

2 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Professor Francesc Soriguera, my research supervisor,

for guiding me during the whole process and for bringing in continuous contributions to this project.

My grateful thanks are also extended to Marcel Sala and Enrique Jiménez for the valuable and

constructive suggestions during the development of this research work.

I would also like to thank Aimsun, the company I work for, for providing the tools and the

flexibility to progress in parallel to the ongoing tasks at work. Specially to my work colleague Pablo

Benavides, who has introduced me in the field of computer programming and taught me how to use

this powerful knowledge.

Finally, I wish to thank my parents, friends and close relatives for their support and encouragement

throughout my study.

3 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

ABSTRACT

Road space availability in cities can be rather limited and, in the future, it is expected to become

even scarcer. Road infrastructures congestion is one of the major issues affecting cities worldwide.

Thus, engineers and urban planners are challenged in studying the use of new Intelligent Transport

Systems that could provide a solution to current difficulties. ITS solutions take advantage of the

projected new technologies to find optimal solution for transportation.

This project aims to analyze the potential of car platooning to improve the overall road system

performance. The concept of platooning refers to the linking of vehicles through wireless technology

in groups of cars that travel very close one after another in highways. The leading vehicle controls

the speed and direction, whereas the following vehicles respond to the leader’s movement. Grouping

vehicles into platoons might increase road capacity by reducing headways, safety by removing human

errors and cost savings by reducing fuel consumption and emissions.

For platoons to be viable from the outset, the impact on the supporting infrastructure has to be

minimal: platoons and autonomous vehicles need to coexist with human driven vehicles in a mixed

freeway system.

To perform the platooning analysis from a traffic engineering perspective a platooning algorithm

has been developed, programmed, implemented and simulated on a three-lane ring road of 1.5km

length using Aimsun Next, a traffic simulation software. Results for different autonomous vehicles

penetration rates in the market have been obtained and analyzed.

4 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

CONTENT

1. Introduction .. 8

2. State of the Art ... 9

3. Platooning Technology .. 13

3.1. Concept ... 13

3.1.1. Platoon Formation .. 14

3.1.2. Platooning .. 15

3.1.3. Platoon Split ... 16

3.2. Security Gap ... 17

4. Simulation Environment Definition ... 21

4.1. The Road Network Model .. 22

4.2. Traffic Demand ... 25

4.3. Aimsun Next microscopic simulator .. 28

4.4. Aimsun Next microscopic API ... 32

4.4.1. Platooning API ... 32

5. Simulation Scenarios and Results ... 37

5.1. Summary – Assumptions and previous considerations .. 37

5.2. Scenarios ... 39

5.3. Data Collection ... 40

5.4. Results... 42

6. Conclusions and further research .. 53

References .. 55

Appendix .. 57

5 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

LIST OF FIGURES

Figure 1. Connected Vehicles. Own Source.. 9

Figure 2. Possible communication topologies. Source: [10] ... 12

Figure 3. Platoon Illustration. Own Source. .. 13

Figure 4. Schematic representation of a vehicle string with V2V communication and sensors.

Adapted from [15]. .. 14

Figure 5. Gap reduction for different reaction times and speeds. Own Source. 18

Figure 6. Screenshot of platoons during Aimsun simulation. Own Source....................................... 20

Figure 7. Network Layout. Own Source. .. 22

Figure 8. Barcelona’s ring-road and its exits. Source: Edited from Google Maps. 23

Figure 9. Input flow and turning percentages. Own source. ... 25

Figure 10. Exponential distribution (Cowan 1975). Source: Aimsun Next Manual. 27

Figure 11. Lane-changing example. Own Source. Adapted from Aimsun Next Manual. 30

Figure 12. On-ramp lane. Own Source. .. 31

Figure 13. Order among vehicles for iteration. Own Source. ... 33

Figure 14. API decision tree for vehicles driving in the middle or shoulder lanes. Own Source. 34

Figure 15. API decision tree for vehicles driving in the platooning lane. Own Source. 35

Figure 16. Example of a 2h traffic demand definition in Aimsun. Own Source. 39

Figure 17. Configuration of detectors in the network to gather simulation data. Own Source. 40

Figure 18. Fundamental Diagram. Own Source. ... 42

Figure 19. Scenario A – FD for each lane type ... 43

Figure 20. Scenario B – FD for each lane type ... 43

Figure 21. Scenario C – FD for each lane type ... 44

Figure 22. Scenario D - FD for each lane type .. 44

Figure 23. Scenario E - FD for each lane type .. 44

Figure 24. FD for traditional lanes - All scenarios .. 45

Figure 25. FD for platooning lanes - All scenarios ... 46

Figure 26. Speed difference between platooning and traditional lanes for a same time period 47

Figure 27. Average fundamental diagram per lane ... 47

Figure 28. Average length of the platoons .. 48

file:///C:/Users/laura.oriol/Desktop/TFM/Documento/TFM_LauraOriol_24.01.2019.docx%23_Toc536175090
file:///C:/Users/laura.oriol/Desktop/TFM/Documento/TFM_LauraOriol_24.01.2019.docx%23_Toc536175096
file:///C:/Users/laura.oriol/Desktop/TFM/Documento/TFM_LauraOriol_24.01.2019.docx%23_Toc536175100
file:///C:/Users/laura.oriol/Desktop/TFM/Documento/TFM_LauraOriol_24.01.2019.docx%23_Toc536175106

6 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Figure 29. Average number of platoons .. 48

Figure 30. Percentage of flow in platooning lane of AVs ... 49

Figure 31. Geometrical distribution of platoons ... 50

Figure 32. Traffic Demand at the on-ramp Vs On-Ramp Flow .. 51

Figure 33. Number of vehicles that were not able to enter the network for different demands 52

LIST OF TABLES

Table 1. Definition of different levels of automation. Source: SAE ... 10

Table 2. Lanes description. ... 24

file:///C:/Users/laura.oriol/Desktop/TFM/Documento/TFM_LauraOriol_24.01.2019.docx%23_Toc536175120

7 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

RELEVANT ABBREVIATIONS

API Application Programming Interface

AV Autonomous Vehicle

CV Connected Vehicle

CAV Connected and Autonomous Vehicle

V2I Vehicle-to-Infrastructure communication

V2V Vehicle-to-Vehicle communication

V2X Vehicle-to-Anything communication

8 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

1. Introduction

The future moves fast towards new technologies and the automotive sector is a great example of

it. The rapid development of autonomous vehicles is a topic of deep concern for independent

automobile companies, but also for governmental organizations and private individuals. At present,

the latest commercialized car models include some on-board features that provide automated

assistance to the driver, but full automation goes far beyond these tools. A full self-driving vehicle has

to be able to drive under all conditions from its origin to its destination without any driver input or

even without passengers.

Even if the technology is finally ready there are many legal and ethical implications that need to

be carefully considered before a vehicle can drive without any human input. These questions will not

be solved overnight, but at some point, it is expected that the technological developments coupled

with several successful field tests will encourage governmental organizations to establish a legislation

and increasingly authorize the presence of greater levels of automation in our roads.

It is clear that engineering and society are still some years away until reaching this point, but in the

meanwhile intelligent traffic management strategies can be developed to guarantee success upon their

introduction. Platooning is one of the set of technologies that self-driving cars might employ on

highways to increase road efficiency. The fundamental idea of this mechanism is to benefit from

wireless technology and other vehicle on-board sensors to remove human errors and enable cars to

drive tight one after another at high speeds, into a trainlike group of cars. It is expected that the

organization of vehicles into platoons, will increase the capacity of the existent roads and potentially

improve safety.

Most of the research done in the filed considers dedicated infrastructure for platoons. Lanes might

be restricted to autonomous vehicles when the penetration rate of autonomous vehicles is high,

however for platoons to be viable from the outset, the impact on the supporting infrastructure has to

be minimal. Platoons need to be able to operate on unmodified public motorways and interact with

other road users. This research will study the potential and the associated challenges of grouping

vehicle into platoons when sharing the road with non-autonomous vehicles.

9 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

2. State of the Art

There are two main areas of development in the domain of the automobile industry. Connected

Vehicles (CV) and Autonomous Vehicles (AV).

Connected Vehicles are vehicles that can communicate with each other

(Vehicle-to-Vehicle, V2V), with roadside infrastructure, such as traffic control signals or similar

stationary structures (Vehicle-to-Infrastructure, V2I) or with other devices, such as mobile phones

carried by road users (Vehicle-to-Anything, V2X).

The fundamental principle of connected vehicles is that they work as a mesh network, where every

node (car, smart traffic signal, roadside device, etc.) can send, receive or retransmits signals. A pair

of connected vehicles can therefore share information with each other about their speed, acceleration,

location, direction and other similar messages that can help them to control their movements

coordinately.

Figure 1. Connected Vehicles. Own Source.

10 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Autonomous Vehicles (AV) are vehicles that combine a variety of onboard sensors, cameras, GPS

and other telecommunications that perceive and process information in real-time and analyze the data

using artificial intelligence and other complex computer algorithms in order to allow the vehicle to

navigate in a safe and appropriate way without direct driver input. Functions such as steering,

acceleration/deceleration or the monitoring of environment are carried out by the vehicle in a fully

autonomous vehicle.

The Society of Automotive Engineers, SAE, and the National Highway Safety Administration,

NHTSA, provides a nomenclature with detailed definitions for six levels of driving

automation, ranging from manually driven vehicles with no automation (level 0) to full driving

automation (level 5). [7]

Level of Automation Terminology Definition

Level 0 No Automation
The driver is full in control of the vehicle at all times managing the

operational and tactical aspects of driving tasks

Level 1 Driver Assistance

Some automated assistance through control of vehicle speed and

lane position. At this level the driver is required to take over the

vehicle at any instance, thereby requiring hands on the steering

wheel at all times and feet near the brake and acceleration pedals.

Level 2 Partial Automation

The execution of steering and acceleration/deceleration are carried

out by driver assistance systems. All other operational and tactical

aspects of driving are carried out by the driver.

Level 3 Conditional Automation

The execution of steering, acceleration/deceleration and the

monitoring of environment are carried out by the vehicles. When

the vehicle is in control, the driver is not required to monitor at all

times but is required to take control when required (upon request

to intervene)

Level 4 High Automation

Driving Systems contribute to full self-driving under certain

conditions. Under such conditions, e.g. urban ride sharing, the

vehicle drives without human intervention. The role of the driver

is only to provide the destination

Level 5 Full Automation
Full self-driving capabilities under all conditions. The vehicle can

drive without any human input and without driver/passengers.

Table 1. Definition of different levels of automation. Source: SAE

11 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The key difference between Connected and Autonomous Vehicles lies in the fact that a CV can

hardly become fully autonomous as it depends on information received from the infrastructure and

other surrounding vehicles through wireless network technology. It can provide some help to the

driver but cannot drive the car by itself. On the other hand, AVs are independent of wireless

communications and use on-board sensor-based technologies that would allow to control the vehicle

without driver input. However, CAVs, Autonomous and Connected Vehicles, a combination of both

sensor-based and connected technologies is compatible and could enhance performance by

complementing the limitations of each other.

Platoons might be one of the beneficiaries of such combination. The vehicles in the platoon will

use sensors and will be linked to each other through wireless V2V communication. In the field of

platooning, most of the research has been done with trucks as they comprise a big interest for the

goods industry. As in truck platooning, the formation of car platoons can happen in real time or be

scheduled in advance. Variables like departure time, arrival time and route are mostly known in

advance for trucks, therefore, a centralized platooning service provider could manage and plan

optimal truck platooning solutions [3]. In the domain of private vehicles those variables are rather

uncertain. Consequently, cars will most likely form platoons dynamically on the road without any

prior planning.

Vehicular Ad-hoc Network, VANETs, is the spontaneous creation of a wireless network for V2V

data exchange. The Institute of Electrical and Electronics Engineers, IEEE, specifies the technology

suitable for vehicular communication networks. The defined IEEE 802.11p/1609.x families, are a

suite of communication protocols to address vehicular communication networks. In terms of the

present study there are two essential variables regarding the information transmission between two

vehicles: communication range and latency. Communication range can be defined as the maximum

distance between transmitter and receiver for normal operation and latency is defined as the time since

the transmitter sends the information until it is successfully delivered to the receiver. In [13], real-

world tests were reported in an uncontrolled approach to evaluate the IEEE 802.11p and LTE-based

V2V communication in terms of end-to-end latency. The minimum latency observed is 10ms and the

maximum communication range is 500m. In this project we will consider a latency of 100ms, 0.1s

and the maximum communication range will be neglected. Anyway, it will be checked that the 500m

are not exceeded.

12 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The information sharing process between vehicles is a key point in the platooning system. There

are different topologies that can be implemented to address the information sharing problem in a

platoon. [9] In Figure 2, the most common topologies are presented.

Figure 2. Possible communication topologies. Source: [10]

It is assumed that every vehicle in the platoon has its own controller. In order to make control

decisions the controller needs information of all the platoon vehicles, or at least from the preceding

ones, therefore topology (d) in Figure 2 is used, where every vehicle broadcasts its information to all

other vehicles. Because of the communication latency, the received information will be 0.1s outdated.

This delay and the related consequences will be addressed in the following sections.

13 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

3. Platooning Technology

3.1. Concept

The fundamental principle of platooning is to benefit from the available technology to enable

vehicles to travel close one after another without compromising security. A platoon is composed by

N + 1 vehicles, the platoon leader and the N following vehicles. There are therefore, two big roles in

a platoon: platoon leader and follower.

Figure 3. Platoon Illustration. Own Source.

As a platoon leader, the vehicle will travel like the rest of autonomous vehicle, using its sensors

and any other available information obtained through wireless technology. A vehicle will take the

leadership role if the preceding vehicle is a conventional car or if the preceding vehicle is not in its

close proximity. Even if the communication range can reach up to greater distances, two vehicles will

only join into a platoon if their distance is less than 25m. This is to ensure communication efficiency

and to avoid long lasting accelerations. The platoon leader will adjust its speed to the traffic conditions

and travel at a maximum speed equal to the speed limit. Once other vehicles start to join the platoon

the leader will send the required information about its speed, acceleration or destination to its

followers, which will follow according to a set of predefined rules.

14 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

As a follower, the vehicle goes through three stages in the platooning process, first of all, the

platoon formation, where the vehicle starts to approach its preceding vehicle to join the platoon. Once

the objective gap is reached the vehicles will travel as a unit in the platoon and finally the platoon

dissolution, when the vehicle leaves the platoon.

3.1.1. Platoon Formation

During the formation process the vehicle will need to accelerate to approach the preceding vehicle.

In order to do so the vehicle will be allowed to exceed by a 10% the speed limit. This is 110km/h.

The formation of the platoon must be smooth to ensure the passenger’s safety and comfort. Two

vehicles driving one after another will be paired if they are inside the communication range and both

are equipped with the necessary platooning technology. Cooperative Adaptive Cruise Control

(CACC) uses radar-based systems to measures the distance to the predecessor and also exchanges

information with it by wireless communication. This enables a vehicle to follow its predecessor at a

closer distance under tighter control [11].

Figure 4. Schematic representation of a vehicle string with V2V communication and sensors. Adapted from [15].

The follower will approach the leader using the following CACC formula:

𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑘1 · 𝑎𝑙𝑒𝑎𝑑𝑒𝑟 + 𝑘2 · 𝑒𝑣 + 𝑘3 · 𝑒𝑥 𝑤𝑖𝑡ℎ 𝑘1, 𝑘2, 𝑘3 > 0

𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 is the acceleration that the follower should apply in m/s2

𝑎𝑙𝑒𝑎𝑑𝑒𝑟 is the acceleration of the leader in m/s2

𝑒𝑣 is the velocity error, equal to the relative speed between leader and follower in m/s

𝑒𝑥 is the gap error, the difference between the desired gap and the current one in m

𝑘1, 𝑘2, 𝑘3 are controller feedback loop gains for acceleration, velocity and gap error.

desired

distance

𝒆𝒙 𝒆𝒙
desired

distance

distance

to leader
0

0

i

s

t

a

n

c

e

t

o

l

e

a

d

e

r

1

0

i

s

t

a

n

c

e

t

o

l

e

a

d

e

r

n

0

i

s

t

a

n

c

e

t

o

l

e

a

d

e

r

15 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The values for those coefficients have been chosen to be:

{

𝑘1 = 1.0
𝑘2 = 0.3
𝑘3 = 0.1

The variable k1 has been selected to take a value of 1 in order to apply the same acceleration as the

leader, the follower will accelerate or decelerate in the same amount as the platoon leader at the time

when the information was sent. The values for k2 and k3 represent the speed and space differences

between leader and follower. The system slows down when it approaches a leader with a lower speed

and accelerates if the space in between them is greater than desired. Selecting different values for k2

and k3, 0.3 and 0.1 have shown to be a good relation in order to approach the leader in a smooth way

and with minimal speed difference. To enhance driving comfort and avoid abrupt movements the

maximum accelerations during the process are constrained to -3m/s2 and 1.5m/s2. This process can be

understood as a very efficient driver that reacts almost imminently to any acceleration of the leader

and approaches it in a very smooth way by adjusting the speed to match the desired gap and the speed

of the leader.

3.1.2. Platooning

When the objective gap has been reached vehicles will travel as a unit at the same speed. The speed

of each joined vehicle is subject to minor adjustments to adapt the desired distance to the local leader

when there is a change in speed.

To calculate the speed of each joined vehicle the following relation will be applied:

For the first following vehicle (i=1) after the platoon leader:

𝑣𝑗𝑜𝑖𝑛𝑒𝑑,1(𝑡 + ∆𝑡) = 𝑣𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑙𝑒𝑎𝑑𝑒𝑟(𝑡) +
(𝐷1_𝑃𝐿(𝑡) − 𝐷𝐷1(𝑡)

3.6
∗ 0.1

{

 𝑣𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑙𝑒𝑎𝑑𝑒𝑟(𝑡) = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑙𝑒𝑎𝑑𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑣𝑗𝑜𝑖𝑛𝑒𝑑,1(𝑡 + ∆𝑡) = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟 𝑡𝑜 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡

𝐷1_𝑃𝐿(𝑡) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑙𝑒𝑎𝑑𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐷𝐷1(𝑡) = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑙𝑒𝑎𝑑𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

16 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

For the following vehicle that occupies the ith position (i >2):

𝑣𝑗𝑜𝑖𝑛𝑒𝑑,𝑖 (𝑡 + ∆𝑡) = 𝑣𝑗𝑜𝑖𝑛𝑒𝑑,𝑖−1(𝑡 + ∆𝑡) +
(𝐷𝑖_(𝑖−1) − 𝐷𝐷𝑖)

3.6
∗ 0.1

{

𝑣𝑗𝑜𝑖𝑛𝑒𝑑,𝑖 (𝑡 + ∆𝑡) = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑡𝑜 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡

𝑣𝑗𝑜𝑖𝑛𝑒𝑑,𝑖−1(𝑡 + ∆𝑡) = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑖 − 1) 𝑡𝑜 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡

𝐷𝑖_(𝑖−1) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑖 − 1) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐷𝐷𝑖(𝑡) = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑖 − 1) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

The first platoon vehicle after the leader will target a greater desired distance than the following

vehicles, 𝐷𝑖_(𝑖−1) < 𝐷1_𝑃𝐿. Those distances will be defined in section 3.2. This is to consider the

communication latency, the 0.1s of delay since the information has been sent and received. This

latency will only exist between the platoon leader and the first platoon follower. The remaining

followers can be considered as a unit, as if the first follower would be a very long vehicle.

3.1.3. Platoon Split

At some point the vehicle will need to change its course and leave the platoon. Vehicles will be

aware of their need to leave the platoon 1000m before the off-ramp. To avoid having all vehicles

doing the lane-changing at the same position, a distance variability of 20% has been set. Therefore,

vehicles will know they need to leave the platoon in a range of 800m–1200m before the exit (a

uniform random distribution determines the value). As of that moment, the vehicle will start searching

for a gap in the adjacent lanes. As long as the gap isn’t enough to ensure a safe lane-changing the

vehicle will continue in the platoon. If the vehicle hasn’t been able to change lanes 400m before the

exit, it will start to become more aggressive. The vehicle will slow down and wait for cooperation in

the adjacent lane in order to accomplish the lane-changing. The heading part of the platoon will

continue as intended while the following part will brake accordingly, if this process takes too long it

might split the platoon into two new platoons. Generally, the anticipation will be enough and the

lance-changing will be done without affecting the platoon. Once the vehicle has departed from the

lane, the formation process will be applied again between the leader and the follower of the missing

vehicle to close the existing gap.

17 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

3.2. Security Gap

In general, the way in which a vehicle reacts to changes in acceleration or deceleration of the

surrounding vehicles, depends on the driver’s own characteristics and perceptions. When the

preceding vehicle decelerates, the driver might also rely on the tail brake lights of the preceding

vehicle. In an emergency, a driver must bring the vehicle to a stop in the shortest distance possible.

This distance will be determined by two factors, the braking distance and the reaction time.

The braking distance, x(tstop), refers to the distance the vehicle will travel once the driver has hit

the brakes until it comes to a complete stop. The main factors that affect the braking distance are the

speed at which the vehicle is travelling, v0, and the deceleration capacity of the vehicle, a. The

movement equations of the vehicle can be easily defined using Newton’s second law of motion:

{
𝑥 (𝑡) = 𝑥0 + 𝑣0 ∙ 𝑡 +

1

2
∙ 𝑎 ∙ 𝑡2

 𝑣 (𝑡) = 𝑣0 + 𝑎 ∙ 𝑡

 ↳ if v(t) = 0 → tstop = -
v0

a

For a certain initial speed, v0, and a uniform deceleration, a (a<0), the vehicle needs a time tstop to

stop the vehicle. And consequently, the total braking distance is:

 𝑥(𝑡𝑠𝑡𝑜𝑝) = 𝑥0 −
1

2
∙
𝑣0

2

𝑎

Therefore, if both vehicles start reducing their speed at the same time the gap variation, ∆gap, due

between the rear bumper of the leader and the front bumper of the follower after the complete braking

(a<0) can be determined as:

∆𝑔𝑎𝑝 = [𝑥0𝐿𝑒𝑎𝑑𝑒𝑟 −
1

2
∙
𝑣0𝐿𝑒𝑎𝑑𝑒𝑟

2

𝑎𝐿𝑒𝑎𝑑𝑒𝑟
− 𝑙𝑒𝑛𝑔𝑡ℎ

𝐿𝑒𝑎𝑑𝑒𝑟] − [𝑥0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 −
1

2
∙
𝑣0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2

𝑎𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟
] − [(𝑥

0𝐿𝑒𝑎𝑑𝑒
− 𝑙𝑒𝑛𝑔𝑡ℎ

𝐿𝑒𝑎𝑑𝑒𝑟
) − 𝑥0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟]

∆gapBraking=
1

2
∙ [
v0Follower

2

aFollower
 -
v0Leader

2

aLeader
]

End position of the leader

(rear bumper)

End position of the follower

(front bumper)
Initial gap

18 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Reaction time, RT, is the time interval between the moment when the event is observed and when the

driver gets to apply the brakes. Reaction times vary from person to person and can be affected by

many external factors like tiredness or distractions. Ranging from 0.7s to 3s.

If the follower is driving at a constant speed gap the reduction due to this reaction time is basically

the distance the vehicle travels before putting on the brakes

∆gapReaction Time= - v0Follower∙ RT

The addition of these two values gives the total distance reduced (∆gap<0) or increased (∆gap>0)

between a leader and its follower during the whole braking process.

 ∆𝑔𝑎𝑝𝑇𝑜𝑡𝑎𝑙 =
1

2
∙ [
𝑣0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2

𝑎𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟
 −

𝑣0𝐿𝑒𝑎𝑑𝑒𝑟
2

𝑎𝐿𝑒𝑎𝑑𝑒𝑟
] − 𝑣0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ∙ 𝑅𝑇

Under the same speed and deceleration conditions of a leader and its follower, during an emergency

brake the loss of gap depends only on the linear term in the previous equation. See in the following

figure how the gap reduction varies among different speeds and reaction times.

Figure 5. Gap reduction for different reaction times and speeds. Own Source.

19 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The greater the reaction time of the follower is and the greater the speed difference is, the higher

probability of collision. Therefore, any driving assistance that decreases the amount of time taken to

react, reduces the risk of collision significantly. The communication latency for V2V communication

has defined to be 0.1s which makes a big difference in terms of gap reduction.

The platoon followers will travel together as a unit at the same speed. They move coordinately as

one. The desired distance, DD, between the vehicles will be limited to a headway of 0.1s and to a

minimum spacing of 0.5m. The desired distance between the followers will therefore vary according

to the speed, v.

𝐷𝐷 = max (0.5 ,
𝑣 [
𝑘𝑚
ℎ
]

3.6
∙ 0.1 ∙ 𝛾

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
)

γLatency is a safety factor that will be taken as 1.1 to cover any perturbation in the communication.

Note that for speeds under 16,36 km/h (speed at which the second terms equals to 0.5m) the desired

distance will be controlled by the spacing limitation of 0.5m and for greater speeds the headway will

control the spacing.

To prevent chain collisions in the platoon, where an initial collision triggers a series of collisions

involving the following vehicles, an additional security distance will be set between the platoon leader

and the first following vehicle. The safety factor γLatency intends to cover any perturbation in the

communication and the safety factor γBraking aims to consider other factors that can increase the braking

distance. i.e. bad condition of the car’s brakes, a poorly maintained road surface, poor weather

conditions, etc.

 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −∆𝑔𝑎𝑝𝑇𝑜𝑡𝑎𝑙 = −
1

2
∙ [
𝑣0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2

𝑎𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟
 −

𝑣0𝐿𝑒𝑎𝑑𝑒𝑟
2

𝑎𝐿𝑒𝑎𝑑𝑒𝑟
] ∙ 𝛾𝐵𝑟𝑎𝑘𝑖𝑛𝑔 + 𝑣0𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ∙ 𝑅𝑇 ∙ 𝛾𝐿𝑎𝑡𝑒𝑛𝑐𝑦

{

v0Leader , v0Follower in [m/s]

𝛾𝐵𝑟𝑎𝑘𝑖𝑛𝑔 = 1.1

𝛾𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 1.1

20 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

In general, the speed of the leader and the follower will be very similar, because the formation

process with the CACC approaches the leader with minimal differences in speed. In the worst-case

scenario they would travel at 100km/h. Considering a latency of 0.1s and a maximum deceleration of

-6m/s2 the security distance is:

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

2
∙ [
[100𝑚/𝑠]2

−6𝑚/𝑠2
 −

[~100𝑚/𝑠]2

−6𝑚/𝑠2
] ∙ 1.1 +

100

3.6
𝑚/𝑠 ∙ 0.1𝑠 ∙ 1.1 ≅ 𝟑𝒎

In the following screenshot it can be observed how the first platoon follower keeps a greater

distance to the leader than the rest of the platoon members, which travel at tighter distance

Figure 6. Screenshot of platoons during Aimsun simulation. Own Source.

■ Platoon Leader

■ Follower

■ Autonomous vehicle not platooning

■ Conventional Truck or Car

~0

21 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

4. Simulation Environment Definition

Intelligent transport systems (ITS) technologies require a first planning stage, where it is important

to ensure that the studied new technology is feasible before any further development or field test is

undertaken. The large investments usually required by transportation projects must be justified in a

solid way. Therefore, the assessment of a technology like platooning requires from simulation tools

that allow to test and visualize the expected impacts of complex models in a simple way. Simulation

has been proven to be a powerful tool to analyze and draw reliable conclusions concerning the

employment of new traffic management strategies or technologies that would require the analysis and

treatment of sophisticated numerical models. Thanks to simulation, details can be appreciated that

might be lost in analytical research.

Aimsun Next is a traffic modelling software with an integrated simulator, which allows to simulate

at a microscopic, mesoscopic or macroscopic level of detail from a single intersection to an entire

region. This study focuses on the movement of each individual vehicle, but also on the interaction

with other vehicles, requiring a high level of detail. Therefore, a microscopic approach will be the

most suitable analysis method. A basic traffic microsimulation model in Aimsun Next requires three

main components, before the network can be considered ready to simulate:

I. The Road Network Model

II. Traffic Demand

III. Calibration of Aimsun Next parameters

In this project an additional component will be needed to allow the autonomous vehicles being

simulated according to the platooning methodology. It is an externally programmed algorithm that

will be read during the simulation and will update some of the vehicles according to it.

IV. Aimsun Next microscopic API

Those four steps are explained in detail in the following sections.

22 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

4.1. The Road Network Model

The first step towards building a traffic microsimulation model is to define the geometrical layout

of the road network in Aimsun Next. The shape of the road sections and turnings can be modelled in

a straightforward way by means of the software’s user interface. To perform the platooning analysis

a three-lane highway ring road of approximately 1.5km length will be used. The model includes an

on-ramp and an off-ramp lane to allow vehicles merge and exit from the main highway traffic. The

geometrical representation of the model can be seen in Figure 7.

One of the great advantages of the proposed geometry is the possibility to assess the evolution of

traffic for long periods of time, until reaching stationarity, in a finite length of the infrastructure. With

a single on- and off-ramp it is possible to simulate the whole range of densities as well as any average

trip distance. Another big advantage of this straightforward approach/model is that it enables to speed

up the simulation. Large models usually need high times of simulation.

Figure 7. Network Layout. Own Source.

23 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Many towns, cities or even countries are encircled by a ring road-shaped infrastructure. This kind

of highway configurations aim to reduce traffic volumes in the streets of the urban center by appealing

drivers to use the outskirt parts of the network. This kind of solution removes traffic from the center

and offers an alternate route around the city for drivers traveling from one side to the other without

being forced to access the congested and slow city roads.

Barcelona is a great example. See Figure 8. Its ring road consists of two parts, the so-called Ronda

de Dalt or B-20 motorway (the upper ring road), near the mountain area, and the Ronda Litoral or B-

10 motorway (the seaside ring road), near the coastal zone. Exits on the rondes are numbered from 1

to 30 and the ring road length sums up to a total of 46km, 26km and 20km respectively. The average

distance between two consecutive exists is therefore 1.53km. (46km/30exits).

Figure 8. Barcelona’s ring-road and its exits. Source: Edited from Google Maps.

24 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Note that this average distance between two consecutive exits in Barcelona’s ring road matches up

with the length of the network that will be used for simulation, 1.5km, meaning that a vehicle that

completes a loop in the model could represent a vehicle that has traveled one exit in the highway.

The width of the lanes has little or no effect on the model outputs, but for consistency with

European roads, where the width of the lanes varies by country between 2.5 to 3.25m, a width of 3m

has been set to all the existing lanes in the model.

The speed limit will be 100km/h.

The following table contains detailed information of length and radius for each of the lanes in the

model. Also, a description is included in Table 2. This description will be used from now on to refer

to any of the three lanes in the highway.

In general, heavy vehicles are not supposed to use the left lane. Some countries have even laws

prohibiting trucks from the left and its use is only allowed in certain circumstances. All the highway

lanes will be shared between autonomous and non-autonomous vehicles, except for trucks, to which

the use of the platooning lane will be restricted. Trucks will therefore use the middle and the shoulder

lanes.

Lane Description Radius [m] Length [km]

Lane 1 Shoulder Lane 256 1,608

Lane 2 Middle Lane 253 1,590

Lane 3 Platooning Lane 250 1,571

Lane entry On-ramp Lane 259 0,1

Lane exit Off-ramp Lane 259 0,1

Table 2. Lanes description.

25 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

4.2. Traffic Demand

The Traffic Demand sets the number of vehicles that will arrive to the network for a certain period

of time and how they will travel to their destination. Aimsun Next offers two principle means of

describing a Traffic Demand, either by using Origin-Destination Matrices (OD-Matrices), where

basically the amount of vehicles between origins and destinations are specified and then the simulator

controls the path or by using Traffic States, where at each entrance point to the network the input

flows are specified and also the turn percentages from every section to all the sections accessible from

it need to be defined.

For the study we are interested in, the vehicle should stay for some loops in the model and

randomly leave the highway after a certain travelled distance. An OD-Matrix would force the vehicle

to exit immediately after reaching its exit, whereas a traffic state would allow the vehicle to stay in

the highway with some probability. Defining the traffic demand using a traffic state means specifying

basically two variables in our model. First, the input flow, which is the number of vehicles that will

arrive per hour to the on-ramp lane. Second, the turn percentages of vehicles that will exit the highway

and of vehicles that will stay in the highway (α and 100 – α in %). See Figure 9.

Figure 9. Input flow and turning percentages. Own source.

26 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The input flow is a variable that will be changed among scenarios and will generate different

demand situations. The higher the input flows are set, the higher the circulating flows will be in the

highway roads.

The value of α represents the split rate at the off-ramp zone, at a microscopic level of detail, where

single vehicles are considered, this can be seen as the likelihood that the vehicle stays or leaves the

highway in the next exit. On a more general level, the value is also a measure of the expected average

trip length of all the vehicles in the network. Once the average trip length is known, the split rate can

be derived with the following relation:

𝛼 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑖𝑝 𝑙𝑒𝑛𝑔𝑡ℎ

Note that if for example α = 100% the average trip length will be 1.5km, equal to the ring length,

as all the vehicles will leave the loop the first time they pass by the exit. For consistency with the

criteria used to define the length of the loop, an average trip length for Barcelona’s ring road will be

considered to determine the split ratio. The average trip length should take a smaller value than the

half of the length of the complete ring road, this is 23km. Based on the Workday Mobility Survey

(EMEF) of 2017 [8] carried out every year on a sample of residents of the metropolitan area of

Barcelona, 15km is a reasonable average trip length in an urban environment like Barcelona´s ring

road. Using the previous relation, the split ratio would take a value of:

𝜶 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑖𝑝 𝑙𝑒𝑛𝑔𝑡ℎ
=
1.597 𝑘𝑚

15 𝑘𝑚
≅ 𝟏𝟎%

This split rate will be fix for all the scenarios, a percentage of 10% must be small enough to allow

vehicles exit the highway without blocking the exit area. The off-ramp should not work as an active

bottleneck. Therefore, the off-ramp side lanes will be long enough to ensure that the leaving traffic

does not affect the traffic on the main stream.

27 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Another important factor to consider is the time interval between two consecutive vehicles (the

headway) at the entry points of the network. Whereas the Traffic Demand sets the average number of

vehicles which will arrive in a time period, the arrivals algorithm defines how those arrivals are

distributed in time. The headway model can be exponential, uniform, normal, constant, ASAP (as

soon as possible) or externally defined with a custom distribution.

The default arrival model in Aimsun Next is the exponential distribution. In transportation it is one

of the most common distributions used to model arrivals. Time intervals between two consecutive

vehicle arrivals (headway) at input sections are sampled from an exponential distribution (Cowan

1975).

Figure 10. Exponential distribution (Cowan 1975). Source: Aimsun Next Manual.

This distribution assumes that each vehicle arrives at a random time without any dependence on

the time the previous vehicle arrived. The mean input flow in vehicles/second can be estimated from

the input flow in the Traffic Demand. The algorithm for calculating the time headway, t, in the

exponential distribution is the following:

𝑡 = −
1

𝜆
· ln 𝑢

{
𝑢 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

𝜆 = 𝑚𝑒𝑎𝑛 𝑖𝑛𝑝𝑢𝑡 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑣𝑒ℎ/𝑠

28 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

4.3. Aimsun Next microscopic simulator

In a microscopic simulation the whole duration of the simulation is split into small time intervals

called simulation steps (∆t). At each simulation step the speed, acceleration and position of all the

vehicles in the network are calculated and updated. The minimum time step available in Aimsun Next

is 0.1s. This value matches with the communication latency of V2V communication, therefore a

simulation step of 0.1s will be used for this project, meaning that the simulator will calculate the new

state of all the vehicles in the network every 0.1s.

Aimsun Next allows to define different reaction times by vehicle type or even different reaction

times for a specific vehicle type according to a discrete probability function. Where the sum of all the

probabilities adds up to 1. For human-driven trucks and cars a reaction time of 0.8s is set. For

autonomous vehicles that use wireless communication a reaction time of 0.1s will be set.

The logic of the simulation process in Aimsun Next is governed by different models. In our case

mainly three different models will be applied. The car following, the lane changing and the on-ramp

models [1]. They are explained hereunder:

• Car-following model

This model will be applied if the vehicle does not need to change lanes. The microscopic

car following model implemented in Aimsun Next is based on the Gipps model (Gipps 1981 and

1986b) [9]. In a simplified form it basically consists on the evaluation of two components, Va and

Vd, the maximum speed in acceleration or deceleration evaluation. V (n, t+T), the speed of vehicle n,

in the next simulation step, t+T, will be the minimum between those two components.

𝑉 (𝑛, 𝑡 + 𝑇) = min(𝑉𝑎 , 𝑉𝑑)

{
𝑉𝑎 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑓𝑜𝑟 𝑖𝑡𝑠 𝑛𝑒𝑥𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 𝑤ℎ𝑒𝑛 𝑛𝑜 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑

𝑉𝑑 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑓𝑜𝑟 𝑖𝑡𝑠 𝑛𝑒𝑥𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑

29 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 The first component, Va, represents the intention of the vehicle to achieve its desired speed. In

uncongested traffic conditions the vehicle will accelerate to reach this speed. The maximum speed to

which the vehicle can accelerate during a time period (t, t+T) is given by the following formula1:

𝑉𝑎(𝑛, 𝑡 + 𝑇) = 𝑉(𝑛, 𝑡) + 2.5 · 𝑎(𝑛) · 𝑇 · (1 −
𝑉(𝑛, 𝑡)

𝑉∗(𝑛)
) · √0.025 +

𝑉(𝑛, 𝑡)

𝑉∗(𝑛)

{

𝑉𝑎(𝑛, 𝑡 + 𝑇)

𝑉(𝑛, 𝑡)

𝑎(𝑛)

𝑉∗(𝑛)
𝑇

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑒𝑒𝑑 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑐𝑎𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡, 𝑡 + 𝑇)

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

The second component, Vd, reproduces the limitations imposed by the preceding vehicle when

trying to achieve the desired speed. The maximum speed a vehicle can reach during a time interval

according to its own characteristics and the restrictions imposed by the presence of the lead vehicle

is limited by:

𝑉𝑑(𝑛, 𝑡 + 𝑇) = 𝑑(𝑛) · 𝑇 + √𝑑(𝑛)
2 · 𝑇2 − 𝑑(𝑛) [2 · {𝑥(𝑛 − 1, 𝑡) − 𝑠(𝑛 − 1) − 𝑥(𝑛, 𝑡)} − 𝑉(𝑛, 𝑡) · 𝑇 −

𝑉(𝑛 − 1, 𝑡)2

𝑑′(𝑛 − 1)
]

{

𝑑(𝑛)

𝑑′(𝑛, 𝑡)

𝑥(𝑛 − 1, 𝑡)

𝑠(𝑛 − 1)
𝑥(𝑛, 𝑡)

𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 "𝑑(𝑛) < 0"

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 "𝑑(𝑛) < 0"
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 − 1 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 − 1

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

The estimation of the leader’s deceleration, d’(n-1), is a function α, the sensitivity factor:

𝑑′(𝑛 − 1) = 𝑑(𝑛 − 1) · 𝛼

If α < 1, the vehicle underestimates the deceleration of the leader and consequently the vehicle

becomes more aggressive, while if α > 1 the vehicle overestimates the deceleration of the leader and

therefore becomes more prudent by increasing the gap. In this work α will be set to 1.

1 Note that if the vehicle is driving at its desired speed the acceleration term is 0, because V (n, t) = V* (n, t)

gap

30 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

• Lane-changing model

This model will be applied if the vehicle desires to change lanes. The lane-changing model

implemented in Aimsun is also a development of the Gipps lane-changing model (Gipps 1986a and

1986b). The vehicle takes the decision to change lanes according to three factors:

- The need of the lane change. This is mainly determined by the route, i.e., the accessibility

options from the current lane to follow the desired path.

- The desirability of the lane change. This depends on whether there will be any improvement

in the traffic conditions for the driver as a result of the change. I.e. when leader vehicle is

slower than the desired speed.

- The feasibility of the lane. This requires that there is an adequate gap to make the lane change.

It calculates both the braking imposed by the future downstream vehicle to the lane-changing

vehicle and the braking imposed by the lane-changing vehicle to the future upstream vehicle.

If both braking levels are acceptable, then lane changing is possible.

To understand the driver’s behavior in the lane-changing decision process, see in Figure 11 a

schematic representation of the three possible lane-changing situations of a vehicle that wants to go

straight:

According to the route,

the vehicle is in the wrong

lane, but it is still not

aware that it will need to

change lanes further on.

In this case the lane-

changing decisions are

mainly governed by the

traffic conditions and by

the improvements that the

driver will get from

changing the current lane.

The vehicle knows it its

driving in the wrong lane.

The vehicle will tend to

find gaps that are located

either downstream or

adjacent to reach the

valid lane.

The vehicle urgently

needs to change lanes to

take the desired direction.

It will reduce speed if

necessary, even coming to

a complete stop in order to

make the lane-changing

possible.

Figure 11. Lane-changing example. Own Source. Adapted from Aimsun Next Manual.

31 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

• On-Ramp model

This is the model that will be applied when the vehicle is merging into traffic from an on-ramp

lane.

Figure 12. On-ramp lane. Own Source.

The lane changing model applied at on-ramps is the same cooperative model as for normal lane

changes with three additional controls:

1.) First vehicle on is first vehicle off (FIFO): In our model this option will be toggled on, meaning

that only the first vehicle on the ramp can change lane to move off it, if toggled off, all vehicles on

the ramp may try to merge.

2.) Merging Distance:

The merging distance controls where the vehicle can start to merge onto the main carriageway. By

default, it is the maximum value between five times the length of the vehicle, L, or five times the

distance travelled in one reaction time, RT at the current speed of the vehicle, V.

𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = max [5 · 𝐿 , 5 · 𝑉 · 𝑅𝑇]

3.) Cooperation Distance:

The distance from the end of the ramp where a vehicle may start to receive co-operation from vehicles

on the main carriageway to make its lane change. This distance is set to be at the start of the section.

32 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

4.4. Aimsun Next microscopic API

The Aimsun Next microscopic Application Programming Interface (API) is a set of functions, in

Python or C++, that allow programmers to read and modify information concerning vehicles during

an Aimsun Next microscopic simulation. Therefore, it can be used to model some connected and

autonomous vehicle applications like platooning.

When the API is active in the simulation, Aimsun Next forces an update of the vehicles using the

programmed algorithm at each simulation step. The present algorithm will be programmed in order

to modify only vehicles that are subject to use the platooning technology. Therefore, autonomous

vehicles will be updated according to the platooning API and a regular cars and trucks will be updated

according to Aimsun Next simulator.

As mentioned before, the platooning API describes the sequence of specified actions that will be

followed at each simulation step. Therefore, every 0.1s the algorithm is run from top to bottom.

The executed actions aim to control the autonomous vehicles inside the network and make them

behave according to the (in Section 3) defined platooning methodology. Note that the remaining

vehicles, conventional trucks and cars, which do not support platooning technologies, will be

simultaneously controlled by Aimsun’s microscopic simulator and behave according to its predefined

car following and lane changing models seen in the previous section.

4.4.1. Platooning API

The logic of the platooning API algorithm that is followed during each simulation step will be

explained in a simplified way in this section. The complete code can be found in the Appendix.

The first step of the structure is to read the information of every single vehicle inside the network.

The collected information includes the vehicle identifier, its type (VA, not VA or truck), its position

in the network, the lane and the zone. The zone is an indicator of weather the vehicles desires to

change lane or not. Three different zones are possible according to the status of the vehicle, these are

explained further below.

33 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 Knowing the position allows to establish an order among the vehicles. The idea is to order them

by position (see Figure 13) and iterate from the first to the last regardless from the lane.2 The first

thing that is checked is whether the vehicle is in the platooning lane or not.

Figure 13. Order among vehicles for iteration. Own Source.

If, on the one hand, the vehicle is not in the platooning lane, and it is a conventional car or truck,

the API will not update the vehicle and Aimsun Next simulator will move the vehicle according its

default behavioral models. However, if the vehicle is of type self-driving and it is not leaving

imminently, zone 1, then the algorithm will force the vehicle to apply a lane-changing to the left and

try to reach the platooning lane. The lane-changing will only happen once there is a safe gap in the

target lane. On the contrary, if the space is not big enough to enable a safe lane-changing without

disturbing traffic, the vehicle will stay in the current lane.

It has been seen that zone 1 refers to vehicles with no intention to leave the highway at the moment.

Zone 2 and 3 concerns vehicles leaving at the following exit. The zone will be increased from 2 to 3

as the vehicles encloses to the exit. In zone 2 there is no rush, and the lane-changing will be smooth.

Once the vehicle is close to the exit and has not been able to change lanes without disturbing traffic,

it will start to slow down and wait to receive cooperation from other vehicles to access the shoulder

2 Note that vehicle 5 in Figure 13 is not the follower of vehicle 4, the follower is vehicle 8. Leader and follower

are always in the same lane. It only denotes the way in which vehicles are updated in the API.

34 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

lane. If the vehicle is already travelling in the shoulder lane it will keep the lane until the off-ramp

lane is reached and then exit the network. The car following will be as it is for the regular vehicles

and trucks. This is summarized as a flowchart in Figure 14.

Figure 14. API decision tree for vehicles driving in the middle or shoulder lanes. Own Source.

If, on the other hand, the vehicle is driving on the platooning lane it will check the available

information of the preceding vehicle. An autonomous vehicle can adopt three different statues

depending on the distance and the role of the existing leader.

Plaooon Leader status: If the preceding is not autonomous then the vehicle automatically switches

its status to platoon leader. Also, regardless of whether the preceding vehicle is autonomous or not, if

it is at a greater distance than 25m, it is considered to be outside the communication range and the

vehicle will adopt the leader role.

Follower status: If the preceding vehicle is within the communication range with the preceding

vehicle it will approach it according to the CACC formula seen before. The vehicle will apply this

algorithm until it reaches the desired distance to its local leader, DD, with a certain deviation

35 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

acceptance. It has been seen, that the desired distance varies with speed, the higher the travel speed

the greater the desired distance will be. Also, the first follower targets a greater gap than the rest of

the platoon members.

Joined status: Once the vehicle has reached the desired distance to its leader, it will switch to the

joined status and calculate the speed according to it. The algorithm applies the same speed to all joined

vehicles. The speed of each joined vehicle is subject to minor adjustments to adapt the desired distance

to its local leader when there is a change in speed. If a vehicle was already joined in the previous

simulation step, it will keep the type as long as the distance is within a defined tolerance and the

preceding vehicle remains unchanged

The following flowchart aims to summarize the three different statuses an autonomous vehicle can

adopt when driving in the platooning lane according to its position and the position of its leader in the

network.

Figure 15. API decision tree for vehicles driving in the platooning lane. Own Source.

36 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

After the associated speed and acceleration are calculated according to the status it is checked if

the vehicle needs to leave the highway. If the vehicle is in zone 1, meaning there is no information

saying that the vehicle needs to leave, the previous calculated speed will be applied. Instead, if the

vehicle wants to leave, it will be depending on the urgency. If the vehicle is in Zone 2, but if the

vehicle is in zone 3, it will immediately try to reach the valid lane, looking for gaps upstream and

reducing speed if necessary, even coming to a complete stop in order to make the lane change possible.

37 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

5. Simulation Scenarios and Results

5.1. Summary – Assumptions and previous considerations

To perform the study of platooning technology the following assumptions have been made

regarding some of the previously mentioned aspects.

• Infrastructure

- The road infrastructure is a highway of three lanes equipped with all necessary

technologies

- The geometrical layout is a ring road of 1.5km length

- The road speed limit is 100km/h

- Vehicles approach the highway from a slip road on the left

- Vehicles leave the highway by means of an off-ramp lane on the left

- Trucks are not allowed to use the platooning lane

- Vehicles merge into the main road applying a first in first off criteria

• Vehicles

- For simplicity all autonomous vehicles have the same properties during the

platooning process. Length, weight, etc. The length of all the autonomous will be

4m. In reality cars will be from different companies with different parameters,

allowing them to brake better/faster or not.

- Connected and fully automated vehicles have a reaction time of 0.1s

- Regular cars and trucks have a reaction time of 0.8s

- Regular cars and trucks have a reaction time of 0.8s

• Platoons of two or more vehicles

- Platoons free flow speed is lower or equal to the road speed limit

- Platoons use the leftmost lane which will be referred to as the platooning lane

- Platoons do not change lanes

- Platoons do not have a maximum length

- The V2V communication has a latency of 0.1s

38 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

• Traffic Demand

- The infrastructure is shared by three vehicle types (AV, non-AV and trucks)

- 5% of the total demand are Trucks

- The remaining 95% of the vehicles will be split between AV and non-AV

- Different input flows will be considered to cover congested and uncongested

conditions → Inflow = qin(t) [veh/h]

- The percentage of vehicles that will exit the network, α will be a 10% of the

circulating flow, q. → Outflow = qout(t) = α · q [veh/h]

• Expected results

- In uncongested conditions, after a warm-up period, the circulating flows will reach

an equilibrium. This will be when the output flow equals the input flow. After this

moment, ts, a stationary situation will be reached, where:

▪ 𝒒𝒐𝒖𝒕(𝒕𝒔) = 𝒒𝒊𝒏(𝒕𝒔) = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

▪ 𝒒(𝒕𝒔) =
𝒒𝒐𝒖𝒕(𝒕𝒔)

𝜶
 =

𝒒𝒊𝒏(𝒕𝒔)

𝜶
= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

- In congested conditions, qin(t) not be constant as the increasing interaction at the

entry will limit the vehicles. The network will until reaching gridlock.

- The maximum flow that can be achieved for the conventional lanes usually takes

values around 2500veh/h.

- The maximum flow that can be sustained by a platooning lane can be determined

knowing the minimum headway of two consecutive vehicles. This is the time

interval since the preceding vehicle passes on a point until the following crosses the

same point. The minimum time gap between platoons has been defined to be 0.1s

and the maximum speed is 100km/h . The maximum flow is therefore:

𝑞
𝑚𝑎𝑥−𝑡𝑙𝑎𝑛𝑒

=
1

ℎ𝑚𝑖𝑛,𝑝
=

1 𝑣𝑒ℎ

(
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝

3600
) ℎ +

0.004 𝑘𝑚

100 𝑘𝑚/ℎ

=
1 𝑣𝑒ℎ

(
0.1

3600
) ℎ +

0.004 𝑘𝑚

100 𝑘𝑚/ℎ

= 14750𝑣𝑒ℎ/ℎ

This value is very optimistic, as it assumes that all the vehicles in the platooning lane

are autonomous vehicles and that there is an unique platoon.

39 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

5.2. Scenarios

The primary objective of this study is to use simulation to analyze the performance of the road

network when the platooning technology is activated. The analysis framework will be composed of 5

scenarios. In each scenario the penetration rate of autonomous vehicles will vary. Penetration rate is

the percentage of vehicles of a type that are driving in the whole system.

➢ Scenario A. 0% Penetration Rate of AV – This is the base Scenario. It is the status

quo, where all the vehicles are conventional, it is the existing state of affairs and the

starting point for the subsequent comparation exercise.

➢ Scenario B. 5% Penetration Rate of AV

➢ Scenario C. 10% Penetration Rate of AV

➢ Scenario D. 25% Penetration Rate of AV

➢ Scenario E. 50% Penetration Rate of AV

Higher penetration ratios would need the development of a different strategy, e.g. enabling

platoons to be formed in the middle lane as well.

The percentage of non-autonomous vehicles is further decomposed in 5% trucks and the remaining

percentage of cars, for example, the traffic demand for Scenario E is formed of 50% AV,

45% non-AV and 5% trucks. For each scenario different demand situations will be analyzed.

Figure 16, corresponds to Scenario E with an input flow of 1000veh/h.

Figure 16. Example of a 2h traffic demand definition in Aimsun. Own Source.

40 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

5.3. Data Collection

The easiest and most common way of measuring traffic flow variables is by means of locally fixed

detectors. This kind of detection can provide information about local speed, flow or density. A total

of 16 detector locations are sited along the road separated with an approximate spacing of 100m. Each

of the detection locations, shown in Figure 17, consists of one detector covering the whole section

and three single lane-detectors. See detail for detector 3. The on-ramp and off-ramp lanes are also

equipped with detection.

Figure 17. Configuration of detectors in the network to gather simulation data. Own Source.

41 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

As already mentioned, many detectors are needed because a single detector does not provide

information of the global performance of the network, a vehicle’s trajectory can vary greatly among

time and space. The work of Edie (1965) introduces generalized definitions of traffic flow, density

and speed along a highway that can be extended to the network level. Considering a region (A) in

time and space with dimensions T and L, traffic flow variables can easily be deduced if the total travel

time, TTT, and the total travelled distance, TTD, are known. As the interest relies on studying the

traffic variables in the different lanes and for each type of vehicles, it would be needed to obtain those

values by lane and vehicle type.

Aimsun Next provides information about TTT and TTD for the different vehicle types, but it does

not provide the information by lane at a network level. There is information of such variables by lane

at the section level, but it only considers vehicles that have crossed the whole section during the data

collection interval. Vehicles inside the road segment during this interval are therefore not considered.

Edie´s definitions of traffic flow variables are the optimal method to obtain traffic variables, however

gathering them with Aimsun Next would add too much complication to a problem that can be

addressed in a simple way using detectors.

Aimsun Next provides statistics at detector level and traffic variables can be easily collected by

lane and vehicle type. It is also possible to create groups of detectors and get aggregated data for them,

for example, a group including all the detectors placed over the platooning lane. These measurements

will be calculated based on vehicles that have crossed the detectors defined before and shown in

Figure 17 during a defined time interval. For congested conditions, data will be gathered every minute

and for uncongested conditions every 5 minutes.

 For consistency, only detectors 2 to 12 will be used to analyze the traffic flow variables. This is,

because detectors located in between of the off-ramp and the on-ramp are expected to have different

flows than the rest of the network due to the exiting flows of vehicles.

42 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

5.4. Results

This section presents the results obtained after carrying out the simulations with Aimsun Next for

the five scenarios. To cover congested and uncongested conditions, the scenarios have been run with

different demand levels. Using the results obtained with Aimsun, it is possible to assess the

performance of the analysed scenarios. Therefore, it is interesting to see how the network performs

in each scenario. For this purpose, the following performance indicators are used:

• Fundamental Diagram (FD)

The fundamental diagram of traffic flow is a diagram that relates flow, density and speed, the three

main variables in traffic flow theory. On the x-axis the density, k, in vehicles/km and on the y-axis

the flow, q, in vehicles/hour is plotted. One state of the network is defined by a pair of (q, k) and the

speed can be deduced from the slope, which is the same as the following relation:

𝑣 =
𝑞

𝑘

Figure 18. Fundamental Diagram. Own Source.

In Figure 18 three different states can be identified in the fundamental diagram: uncongested or

free flow conditions, optimal throughput conditions or congestion. In terms of speed, it is observed

that the slope achieves its maximum in free flow conditions and tends to zero for high densities. The

maximum density that can be achieved is the jam density, Kjam, at this density speed is zero. Vehicles

are stopped one after another. Assuming a vehicle occupies a gap of 5-5.5m it would take a value of

180-200veh/km.

Density, k [veh/km]

F
lo

w
,

q
 [

v
e
h

/h
]

Kjam
Kcritical

Qmax

Optimal Troughput

43 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

The fundamental diagram can therefore be used to evaluate the effects of platooning on the

roadway system for all the possible range of densities. For the five scenarios the fundamental diagram

for the platooning lane and the fundamental diagram for the two traditional lanes (middle and shoulder

lane) is plotted. The comparison between these two diagrams will allow to compare independently

the performance of each type of lane. An aggregated diagram for both lanes is also included in each

plot.

➢ Scenario A - 0% Penetration Rate of AV

Figure 19. Scenario A – FD for each lane type

➢ Scenario B - 5% Penetration Rate of AV

Figure 20. Scenario B – FD for each lane type

■ Platooning lane

■ Shoulder lanes

■ Aggregate

■ Platooning lane

■ Shoulder lanes

■ Aggregate

44 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

➢ Scenario C - 10% Penetration Rate of AV

 Figure 21. Scenario C – FD for each lane type

➢ Scenario D - 25% Penetration Rate of AV

 Figure 22. Scenario D - FD for each lane type

➢ Scenario E - 50% Penetration Rate of AV

Figure 23. Scenario E - FD for each lane type

■ Platooning lane

■ Shoulder lanes

■ Aggregate

■ Platooning lane

■ Shoulder lanes

■ Aggregate

■ Platooning lane

■ Shoulder lanes

■ Aggregate

45 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

In the five scenarios it is shown that the free flow speed, defined by the slope, that can be observed

on the uncongested branch of the fundamental diagrams tends to 100km/h for both the platooning and

traditional lanes. Traditional lanes have a slightly lower free flow speed than the platooning lane,

which can be explained by the presence of slower trucks. However, the value is very close to the

speed limit of the network in both cases.

In all the scenarios it can also be appreciated that the maximum density tends to a value between

180-200veh/km. (The double for the aggregated fundamental diagram). Which has been seen that

corresponds to realistic jam density values.

For better comparison purposes the results of the different scenarios have been merged into one

single plot. In Figure 24 the fundamental diagrams of the conventional lanes can be compared. In

general, no obvious differences can be observed among scenarios. Meaning that the platooning

technology has little or no effect on the shoulder lanes. It does not enhance or reduce the performance

in the traditional lanes.

Figure 24. FD for traditional lanes - All scenarios

■ Scenario A – 0%

■ Scenario B – 5%

■ Scenario C – 10%

■ Scenario D – 25%

■ Scenario E – 50%

46 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

However, if we plot the fundamental diagrams corresponding to the platooning lane of all

the scenarios in a single figure, the same cannot be said. In Figure 25 it can be observed how for the

same density, the flows in the platooning lane are higher by increasing the penetration rate of

autonomous vehicles. The greatest difference is seen for scenario E, where the maximum observed

flow is approximately two or even three times higher than the maximum flow of the base scenario,

scenario A.

Figure 25. FD for platooning lanes - All scenarios

The higher scatter observed in the congested branch of the fundamental diagram for scenarios with

higher penetration rates can be attributed to the different available spatial and temporal distributions

of congestion. Meaning that for a same density different platoon configuration can exist providing

different flows and the same the other way around. Whereas scenarios with lower proportion of

autonomous vehicles in the network will difficulty form many different platoon configurations,

therefore more stable shape define the possible states in the lane.

■ Scenario A – 0%

■ Scenario B – 5%

■ Scenario C – 10%

■ Scenario D – 25%

■ Scenario E – 50%

47 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Another important subject to check, is whether the platooning lane and the shoulder lanes are

experiencing big differences in speed in congested conditions during the same time period. If there

is no big variance along both lane types, then the complete flow operates at one state, and this flow is

called a one pipe regime. Otherwise, the lanes would operate independently of each other, defined as

two pipes regime. From Figure 26 it can be deduced that the lanes operate at a one state, as in

congested conditions the speed differences range between 0-5km/h.

 Figure 26. Speed difference between platooning and traditional lanes for a same time period

The average flow and density per lane can be therefore computed, regardless of the lane type. The

following figure shows the average fundamental diagram per lane:

Figure 27. Average fundamental diagram per lane

48 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

It has been seen that for the scenario with a 50% of penetration rate of autonomous vehicles, there

is a huge increase in traffic flow in the platooning lane, whereas for the rest of the scenarios this

increase is not that important. This can only be attributed to the amount autonomous vehicles that are

driving in a platoon, or, more specifically, to the number of platoon units with a significant length. In

other words, if a total of 20 vehicles are driving in the platooning lane, it makes a big difference

whether they are distributed in 2 platoons of 10 vehicles or in 10 platoons of 2 vehicles.

• Number of Platoons and Average Length

A key factor for the platooning concept is therefore the number of platoons that are present in the

model and their average length. Any vehicle travelling in the platooning lane will be considered as a

platooning unit. Irrespective of whether it is traveling alone or with followers. Scenario E will not be

considered as there are no autonomous vehicles.

Figure 28. Average length of the platoons

Figure 29. Average number of platoons

■ Scenario B – 5%

■ Scenario C – 10%

■ Scenario D – 25%

■ Scenario E – 50%

■ Scenario B – 5%

■ Scenario C – 10%

■ Scenario D – 25%

■ Scenario E – 50%

49 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

From the previous figures it can be observed that for penetration rates under 25% the platoon units

hardly achieve platoon lengths of 2 vehicles. For a penetration rate of 25% the average length is of

around 3 vehicles and for a penetration rates of 50%, average lengths range between a minimum of 4

vehicles and a maximum of 12 vehicles. Moreover, not only the length is greater but also the number

of platoon units, explaining the high obtained throughputs for scenario E.

The average trip length of all the vehicles in the model tends to 15km, for lower penetration rates

this length does not enable to maintain and provide enough autonomous vehicles flow in the

platooning lane to augment the probability to form longer platoons. If we take a look in the proportion

of flow in the platooning lane that corresponds to AVs, we observe the following:

Figure 30. Percentage of flow in platooning lane of AVs

To ensure platooning efficiency, at least 50% of the flow in the platooning lane should be AVs.

Note that a penetration of 50% AVs provides a flow of 70-80% AVs in the platooning lane and a

penetration of 25% of AVs a flow of around 35%. Platooning technology has been shown to be very

efficient, but only if vehicles have the option to platoon in longer units. For lower penetration rates

■ Scenario B – 5% ■ Scenario C – 10% ■ Scenario D – 25% ■ Scenario E – 50%

50 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

either a higher trip length has to be set, or other strategies have to be used to control the proportion of

AVs, for example, to enable AVs to access the platooning lane only if there is the option to platoon

or if the expected trip distance is long, in order to ensure the vehicle stays for a longer period of time

in the platooning lane.

In Figure X a screenshot at the end of the simulation is shown. This visually strengthens the

previously drawn hypothesis.

Figure 31. Geometrical distribution of platoons

(a) Scenario A – 0%

(b) Scenario C – 10%

(c) Scenario E – 10%

(d) Scenario D – 25%

51 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

• Entry flow at the on-ramp

Traffic demand defines the average number of vehicles that aim to enter the network per hour.

Vehicles join the main road using an on-ramp. As long as the input flow demand is lower than the

capacity of the on-ramp this rate will be fulfilled.

When there is no traffic on the main stream, the maximum inflow can be reached. This is the

capacity of the on-ramp. To find out this capacity by means of simulation a traffic demand that

increases by 500veh/h every 2h is defined (see Figure 32), the point in which the on-ramp cannot

handle the increasing input flows will be defined as the capacity.

Figure 32. Traffic Demand at the on-ramp Vs On-Ramp Flow

From the figure above, it can be deduced that the maximum capacity of the on-ramp for a speed

limit of 100km/h is around 2590veh/h. This is a very optimistic value as it assumes there are no

52 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

vehicles in the highway. Most likely, vehicles will have to give way to traffic before merging and as

soon as the main stream starts to be congested, the capacity of the on-ramp will drop significantly. If

the demand is higher than this capacity, not all the vehicles will be able to access the roadway without

delay and they will start to queue. It is important that the demand is served at the entry of a highway,

because queues at such locations can cause spillbacks that spread very fast into the city roads.

Therefore, it can be considered that congestion also starts when a proportion of the vehicles are not

able to enter the highway. A performance indicator is therefore the amount of the demand that can be

withstood at the entrance of the network after a certain period of time.

If we analyze how many vehicles are waiting to enter the model after 2h of simulation, we obtain

the following chart for different constant demand patterns:

Figure 33. Number of vehicles that were not able to enter the network for different demands

Peak hour relates to the time of the day at which most of the trips take place. Demand is at its

highest and congestion is likely to take place. The peak period often lasts more than one hour. For

example, from 7-9h in the morning. In Figure 33 it is observed that for a constant inflow of 800 veh/h

the only scenario that has served the demand during the two hours is scenario A, and it is even capable

to bear 1000veh/h, whereas the rest of scenarios would have accumulated huge queues and delays at

the entry of the network.

53 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

6. Conclusions and further research

The latest advances in telecommunications and engineering, are expected to make new instruments

available for transportation. Grouping vehicles into platoons might be one of the technological

benefits of autonomous and connected vehicles. Intelligent Transport Systems such as platooning aim

to provide optimal solutions to road performance and safety. In this research, the platooning theory

has been reviewed and a model has been defined to address the platooning concept.

 To find an answer and asses the proposed strategy from the traffic engineering perspective,

Aimsun Next, a microsimulation program has been used. Microsimulation allows to analyze complex

mathematical models in a simple and graphic way. The simulator relies on models that reproduce the

behavior of manually driven vehicles. To integrate the proposed methodology in the simulation, an

algorithm has been programed that manipulates the autonomous vehicles during the simulation and

updates them according to the defined platooning strategy.

Simulation has been applied to a three-lane ring road of approximately 1.5km length with a single

on- and off-ramp. Five scenarios have been considered, in each scenario the penetration rate of

autonomous vehicles varies, ranging from 0% to 50% of market penetration. Higher penetration ratios

would probably need the development of a different strategy, e.g. enabling platoons to be formed in

the middle lane as well.

For penetration rates over 25% the deployment of platooning technology has shown to increase

traffic throughput significantly. Allowing two- or three-times higher flows in the platooning lane than

if no platooning concept is applied. Platooning technology with a penetration rate of 50% has been

capable to bear high traffic demands at the entry of the network, whereas the rest of scenarios with

lower penetration rates have accumulated huge queues and delays at the on-ramp.

The general pattern shows that platooning concept with an autonomous vehicle market penetration

of 30 to 50% increases the overall road significantly. However, lower penetration rates

do not provide a sufficiently good improvement to consider the effort and economic cost of investing

in developing platooning technologies. The research has shown that this is due to the inability to form

long enough platooning units for low proportions of AVs. The length of the platoon has shown to be

a key factor for the platooning concept.

54 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Although results suggest that platooning could be a very good solution to coordinate autonomous

vehicles when reasonable penetration rates are achieved, it is important to highlight that such models

are very sensible to changes and may vary with a variety of other factors that have been assumed in

this research.

The main achievement of this research is the definition and the development of an initial

platooning system, its subsequent programming in Python language and the final implementation into

Aimsun next. The developed tool can be subject to future modifications and will allow to analyze

many new scenarios. Future research will be able to easily simulate and examine the platooning

concept in Aimsun Next microsimulator modifying factors in the present algorithm like speed,

average trip length, maximum platoon length, simulation parameters or even modifying the car-

following and lane-changing behavior strategies. However, there might be other strategies or network

layouts where the definition of the technology will need to be adapted, including greater penetration

rates, the number of platooning lanes or even different geometry configurations.

From my point of view, a possible way to improve the current performance of the platooning

concept could be to enable communication between vehicles driving in other lanes and coordinating

those vehicles to cooperate with vehicles trying to leave the platoon. Modifying the infrastructure,

could also enhance the performance, especially for high penetration rates, adding an additional on-

ramp directly accessible from the platooning lane could be a very interesting strategy for high

penetration rates.

This study has shown that the implementation of platooning technology is an optimal solution to

address road performance with high penetration rates. In the first instance, when autonomous vehicles

begin to coexist sharing the road with human-driven vehicles, platooning technology will difficultly

help to improve overall traffic. However, technology is not static and new technologies and strategies

are developed every day at fast speeds, that will offer solutions to address these first vehicles.

55 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

References

1. Aimsun 2017, Aimsun Next 8.3 User's Manual, Aimsun, Barcelona, Spain.

2. Bergenhem, Carl & Huang, Qihui & Benmimoun, Ahmed & Robinson, Tom. (2018).

Challenges of Platooning on Public Motorways.

3. Edie, L.C., 1956. Discussion of traffic stream measurements and definitions. In: Almond, J.

(Ed.), Proceedings of the Second International Symposium on the Theory of Traffic Flow.

OECD, Paris, pp. 139 -154

4. Gipps, P.G., (1981), A behavioural car-following model for computer

simulation, Transportation Research Part B: Methodological, 15, issue 2, p. 105-111,

https://EconPapers.repec.org/RePEc:eee:transb:v:15:y:1981:i:2:p:105-111.

5. J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United

States," in Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, July 2011.

6. Kishore Bhoopalam, Anirudh & Agatz, Niels & A. Zuidwijk, Rob. (2017). Planning of Truck

Platoons: A Literature Review and Directions for Future Research. SSRN Electronic Journal.

10.2139/ssrn.2988195

7. The SAE On-Road Automated Vehicle Standards Committee. Taxonomy and Definitions

for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; SAE

International: Warrendale, PA, USA, 2018.

8. Metropolitan Transport Authority of the Barcelona (ATM). Mobility survey 2018. EMEF-

Enquesta de Mobilitat en dia Feiner (EMEF). Barcelona, Spain.

9. Zheng, Y.; Li, S.E.; Wang, J.; Cao, D.; Li, K. Stability and Scalability of Homogeneous

Vehicular Platoon: Study on the Influence of Information Flow Topologies. IEEE Trans.

Intell. Transp. Syst. 2016, 17, 14–26.

10. Zhou, Hao & Saigal, Romesh & Dion, Francois & Yang, Li. (2012). Vehicle Platoon Control

in High-Latency Wireless Communications Environment: Model Predictive Control

Method. Transportation Research Record: Journal of the Transportation Research Board.

2324. 81-90. 10.3141/2324-10.

11. B. van Arem, C. J. G. van Driel and R. Visser, "The Impact of Cooperative Adaptive Cruise

Control on Traffic-Flow Characteristics," in IEEE Transactions on Intelligent Transportation

Systems, vol. 7, no. 4, pp. 429-436, Dec. 2006.

56 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

12. G. Cecchini, A. Bazzi, B. M. Masini and A. Zanella, "Performance comparison between

IEEE 802.11p and LTE-V2V in-coverage and out-of-coverage for cooperative

awareness," 2017 IEEE Vehicular Networking Conference (VNC), Torino, 2017, pp. 109-

114.

13. A. B. Böhm, et al., "Evaluating CALM M5-based vehicle-to-vehicle communication in

various road settings through field trials," in 2010 IEEE 35th Conference on Local Computer

Networks, 2010, pp. 613-620.

14. Liu, Zishan & Liu, Zhenyu & Meng, Zhen & Yang, Xinyang & Pu, Lin & Zhang, Lin.

(2016). Implementation and performance measurement of a V2X communication system for

vehicle and pedestrian safety. International Journal of Distributed Sensor Networks. 12.

10.1177/1550147716671267.

15. TNO report, 2007-D-R0280/B, Design and evaluation of an Integrated Full-Range Speed

Assistant, March 20th, 2007.

16. Yashiro, T & Kasagi, K & Ariyasu, Kyoko & Kishida, S & Matsushita, Y. (1996).

Construction and performance evaluation of the platoon-formation algorithm considering

the destination of each vehicle. 35 - 40. 10.1109/IVS.1996.566347.

17. Wen, S., Guo, G., Chen, B., & Gao, X. (2018). Event-triggered cooperative control of vehicle

platoons in vehicular ad hoc networks. Inf. Sci., 459, 341-353.

http://aimsun.s3.amazonaws.com/marketing/Press%202017/5_2007_Bart_design%20and%20evaluation%20of%20an%20integrated%20full%20range%20speed%20assistant.pdf
http://aimsun.s3.amazonaws.com/marketing/Press%202017/5_2007_Bart_design%20and%20evaluation%20of%20an%20integrated%20full%20range%20speed%20assistant.pdf

57 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

Appendix

This section includes the Python code conforming the platooning API.

from AAPI import *

import sys

from PyANGBasic import *

from PyANGKernel import *

#Get model from system

model = GKSystem.getSystem().getActiveModel()

#Define section type

sectionType = model.getType('GKSection')

---------------------------------VARIABLES---

radius of the lanes in [m]

r0 = 259

r1 = 256

r2 = 253

r3 = 250

r = [r0, r1, r2, r3]

used when desiredDistance was not variable with speed

desiredDistance = 3 # m

the extra distance added to the first platoon follower due to security reasons

securityDistance = 3 # m

weight in the CACC formula for acceleration, speed error and distance error

#acceleration

k1 = 1.0

#speed

k2 = 0.3

#distance

k3 = 0.1

58 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

-------------open OUTPUT FILE for platoon number and platoon length -------------------

platoonsFilePath = 'C:/Users/laura.oriol/Desktop/Outputs TFM/PN.csv'

openFile = open(platoonsFilePath, 'w')

#parameter to write outputs every minute

timeFactor = 1.0

----------------------------------DEBUG--

IS_DEBUG = False

DEBUG_AIMSUN_ID = 5

-------------------------Non variable info of sections and nodes-----------------------

Specify SubpathID containing the main highway route (no entry and exit sections)

subpathId = 1035

Get the maximum allowed speeds and the type of sections

subpath = model.getCatalog().find(subpathId)

ruta = subpath.getRoute()

ruta_ids = []

maxspeed_sections_dict = dict()

normal_sections_dict = dict()

for section in ruta:

 if section.getDestination() != None:

 ruta_ids.append(int(section.getId()))

 ruta_ids.append(int(section.getDestination().getId()))

 else:

 ruta_ids.append(int(section.getId()))

 if section.getType() == sectionType:

 maxSpeed = section.getSpeed()

 maxspeed_sections_dict[section.getId()] = maxSpeed

 numberLanesEnd = section.getNbFullLanes() # Number of lanes that are complete for the

complete length of the section

 numberLanesStart = section.getNbLanesAtPos(0.0) # Number of lanes at the beginning of the

section

 numberOfFullLanes = section.getNbLanesAtPos(section.length2D()) # Number of lanes at the end of the section

 if numberLanesEnd == numberLanesStart == numberOfFullLanes:

 normal_sections_dict[section.getId()] = True

59 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 else:

 normal_sections_dict[section.getId()] = False

for section in model.getCatalog().getObjectsByType(sectionType).itervalues():

 if section.getId() not in normal_sections_dict.keys():

 normal_sections_dict[section.getId()] = False

print("rutaids: %s" %ruta_ids)

Length of the subpath

def lengthOfTheCircuit(ruta_ids):

 totalLength = 0

 for sectionID in ruta_ids:

 section = model.getCatalog().find(sectionID)

 if section.getType() == sectionType:

 totalLength += section.getLaneLength2D(0) #0 the left-most lane position and N-1 the right-most lane according

to the section direction

 print (totalLength)

 return totalLength

totalCircuiteLength = lengthOfTheCircuit(ruta_ids)

--------------------- Define Vehicle Attribute Columns --------------------------------

platoonStatusCol = ANGConnGetAttribute(AKIConvertFromAsciiString("Status"))

platoonLeavingCol = ANGConnGetAttribute(AKIConvertFromAsciiString("Leaving"))

platoonNumberCol = ANGConnGetAttribute(AKIConvertFromAsciiString("PlatoonNumber"))

platoonPositionCol = ANGConnGetAttribute(AKIConvertFromAsciiString("PlatoonPosition"))

platoonPrecedingVehicleCol = ANGConnGetAttribute(AKIConvertFromAsciiString("PrecedingVehiclePlatoon"))

platoonFollowingVehicleCol = ANGConnGetAttribute(AKIConvertFromAsciiString("FollowingVehiclePlatoon"))

platoonLeaderCol = ANGConnGetAttribute(AKIConvertFromAsciiString("PlatoonLeader"))

DistanceToLeaderCol = ANGConnGetAttribute(AKIConvertFromAsciiString("DistanceToLeader"))

zoneCol = ANGConnGetAttribute(AKIConvertFromAsciiString("GKSimVehicle::zoneAtt"))

obstacleTypeCol = ANGConnGetAttribute(AKIConvertFromAsciiString("GKSimVehicle::obstacleType"))

initialSpeedLimitTypeCol = ANGConnGetAttribute(AKIConvertFromAsciiString("InitialSpeedLimitAcceptance"))

nextSpeedCol = ANGConnGetAttribute(AKIConvertFromAsciiString("NextSpeed"))

desiredDistanceToLeaderCol = ANGConnGetAttribute(AKIConvertFromAsciiString("DesiredDistanceToLeader"))

---------------------VEHILCE TYPE POSITION---

60 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

def getPositionForVehicleName(name):

 numberVehicleTypes = AKIVehGetNbVehTypes()

 anyNonAsciiChar = boolp()

 for position in range(numberVehicleTypes+1):

 vehName = str(AKIConvertToAsciiString(AKIVehGetVehTypeName(position), True, anyNonAsciiChar))

 if vehName == name:

 # print "%s" %position

 return position

 return None

 # ------------------------------CACC--

def CACC(followerId, leaderId, DD, distanceleaderfollower, desiredSpeeds):

 leader = AKIVehGetInf (leaderId)

 follower = AKIVehGetInf (followerId)

 if ANGConnGetAttributeValueInt(platoonPositionCol, ANGConnVehGetGKSimVehicleId(followerId)) == 1:

 leaderCurrentSpeed = leader.CurrentSpeed

 leaderPreviousSpeed = leader.PreviousSpeed

 else:

 leaderIdVehANG = ANGConnVehGetGKSimVehicleId(leaderId)

 leaderCurrentSpeed = ANGConnGetAttributeValueDouble(nextSpeedCol, leaderIdVehANG)

 leaderPreviousSpeed = leader.CurrentSpeed

 # Apply the CACC formula to calculate the desired acceleration

 #k1,k2 and k3 will be applied respectively to the following terms

 leaderCurrentAcc = ((leaderCurrentSpeed - leaderPreviousSpeed)/3.6) / AKIGetSimulationStepTime() # [m/s2] (v_leader -

v_leader_old)/timeStep

 errorSpd = (leader.CurrentSpeed - follower.CurrentSpeed)/3.6 # [m/s] - V_leader-v_follwer

 errorDst = distanceleaderfollower - DD

 #the acceleration that the follower should apply

 caccAcc = (k1 * leaderCurrentAcc) + (k2 * errorSpd) + (k3 * errorDst) # [m/s2]

 #Constrain the calculated acceleration to have smooth movements

 acceleration = max(-3.0, min(1.5, caccAcc)) # [m/s2]

 #print "leader acceleration=%s - speed difference=%s - errorDst=%s - caccAcc=%s - acceleration=%s" %(leaderCurrentAcc,

errorSpd, errorDst, caccAcc, acceleration)

61 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 # Calculate the speed and constrain it

 newSpeed = min(desiredSpeeds, acceleration * AKIGetSimulationStepTime() * 3.6 + follower.CurrentSpeed) # [km/h] donde

esta el 55 tendria que ir un desiredSpeeds!!!

 if IS_DEBUG:

 if followerId == DEBUG_AIMSUN_ID:

 print ("---CACC---")

 print ("leader: %s follower: %s leadercurrentacc: %s errorSpd: %s errorDst: %s") %(leaderId, followerId,

leaderCurrentAcc, errorSpd, errorDst)

 print (caccAcc)

 print (acceleration)

 print (newSpeed)

 return newSpeed

----------------------------------- Leader Speeed -------------------------------------

#not used

def platoonLeaderSpeed(platoonLeaderId):

 platoonLeaderInf = AKIVehGetInf (platoonLeaderId)

 if platoonLeaderInf.PreviousSpeed < maxSpeed:

 platoonLeaderSpeed = min(maxSpeed, platoonLeaderInf.PreviousSpeed + 1*3.6*AKIGetSimulationStepTime())

 elif platoonLeaderInf.PreviousSpeed > maxSpeed:

 platoonLeaderSpeed = max(maxSpeed, platoonLeaderInf.PreviousSpeed - 1*3.6*AKIGetSimulationStepTime())

 elif platoonLeaderInf.PreviousSpeed == maxSpeed:

 platoonLeaderSpeed = maxSpeed

 return platoonLeaderSpeed

---------------------------------- XY DISTANCE ---------------------------------------

#not used

def xyDistance(leader, follower):

 distance = ((leader.xCurrentPosBack - follower.xCurrentPos)**2 + (leader.yCurrentPosBack -

follower.yCurrentPos)**2)**0.5 # [m]

 return distance

-------------------------EXPLORE NETWORK FIND VEHICLES --------------------------------

62 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

def explore_network_find_vehicles():

 vehicles_prelist = []

 vehicles_preIDlist = []

 p = [0, 0, 0, 0]

 for idSectionOrNode in ruta_ids:

 sectionOrNode = model.getCatalog().find(idSectionOrNode)

 if sectionOrNode.getType() == sectionType:

 # print "it's a section %s" %idSectionOrNode

 nbVehs = AKIVehStateGetNbVehiclesSection(idSectionOrNode, True)

 for vehPos in range((nbVehs-1),-1,-1):

 car = AKIVehStateGetVehicleInfSection(idSectionOrNode, vehPos)

 #folID = AKIVehGetFollowerId(car.idVeh)

 #print "leader:%s follower:%s" %(car.idVeh, folID)

 idVehANG = ANGConnVehGetGKSimVehicleId(car.idVeh)

 zone = ANGConnGetAttributeValueInt(zoneCol, idVehANG)

 if car.report ==

0:

 if normal_sections_dict[idSectionOrNode] is True:

 carLane = car.numberLane # The lane number in the segment (from 1: the

rightmost lane, to N: the leftmost lane)

 else:

 carLane = car.numberLane -1

 carPosition = (car.CurrentPos/ r[carLane]) * r[3] + p[3]

 #print "ID: %s CurrentPos: %s CarPos:%s Lane: %s" %(car.idVeh, car.CurrentPos, carPosition, carLane)

 vehicles_prelist.append([car.idVeh, car.type, carPosition, carLane, idSectionOrNode, zone, idVehANG])

 vehicles_preIDlist.append(car.idVeh)

 p0 = p[0] + sectionOrNode.getLaneLength2D(3)

 p1 = p[1] + sectionOrNode.getLaneLength2D(2) # The lane number (from 0: the leftmost lane, to N-1: the

rightmost lane)

 p2 = p[2] + sectionOrNode.getLaneLength2D(1)

 p3 = p[3] + sectionOrNode.getLaneLength2D(0)

 p = [p0, p1, p2, p3]

 else:

 # print "it's a node %s" %idSectionOrNode

 nbVehs = AKIVehStateGetNbVehiclesJunction(idSectionOrNode)

 for vehPos in range((nbVehs-1),-1,-1):

 print ("cuidado que ha entrado en el nodo: %s") %idSectionOrNode

63 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 car = AKIVehStateGetVehicleInfJunction(idSectionOrNode, vehPos)

 idVehANG = ANGConnVehGetGKSimVehicleId(car.idVeh)

 zone = ANGConnGetAttributeValueInt(zoneCol, idVehANG)

 if normal_sections_dict[car.idSectionTo] is True:

 carLane = car.idLaneTo

 else:

 carLane = car.idLaneTo - 1

 carPosition = car.CurrentPos

 vehicles_prelist.append([car.idVeh, car.type, carPosition, carLane, idSectionOrNode, zone, idVehANG])

 vehicles_preIDlist.append(car.idVeh)

 vehicles_list = sorted(vehicles_prelist, key=lambda Pos: Pos[2] , reverse=True)

 vehicles_IDlist = []

 m=0

 for item in vehicles_list:

 vehicles_IDlist.append(vehicles_list[m][0])

 m = m + 1

 #print vehicles_list

 return vehicles_list, vehicles_IDlist

-------------------------SET ATTRIBUTE -------------------------------

def setAttributeCar(newAttribute, idVehANG, column):

 #Set a new attribute of type int, str or float to the car

 if type(newAttribute) == int:

 if ANGConnGetAttributeValueInt(column, idVehANG) != newAttribute:

 ANGConnSetAttributeValueInt(column, idVehANG, newAttribute)

 elif type(newAttribute) == str:

 if ANGConnGetAttributeValueStringA(column, idVehANG) != newAttribute:

 ANGConnSetAttributeValueStringA(column, idVehANG, newAttribute)

 elif type(newAttribute) == float:

 if ANGConnGetAttributeValueDouble(column, idVehANG) != newAttribute:

 ANGConnSetAttributeValueDouble(column, idVehANG, newAttribute)

 else:

 print ("The attribute does not belong to the types String, Integer or Float")

 return

64 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

-------------------------DEF LEADER -------------------------------

def managePlatoonLeader (platoonleaderId, idVehANG, leaderId, distanceleaderfollower):

 AKIVehTrackedModifyLane(platoonleaderId, 0)

 parametersleader = AKIVehTrackedGetStaticInf(platoonleaderId)

 parametersleader.speedAcceptance = 1.0

 parametersleader.sensitivityFactor = 0

 parametersleader.minDistanceVeh = 0.5

 parametersleader.reactionTime = 0.1

 parametersleader.reactionTimeAtStop = 0.1

 parametersleader.reactionTimeAtTrafficLight = 0.1

 #parametersleader.type = selfDrivingCarPosL3

 AKIVehTrackedSetStaticInf(platoonleaderId, parametersleader)

 IDSection = AKIVehGetInf(platoonleaderId).idSection

 desiredSpeedPL = maxspeed_sections_dict[IDSection]

 #print "ID: %s maxSpeed: %s" %(platoonleaderId,desiredSpeedPL)

 platoonLeaderCurrentSpeed = AKIVehTrackedGetInf(platoonleaderId).CurrentSpeed

 dD = max(0.5, (platoonLeaderCurrentSpeed/3.6*0.8))

 setAttributeCar(dD, idVehANG, desiredDistanceToLeaderCol)

 newSpeed = CACC(platoonleaderId, leaderId, dD, distanceleaderfollower, desiredSpeedPL)

 setAttributeCar(newSpeed, idVehANG, nextSpeedCol)

 # Update the speed of the vehicle

 res = AKIVehTrackedModifySpeed(platoonleaderId, newSpeed)

 if IS_DEBUG:

 if platoonleaderId == DEBUG_AIMSUN_ID:

 print ("-- Platoon Leader --")

 print ("ID: %s res: %s ") %(platoonleaderId,res)

-------------------------DEF FOLLOWER -------------------------------

def manageFollower (followerId, idVehANG, leaderId, dD, distanceleaderfollower):

 AKIVehTrackedModifyLane(followerId, 0)

 parametersfollower = AKIVehTrackedGetStaticInf(followerId)

 parametersfollower.speedAcceptance = 1.1

 parametersfollower.sensitivityFactor = 0

65 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 parametersfollower.minDistanceVeh = 0.5

 parametersfollower.reactionTime = 0.1

 #parametersfollower.type = selfDrivingCarPosL3

 parametersfollower.reactionTimeAtStop = 0.1

 parametersfollower.reactionTimeAtTrafficLight = 0.1

 AKIVehTrackedSetStaticInf(followerId, parametersfollower)

 desiredSpeeds = min(parametersfollower.maxDesiredSpeed, parametersfollower.speedAcceptance * maxSpeed)

 newSpeed = CACC(followerId, leaderId, dD, distanceleaderfollower, desiredSpeeds) # Calculate the speed by applying

the CACC formula

 setAttributeCar(newSpeed, idVehANG, nextSpeedCol)

 # Update the speed of the vehicle

 res = AKIVehTrackedModifySpeed(followerId, newSpeed)

 if IS_DEBUG:

 if followerId == DEBUG_AIMSUN_ID:

 print ("-- Follower --")

 print ("ID: %s res: %s ") %(followerId, res)

-------------------------DEF JOINED -------------------------------

def manageJoined (joinedId, idVehANG, leaderId, platoonLeaderId, distanceleaderfollower, DD, cumulative):

 AKIVehTrackedModifyLane(joinedId, 0)

 parametersjoined = AKIVehTrackedGetStaticInf(joinedId)

 parametersjoined.speedAcceptance = 1.1

 parametersjoined.sensitivityFactor = 0

 parametersjoined.minDistanceVeh = 0.5 #testDist - 0.3

 parametersjoined.reactionTime = 0.1

 #parametersjoined.type = selfDrivingCarPosL3

 parametersjoined.reactionTimeAtStop = 0.1

 parametersjoined.reactionTimeAtTrafficLight = 0.1

 AKIVehTrackedSetStaticInf(joinedId, parametersjoined)

 platoonLeaderCurrentSpeed = AKIVehTrackedGetInf(platoonLeaderId).CurrentSpeed

 platoonLeaderPreviousSpeed = AKIVehTrackedGetInf(platoonLeaderId).PreviousSpeed

 platoonLeaderCurrentAcc = ((platoonLeaderCurrentSpeed - platoonLeaderPreviousSpeed)/3.6) / AKIGetSimulationStepTime()

 #adjustedPlatoonLeaderSpeed = platoonLeaderCurrentSpeed + platoonLeaderCurrentAcc*AKIGetSimulationStepTime()*3.6

 platoonLeaderIdVehANG = ANGConnVehGetGKSimVehicleId(platoonLeaderId)

 adjustedPlatoonLeaderSpeed = ANGConnGetAttributeValueDouble(nextSpeedCol, platoonLeaderIdVehANG)

 #print "%s speedleader %s" %(joinedId, adjustedPlatoonLeaderSpeed)

 joinedCurrentSpeed = AKIVehTrackedGetInf(joinedId).CurrentSpeed

66 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 dd = max(0.5, (adjustedPlatoonLeaderSpeed/3.6*0.11))

 leaderIdVehANG = ANGConnVehGetGKSimVehicleId(leaderId)

 if ANGConnGetAttributeValueInt(platoonPositionCol, ANGConnVehGetGKSimVehicleId(joinedId)) == 2:

 dd = dd + securityDistance

 joinedSpeed = adjustedPlatoonLeaderSpeed + (distanceleaderfollower-dd)*3.6/AKIGetSimulationStepTime()*0.1

 cumulative = (distanceleaderfollower-dd)*3.6/AKIGetSimulationStepTime()

 #print "cumulative from first platoon %s" %cumulative

 else:

 leaderNewSpeed = ANGConnGetAttributeValueDouble(nextSpeedCol, leaderIdVehANG)

 distanceDifference = DD - distanceleaderfollower

 joinedSpeed = leaderNewSpeed + (distanceleaderfollower-dd)*3.6/AKIGetSimulationStepTime()*0.1

 if joinedSpeed >= joinedCurrentSpeed:

 nextSpeed = min (joinedSpeed, joinedCurrentSpeed + 2 * AKIGetSimulationStepTime() * 3.6)

 cumulative = nextSpeed - adjustedPlatoonLeaderSpeed

 elif joinedSpeed < joinedCurrentSpeed:

 nextSpeed = max (joinedSpeed, joinedCurrentSpeed - 1.5 * AKIGetSimulationStepTime() * 3.6)

 cumulative = nextSpeed - adjustedPlatoonLeaderSpeed

 setAttributeCar(nextSpeed, idVehANG, nextSpeedCol)

 # Update the speed of the vehicle

 res = AKIVehTrackedModifySpeed(joinedId, nextSpeed)

 if IS_DEBUG:

 if joinedId == DEBUG_AIMSUN_ID:

 print ("-- Joined --")

 print ("ID: %s res: %s ") %(joinedId, res)

 return cumulative

-------------------------Lane Changint to Right -------------------------------

def manageLaneChangingRight (current, leaderChangingLane, vehicles_list, index):

 existingFollowerChangingLane = False

 for followerChangingLane in vehicles_list[index:]:

 if existingFollowerChangingLane is True:

 break

67 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 if followerChangingLane[2] < current[2] and followerChangingLane[3] == 2 and not existingFollowerChangingLane:

 existingFollowerChangingLane = True

 #print "%s leader %s posicion:" %(leaderChangingLane[0], leaderChangingLane[2])

 #print "%s follower %s posicion:" %(followerChangingLane[0], followerChangingLane[2])

 if leaderChangingLane != None:

 spaceCooperation = leaderChangingLane[2] - followerChangingLane[2] - 4

 spaceBack = current[2] - followerChangingLane[2] - 4

 if spaceBack>11 and spaceCooperation-spaceBack-4>10:

 AKIVehTrackedModifyLane(current[0], -1)

 #print "%s ya que tiene espacio suficiente zona trasera, hay coche delante y atras" %current[0]

 elif 15>spaceBack>12 and spaceCooperation>26:

 AKIVehTrackedModifyLane(current[0], -1)

 #print "%s ya que tiene espacio suficiente entre vehiculos, hay coche delante y atras"

%current[0]

 else:

 AKIVehTrackedModifyLane(current[0], 0)

 #print "%s no cambiamos" %current[0]

 else:

 spaceBack = current[2] - followerChangingLane[2]

 if spaceBack > 10:

 AKIVehTrackedModifyLane(current[0], -1)

 #print "%s cambio porque hay mas de 15m detras y no hay vehiculo delante" %current[0]

 else:

 AKIVehTrackedModifyLane(current[0], 0)

 #print "%s no cambio porque no hay mas de 10m detras(no hay veh delante)" %current[0]

 if not existingFollowerChangingLane and leaderChangingLane is None:

 AKIVehTrackedModifyLane(current[0], -1)

 if not existingFollowerChangingLane and leaderChangingLane is not None:

 AKIVehTrackedModifyLane(current[0], -1)

-------------------------Lane Changint to Left ------------------------------

def manageLaneChangingLeft (current, leaderChangingLane, vehicles_list, index):

 existingFollowerChangingLane = False

 for followerChangingLane in vehicles_list[index:]:

 if existingFollowerChangingLane is True:

 break

 if followerChangingLane[2] < current[2] and followerChangingLane[3] == (current[3]+1) and not

existingFollowerChangingLane:

68 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 existingFollowerChangingLane = True

 if leaderChangingLane != None:

 setAttributeCar(leaderChangingLane[0], current[6], platoonPrecedingVehicleCol)

 setAttributeCar(followerChangingLane[0], current[6], platoonFollowingVehicleCol)

 spaceCooperation = leaderChangingLane[2] - followerChangingLane[2] - 4

 spaceBack = current[2] - followerChangingLane[2] - 4

 if spaceBack>10 and spaceCooperation-spaceBack-4>10:

 AKIVehTrackedModifyLane(current[0], 1)

 #print "%s ya que tiene espacio suficiente zona trasera, hay coche delante y atras" %current[0]

 elif 10>spaceBack>8 and spaceCooperation>25:

 AKIVehTrackedModifyLane(current[0], 1)

 #print "%s ya que tiene espacio suficiente entre vehiculos, hay coche delante y atras"

%current[0]

 else:

 AKIVehTrackedModifyLane(current[0], 0)

 #print "%s no cambiamos" %current[0]

 else:

 spaceBack = current[2] - followerChangingLane[2]

 if spaceBack > 8:

 AKIVehTrackedModifyLane(current[0], 1)

 #print "%s cambio porque hay mas de 15m detras y no hay vehiculo delante" %current[0]

 else:

 AKIVehTrackedModifyLane(current[0], 0)

 #print "%s no cambio porque no hay mas de 10m detras(no hay veh delante)" %current[0]

 if not existingFollowerChangingLane and leaderChangingLane is None:

 AKIVehTrackedModifyLane(current[0], 1)

 #print "%s cambiamos porque leader es none y follower tambien" %current[0]

 if not existingFollowerChangingLane and leaderChangingLane is not None:

 AKIVehTrackedModifyLane(current[0], 1)

 #print "%s cambiamos porque follower es none" %current[0]

def AAPILoad():

 AKIPrintString("AAPILoad")

 return 0

def AAPIInit():

69 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 # AKIPrintString("AAPIInit")

 global selfDrivingCarPos

 global carPos

 global truckPos

 #global carPosL3

 #global selfDrivingCarPosL3

 ANGConnEnableVehiclesInBatch(True)

 selfDrivingCarPos = getPositionForVehicleName("CarSelfDriving")

 carPos = getPositionForVehicleName("Car")

 truckPos = getPositionForVehicleName("Truck")

 #carPosL3 = getPositionForVehicleName("CarL3")

 #selfDrivingCarPosL3 = getPositionForVehicleName("CarSelfDrivingL3")

 #print selfDrivingCarPosL3

 return 0

def AAPIManage(time, timeSta, timeTrans, acycle):

 # AKIPrintString("AAPIManage")

 return 0

#__

def AAPIPostManage(time, timeSta, timeTrans, acycle):

 global selfDrivingCarPos

 global carPos

 global truckPos

 #global carPosL3

 #global selfDrivingCarPosL3

 global timeFactor

 global desiredDistance

 global cumulative

 cumulative = 0

 #print timeFactor

 #print time/60.0

 isWritingTime = False

 if time/60 == timeFactor:

 print time/60.0

70 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 isWritingTime = True

 timeFactor += 1.0

 #exploramos la red para generar una serie de listas de coches

 vehicles_list, vehicles_IDlist = explore_network_find_vehicles()

 #print vehicles_IDlist

 # vehicle = [car.idVeh, car.type, carPositionX, carLane, idSectionOrNode, zone, idVehANG]

 platoonNum = 0

 platoonPos = 0

 resto = 0

 leader1VA = False

 leader2VA = False

 leader3VA = False

 leader1 = None

 leader2 = None

 leader3 = None

 for veh in vehicles_list:

 if veh[3] == 1:

 newPos = totalCircuiteLength + veh[2]

 leader1 = [veh[0], veh[1], newPos, veh[3], veh[4], veh[5], veh[6]]

 if leader1[1] == selfDrivingCarPos:

 #if ((leader1[1] == selfDrivingCarPos) or (leader1[1] == selfDrivingCarPosL3)):

 leader1VA = True

 else:

 leader1VA = False

 continue

 elif veh[3] == 2:

 newPos = totalCircuiteLength + veh[2]

 leader2 = [veh[0], veh[1], newPos, veh[3], veh[4], veh[5], veh[6]]

 if leader2[1] == selfDrivingCarPos:

 #if ((leader2[1] == selfDrivingCarPos) or (leader2[1] == selfDrivingCarPosL3)):

 leader2VA = True

 else:

71 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 leader2VA = False

 continue

 elif veh[3] == 3:

 newPos = totalCircuiteLength + veh[2]

 leader3 = [veh[0], veh[1], newPos, veh[3], veh[4], veh[5], veh[6]]

 if leader3[1] == selfDrivingCarPos:

 #if ((leader3[1] == selfDrivingCarPos) or (leader3[1] == selfDrivingCarPosL3)):

 leader3VA = True

 else:

 leader3VA = False

 continue

 if leader3 != None and leader3VA == True:

 platoonPos = ANGConnGetAttributeValueInt(platoonPositionCol, leader3[6])

 platoonLeaderId = ANGConnGetAttributeValueInt(platoonLeaderCol, leader3[6])

 PP = platoonPos

 #print "leader1: %s leader2: %s leader3: %s" %(leader1,leader2,leader3)

 for index, current in enumerate(vehicles_list):

 idVehANG = current[6]

 #carril 3

 if current[3] == 3:

 if current[1] != selfDrivingCarPos:

 #if ((current[1] != selfDrivingCarPos) and (current[1] != selfDrivingCarPosL3)): # ------------------------

-----------------------no es VA

 leader3VA = False

 leader3 = current

 elif current[1] == selfDrivingCarPos and not leader3VA:

 #elif ((current[1] == selfDrivingCarPos or current[1] == selfDrivingCarPosL3) and not leader3VA): #----------

------------------VA y no hay leader

 distanceToLeader = leader3[2] - current[2] - 4

 setAttributeCar(distanceToLeader, idVehANG, DistanceToLeaderCol)

 leader3VA = True

 if isWritingTime and platoonPos > 0:

 if platoonNum == 0:

 resto = platoonPos - PP

 #print "%s el resto es %s" %(time/60, resto)

 else:

72 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 openFile.write('%s,%s,%s \n' %(time/60, platoonNum, platoonPos))

 #print " %s: %s %s" %(time/60, platoonNum, platoonPos)

 platoonNum += 1

 platoonPos = 1

 setAttributeCar("PlatoonLeader", idVehANG, platoonStatusCol)

 setAttributeCar(leader3[0], idVehANG, platoonPrecedingVehicleCol)

 setAttributeCar(platoonNum, idVehANG, platoonNumberCol)

 setAttributeCar(platoonPos, idVehANG, platoonPositionCol)

 platoonLeaderId = current[0]

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 managePlatoonLeader (platoonLeaderId, idVehANG, leader3[0], distanceToLeader)

 leader3 = current

 if IS_DEBUG:

 if current[0] == DEBUG_AIMSUN_ID:

 print "%s is platoonleader "

 elif current[1] == selfDrivingCarPos and leader3VA: #--------------------------------VA y si hay leader

 #elif ((current[1] == selfDrivingCarPos or current[1] == selfDrivingCarPosL3) and leader3VA):

 distanceToLeader = leader3[2] - current[2] - 4

 setAttributeCar(distanceToLeader, idVehANG, DistanceToLeaderCol)

 if ANGConnGetAttributeValueStringA(platoonStatusCol, leader3[6]) == "PlatoonLeader": #el leadera actual es

platoonleader

 currentSpeed = AKIVehGetInf(current[0]).CurrentSpeed

 desiredDistance = max(0.5, (currentSpeed/3.6*0.11))

 #vL=AKIVehGetInf(leader3[0]).CurrentSpeed

 #securityDistance = max(0.5, 1/12/3.6/3.6*1.1*((currentSpeed**2)-(vL**2))+1.1*0.1*currentSpeed/3.6)

 #if IS_DEBUG:

 #print "aqui"

 #print desiredDistance

 #print securityDistance

 DD = desiredDistance + securityDistance

 else:

 DD = desiredDistance

 setAttributeCar(DD, idVehANG, desiredDistanceToLeaderCol)

 if DD*0.8<distanceToLeader<DD*1.2 and ANGConnGetAttributeValueStringA(platoonStatusCol, idVehANG) ==

"Joined" and ANGConnGetAttributeValueInt(platoonPrecedingVehicleCol, idVehANG) == leader3[0]:

 platoonPos += 1

 setAttributeCar(leader3[0], idVehANG, platoonPrecedingVehicleCol)

 setAttributeCar(platoonNum, idVehANG, platoonNumberCol)

 setAttributeCar("Joined", idVehANG, platoonStatusCol)

73 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 setAttributeCar(platoonPos, idVehANG, platoonPositionCol)

 if IS_DEBUG:

 if current[0] == DEBUG_AIMSUN_ID:

 print "%s is joined "

 if ANGConnGetAttributeValueStringA(platoonStatusCol, leader3[6]) == "Follower":

 platoonLeaderId = leader3[0]

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 cumulative = manageJoined (current[0], current[6], leader3[0], platoonLeaderId, distanceToLeader,

DD, cumulative)

 #print cumulative

 else:

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 cumulative = manageJoined (current[0], current[6], leader3[0], platoonLeaderId, distanceToLeader,

DD, cumulative)

 #print cumulative

 leader3VA = True

 leader3 = current

 else:

 if (DD-0.1 <= distanceToLeader <= DD+0.1):

 platoonPos += 1

 setAttributeCar("Joined", idVehANG, platoonStatusCol)

 setAttributeCar(leader3[0], idVehANG, platoonPrecedingVehicleCol)

 setAttributeCar(platoonNum, idVehANG, platoonNumberCol)

 setAttributeCar(platoonPos, idVehANG, platoonPositionCol)

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 if IS_DEBUG:

 if current[0] == DEBUG_AIMSUN_ID:

 print "%s is joined aqui "

 cumulative = manageJoined (current[0], current[6], leader3[0], platoonLeaderId, distanceToLeader,

DD, cumulative)

 #print cumulative

 leader3VA = True

 leader3 = current

 elif (0 <= distanceToLeader < DD-0.1 or DD+0.1 < distanceToLeader < 25):

 platoonPos += 1

 setAttributeCar("Follower", idVehANG, platoonStatusCol)

 setAttributeCar(leader3[0], idVehANG, platoonPrecedingVehicleCol)

 setAttributeCar(platoonNum, idVehANG, platoonNumberCol)

 setAttributeCar(platoonPos, idVehANG, platoonPositionCol)

74 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 manageFollower (current[0], idVehANG, leader3[0], DD, distanceToLeader)

 if IS_DEBUG:

 if current[0] == DEBUG_AIMSUN_ID:

 print "%s is follower "

 leader3VA = True

 leader3 = current

 else:

 leader3VA = True

 if isWritingTime: #if platoonNum>0 and isWritingTime:

 if platoonNum == 0:

 resto = platoonPos - PP

 #print "%s el resto es %s" %(time/60, resto)

 else:

 openFile.write('%s,%s,%s \n' %(time/60, platoonNum, platoonPos))

 #print "%s: %s %s" %(time/60, platoonNum, platoonPos)

 platoonNum += 1

 platoonPos = 1

 setAttributeCar("PlatoonLeader", idVehANG, platoonStatusCol)

 setAttributeCar(leader3[0], idVehANG, platoonPrecedingVehicleCol)

 setAttributeCar(platoonNum, idVehANG, platoonNumberCol)

 setAttributeCar(platoonPos, idVehANG, platoonPositionCol)

 if IS_DEBUG:

 if current[0] == DEBUG_AIMSUN_ID:

 print "%s is platoonleader aqui abajo"

 platoonLeaderId = current[0]

 setAttributeCar(platoonLeaderId, idVehANG, platoonLeaderCol)

 managePlatoonLeader (platoonLeaderId, idVehANG, leader3[0], distanceToLeader)

 leader3 = current

 if current[5] == 2 and current[1] == selfDrivingCarPos:

 #if current[5] == 2 and (current[1] == selfDrivingCarPos or current[1] == selfDrivingCarPosL3): #and

ANGConnGetAttributeValueStringA(obstacleTypeCol, idVehANG) == "Turn":

 setAttributeCar("Yes", idVehANG, platoonLeavingCol)

 manageLaneChangingRight (current, leader2, vehicles_list, index)

 if current[5] == 3 and current[1] == selfDrivingCarPos:

 #if current[5] == 3 and (current[1] == selfDrivingCarPos or current[1] == selfDrivingCarPosL3): #and

ANGConnGetAttributeValueStringA(obstacleTypeCol, idVehANG) == "Turn":

 setAttributeCar("Urgent", idVehANG, platoonLeavingCol)

 AKIVehTrackedModifyLane(current[0], -1)

75 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 #carril 2

 if current[3] == 2:

 if current [1] == 3 and current[5] == 1 and ANGConnGetAttributeValueStringA(platoonLeavingCol, idVehANG) !=

"Yes" and ANGConnGetAttributeValueStringA(platoonLeavingCol, idVehANG) != "Urgent":

 manageLaneChangingLeft (current, leader3, vehicles_list, index)

 leader2 = current

 elif current [1] == 3 and current[5] == 2 and ANGConnGetAttributeValueStringA(obstacleTypeCol, idVehANG) ==

"Turn":

 setAttributeCar("Yes", idVehANG, platoonLeavingCol)

 manageLaneChangingRight (current, leader2, vehicles_list, index)

 #AKIVehSetAsNoTracked (current [0])

 leader2 = current

 elif current [1] == 3 and current[5] == 3 and ANGConnGetAttributeValueStringA(obstacleTypeCol, idVehANG) ==

"Turn":

 setAttributeCar("Urgent", idVehANG, platoonLeavingCol)

 AKIVehTrackedModifyLane(current[0], -1)

 #AKIVehSetAsNoTracked (current [0])

 leader2 = current

 else:

 leader2 = current

 #carril 1

 if current[3] == 1:

 if current[1] == selfDrivingCarPos and AKIVehTrackedGetStaticInf(current[0]).sensitivityFactor == 0:

 parameterscurrent = AKIVehTrackedGetStaticInf(current[0])

 parameterscurrent.sensitivityFactor = 1

 parameterscurrent.minDistanceVeh = 1

 AKIVehTrackedSetStaticInf(current[0], parameterscurrent)

 if current [1] == selfDrivingCarPos and current[5] == 1 and ANGConnGetAttributeValueStringA(platoonLeavingCol,

idVehANG) != "Yes" and ANGConnGetAttributeValueStringA(platoonLeavingCol, idVehANG) != "Urgent":

 manageLaneChangingLeft (current, leader2, vehicles_list, index)

 leader1 = current

 elif current [1] == selfDrivingCarPos and current[5] == 2 and ANGConnGetAttributeValueStringA(obstacleTypeCol,

idVehANG) == "Turn":

 setAttributeCar("Yes", idVehANG, platoonLeavingCol)

 AKIVehTrackedModifyLane(current[0], 0)

 leader1 = current

76 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

 elif current [1] == selfDrivingCarPos and current[5] == 3 and ANGConnGetAttributeValueStringA(obstacleTypeCol,

idVehANG) == "Turn":

 setAttributeCar("Urgent", idVehANG, platoonLeavingCol)

 AKIVehTrackedModifyLane(current[0], -1)

 leader1 = current

 else:

 leader1 = current

 if isWritingTime: #if platoonNum>0 and isWritingTime:

 openFile.write('%s,%s,%s \n' %(time/60, platoonNum, platoonPos+resto))

 #print "3. %s: %s %s" %(time/60, platoonNum, platoonPos+resto)

 return timeFactor

#__

def AAPIFinish():

 openFile.close()

 # AKIPrintString("AAPIFinish")

 return 0

def AAPIUnLoad():

 # AKIPrintString("AAPIUnLoad")

 return 0

def AAPIPreRouteChoiceCalculation(time, timeSta):

 # AKIPrintString("AAPIPreRouteChoiceCalculation")

 return 0

def AAPIEnterVehicle(idveh, idsection):

 # Automatically set the vehicle as Tracked when it enters the model if it of type autonomous

 car = AKIVehGetInf(idveh)

 if car.type == selfDrivingCarPos:

 idVehANG = ANGConnVehGetGKSimVehicleId(car.idVeh)

 AKIVehSetAsTracked(car.idVeh)

 parameters = AKIVehTrackedGetStaticInf(idveh)

 initalSpeedAcc = parameters.speedAcceptance

 ANGConnSetAttributeValueDouble(initialSpeedLimitTypeCol, idVehANG, initalSpeedAcc)

 return 0

77 Laura Oriol Herrera – Microscopic modelling and simulation of platooning on highways

def AAPIExitVehicle(idveh, idsection):

 return 0

def AAPIEnterPedestrian(idPedestrian, originCentroid):

 return 0

def AAPIExitPedestrian(idPedestrian, destinationCentroid):

 return 0

def AAPIEnterVehicleSection(idveh, idsection, atime):

 return 0

def AAPIExitVehicleSection(idveh, idsection, atime):

 return 0

