
Received July 11, 2019, accepted August 22, 2019, date of publication September 9, 2019, date of current version October 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940094

Specialization in the iStar2.0 Language
LIDIA LÓPEZ , XAVIER FRANCH , AND JORDI MARCO
Software and Service Engineering Research Group (GESSI), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain

Corresponding author: Lidia López (llopez@essi.upc.edu)

ABSTRACT iStar2.0 has been proposed as a standard language for building goal- and agent-orientedmodels.
It is an evolution of the former i∗ language, with the purpose of homogenising existing syntactical and
semantic variations of basic i∗ constructs that researchers in the field introduced along the years. In its first
version (2016), iStar2.0 was intentionally kept simple, and some constructs were merely introduced but
not formally defined. One of them is the notion of specialization. The specialization relationship is offered
by iStar2.0 through the is-a construct defined over actors (subactor x is-a superactor y). Although the
overall meaning of this construct is highly intuitive, its semantics when it comes to the fine-grained level of
the models is not defined in the standard. In this paper we provide a formal definition of the specialization
relationship ready to be incorporated into a next release of the iStar2.0 standard language. We root our
proposal over existing work on conceptual modeling in general, and object-orientation in particular. Also,
we use the results of a survey that provides some hints about what definition do iStar2.0 modelers expect
from specialization. As a consequence of this twofold analysis, we identify, define and specify a set of
specialization operations that can be applied over iStar2.0 models. Correctness conditions for them are also
formally stated. The result of our work is a formal proposal of specialization for iStar2.0 that allows its use
in a well-defined manner and contributes to its standardization.

INDEX TERMS iStar2.0, goal-oriented modelling, specialization, generalization, subtyping, inheritance,
standardization.

I. INTRODUCTION
The i∗ (pronounced eye-star) framework [1] was formulated
in the mid-nineties for representing, modeling and reasoning
about socio-technical systems. Together with KAOS [2], they
opened the space to a new modelling paradigm, a combina-
tion of agent-oriented (through the use of agents and actors)
and goal-oriented (with goals, softgoals, decomposition, etc.)
approaches. Today, the i∗ framework, together with some
derived languages and methodologies (e.g., GRL [3], Tro-
pos [4]) and a handful of different modeling approaches [5],
is used in several activities like business analysis and
autonomous systems specification, and is especially promi-
nent in the requirements engineering area where it is used
in the early phases of the requirements engineering pro-
cess [6], [7]. All of this generated a community around the
framework (the i∗ community) which is highly active [7]
and meets yearly since 2008 in the i∗ international work-
shop, held as satellite event of major conferences as IEEE
RE, CAiSE and ER. Workshops under demand in teaching

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

(i-StarT workshop) and even industrial showcases have also
been held since then.

At the heart of the framework lies a conceptual modeling
language: the i∗ language. Its core constructs can be roughly
classified into six main categories [8]: 1) actors; 2) inten-
tional elements (IE) as goals or resources; 3) boundaries that
place IEs inside actors; 4) dependencies from actors or IEs
onto other actors or IEs; 5) IE links, i.e. links among IEs,
as decomposition or contribution; 6) actor association links.
Even if these constructs have a quite intuitive meaning, their
semantics were not included neither in the seminal definition
of the language nor in later versions. This leads to the situ-
ation in which every research group, or even every research
paper, used i∗ constructs in an ad hoc manner, sometimes in
purpose (to fit better the main goal of the research addressed),
sometimes unintentionally. Although some scholars argued
that this freedom was beneficial from a creative stand (which
may be the case), it became an impediment to the con-
solidation of the language: research results were not fully
compatible, and it became difficult to define widely accepted
tools.

This problem was identified and reported for more than
a decade now [9] and some research groups addressed it

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 146005

https://orcid.org/0000-0002-6901-9223
https://orcid.org/0000-0001-9733-8830
https://orcid.org/0000-0002-3685-3879


L. López et al.: Specialization in the iStar2.0 Language

in different forms. Some attempts emerged to state explic-
itly existing implicit decisions [10], some groups formulated
metamodels with the purpose of sharing a common under-
standing [11], [12] and also a markup language was designed
with the purpose of creating an interchange format for i∗mod-
eling tools [8]. However, none of these initiatives involved the
whole community and did not solve the fundamental problem
mentioned above.

As a remedy to this situation, the i∗ community launched
in 2014 an action to define a standard language. Around 30
researchers participated in this endeavor that spread along
two years until the iStar2.0 guide was delivered [13]. It was
authored by 3 researchers who lead the initiative, and finally
endorsed by other 22. The main goal was agreeing on the
fundamental constructs while keeping open the ability to
tailor the framework to specific research needs. The standard
has been of wide use since its publication as an open asset
for the community. In this first standardization step, the focus
was more on the syntax than on the semantics and therefore
further efforts are needed to define the constructs accurately.

Among the iStar2.0 constructs, there is a typical concep-
tual modeling one: specialization, represented by the is-a
language construct. The seminal definition of i∗ [1] defines
this construct as: ‘‘The is-a association represents a gener-
alization, with an actor being a specialized case of another
actor’’. In other words, an actor a (subactor) may be declared
as a specialization of an actor b (superactor) using is-a. But
there is not further information. Furthermore, a systematic
analysis of the literature reveals that no research work has
defined formally the effects of the is-a link beyond the
sketchy definition presented above, except for our previous
work [14] which did not address the problem completely (see
Section 3.2 for a detailed discussion). The iStar2.0 guide adds
little additional information, just: ‘‘Only roles can be special-
ized into roles, or general actors into general actors’’ [13].
All in all, the semantics of this construct is still ill-defined and
therefore, further work is required in this direction. In par-
ticular, to solve the main problem: given the relationship a
is-a b among two actors, what are the implications of this
relationship on the elements that exist inside the actor a,
considering the information that is inside the actor b?
The work presented in this paper addresses this prob-

lem, expressed as a goal in the GQM format [15]: the pur-
pose of this work is to formally define the consequences of
the iStar2.0 specialization relationship (is-a) on models
semantics from the point of view of system modelers in the
context of a standardization action for iStar2.0.
This general goal is divided into the following four

research questions (RQs):
RQ1. What is the background relevant to the problem?
RQ2. What modeling operations can be defined when

an actor specialization is-a has been declared
between two actors?

RQ3. What are the semantics of these operations?
RQ4. What are the correctness conditions to be fulfilled

for their application?

The rest of the paper is structured as follows. Section II
summarizes the iStar2.0 language. Section III presents the
background of our work as an analysis of the specialization
concept in three different areas. In Section IV we introduce
the specialization operations for iStar2.0 which are formally
defined in Section VI upon an algebraic specification of
iStar2.0 and the model correctness as well as model elements
satisfaction notions outlined in Section V (available in the
appendix in its full form). The process of applying these
operations is described in Section VII. Finally, Section VIII
provides the conclusions and future work.

II. THE ISTAR2.0 LANGUAGE
As already explained in the introduction, iStar2.0 emerged as
the first result of a standardization process aimed at solving
the problems in the use of the i∗ language in terms of unneces-
sary diversity on the use of its basic constructs. The definition
of the language that appears in this guide in 2016 [13] is the
starting point of our research and is summarized below.

iStar2.0 models are composed of two views. Firstly, the
Strategic Dependency (SD) view, which allows the represen-
tation of organizationalActors, whichmay be specialized into
Roles or Agents, although they may remain generic. Actors
can be related by is-a and participates-in association links.
Whereas the meaning of is-a is intuitively clear, participates-
in is a kind of passe-partout construct, intended to cover any
other actor relationship, for instance the former ‘‘part-of’’ and
‘‘instance’’ that appeared in the original i∗.

Actors can also be linked through social dependencies.
A Dependency is a relationship among two actors: one of
them, named Depender, depends on a second actor, named
Dependee, for the accomplishment of some internal inten-
tion. The dependency is then characterized by an intentional
element (Dependum) which represents the dependency’s ele-
ment. The primary Intentional Elements (IE) are: Resource,
Task, Goal and Quality. Whereas the first three elements
already appeared in i∗, Quality replaces the original i∗ con-
cept of ‘‘softgoal’’ that was quite confusing in its use; Quality
represents ‘‘an attribute for which an actor desires some level
of achievement’’ [13].

Secondly, the Strategic Rationale (SR) view represents the
internal actors’ rationale. The separation between the exter-
nal and internal actor’s worlds is represented by the actor’s
Boundary. Inside this boundary, the rationality of each actor
is represented using the same types of IEs described above.
Additionally, these intentional elements can be interrelated by
using one of the following relationships: Refinement (linking
goals and tasks hierarchically, either with and AND or an OR,
but not simultaneously), Contributions (showing the effect
of an IE into a quality), Qualification (relating a quality to
its subject, i.e. and IE of any other type) and NeededBy (in
which a resource is linked to the task that needs it). Contri-
butions can be positive (help, make) or negative (hurt, break)
and they can give sufficient evidence (make, break) or weak
evidence (help, hurt). Table 1 shows an overview of the valid
relationships.

146006 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

TABLE 1. Intentional elements (IEs) links in iStar2.0 [13].

FIGURE 1. iStar2.0 model fragment with two actors linked through is-a.

For illustration purposes, Fig.1 shows an excerpt of an
iStar2. 0 model binding families that want to go on travel with
the support of a travel agency. The model mixes a general
SD view with an SR view for one of the actors. It includes
an actor modeling the Travel Agency, a second actor for the
generic concept of Customer, and a specialization of Cus-
tomer into Family. The SR view of Customer shows several
IEs inside: the goal of obtaining assistance from the travel
agency (Assistance Obtained), or the task of buying the travel
(Buy Travel), in an easy way, including the subtask of naming
a price (Name a price) and the quality of buying the travel
easily (Travels Bought Easily) qualifying the task of buying
the travel. Some of these IEs depend on the travel agency.
In this scenario, several questions related to our goal arise:
how are IEs belonging to Customer inherited in Family?,
what modifications are valid over these inherited elements?,
do dependencies as Easily Bought also apply to Family?,
may Buy Travelhave additional sub-tasks in Family?, etc.
This uncertainness makes the modeler hesitant about the
use of specialization and then about the correctness of the
iStar2.0 models that use this construct.

For a more complete description of the language, we refer
to the iStar2.0 Language Guide [13] (which includes a meta-
model) that is in open access. Also, the interested reader
can consult the definition of the seminal i∗ language [1]
and the reference model provided in [10]. A summary and a
comparison of dialects offered in [9] may help to understand
the motivation for defining the standard.

III. BACKGROUND: THE NOTION OF SPECIALIZATION
The idea of organizing concepts into is-a hierarchies emerged
very early in Information Systems and Software Engineering.

The main concepts that appear around taxonomies are spe-
cialization, or how to make something generic more concrete,
and inheritance as the mechanism that determines how the
characteristics from the generic concept are transferred to the
concrete one.

This section presents an overview of the general concept
of specialization in different areas and how the link is-a
was used in i∗ models (since it has not been addressed in
iStar2.0 yet) both as a literature study and through a survey
conducted in the i∗ community.

A. SPECIALIZATION IN MODELLING-RELATED AREAS
This section goes over the use of specialization for knowledge
representation and for software development. Between these
two areas lies conceptual modeling. In these areas, specializa-
tion is a well-known and consolidated concept with seminal
works starting in the late sixties.

1) KNOWLEDGE REPRESENTATION
Inheritance was first introduced by M.R. Quillian as part
of his proposal for semantic networks [16], represent-
ing knowledge by means of a graph of concepts. Ever
since semantic networks emerged, other proposals have
included inheritance as the way to represent information
named as Inheritance Networks. These networks consider
two kinds of inheritance: strict and defeasible [17]. In strict
inheritance, a concept inherits all the attributes of its prede-
cessors on the is-a hierarchy and can add its own attributes.
On the other hand, defeasible inheritance also allows can-
celling, in the sense of removing, some attributes from the
concept’s predecessors.

2) SOFTWARE DEVELOPMENT
Inheritance appeared first in the Simula 67 programming
language [18] allowing new information in subclasses (strict
inheritance). It evolved along time to arrive to a fully defeasi-
ble inheritance in Visual Basic .NET including the possibility
of shadowing (cancellation in defeasible inheritance).

3) CONCEPTUAL MODELING
Generalization was introduced in database modeling by
Smith and Smith [19] according to the concept of strict
inheritance. Afterwards, conceptual modeling languages and
methodologies for specification and design in OO started to
proliferate and proposed different ways to deal with inheri-
tance. In Semantic Data Models’ field inheritance is included
as an extension of the Entity-Relationship model (EER)
[20], [21]. In the UML class diagrams, inheritance is defined
since its first version in 1997 [22]. In 1982, Borgida et al.
presented a software specification methodology based on
generalization and specialization [23].

Despite of their differences, the various approaches in these
three areas concur that all the instances of a subconcept
must be instances of the superconcept, changing the words
instances and concept depending on the area.

VOLUME 7, 2019 146007



L. López et al.: Specialization in the iStar2.0 Language

TABLE 2. Summary of specialization features found in the literature.

Table 2 shows the features found in the different areas and
approaches classifiedwith respect to theMeyer’s Taxomania1

rule [24]: ‘‘Every heir must introduce a feature, redeclare
an inherited feature, or add an invariant clause’’. Some
approaches are similar in what can be done, and even in the
way of doing it. For example, most of OO languages do not
allow cancelling properties, but it can be simulated accessing
properties via methods.

B. SPECIALIZATION IN THE I∗ FRAMEWORK
Inheritance appeared in i∗ from the very beginning. Yu used
the is-a relationship as actor specialization in his thesis [1].
This link was only used in SD models between actors but it
was not formally defined; the only observable effect in the
examples is the addition of new incoming dependencies to the
subactor (see Fig. 2). No examples were given of SR diagrams
for subactors so the precise effects of is-a at this level remain
unknown.

None of the main i∗ dialects defined the is-a link in their
metamodels. If we look at the language definition, GRL does
not have any type of actor links [25] and Tropos only defines
other types of links between types of actors [26].

Some authors use the is-a link, for example
Castro et al. [27] use is-a link in the context of generation
of architectural models (see Fig. 3).

Adad et al. [28] propose a catalogue of context model
elements expressed in i∗ for reusing knowledge, using generic
actors and their specialization as building blocks in the con-
struction of context models for new systems (see Fig. 4).

Although it was not usual, some authors did develop SR
diagrams for subactors. For example, Goldsby et al. [29] use

1conjunction of words taxo from taxonomia and mania referent to that all
classes have to be organized

FIGURE 2. Meeting schedule SD diagram [1].

FIGURE 3. SD diagram (is-a): Architectural Models [27].

the specialization concept to represent the different states
associated to a system. Subactor’s diagrams represent the
system behavior depending on the domain (S1, S2, or S3),

146008 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 4. SD diagram (is-a): Context model elements Catalogue [28].

FIGURE 5. SR diagram: Flood warning system subactor’s [29].

represented as especializations of the superactor Flood warn-
ing system. In this case the diagrams are very similar (see
Fig. 5), where differences are highlighted using a box, but the
superactor is not developed. So, the authors did not deal with
the differences between superactor and subactor behavior.

In the model-driven development process proposed by
Alencar et al.[30], which generates UML diagrams from
i∗ models, there are some rules to map the is-a link to
inheritance between classes, but there is a lack of information

FIGURE 6. From i∗ to UML Class Diagram [30].

about how some elements inside the subactor’s (e.g. Fig. 6,
actor Photographer) boundary are placed into the super-
class (e.g. Fig. 6, actor Candidate Employee). For example,
the resource ‘‘A description about photo equipment’’ in Pho-
tographer (subactor) ends as the attribute descEquipment in
class CandidateEmp (superactor).
Liu et al. [31], in the context of social threads modelling,

uses is-a link to model Attackers and the specialization of
Ransomware attackers. Fig. 7 includes both SR that share
parts in the IE names, e.g. ‘‘Spread [Malicious Code]’’ and
‘‘Write [Malicious Code]’’, with no more information.

Given this situation, we already addressed in a previous
work the rigorous definition of the is-a construct in i∗ [14].
In that early work, we formulated an algebraic formula-
tion of i∗ models over which we defined the consequences
of the operations related to specialization. In this paper, we
use the same algebraic approach. Since iStar2.0 is an evo-
lution of the i∗ language, there will be similarities of this
paper and [14] but also significant differences, related to the
different set of constructs (e.g., Quality instead of Softgoal,
Refinement merging Decomposition and Means-end, new
constructs like NeededBy and Qualification, removed con-
structs as dependencies’ strength, etc.). Besides, a limitation
in [14] was that the specialization operations were defined
over SR diagrams only, whereas in this work we consider SD
views too, i.e. models containing actors without IEs inside
their boundary. This makes the proposal complete. In addi-
tion, this paper also provides: 1) the correctness conditions
that must be kept to ensure that the operations produce correct
models; 2) the necessary graphical rules in order to effectively
encode the operations into the visual notation provided by i∗,
being not necessary new constructors; 3) a methodology for
using the specialization operations as part of a well-defined
process.

C. I∗ RESEARCHERS PERCEPTION ON SPECIALIZATION
In order to complete our preliminary analysis, we conducted
a survey to the i∗ community on the concept of specialization,
which contained the following questions:

VOLUME 7, 2019 146009



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 7. SR diagram Attackers in Ransomeware [31].

Q1. How often do you use is-a links in the models
that you develop?

Q2. If you use is-a links, do you have any doubts
about their usage?

Q3. If a is-a b, what is the consequence regarding
dependencies at the SD level?

Q4. If a is-a b, what is the consequence regarding the
SR level?

We got 21 valid anonymous answers, most of them col-
lected in the International i∗ Workshop.2 This workshop is
an annual forum where the most important actors involved
in the i∗ research community share their ongoing research,
the attendees are mainly i∗ expert researchers and some
PhD students. According to the results for questions Q1 and
Q2, the construct is frequently used (57% answered some-
times or more in Q1) but mostly with some concerns about
its usage (84% answered yes in Q2). This contradiction is
explained because the 68% answered Q2 as: yes, but these
doubts are not fundamental for my models.

According to the is-a consequences, when actor a is-a
actor b, new elements can be added in the actor a (85%
for dependencies (Q3); 90% for intentional elements (Q4)).
There is less agreement about modification (38% and 14%
respectively). Finally, almost none of the respondents sup-
ported the option of removing elements (4.7% and 9.5%
respectively). Respondents were also asked for what kind of
modification could be allowed. All the respondents said that
the intentional elements should be modified using the OO
specialization concept, with no more information about what
does OO specialization means.

Fig. 8 shows the trends for questionsQ2,Q3 andQ4 for all
the respondents considering the frequency of use declared as
response to Q1.

2This year, the 12th International i∗ workshop (iStar 2019) is co-located
with the 38th International Conference on Conceptual Modeling (ER 2019).

Considering the results of the survey and the trends, inde-
pendently of the frequency of use of the construct, we observe
that:

— Although the construct is used, modelers have some
doubts on its effect.

— The i∗ community agrees on allowing adding extra
information to subactors, has doubts about whether the
inherited information can bemodified andmostly agrees
in not allowing removal of inherited information.

IV. TOWARDS SPECIALIZATION IN THE
ISTAR2.0 LANGUAGE
A. TYPES OF SPECIALIZATION OPERATIONS
Considering the review presented in the previous section,
it can be concluded that specialization may consist on adding,
modifying or removing inherited information. Meyer sum-
marizes these operations in his Taxomania Rule (already
introduced in Section III.A), which can be presented in the
iStar2.0 context as:

— Extension (‘‘introducing a feature’’ in the Taxomania
Rule). A new iStar2.0 model element, related some-
how to inherited elements, is added to the subactor and
extends its intentionality.

— Reinforcement (‘‘adding an invariant clause’’). The
semantics of an inherited iStar2.0 model element is
made more specific.

— Cancellation (‘‘redeclaring an inherited feature’’).
An iStar2.0 model element that exists in the superactor
is changed in the subactor.

Our goal is to align iStar2.0 specialization with the concept
of specialization in the literature (Section A), considering the
usesmade by researchers in the i∗ community (Section B) and
their reported preferences (Section C). Whereas extension
and reinforcement fit to these three alignment dimensions,
for cancellation is not so clear. The main problem with
cancellation is that it would allow removing elements from
the subactor that are in the superactor. This radical behavior

146010 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 8. Trends depending on the is-a use for Q2 (left), Q3 (center) and Q4 (right).

makes cancellation used only marginally in conceptual mod-
eling proposals and clearly rejected by the i∗ community (see
opinions about ‘‘Remove’’ in the survey). Therefore, given
the standardization purposes of iStar2.0, we have decided not
to include cancellation in this proposal.

The questions that arise are then:

— What specialization operations do exist?
— Which is their semantics?
— Which are their correctness conditions?

We answer these questions in the next sections.

B. GRAPHICAL REPRESENTATION
As most conceptual modeling languages, the graphical rep-
resentation of the iStar2.0 language plays an important role
in its potential adoption. Therefore, to make the proposal
complete, we need to pay attention to this dimension. In par-
ticular, it is necessary to represent the result of applying the
specialization operations.

In order to define the graphical rules for representing
specialized elements, and aligned with Moody’s physics of
notation [32], we have applied a minimum redundancy prin-
ciple: when an inherited model element is neither modified
nor referenced, it will not be included in the subactor. For
‘‘modified elements’’, we refer to those that have been object
of a specialization operation, whilst ‘‘referenced elements’’
are those that remain the same as in the superactor but need
to be included in order to make clear the semantics of some
modified element. Table 3 summarizes the syntax for the
different model elements in the subactor SR Diagram.

The iStar 2.0 model shown in Fig. 9 includes an example of
the different elements described in Table 3. For the subactor
FTA, the referenced goal Asynchronous Support (no [] +
dotted line), the extended goal [Assistance Provided]([] +
dotted) with the new element Easy Access (no [] + regular
line), and the reinforced task Provide [Synchronous Support]
by Phone ([] + regular) that is reinforcing the element Syn-
chronous Support from the superactor TA. The referenced
OR-refinement is shown with dotted lines because it remains
the same as in the superactor.

TABLE 3. Subactor elements syntax.

FIGURE 9. Specialization operations graphical rules.

According with the rules presented above, the IEs origin
and the specialization operation applied can be identified by:

— no [] in the name + dotted lines = referenced (i.e.
inherited and non-modified)

— [] for the whole name + dotted lines = extended
— [] for part of the name + regular lines = reinforced

V. MODEL CORRECTNESS
For the specialization operations definition, the result-
ing model must be correct. For all the areas presented

VOLUME 7, 2019 146011



L. López et al.: Specialization in the iStar2.0 Language

TABLE 4. Summary of specialization operations in iStar2.0.

in Section A, the common idea of using specialization is
that all the instances of a subclass must be instances of the
superclass (changing the words instances and class depending
on the area). For formalizing this idea, in the area of object-
orientation, Barbara Liskov stated in 1987 the Liskov Sub-
stitution Principle (LSP) [33]. The basic idea behind LSP is
that the objects of a subtype can be used instead of the objects
of a supertype maintaining the expected behavior. Applying
this principle to iStar2.0 models, we have considered two
perspectives, external and internal.

From an external perspective, the ‘‘expected behavior’’
of an actor a is represented by its incoming dependencies
because they state what other actors expect from a. There-
fore, we define the following model correctness condition3

(MCC1).

In the subactor, we need to ask for the incoming dependen-
cies that were in the superactor, because the specialization
operations (explained in Section VI) may eventually allow
introducing some new dependency (⊆) or modifying the
inherited dependency (originalIncomingDep).

From an internal perspective, the actor’s intentions state
their own satisfaction (the expected objectives/intentions).
The specification operations need to ensure that the subac-
tor’s expected objectives/intentions must imply the superac-
tor’s ones (MCC2).

3The appendix includes a link to the complete algebraic definition of an
iStar2.0 model, together with the notion of satisfaction (sat) and auxiliary
predicates (as subactors) that are used in the paper.

It is worth to remark that, since MCC1 refers to the
expected behavior (incoming dependencies), this condition
will be always kept because the chosen specialization opera-
tions do not allow removing any element from themodel. This
is not the case in MCC2; therefore, for each specialization
operation, we have to prove that the MCC 2 is kept. These
proofs can be made by induction and are very similar to one
another. Therefore, we only include one proof as example in
the paper.

VI. SPECIALIZATION OPERATIONS
This section presents all the specialization operations struc-
ture by the type of iStar2.0 construct involved, summarized
in Table 4. It may be observed that all of them correspond
to the second type of specialization according to the Tax-
omania’s rule, namely reinforcement, except for one that
really extends the intentionality of the superactor. For each
operation, we include its declaration, precondition and post-
condition. Also, as mentioned above, we include a formal
correctness proof only for the first operation, for the sake of
brevity and because all of them are quite similar.

The operations will be illustrated with an academic exem-
plar, already outlined in Fig.1. This exemplar considers a
Travel Agency that offers a customized online travel platform
to their customers. Travel Agencies may address different
types of Customers, defined as new actors resulting from
specializations using the is-a link.

A. ISTAR2.0 MODEL DEFINITION
For the purposes of this work and in order to focus to the
essential matter, we adopt some simplifications over the lan-
guage:

S1. Actors are restricted to general actors (without
distinguishing among roles and agents–in fact,
as stated in [13], agents cannot be involved in
specialization);

S2. Actors links are restricted to specialization
(participates-in is not considered);

146012 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

TABLE 5. Formal definition of the iStar2.0 language as used in this paper.

S3. Dependencies that involve actors with IEs, must
connect IEs (meaning, that an actor as a whole
cannot depend on an individual IE, nor the other
way around);

Table 5 provides the basic algebraic definition of iStar2.0
models; the appendix includes the link to the complete ver-
sion, including all integrity constraints. An iStar2.0 model
contains actors, dependencies, dependums and actor special-
ization links (D1). Actors contain IEs connected by IE links of
different types (D2-D4). Dependencies connect two elements
that can be actors or IEs and have a dependum (that is also an
IE) (D5, D6); when the depender or the dependee is an actor,
the corresponding element in the formalization (ier and ied ,
respectively) are equal to⊥. Specialization links connect two
actors (subactor and superactor) (D7).

For all the definitions presented in this section we will be
assuming that we have an iStar2.0 model, defined as M =
(A, DL, DP, AL), and two actors a, b such that a, b ∈ A and
(a, b) ∈ AL (i.e., a is subactor of b).

B. SPECIALIZATION OF ACTORS
Actors can be specialized in two ways:
— New outgoing dependency. The subactor is not able to

achieve or decide not to a given intentionality without
the support of another external actor. According to the
language simplification S3 (stated in Section A), this
operation can only be applied over actor without IEs.

— New main IE. Some IE is added as a main IE because
the subactor has a new intentionality that is not covered

by the superactor’s main IEs. This operation can be only
applied when the actor contains IEs.

We present in the rest of the section these two operations.
We provide a formal proof for the first one as illustration
of the general induction-based approach followed to demon-
strate correctness.

1) OUTGOING DEPENDENCY ADDITION
Fig. 10 illustrates this case in which a family needs a Family
Travel Agency (FTA) in order to obtain children activities for
the travel. The operation definition analyses the correctness
of the dependency from the point of view of Family (depen-
der, thus outgoing dependency).

FIGURE 10. Actor specialization operations: Adding outgoing
dependencies.

SOp1: Actor specialization by outgoing dependency
addition
Declaration: specializeActorWithOutgoingDependency

(M , a, de, dm), being:

VOLUME 7, 2019 146013



L. López et al.: Specialization in the iStar2.0 Language

— M = (A,DL,DP,AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the new

dependency is added
— de = (c, ⊥), the dependency end that corresponds to the

dependee
— dm the new dependum
Preconditions:

— According to S3 (see Section A), the subactor does not
have intentional elements: IEa = ∅

— dnew = ((a,⊥), de, dm) is really enlarging subactor’s
needs:

@D
⊆ outgoingDep (a,M) : (

∧
d∈D

sat (d,M))

⇒ sat(dnew,M )
Postcondition:
M ′= specializeActorWithOutgoingDependency (M , a, de,

dm) adds the new dependency to the modelM :

M ′ = (A,DL ∪ {dnew},DP ∪ {dm},AL)

Proof: We demonstrate by induction that this opera-
tion holds actor specialization correctness, i.e. sat(a,M ′)⇒
sat(b,M ′) (seeMCC2).

The appendix includes the definition of the notion of sat-
isfaction (sat), satisfaction predicates SD2 (defining actor
satisfaction when it does not have IEs as the satisfaction of
its outgoing dependencies) and SD3 (defining dependency
satisfaction as the satisfaction of its dependum), and the
predicates intentionalElements(which returns the set of IEs
defined inside an actor), outgoingDep (which returns the set
of dependencies stemming from an actor in a model) and
outgoingDependums (which returns the set of dependums of
the actor’s outgoing dependencies).
Induction Base Case (IBC): In the IBC, this operation is

the first specialization operation applied to the subactor a, i.e.
outgoingDependums(a,M ) = outgoingDependums(b,M )
[P1]
[1] sat(a, M ′)⇔ ∀dl∈ outgoingDep(a,M ′): sat(dl)

appling SD2 over a
[2] ⇔ (∀dl∈ outgoingDep(a,M ): sat(dl)) ∧ sat(dnew)

since dnew is added as outgoing
dependency

[3] ⇒ ∀dl∈ outgoingDep(a,M ): sat(dl),
since X ∧ Y⇒ X

[4] ⇔ ∀ie ∈ outgoingDependums(a,M ): sat(ie)
applying SD3 over outgoingDep(a,M )

[5] ⇔ ∀ie∈ outgoingDependums(b,M ): sat(ie)
applying [P1]

[6] ⇔ ∀dl∈ outgoingDep(b,M ): sat(dl)
applying SD3

[7] ⇔ ∀dl∈ outgoingDep(b,M ′): sat(dl),
since b related elements5 are the same
in M and M ′

[8] ⇔ sat(b, M ′)

5b does not change, nor the actor links and dependencies where b is
involved

Induction Hypothesis (IH): We assume a state in which
after several specialization operations are applied, still the
correctness condition holds:
sat(a,M )⇒ sat(b,M )
Induction Step (IS): If this operation is applied over a sub-

actor a that satisfies the correctness condition, the subactor in
M ′ satisfies it too:
sat(a,M ′)⇒ sat(b, M ′)

[1] sat(a, M ′)⇔ ∀dl∈ outgoingDep(a,M ′): sat(dl)

applying SD2 over a

[2] ⇔ (∀dl∈ outgoingDep(a,M ): sat(dl)) ∧ sat(dnew),

since dnew is added as outgoing
dependency

[3] ⇒ ∀dl∈ outgoingDep(a,M ): sat(dl)

since X ∧ Y⇒ X

[4] ⇔ sat(a, M) applying SD2 overa

[5] ⇒sat(b, M) applying IH (induction hypothesis)

[6] ⇔ ∀dl∈ outgoingDep(b,M ): sat(dl)

applying SD2

[7] ⇔ ∀dl ∈ outgoingDep(b,M ′): sat(dl)

since b related elements are the same
in M andM ′

[8] ⇔sat(b, M’) applying SD2 overb

2) MAIN INTENTIONAL ELEMENTS ADDITION
Fig. 11 illustrates the case in which a Family needs a new
main IE Children Activities Obtained, not included in the
boundary of the superactor Customer.

FIGURE 11. Actor specialization operations: Adding main IE children
activities obtained.

SOp2: Actor specialization by main intentional element
addition
Declaration: specializeActorWithMainIE(M , a, ienew),

being:

— M = (A,DL,DP,AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor d where the

new IE is added
— ienew, /∈IEa, the new IE to be added as main IE

Preconditions:

— The subactor must have intentional elements:
intentionalElements(a) 6= ∅

146014 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 12. Specialization operations: Adding refinement links.

— ienew is really enlarging subactor’s intentionality:

@ MIE ⊆ mainIEs (a) : (
∧

ie∈MIE

sat (ie,M))

⇒ sat(ienew,M )

Postcondition:
M ′ = specializeActorWithMainIE(M , a, ienew) includes

the new IE as main element in a:
M ′ = substituteActor(M , a, a′), being
a′ = (na, IEa∪{ienew}, IELa) and substituteActor a func-

tion replacing every occurrence of a in M by a′ (see the
Appendix).

C. SPECIALIZATION OF INTENTIONAL ELEMENTS
We find two different categories of IE refinement:

— Specialization by new link. An IE inherited from a
superactor can be reinforced in a subactor by providing
more detail, which means adding a new link connecting
to another IE. This other IE can be new or inherited
from the superactor.

— Specialization by redefinition. An IE inherited from a
superactor can be reinforced in a subactor by redefin-
ing its semantics. No new model elements need to be
added ormodified, only the IE under redefinitionwhich
needs to be given a different name.

1) INTENTIONAL ELEMENT SPECIALIZATION BY NEW LINK
An IE iet inherited from a superactor can be reinforced in a
subactor by adding a new link from another IEies which may
be new or also inherited. The only restriction is that the IE
which is decomposing another cannot be a main IE, in order
to maintain superactor’s main IEs as main IEs in the subactor
(as per correctness conditionMCC1, see Section 6.1).We dis-
tinguish three operations for three cases:

— Refinement link: ies is a refinement to achieve the
goal or to execute the task represented by iet . As already

shown in Table 1, both IEs involved in a refinement link
are either goals or tasks.

— NeededBy link: the resource ies is needed in the subactor
in order to execute the task iet .

— Qualification link: iet needs to show some given quality
represented by ies which was not required for the origi-
nal IE in the superactor.

Contributions will be considered in the next category of
operations, because their main purpose is to specialize a link
than to specialize the IE connected to the link.
Fig. 12 presents the case in which the FTA subactor adds a

new refinement (Family Facilities Offered) to an inherited end
Travels Contracted Increase that was already refined in TA.
Notice that, the specialized IE is further refined (although
this is not mandatory). In this example, there are also goal
specialization by Qualification (quality Easy Access is added
as a specialization of the Assistance Provided goal) and a task
specialization by NeededBy (the resource Family Register is
added as a specialization of the Book Travel task).
SOp3: Task or goal specialization by refinement.
Declaration: specializeIEWithRefinementLink(M , a, iet ,

ies, v), being:

— M = (A,DL,DP,AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the IE

specialization takes place
— iet ∈ IEa, type(iet ) ∈ {goal, task} the inherited IE to be

specialized
— ies, the new IE to be linked to iet
— v the value for the refinement link, v ∈ {AND, OR}

Preconditions:

— ies is semantically correct with respect to iet :

– v = OR: sat(iet, M)⇒ sat(ies, M)
– v = AND: sat(ies, M)⇒ sat(iet, M)

— ies is not a main element in the superactor:
ies /∈mainIEs(superactor(a,M ))

VOLUME 7, 2019 146015



L. López et al.: Specialization in the iStar2.0 Language

— if iet was already refined in the superactor, the value v
of the refinement link needs to be the same (as stated in
the iStar2.0 guide [13]):
∃(x, iet , refinement, rv, ⊥) ∈ IELsuperactor(a) ⇒ v = rv

Postcondition: M ′ = specializeIEWithRefinementLink(M,
a, iet , ies, v) adds the refinement link in the actor a connecting
the two IEs iet andies, with AND or OR depending on the
value of v:
M ′ = substituteActor(M , a, a′), being
a′ = (na, IEa ∪ {ies}, IELa ∪ {(ies, iet , refinement, v,⊥)})
Note that in case that ies exists in a, the expression IEa ∪
{ies} will leave IEa unchanged.
SOp4: Task specialization with a needed resource.
Declaration: specializeTaskWithNeededByLink(M, a, iet,

ies), being:
— M = (A,DL,DP,AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the IE

specialization takes place
— iet ∈ IEa, type(iet ) = task , the inherited IE (a task) to

be specialized
— ies, type(ies) = resource, the new IE (a resource) to be

linked to iet
Preconditions:

— ies is semantically correct with respect to iet :
sat(ies, M )⇒ sat(iet , M )

— ies is not a main element in the superactor:
ies /∈mainIEs(superactor(a))

Postcondition:M ′ = specializeTaskWithNeededByLink(M,
a, iet , ies) adds the neededBy link in the actor a connecting
the two IEs ietandies, :
M ′ = substituteActor(M , a, a′), being
a′ = (na, IEa ∪ {ies}, IELa ∪ {(ies, iet , neededBy, ⊥, ⊥)})
Note that in case that ies exists in a, the expression IEa ∪
{ies} will leave IEa unchanged.
SOp5: Intentional element specialization by qualification.
Declaration: specializeIEWithQualificationLink(M , a,

iet , ies), being:
— M = (A,DL,DP,AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the link

addition takes place
— iet ∈ IEa, type(iet) 6= quality, the inherited IE (not a

quality) to be specialized
— ies, type(ies) = quality, the new IE (a quality) to be

linked to iet
Preconditions:
– ies is adding some quality that was not completely exhib-

ited by iet :
¬(sat(ies, M)⇒sat((∪q:(q, iet , quality, ⊥, ⊥): q), M))

— ies is not a main element in the superactor:
ies /∈mainIEs(superactor(a,M ))

Postcondition: M ′ = specializeIEWithQualification-
Link(M, a, iet , ies) adds a qualification link in the actor a
connecting the two IEs ietandies, :
M ′ = substituteActor(M , a, a′), being
a′ = (na, IEa∪{ies}, IELa∪{(ies, iet , qualification,⊥,⊥)})

Note that in case that ies exists in a, the expression IEa∪
{ies} will leave IEa unchanged.

2) INTENTIONAL ELEMENT REDEFINITION
A subactor a can enforce the intentionality of an IE ie
inherited from its superactor b by redefining its semantics,
meaning:

— Goal: the set of states attained by ie in a is a subset of
those attained in b.

— Quality: the level of achievement of an attribute by ie in
a is more demanding that the level in b.

— Task: the procedure to be undertaken when executing ie
in ais more prescriptive (i.e. has less freedom) than the
one when executing ie in b.

— Resource: the entity represented by ie in aentails more
detailed information than the entity represented by
ie in b.

This redefinition allows changing the inherited IE’s type.
In order to guarantee that the satisfaction of the inherited IE’s
type must imply the IE under redefinition’s type, the restric-
tion must follow a strict partial order relation among IE types:
Quality > Goal, Goal > Task and Goal > Resource.

Fig. 13 presents two examples of IE redefinition. On the
one hand, it shows the redefinition of the resource Travel
Information in which information related to families (e.g., age
of children, pets allowed, children facilities. . . ) is included in
the subactor asFamily oriented [Travel information]. On the
other hand, it redefines the goal Synchronous Support as
Provide [Synchronous Support] by Phonetask, to make more
specific the way this goal should be achieved, in this case the
goal type is changed to a task because the IE is redefinedmak-
ing explicit the way to achieve this goal, by phone. As usual,
IEs and IE links in dotted lines represent inherited and non-
changed elements. The redefined IEs are included in solid
shape and the name contains into square brackets the name
used in the superactor (see Section 4.2).
SOp6: Intentional element redefinition.
Declaration: specializeIEbyRedefinition(M , a, ies, nref , t),

being:

— M = (A, DL, DP, AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the IE

redefinition takes place
— ies = (nies,ties) ∈IEa, the inherited IE to be redefined
— nref , the (unique) name to be given to the redefined IE
— t,the type of the redefined IE

Preconditions:

— the new IE is enforcing the inherited one:

– sat((nref , t), M )⇒ sat((nies, ties), M )
– t ≤ ties, according to the ordering defined above

Postcondition: M ′ = specializeIEbyRedefinition(M , a, ies,
nref , t) substitutes the inherited IE by the redefined one:
M ′ = substituteIE(M , a, ies, ieref ), being ieref = (nref , t)

and substituteIE a function that replaces ies which belongs to
a in M by ieref in M ′.

146016 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 13. Specialization operations: Redefining a decomposed task charge travel.

FIGURE 14. Specialization operations: Redefining contribution links.

D. SPECIALIZATION OF INTENTIONAL ELEMENT LINKS
Given that three of the four types of links in iStar2.0 have been
already related to the specialization of IEs, here we present
just the fourth case, qualitative contribution link redefinition.
Contribution link redefinitionmeans changing the value of

the contribution. In order to guarantee that the satisfaction
of the refined link’s value must imply the inherited one,
the change must follow the strict partial order relation among
contribution link values [34]: Help > Make, and Break >

Hurt. This order relation does not allow changing the ‘‘sign’’
of the contribution (from positive to negative or the other way
around).

Fig. 14 shows a redefinition where the involved IEs are
the same in both actors, just the contribution from Assistance
Provided to Travels Contracted Easily value changes from
HelptoMake the rationale behind this redefinition is the fact
that FTA has the task of Provide [Synchronous support by
Phone.
SOp7: Qualitative contribution link redefinition.

Declaration: specializeContributionLink(M , a, iel, v),
being:

— M = (A, DL, DP, AL), an iStar2.0 model
— a = (na, IEa, IELa), a ∈ A, the subactor where the IE

link redefinition takes place
— iel=(ies, iet ,contribution,⊥, vl), iel∈IELa, the inherited

contribution link to be refined
— v, the value to be given to the refined contribution link
Precondition: The new contribution value is enforcing the

inherited one:v < vl
Postcondition: M ′ = specializeContributionLink(M, a,

iel, v) substitutes the value of the inherited contribution link
by the new value:
M ′ = substituteActor(M , a, a′), being a′ = (na, IEa,

(IELa\{iel}) ∪ {(ies, iet , contribution, ⊥, v)}).

E. SPECIALIZATION OF DEPENDENCIES
A dependency can be specialized only if at least one of the
actors involved in the specialized dependency is a subactor.

VOLUME 7, 2019 146017



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 15. Specialization operations: Redefining dependencies.

Specializing a dependency means redefining its dependum.
Since the dependum is an IE, the rules are the same to those
introduced above for IE redefinition (Section 2)).

Fig. 15 presents an example of dependency specializa-
tion, dependum Family oriented [Travel Offerings] for sub-
actor Family redefines the Travel Offerings for superactor
Customer.
SOp8: Dependency redefinition
Declaration: specializeDependency(M, d, dmref), being:

— M = (A, DL, DP, AL), an iStar2.0 model
— d = ((dr,ier ), (de,iee),dm), d ∈ DL, the inherited depen-

dency under redefinition
— dmref the dependum for the redefined dependency

Note that d is the inherited dependency, where at least one
of the depender or dependee is a subactor (or belongs to a
subactor, if the depender and the dependee are IEs), not to
confound with the original dependency that will not change.
Precondition:

— The new dependum is enforcing the inherited one:

– sat(dmref)⇒ sat(dm)
– type(dmref) ≤ type(dm)

Postcondition: M ′ = redefineDependency(M, d, dmref )
removes the inherited dependency d and substitutes it by the
new dependency. On the contrary, d ′s dependum, dm, is not
removed since the specialized dependency (the one being
inherited) still makes use of it.
M ′ = (A, DL \ {d} ∪ {((dr, ier ), (de, iee), dmref)}, DP ∪

{dmref }, AL)

VII. THE SPECIALIZATION PROCESS
From a methodological point of view, the specialization of an
actor can be seen as a 2-step process (see Fig. 16). The first
step is the application of the specialization at the actor level,
adding the is-a link between 2 actors, i.e. all the elements
from the superactor are inherited by the subactor. The second

step consists of applying the specialization operations on the
subactor. For this second step, we distinguish two activities:

— Activity 2.1. Applying specialization operations to the
subactor elements. The resulting model is composed of
the superactor’s inherited elements specialized, plus the
new model elements added by the application of them.

– Activity 2.2.Adding newmodel elements in the subactor.
These new elements can be related to those added in
Activity 2.1. They can be:

– Outgoing dependencies, when a subactor’s element
depends on some other actor.

– Qualitative contribution and qualification links,
when a new element added in Activity 2.1 or an
inherited one influences some inherited or new
element.

– Decomposition subtrees, decomposing an element
added in Activity 2.1 through refinement or need-
edBy links, including the decomposed elements.
Refined IEs (goals and tasks) and needed resources
are considered as new in the context of the subactor.
The only restriction is that the new IE name cannot
be duplicated with respect to the superactor’s IEs.

Besides the activities defined in Step 2, there is a situation
that requires the reallocation of an inherited dependency
(Incoming/Outgoing Reallocation). Either the depender or
the dependee IE remains in the model, but there is some
new IE more appropriate to be the dependency end in the
subactor’s scope.

Since only one operation can be applied over any super-
actor’s IE, the order in which the operations are applied in
Step 2 is not relevant, and the activities can be intertwined
and iterated at any desired extent, with the only requirement
that the elements added in Activity 2.2 must refer to elements
added in Activity 2.1.

Fig. 16 shows how, after Step 1, activities in Step 2 can
be combined in order to generate the model of a subactor.

146018 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

FIGURE 16. Specialization process.

In between these activities, it could be necessary or recom-
mended to reallocate some dependencies.

VIII. CONCLUSION AND FUTURE WORK
In this paper we have presented a proposal for defining
iStar2.0 specialization in a formal manner, both in the SD and
SR views.

The research question ‘‘. . . formally define the conse-
quences of the iStar2.0 specialization relationship. . . ’’ was
decomposed into four research questions that have been
investigated in the paper:
— RQ1. We have studied the literature on specialization

in the disciplines of knowledge representation, object-
oriented programming and conceptual modeling; andwe
have compiled the works so far on i∗ specialization as
well as ran a survey in the i∗ community on the expected
behavior of such a construct. We have consolidated all
this information from the perspective of Meyer’s Taxo-
mania rule.

— RQ2. We have defined eight specialization operations
belonging to two of the three categories in the Taxo-
mania rule. The graphical representation of the elements
that can appear in the subactors through the application
of these operations is also included.

— RQ3: For each of the eight operations, we have defined
their behaviour in terms of the algebraic specification
of iStar2.0 models. We have identified the required pre-
conditions for these operations in terms of properties on
their parameters.

— RQ4: We have also stated the correctness of these oper-
ations by demonstrating that the satisfaction of the sub-
actor implies the satisfaction of the superactor. We have
defined formally the satisfaction concept and conducted
an exemplary proof by induction.

These operations can be combined in any arbitrary order
during the modeling process: our proofs show that satisfac-
tion is kept provided that the original model was correct.

As mentioned in Section III.B, this work is an extension of
a previous work on the former i∗ language [14]. In addition
to the transition from i∗ to iStar2.0, which is an advance by
itself, the most significant contribution is that in our previ-
ous work [14], the specialization operations were included
at the level of SR views only. In this paper, we are also
considering SD views, i.e. models containing actors that do
not contain intentional elements inside its boundary. This
makes the proposal really complete. In addition, this paper
has also provided: 1) the correctness conditions that must be
kept to ensure that the operations produce correct models;
2) the necessary graphical rules in order to effectively
encode the operations into the visual notation provided by
iStar2.0, being not necessary the inclusion of new construc-
tors; 3) a methodology for using the specialization operations
as part of a well-defined process; 4) a more thorough analysis
of the state of the art. Also, we had to adapt some visual
element to the changes proposed in iStar2.0; remarkably,
we were using the dotted arrows to link inherited elements
to new elements in the subactor but in iStar2.0, dotted arrows
are used to declare qualifications, therefore we had to change
this representation.

The problem of loose definition of the specialization rela-
tionship is not the only point of ambiguity of the iStar2.0 lan-
guage. A similar situation can be found for the other
iStar2.0 actor link: participates-in. This is the main
reason why we have not included this link into our study.
Therefore, as future work, we plan to address this lack of
accuracy following the same method as with specialization
and then, as a further step, to explore the relationships of this
actor association links with is-a as a way to complete the
current definition of specialization.

Another significant challenge is to understand if the third
situation identified in the Taxomania rule (cancellation) can
be included in the proposal under certain conditions. We have
justified in the paper its exclusion given its limited use
(or even clear rejection, in the conceptual modeling area and
the i∗ community). Still, in the context of reusability this
construct could be considered to be helpful: if an actor is part
of a reusable library, specializing this actor in a particular
system may require some adaptation through cancellation.
Investigating this issue is also part of our future work.

APPENDIX
This appendix includes the definition of the structure of the
iStar2.0 language [13] in algebraic form, complementing
Section VI.A., and the notion of satisfaction of iStar2.0 mod-
els on top of this definition. This definition is mainly of
syntactic nature. Working with this algebraic formalization
is an alternative to using the iStar2.0 metamodel available in
the language definition document [13].

We apply the same simplifications as in Section VI.A:
— Actors are restricted to general actors (S1);
— Actors links are restricted to specialization (S2); and
— Dependencies involving actors with IEs, must connect

IEs (S3);

VOLUME 7, 2019 146019



L. López et al.: Specialization in the iStar2.0 Language

TABLE 6. Formal definition of iStar predicates.

A. iSTAR FORMALIZATION
Table 6 presents the complete algebraic definition of an
iStar2.0 model, complementing Table 5 (Section VI.A).
iStar2.0 constructs are grouped into seven concepts: mod-
els (D1), actors (D2), intentional elements (D3), intentional
element links (D4), dependencies (D5) and dependencies
ends (D6), and actor specialization link (D7). For every con-
cept, we show the domains and the most significant correct-
ness conditions.

The iStart2.0 formalization is complemented with the aux-
iliary operations presented in Table 7. Some of the operations

included are used in the definition of the notion of sat-
isfaction (sat) below and others that can be of general
interest.

In order to simplify the definitions, we assume a modelM
defined as:

M = (A,DL,DP,AL)

B. SATISFACTION
We define the notion of satisfaction (sat) at level of actor,
dependency, and intentional element.

146020 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

TABLE 7. Formal definition of iStar operations.

1) ACTOR SATISFACTION
An actor a that contains intentional elements (intentionalEle-
ments (a) 6= ∅), is satisfied if all its main intentional elements
are satisfied:

sat(a,M )⇔ ∀ie ∈ mainIEs(a) : sat(ie,M )
An actor a that does not contain intentional elements

(intentionalElements(a) = ∅), is satisfied if all its outgoing
dependencies are satisfied:

sat(a,M )⇔ ∀d ∈ outgoingDep(a,M ) : sat(d)

2) DEPENDENCY SATISFACTION
A dependency d is satisfied if its dependum is satisfied:

sat(d,M )⇔ sat(dependum(d),M )

It is also worth remarking that the satisfaction of the depen-
dum is not independent from the dependency ends, as shown
by the two following properties:

sat(actor(dependerEnd(d)),M ) ⇒ sat(dependum(d),M )
sat(actor(dependeeEnd(d)),M ) ⇒ sat(dependum(d),M )

VOLUME 7, 2019 146021



L. López et al.: Specialization in the iStar2.0 Language

3) INTENTIONAL ELEMENT SATISFACTION
The satisfaction of an intentional element depends on the type
of the IE: goal satisfactibility means that the goal attains the
desired state; task satisfactibility means that the task follows
the defined procedure; resource satisfactibility means that
the resource is produced or delivered; quality satisfactibility
means that the modelled condition fulfils some agreed fit
criterion. But note the IE satisfaction itself is not defined.
IE satisfaction is defined by the modeler, when the IE is a
leaf. When it is not a leaf, the only thing that can be done is
to identify several properties depending on the type of links
involved:
— OR-ed task or goal refinement satisfaction
∀ieor : (ieor , ie, refinement, OR, ⊥) ∈ IEL:

sat(ieor , M)⇒sat(ie, M)
— AND-ed task or goal refinement satisfaction
∀ieand : (ieand , ie, refinement, AND, ⊥) ∈ IEL:

sat(ie, M)⇒sat(ieand , M)
— Task specialized by neededBy with a resource
∀iesrc: (iesrc, ie, neededBy, ⊥, ⊥) ∈ IEL:

sat(ie, M)⇒sat(iesrc, M)
— IE specialized with new qualification
∀iesrc: (iesrc, ie, qualification, ⊥, ⊥) ∈ IEL:

sat(ie, M)⇒sat(iesrc, M)
— Quality contributed from another IE with make
∀iesrc: (iesrc, ie, contribution, ⊥, make) ∈ IEL:

sat(ie, M)⇒sat(iesrc, M)
— Quality contributed from another IE with break
∀iesrc: (iesrc, ie, contribution, ⊥, break) ∈ IEL:

¬sat(ie, M)⇒sat(iesrc, M)

REFERENCES
[1] E. Yu, ‘‘Modelling strategic relationships for process reengineering,’’

Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, Canada,
1995.

[2] A. Dardenne, A. van Lamsweerde, and S. Fickas, ‘‘Goal-directed require-
ments acquisition,’’ Sci. Comput. Program., vol. 20, nos. 1–2, pp. 3–50,
1993.

[3] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher, ‘‘A lightweight GRL
profile for i* modeling,’’ in Proc. Conceptual Modeling Workshops (ER
Workshops), 2009, pp. 254–264.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
‘‘Tropos: An agent-oriented software development methodology,’’ Auton.
Agents Multi-Agent Syst., vol. 8, no. 3, pp. 203–236, May 2004.

[5] G. Grau, C. Cares, X. Franch, and F. Navarrete, ‘‘A comparative analysis
of i* agent-oriented modelling techniques,’’ in Proc. Int. Conf. Softw. Eng.
Knowl. Eng. (SEKE), 2006, pp. 657–663.

[6] E. S. K. Yu, ‘‘Towards modelling and reasoning support for early-phase
requirements engineering,’’ in Proc. 3rd IEEE Int. Symp. Requirements
Eng. (ISRE), Jan. 1997, pp. 226–235.

[7] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Salnitri,
L. Piras, J. Mylopoulos, and P. Giorgini, ‘‘Goal-oriented requirements
engineering: An extended systematic mapping study,’’ Requirements Eng.,
vol. 24, pp. 103–160, Jun. 2019.

[8] C. Cares, X. Franch, A. Perini, and A. Susi, ‘‘Towards interoperability
of i* models using iStarML,’’ Comput. Standards Inter., vol. 33, no. 1,
pp. 69–79, 2010.

[9] C. P. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya, G. Salazar,
X. Franch, E. Mayol, and C. Quer, ‘‘A comparative analysis of i*-based
agent-orientedmodeling languages,’’ inProc. Int. Conf. Softw. Eng. Knowl.
Eng. (SEKE), 2005, pp. 43–50.

[10] L. López, X. Franch, and J. Marco, ‘‘Making explicit some implicit i*
language decisions,’’ in Proc. Int. Conf. Conceptual Modeling (ER), 2011,
pp. 62–77.

[11] C. Cares, X. Franch, E. Mayol, and C. Quer, ‘‘A reference model for i*,’’
in Social Modeling for Requirements Engineering. Cambridge, MA, USA:
MIT Press, 2011, pp. 573–606.

[12] M. Lucena, E. Santos, C. Silva, F. Alencar, M. J. Silva, and J. Castro,
‘‘Towards a unified Metamodel for i*,’’ in Proc. 2nd Int. Conf. Res.
Challenges Inf. Sci. (RCIS), 2008, pp. 237–246.

[13] F. Dalpiaz, X. Franch, and J. Horkoff, ‘‘iStar 2.0 language
guide,’’ May 2016, arXiv:1605.07767. [Online]. Available:
https://arxiv.org/abs/1605.07767

[14] L. López, X. Franch, and J. Marco, ‘‘Specialization in i* strategic ratio-
nale diagrams,’’ in Proc. Int. Conf. Conceptual Modeling (ER), 2012,
pp. 267–281.

[15] V. Basili, G. Caldiera, and D. Rombach, ‘‘The goal question metric
approach,’’ in Encyclopedia of Software Engineering. Hoboken, NJ, USA:
Wiley, 1994.

[16] M. Quillian, ‘‘Semantic memory,’’ in Semantic Information Processing.
Cambridge, MA, USA: MIT Press, 1968.

[17] R. J. Brachman and H. J. Levesque, Knowledge Representation and Rea-
soning. San Mateo, CA, USA: Morgan Kaufmann, 2004.

[18] O. Dahl, SIMULA 67 Common Base Language. Oslo, Norway: Norwegian
Computing Center, 1988.

[19] J. M. Smith and D. C. P. Smith, ‘‘Database abstractions: Aggregation and
generalization,’’ ACM Trans. Database Syst., vol. 2, no. 2, pp. 105–133,
1977.

[20] P. Scheuermann, G. Scheffner, and H.Weber, ‘‘Abstraction capabilities and
invariant properties modelling within the entity-relationship approach,’’ in
Proc. 1st Int. Conf. Entity-Relationship Approach Syst. Anal. Design, 1980,
pp. 121–140.

[21] S. Navathe and A. Cheng, ‘‘A methodology for database schema map-
ping from extended entity relationship models into the hierarchical
model,’’ in Proc. Int. Conf. Entity-Relationship Approach (ER), 1983,
pp. 223–248.

[22] Object Management Group. Unified Modeling Language (UML) Web Site.
Accessed: Feb. 1, 2013. [Online]. Available: http://www.uml.org/

[23] A. Borgida, J. Mylopoulos, and H. K. T. Wong, ‘‘Generalization/
specialization as a basis for software specification,’’ in Proc. Conceptual
Modelling, Perspect. Artif. Intell., Databases, Program. Lang., Resulting
Intervale Workshop, 1982, pp. 87–117.

[24] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 1988.

[25] User Requirements Notation (URN)-Language Definition. document
ITU-T Recommendation Z.151 (11/08), International Telecommunication
Union, Geneva, Switzerland, 2008.

[26] A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini, ‘‘The tropos metamodel
and its use,’’ Informatica, vol. 29, no. 4, pp. 401–408, 2005.

[27] J. Castro, M. Lucena, C. Silva, F. Alencar, E. Santos, and J. Pimentel,
‘‘Changing attitudes towards the generation of architectural models,’’
J. Syst. Softw., vol. 85, no. 3, pp. 463–479, 2012.

[28] K. Abad, W. Pérez, J. P. Carvallo, and X. Franch, ‘‘A catalogue of reusable
context model elements based on the i* framework,’’ in Proc. Int. Conf.
Conceptual Modeling (ER), 2017, pp. 36–49.

[29] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
D. Hughes, ‘‘Goal-based modeling of dynamically adaptive system
requirements,’’ in Proc. Conf. Eng. Comput.-Based Syst. (ECBS), 2008,
pp. 36–45.

[30] F. Alencar, B. Marín, G. Giachetti, O. Pastor, J. Castro, and J. H. Pimentel,
‘‘From i* requirements models to conceptual models of a model driven
development process,’’ in Proc. IFIP Work. Conf. Pract. Enterprise Mod-
eling (PoEM), 2009, pp. 99–114.

[31] L. Liu, E. Yu, and G. Jabeen, ‘‘Social threats modelling with i*,’’ in Proc.
Int. iStar Workshop (iStar), 2016, pp. 97–102.

[32] D. Moody, ‘‘The ‘physics’ of notations: Toward a scientific basis for
constructing visual notations in software engineering,’’ IEEE Trans. Softw.
Eng., vol. 35, no. 6, pp. 756–779, Nov./Dec. 2009.

[33] B. Liskov, ‘‘Data abstraction and hierarchy,’’ in Proc. Conf. Object-
Oriented Program. Syst., Lang., Appl. (OOPSLA), 1987, pp. 17–34.

[34] J. Horkoff and E. Yu, ‘‘Finding solutions in goal models: An interactive
backward reasoning approach,’’ in Proc. Int. Conf. Conceptual Model-
ing (ER), 2010, pp. 59–75.

146022 VOLUME 7, 2019



L. López et al.: Specialization in the iStar2.0 Language

LIDIA LÓPEZ received the Ph.D. degree in
computing from the Universitat Politècnica de
Catalunya (UPC-BarcelonaTech), Spain, in 2013.

From 2007 to 2012, she worked as an Assistant
Teacher with UPC-BarcelonaTech, where she is
currently a Research Fellow with the Software and
Services Engineering Research Group (GESSI).
Her research interests are related to the software
engineering and empirical software engineering.

Dr. López has been the PC Co-Chair in the
international conference and workshops (CIbSE, iStar) and has been a PC
member on several international conferences like RCIS, ICSOFT, SAC, and
CIbSE. She has also reviewed articles for journals, including IST, JSS, and
IEEE Software.

XAVIER FRANCH received the Ph.D. degree in
informatics from the Universitat Politècnica de
Catalunya (UPC-BarcelonaTech), Spain, in 1996.

He is currently a Professor in software engi-
neering with UPC-BarcelonaTech. His research
interests include many fields in software engineer-
ing, including requirements engineering, empirical
software engineering, open source software, and
agile software development.

Prof. Franch is a member of the IST, REJ, IJCIS,
and Computing editorial boards, the Journal First chair of JSS, and the
Deputy Editor of IET Software. He has served as the PC chair at RE’16,
ICSOC’14, CAiSE’12, and REFSQ’11, among others, and as the General
Chair for RE’08 and PROFES’19.

JORDI MARCO received the M.Sc. and Ph.D.
degrees in computing from the Universitat Politèc-
nica de Catalunya (UPC-BarcelonaTech), Spain,
in 2005.

He is currently an Associate Professor in
computer science with UPC-BarcelonaTech. His
research interests include service-oriented com-
puting, quality of service, conceptual modeling,
container libraries, and computer graphics.

Dr. Marco has been a PC member on several
international conferences, including ATSE, QASBA, RCIS, and BIGDSE.
He has also reviewed papers for journals, including ESWA and IST.

VOLUME 7, 2019 146023


