
a1
1 . . . xann , and thus

xix0xi+1x
a1
1 . . . xann = x0xi+1x

a1
1 . . . xann .

In general, this argument shows that, if a0 = j, then there are ai+j−1,n−1 possible
cases. Thus, summing over all possible values of a0,

ai,n =
n∑

k=i−1
ak,n−1.

We wrote a small program in Python to compute the first terms of this recurrence:

ai,n 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0

1 0 1 1 2 5 14 42 132 429

2 0 0 1 2 5 14 42 132 429

3 0 0 0 1 3 9 28 90 297

4 0 0 0 0 1 4 14 48 165

5 0 0 0 0 0 1 5 20 75

6 0 0 0 0 0 0 1 6 27
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Note that row 1 seems to correspond to the Catalan numbers. Furthermore, some research

on the rest of the rows seem to tell that these correspond to the convolutions of the Catalan

numbers:

Definition 5.8. Given a sequence (an)n, with generating polynomial A(x), the i-th con-
volution of (an) is defined to be the sequence with generating polynomial Ai+1(x).

We deduce from the definition the following recurrence formula, which looks exactly

the same as the one for the ai,n:

Cin =


0 if i > n,

1 if i = n,∑n
k=i−1C

k
n−1 if i < n.

Catalan found a closed formula for these convolutions:

Theorem 5.9. Let i ≥ 1, and Cin the nth term of the ith Convolution of the catalan num-
bers. Then,

Cin =

{
0 if n < i,
i

2n−i
(
2n−i
n

)
otherwise.

This theorem is out of the scope of the project, but it will be useful for the asymptotic

study of our sequences. The original proof can be found (in french) in [9].

Let us formally prove that, indeed, the ai,n are these convolutions:

Proposition 5.10. The value ai,n corresponds to the nth term in the (i− 1)th convolution
of the Catalan numbers, i.e.

ai,n = Ci−1n .

Proof. Since the recurrence is the same, it is enough to see that a1,n are the Catalan num-
bers. We do this by induction. First, recall that the Catalan numbers satisfy the recurrence:

Cn =
n∑
i=1

Ci · Cn−i.

An element in An will leave in place xn when multiplied by x1 if and only if it n is the
first position where it stops, and an = n. This is equivalent to the following equations:

a0 6= 0,

a0 + a1 6= 1,
...

a0 + · · ·+ an−2 6= n− 2,

a0 + · · ·+ an−1 = n− 1

an = n.

(5.2)
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For n = 1, this is just a0 = a1 = 1, so there is one unique case, and so a1,1 = C1.
Now, assume a1,j = Ci for j < k. We claim that

a1,k =
n∑
i=1

a1,i · a1,k−i.

To see this, we consider different cases depending on the value of a0, . . . , ak−1.
First, if a0 = 1, then the constrains can be splitted separately into:

{
a0 = 1,



a1 6= 0,

a1 + a2 6= 1,
...

a1 + · · ·+ ak−2 6= k − 3,

a1 + · · ·+ ak−1 = k − 2.

ak = k.

The condition on the left (a0 = 1) corresponds to the case n = 1 in the conditions in
equation 5.2, so this can happen in a1,1 = 1 ways. On the other hand, on the right, as all
the aj , j = 1, . . . , k − 1 take the same values, and ak must be maximal, the number of
possible cases is the same as if we took 1 out of each subindex j, i.e., if we had conditions

a0 6= 0,

a0 + a1 6= 1,
...

a0 + · · ·+ ak−3 6= k − 3,

a0 + · · ·+ ak−2 = k − 2.

ak−1 = k − 1.

and this can be done in a1,k−2 ways. Hence, the total number of possibilities here is a1,1 ·
a1,k−1.

We can keep doing this: again, if a0 6= 1, we can split the conditions in:


a0 6= 0,

a0 6= 1,

a0 + a1 = 2.



a2 6= 0,

a2 + a3 6= 1,
...

a2 + · · ·+ ak−2 6= k − 4,

a2 + · · ·+ ak−1 = k − 3.

ak = k.
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Now, in the left, we can assume a0 > 0 and reduce by 1 each independent term, so that the
left part is equivalent to the case: {

a0 6= 0,

a0 + a1 = 1

and this can happen in a1,2 ways. On the other hand, taking two out from each subindex,
the right part is equivalent to

a0 6= 0,

a0 + a1 6= 1,
...

a0 + · · ·+ ak−4 6= k − 4,

a0 + · · ·+ ak−3 = k − 3−
ak−2 = k − 2.

and again, this happens in a1,k−2 ways. Hence, this total case happens in a1,2 · a1,k−2.
The same process can be applied repeatedly, and these cases are all disjoint. At step i,

one gets conditions:



a0 6= 0,

a0 6= 1,

a0 + a1 6= 2,
...

a0 + · · ·+ ai−1 = i.



ai 6= 0,

ai + ai+1 6= 1,
...

ai + · · ·+ ak−2 6= k − i− 1,

ai + · · ·+ ak−1 = k − i.
ak = k.

And, by the same argument, this contributes to a1,k in a1,i · a1,k−i. Summing all of them,
we get

a1,k =

n∑
i=1

a1,i · a1,k−i.

By induction hypothesis, a1,j = Cj for j < k, so,

a1,k =

n∑
i=1

Ci · Ck−i = Ck.

Now that we know the precise values of ai,n, we are ready to compute the total number

of elements leaving from the top:
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Proposition 5.11. Let bi,n to be the number of elements in An that leave by the top when
multiplied by xi. Then, for all i ≥ 1,

lim
n
bi,n = 0.

Proof. Note that, as we saw in the proof, the conditions to stop at place k only depend on
the values a0, . . . , ak. Hence, we can free the last n− k values of ai, and on the first k+ 1

we have the same conditions as before. Thus, the number of elements in An that leave at
place xk is ai,k(n+ 1)n−k.

If we do this for all k = i, . . . , n, since ai,k = 0 if k < i, we get the following:

bi,n =
n∑
k=0

ai,k(n+ 1)n−k =
n∑
k=i

ai,k(n+ 1)n−k.

And thus the ratio of elements that leave from the top is∑n
k=i ai,k(n+ 1)n−k

(n+ 1)n+1
=

n∑
k=i

ai,k(n+ 1)−(k+1).

Since the Catalan numbers (and its convolutions) grow approximately as 4k (and in fact are
upper bounded by 4k), we get

n∑
k=i

ai,k(n+ 1)−(k+1) ≤ 1

n+ 1

n∑
k=i

(
4

n+ 1

)−(k+1)

.

This is a geometric sum, so we can compute it to get

1

n+ 1

n∑
k=i

(
4

n+ 1

)−(k+1)

=
1

n+ 1

4((1 + n)−i + n(1 + n)−i − (1 + n)−n)

n

And, if i ≥ 1, this tends to 0 as n→∞, so the ratio of elements that leave from the top is
precisely 0.

Let us now study proceed with the case of elements leaving by the right. When mul-

tiplying by xi, if it does not stop before the end of the word, it will end up having index

i+a0+· · ·+an. Hence, the elements leaving by the right are those whose sum of indices is

bigger than a0+ · · ·+an ≥ n+1− i which do not stop at any xk, for k < n. We anticipate

that this is the way most elements leave the set, because there are very few elements either

stopping or having small sum of aj . We first introduce a lemma for the computations:
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Lemma 5.12. Let

Bk
n = {xa00 . . . xann ∈ An :

n∑
i=0

ai = k}.

Then,

|Bk
n| =

(
k + n

n

)
.

Proof. Note that |Bk
n| is precisely the number of non-negative integer solutions to the equa-

tion
n∑
i=0

ai = k.

To compute this number, consider a row of (+) and (−), where (+) corresponds to adding
1 to ai and (−) corresponds to passing from ai to ai+1. Starting at i = 0, to get to an we
need n steps, so there must be n symbols of type (−). The total value of the sum is k, so
there must be exactly k symbols (+). Thus, it consists in writing a row of k + n symbols,
and choosing the n positions for the (−) symbols. This can be done in

(
k+n
n

)
ways.

Now, let

B̃i,n = {xa00 . . . xann :
n∑
j=0

ai ≤ n− i}.

Then, using Lemma 5.12,

|B̃i,n| =
n−i∑
k=0

|Bk
n| =

n−i∑
k=0

(
k + n

n

)
=

1− i+ n

n+ 1

(
2n− i+ 1

n

)
.

As a side note, remark the similarity with the convolution formula of the Catalan numbers

in Theorem 5.9.

On the other hand, let us compute the cardinality of the set of elements which stop

(independently of the sum of the ai). This is just the same as we did for those elements

leaving from the top, except now stopping at step k does not require that ak = n, but

instead, ak can take any value. Hence, there are

n∑
k=i

ai,k(n+ 1)n−k+1

elements stopping at some xk when multiplied by xi.

Let us put all things together: The number of elements leaving by the right is:

|{x ∈ An :
∑

ai ≥ n− i+1}|− |{x ∈ An :
∑

ai ≥ n− i+1 and xi stops before xn}|,
(5.3)
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and we need to divide this by the size of |An|.
We can compute the first term by taking its complement in An,

{x ∈ An :
∑

ai ≥ n− i+ 1}| = |An| − |B̃i,n|.

We already computed these values, so the contribution of the first term to the boundary

ratio is
(n+ 1)n+1 − 1−i+n

n+1

(
2n−i+1

n

)
(n+ 1)n+1

n→∞−−−→ 1.

This limit can be computed using Stirling’s formula on the binomial.

For the second term in 5.3, we take the complement in the set of elements that stop, so

that

|{x ∈ An :
∑

ai ≥ n− i+ 1 and xi stops before xn}| =

|{x ∈ An : xi stops before xn} − |{x ∈ An :
∑

ai ≤ n− i and xi stops before xn}|

The first term here is precisely
n∑
k=i

ai,k(n+ 1)n−k+1

and the second one can be upper bounded by |B̃i,n|. Hence, the contribution is at most

−
∑n

k=i ai,k(n+ 1)n−k+1 + |B̃i,n|
(n+ 1)n+1

n→∞−−−→ 0.

This limit can be done using the fact that ai,k ∼ 4k and Stirling’s approximation once

again.

In conclusion, summing up all these results the total contribution from xi is

lim
n

|∂xiAn|
|An|

= 1.

and so almost all elements leave when multiplied by xi (and in particular, they mostly leave

from the right.)

This concludes our study of the boundary ratio for this set. We proved the following:

Theorem 5.13. Let Xi = {x0, xi} be a generating system for F . Then,

|∂x0An|
|An| = 0

|∂xiAn|
|An| = 1.

And so, if ∂A is the Cheeger boundary of A ⊂ F , it is

lim
n

|∂XiAn|
|An|

= 2.
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This does not tell us anything, since even finite sets have better boundary ratios. Nev-

ertheless, this study gives some information on how to approach the problem: all the con-

tribution to the boundary comes from xi, and almost all elements leave from the right.

With this in mind, we can try introducing other threshold functions for the aj , so that

the number of elements such that
∑
aj ≥ n is small, and not so many elements leave from

the right.

Note that, for any of these threshold functions fn, the number of elements that leave

with x0 is approximately 1
f(0) . Hence, in order to have no problem with x0, we need to

have fn(0)
n−→ ∞, so that 1

fn(0)

n−→ 0. Moreover, it would be desirable that fn(0) tends to

infinity slowly, because elements with large values of a0 will likely escape with xi, as it

will probably be
∑
aj ≥ n.

Even though we have tried to do this formally with different families of threshold func-

tions, such as n
2k

, the computations get really messy. First of all, we could try to find a new

sequence like ai,k, and redo the analysis. This is hard to do in general, and even if we get

a recurrence, it is hard to come up with a closed formula (in this case, we were lucky that

we got the Catalan numbers) to study its asymptotics. Nevertheless, there are some simpler

cases where an analysis like this can work.

5.2.2.2 Threshold log(n− x)

We found a recurrence which works for any increasing function of the form f(n − x)

(and fn(0) < n). It is hard getting a closed form for this recurrence, but we study it

computationally. For simplicity, we do this for the case f(x) = log(x), but the same can

be done for any other increasing function strictly dominated by n.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

Figure 5.1: log(10− x).

Define

Cn = {xa00 . . . x
an−1

n−1 : 0 ≤ ak ≤ log(n− k)} \ {1}.
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First of all, note that ai takes values in {0, . . . , blog(n − i)c}. Because of this, a general

element in Cn is actually of the form xa00 . . . x
an−3

n−3 , as an−2 = an−1 = an = 0. In

particular, C0 = C1 = C2 = ∅, and C3 = {x0}. One could put inside the identity or take it

away, as it just one more element. We choose to take it away, because it is helpful at some

point during the computations. These set have size

|Cn| =

(
n−3∏
k=0

(blog(n− k)c+ 1)

)
− 1 =

(
n∏
k=3

(blog(k)c+ 1)

)
− 1 ∼ n log n.

The good thing with this recurrence is that

f(n− k) = f((n− 1)− (k − 1)) = f((n− 2)− (k − 2) = . . .

so the threshold in Cn for a0 will be the threshold for a1 in Cn+1, the one for a2 in Cn+2,

etc. With this, we can apply the argument in the recurrence for ai,k to reduce it to a sum of

terms of the form aj,k−1.

In any case, let us just begin with x0.

Proposition 5.14. Let |∂x0Cn| be the contribution of x0 to |∂Cn|.

lim
n

|∂x0Cn|
|Cn|

= 0.

Proof. Again, an element leaves when multiplied by x0 if and only if a0 = blog nc, so the
ratio is∏n−3

k=1blog(n− k)c+ 1

−1 +
∏n−3
k=0(blog(n− k)c+ 1)

=

∏n−1
k=3blog(k)c+ 1

−1 +
∏n
k=3(blog(k)c+ 1)

∼ 1

log(n)

n→∞−−−→ 0.

Hence,
|∂x0Cn|
|Cn|

n→∞−−−→ 0.

So just as we mentioned, the fact that fn(0)
n−→ ∞ solves any possible problem with

x0.

Let us see now what happens with the other generators, xi.

Proposition 5.15. Let ci,n be the number of elements in Cn which leave by the top in place
xn−3 (last) when multiplied by xi. Then,

ci,n =


0 if i > n− 3,

1 if i = n− 3,∑blog(n)c+i−1
k=i−1 ak,n−1 if i < n− 3.
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Proof. The proof is the same as Proposition 5.7. Only a couple of things change: the last
place in the word is n− 3, instead of n, and the values of a0 go from 0 to blog(n) c.

Again, we can look at the first values of these recurrence:

ci,n 0 1 2 3 4 5 6 7 8

0 0 0 0 1 2 4 8 16 32

1 0 0 0 0 1 3 7 15 42

2 0 0 0 0 0 1 4 11 31

3 0 0 0 0 0 0 1 5 17

4 0 0 0 0 0 0 0 1 6

It is hard to extrapolate these sequences to a general case, though. For instace, even if the

first row seems to correspond to powers of 2, one can see that c1,9 = 96. This is because

log(7) < 2, but log(8) > 2, so there are “strange” changes whenever blog(n)c changes,

i.e. in values of the form bekc for some k ∈ N.

Anyway, for any n, we can compute the contribution of these elements to the boundary

ratio. Following the same argument as in the other case, this is:∑n
k=1 ci,k(n+ 1)blog(n−k)c

(
∏n
k=3blog(k)c)− 1

And our only limitation for this computation is the memory size of the computer. Before

getting overflow, we have got to n = 423, and the corresponding boundary ratio for x1 is

≈ 0.0059. We might dare to say that the limit is zero, as also the sequence is decreasing.

We cannot confirm this, though, beacuse of the slowness of the logarithm and the fact that

there are these mentioned changes every long time.

For elements leaving by the right, we have a similar analysis:

Proposition 5.16. Let di,n be the number of elements that leave from the right in Cn when
multiplied by xi.

di,n =


blognc∑
k=0

di−1+k,n−1 + blog nc − (n− 2− i) + 1 if blog nc ≥ n− 2− i,
blognc∑
k=0

di−1+k,n−1 otherwise.

Proof. Again, the argument for the recurrence is the same: reduce the case

xi · xa00 . . . x
an−3

n−3

to the case
xi+a0−1x

a1
0 . . . x

an−4

n−4 .
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The only time when we cannot do this is with elements of the form xa00 . Note that these
elements leave if and only if i+a0 ≥ n−2. In particular, for this to happen, nmust satisfy
blog nc ≥ n− 2− i, and the number of these elements leaving will be blog nc − (n− 2−
i) + 1.

Once again, we look at the first values of this recurrence:

ci,n 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 2 2 2 2 12

2 0 0 0 1 3 6 8 10 34

3 0 0 0 1 3 7 14 22 62

4 0 0 0 1 3 7 15 30 94

Again, as with the top case, we do not find any known sequence to compare it. We compute

again the boundary ratio for these sets, and we get that, for x1 and n = 420, the contribution

is ≈ 0.82733.

We can not guarantee anything, but this seems to tend to one slowly, and in any case,

the bounds that we get for this n are still bigger than Belk and Brown’s.

We also tried
√
n− k, and one could do this again for any (n − k)1/l, with l ≥ 2, but

we stay far from getting any good bound. These are all concave functions, and for which∫ n

0
f(x) >> n.

It would be desirable to try other functions of n − x whose integral was asymptotically

like n, but this is quite hard, since we always need fn(0) → ∞, and if we ask to have

0 ≤ aj ≤ 1 for j = 0, . . . , n, we are already adding n to the integral.

5.2.3 Sets defined by breakpoints.

Just as we searched for Følner sets in the presentation, we could define other sets via the

definition of F . We are not going to do the whole study of these sets, but see how the

Corollary from Belk and Brown can be applied. Consider the set An of positive elements

in F whose breakpoints are of the form ( k
2n , y), for each n ∈ N. If we think about this set

as a family of tree diagrams, these elements corresponds to diagrams whose left tree has

height at most n.

This family of tree diagrams is closed by subtrees, but we cannot directly apply the

Corollary of the theorem from Belk and Brown, as that only works for forest diagrams. Let

us see how the forest diagram of these elements look.
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Consider a balanced tree of height k. Its corresponding pointed diagram is triangular:

Figure 5.2: A balanced tree of height 4

Figure 5.3: Pointed forest diagram of a balanced tree of height 4.

Any subtree in the original balanced tree corresponds to a subforest of the pointed forest

diagram, so we can conclude that this family is closed by subtrees (in the forest sense), and

thus Corollary 5.5 applies.

5.2.4 Følner sets in wreath products.

Amenable subgroups of F have their own Følner sequences. We could think that, as these

sets have small boundary inside the subgroup, they might have small boundary in the whole

F aswell. As we proved, F contains copies of Z o Z, and this is an amenable group. Let us

see whether we can transfer its Følner sequence to a Følner sequence in F .

The monoid of positive words, 〈a, t〉 ≤ Z o Z is free, so the group has exponential

growth, and thus the balls do not work as Følner sets. We take advantage of the fact that

there is an exact sequence

1 →
⊕
k∈Z

Z→ Z o Z→ Z.

The group Z is abelian and thus it has subexponential growth, so we have Følner sets

{tk : − n ≤ k ≤ n}. The group
⊕∞
−∞ Z is not finitely generated, but one can see that the

set

{ar1i1 . . . a
rl
il

: −n ≤ i1, . . . , il ≤ n and
∑
|ri| ≤ n}
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is a Følner sequence (care that we need to use here the definition of a Følner sequence for

a non-finitely generated group, so the condition must be satisfied for any finite subset of

generators.)

Thus, we propose as Følner sequence:

An = {ar1i1 . . . a
rl
il
tk : −n ≤ k ≤ n,−n ≤ i1, . . . , il ≤ n and

∑
|ri| ≤ n}.

Proposition 5.17. An is a Følner sequence in Z o Z.

Proof. Multiplying by t, one gets

t · ar1i1 . . . a
rl
il
tk = ar1i1−1 . . . a

rl
il−1t

k+1

so this only takes out those elements for which k = n and i1 = −n, and thus the ratio for
t is

|∂tAn|
|An|

=
1

(2n+ 1)2
n→∞−−−→ 0.

The symmetry of the sets implies that the ratio for t−1 is the same.
For a,

a · ar1i1 . . . a
rl
il
tk = ar1i1 . . . a

i0+1
0 . . . arlil

since the ai commute. Hence, it only adds one to the sum of the |ri|, and thus the only
elements leaving are those for which

∑
|ri| = n. Thus, we confirm that these are Følner

sets for Z o Z.

Now, consider a subgroup pf F isomorphic to Z o Z, with generators a and t = x0.

The action by x0 works just like the action by t in the previous proof, so this does not

present any problem.

Nevertheless, when multiplying by any other xi, generally we go out of the subgroup,

as

xiaj = xix
−j
0 axj0

and this usually changes the structure of the element.

This is similar to what happens if we use the Følner sets for Z = 〈t〉 in Z2 = 〈t, u〉.
The action by t is fine, but multiplying any element by u will make the element leave the

set, so the u contributes with 1 to the ratio, and so this is not a Følner set for Z2.
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CHAPTER

6
Conclusions

The purposes presented in the introduction have been attained: we have introduced

the property of amenability, along with its most important examples and results. Følner’s

theorem has been used to introduce a weaker form of amenability. We have studied the be-

havior of the Følner constant through subgroups and quotients, and computed it for some

particular groups. Apart from this, we have introduced Thompson’s group F , and shown

how most of the existing criteria for amenability either do not apply, such as subexponential

growth, or existence of free subgroups, or they are hard to check, such as Følner subsets.

Finally, even though we completed all our computations, our method turned out unsuccess-

ful in getting better bounds on the Følner constant of F . This work, along with Moore’s

theorem and Belk and Brown’s, highlights how hard it can be to study any possible Følner

sequence in F and obtain good results.

To conclude, it is remarkable how we treated a measure theoretical property from a

purely combinatorial point of view. Most of the difficulty of the original work presented in

Chapter 4 had more to do with enumerative combinatorics than actual group theory, and this

was all done in order to search for a measure. Moreover, we have studied groups through

their Cayley graph, in order to turn them into metric spaces and give them a topology. Apart

from this, we found several interpretations, in terms of binary trees, of a group which was

initially defined as a set of piecewise linear homeomorphisms of the interval. All these

ideas make beautiful examples of how different fields of mathematics interlace, and feed

back one another.
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42:499–507, 1998. 36

[18] J. T. Moore. Nonassociative Ramsey Theory and the amenability of Thompson’s

group, 2012. 3

[19] J. T. Moore. Fast growth in the Følner function for Thompson’s group F. Groups,

Geometry, and Dynamics, 7, 01 2013. 71

[20] A. Olshanskiy. On the problem of the existence of an invariant mean on a group.

Russian Mathematical Surveys, 35:180–181, 1980. 11

[21] E. Shavgulidze. The Thompson group F is amenable. Infinite Dimensional Analysis

Quantum Probability and Related Topics - IDAGP, 12, 06 2009. 3

[22] J. Tits. Free subgroups in linear groups. Journal of Algebra, 20(2):250 – 270, 1972.

11

[23] G. Tomkowicz and S. Wagon. The Banach-Tarski Paradox. Cambridge University

Press, 2016. 4

[24] J. von Neumann. Zur Allgemeinen Theorie des Masses. Fundamenta Mathematicae,

13(1):73–116, 1929. 1

94


