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ABSTRACT: In this paper, we present a novel Iterative Linear Matrix Inequality (ILMI) strategy for con-
troller design that makes it possible to compute suboptimal H∞ static output-feedback (SOF) controllers with
high-performance characteristics. The obtained SOF controllers can be effective in reducing the vibrational re-
sponse of multi-degree-of-freedom structures subjected to broad-band excitations. To demonstrate the effective-
ness of the proposed methodology, a SOF controller is designed for the seismic protection of a multi-actuated
five-story shear-frame structure with positive results.

1 INTRODUCTION

Static output-feedback (SOF) control strategies have
shown a significant performance for structural vi-
bration control of multi-degree-of-freedom (MDOF)
systems. In this approach, a reduced set of sensors
is used to obtain a convenient vector of measured
outputs y(t), and the vector of control actions u(t)
is computed by means of a simple matrix prod-
uct in the form u(t) = Ky(t), where K is a con-
stant matrix (Li and Adeli 2018). Designing a proper
output-feedback control gain-matrix K raises chal-
lenging issues in theory and computation, which have
attracted extensive research attention. An effective
computational tool for this problem is the function
hinfstruct included in the Matlab Robust Control
Toolbox (Balas et al. 2018), which allows design-
ing SOF controllers following an H∞ approach. In
recent works, we have been devising a Linear Ma-
trix Inequality (LMI) controller-design strategy that
has produced positive results in obtaining effective
SOF controllers for the seismic protection of multi-
story buildings equipped with a system of distributed
interstory actuators (Palacios-Quiñonero et al. 2016,
Palacios-Quiñonero et al. 2017). This strategy in-
cludes a parameter-matrix L that can be arbitrarily
selected in the controller design to enhance the sys-
tem performance (Palacios-Quiñonero et al. 2014). In
this paper, we present a novel Iterative Linear Matrix
Inequality (ILMI) procedure that facilitates comput-

ing suitable values for the parameter-matrix L and,
consequently, allows obtaining improved SOF con-
trollers. To demonstrate the effectiveness of the pro-
posed methodology in structural vibration control, an
H∞ SOF controller is designed for the seismic pro-
tection of a five-story building equipped with a dis-
tributed set of interstory actuators. As a reference, two
additional controllers are also computed: (i) an H∞

state-feedback controller with full-state information,
and (ii) an H∞ SOF controller obtained with the Mat-
lab function hinfstruct. The content of the rest of
the paper is as follows: In Section 2, the LMI design
of H∞ state-feedback and SOF controllers is summa-
rized. In Section 3, the proposed ILMI design proce-
dure is presented. In Section 4, the building model is
introduced and the different controllers are computed.
Also, the corresponding frequency and time responses
are obtained and compared. Finally, some brief con-
clusions are provided in Section 5.

2 H∞ CONTROLLERS DESIGN

2.1 State-feedback controller

Let us consider a dynamical system described by the
state-space model





ẋ(t) = Ax(t) + Bu(t) + Ew(t)

z(t) = Czx(t) + Dzu(t)
(1)
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where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the con-
trol input, w(t) ∈ R

nw is the exogenous disturbance,
z(t) ∈ R

nz is the controlled output, and A ∈ R
nx×nx ,

B ∈ R
nx×nu , E ∈ R

nx×nw , Cz ∈ R
nz×nx and Dz ∈

R
nz×nu are constant matrices. In the H∞ controller-

design approach, the performance of a state-feedback
controller u(t) = Gx(t) with state gain-matrix G ∈
R

nu×nx is evaluated by means of the H∞ system-norm

γ(G) = sup
‖w‖2 6=0

‖z‖2
‖w‖2

, (2)

where ‖f‖2 =
[∫∞

0
fT (t)f(t)dt

]1/2
is the usual con-

tinuous 2-norm. The γ-value in (2) can be computed
in the frequency domain by solving the optimization
problem

γ(G) = sup
ω∈R

{σmax [FG(ω)]} , (3)

where ω is the frequency in Hz, σmax[·] denotes the
maximum singular value, and FG(ω) is the Frequency
Response Function (FRF)

FG(ω) = CG(2πωjInx
− AG)

−1E, (4)

with j =
√
−1, AG = A + BG and CG = Cz + DzG.

According to the Bounded Real Lemma (Boyd
et al. 1994), an optimal H∞ state-feedback controller

u(t) = Ĝx(t) can be obtained by solving the follow-
ing optimization problem with Matrix Inequality (MI)
constraints:

Ps :

{
minimize γs

subject to X > 0, γs > 0 and the MI in (5)

[
sym(AX + BGX) ∗ ∗

ET −γs Inw
∗

CzX + DzGX [0]nz×nw
−γs Inz

]
< 0, (5)

where X = XT and G are variable matrices, sym(M)
denotes M + MT , [0]m×n is a zero matrix of dimen-
sion m × n, In is an identity matrix of dimension
n, and * represents the transpose of the element in
the symmetric position. By means of the substitution
GX = Y, Ps can be transformed into the following
Linear Matrix Inequality (LMI) optimization prob-
lem:

P ′
s :

{
minimize γs

subject to X > 0, γs > 0 and the LMI in (6)

[
sym(AX + BY) ∗ ∗

ET −γs Inw
∗

CzX + DzY [0]nz×nw
−γs Inz

]
< 0, (6)

where X = XT and Y are variable matrices. If the LMI
optimization problem P ′

s can be successfully solved,

attaining an optimal value γ̂s for the matrices X̂ and

Ŷ, then the state-feedback control matrix Ĝ = ŶX̂−1

defines an optimal H∞ state-feedback controller with
an asymptotically stable closed-loop matrix AĜ and

associated H∞-norm γ(Ĝ) = γ̂s.

2.2 Static output-feedback controller

In the output-feedback approach, we assume that the
state information x(t) cannot be directly accessed and
we consider a vector of ny ≤ nx measured outputs
y(t) = Cyx(t), which can be expressed as linear com-
binations of the states using the observed-output ma-
trix Cy ∈ R

ny×nx . In this case, we want to obtain a
SOF controller

u(t) = Ky(t), (7)

which allows computing the control actions from the
measured-output information by means of a constant
output gain-matrix K ∈ R

nu×ny . The SOF controller
in (7) defines the FRF function

FK(ω) = CK(2πωjInx
− AK)

−1E, (8)

with AK = A + BKCy and CK = Cz + DzKCy, and
the corresponding H∞-norm γ(K) can be obtained
by maximizing σmax [FK(ω)]. If we proceed as in the
previous section to design an optimal H∞ SOF con-
troller, we obtain the following optimization problem
with MI constraints:

Po :

{
minimize γo

subject to X > 0, γo > 0 and the MI in (9)

[
sym(AX + BKCyX) ∗ ∗

ET −γo Inw
∗

CzX + DzKCyX [0]nz×nw
−γo Inz

]
< 0, (9)

where X = XT and K are variable matrices. However,
it should be noted that the observed-output matrix Cy

is non-invertible for ny < nx and, in this case, an ef-
fective LMI formulation cannot be directly derived by
means of the substitution KCyX = Y.

In the case that rank(Cy) = ny < nx, positive re-
sults can be obtained by considering the LMI opti-
mization problem P ′

s with Y = KCyX, and introduc-
ing the following transformations of variables (Rubió-
Massegú et al. 2013):

X = QXQQT + RXRRT , Y = YRRT ; (10)

where XQ ∈ R
(nx−ny)×(nx−ny) and XR ∈ R

ny×ny are
symmetric positive-definite matrices; YR ∈ R

nu×ny is
a general matrix; Q ∈ R

nx×(nx−ny) is a matrix with
rank(Q) = nx−ny that satisfies CyQ = [0]ny×(nx−ny);

and R ∈ R
nx×ny is a matrix of the form

R = C†
y + QL, (11)

where C†
y = CT

y (CyCT
y )

−1 is the Moore-Penrose pseu-

doinverse of Cy, and L ∈ R
(nx−ny)×ny is a given ma-

trix. Using the new LMI variable matrices XQ, XR and

YR, a suboptimal H∞ SOF controller u(t) = K̂y(t)



can be obtained by solving the following LMI opti-
mization problem:

P ′
o :





minimize γo

subject to XQ > 0, XR > 0, γo > 0,


Ξ1 ∗ ∗
ET −γo Inw

∗
Ξ2 [0]nz×nw

−γo Inz


 < 0,

(12)

where Ξ1 = sym
(
AQXQQT+ARXRRT+BYRRT

)

and Ξ2 = CzQXQQT+CzRXRRT+DzYRRT . If the
LMI optimization problem P ′

o can be successfully
solved, attaining an optimal value γ̂o for the matri-

ces X̂Q, X̂R and ŶR, then the output-feedback control

matrix K̂ = ŶR(X̂R)
−1 defines a SOF controller with

an asymptotically stable closed-loop matrix AK̂ , and

the corresponding H∞-norm satisfies γ(K̂) ≤ γ̂o.

3 ILMI DESIGN PROCEDURE

In MDOF mechanical systems subjected to broad-
band excitations, the secondary resonant modes can
make a significant contribution to the vibrational re-
sponse. Broadly speaking, in the H∞ controller ap-
proach, the contribution of the different resonant
modes is described by the magnitude of the FRF
peaks, and the design procedure is focused on min-
imizing the magnitude of the largest FRF peak. How-
ever, this strategy does not necessarily imply a good
attenuation level in the secondary FRF peaks. In fact,
as it will be shown by the example provided in the
next section, an improved overall behavior can often
be attained by suboptimal H∞ controllers due to their
better performance on the secondary FRF peaks.

In this section, we present an ILMI procedure that
pursues obtaining suboptimal H∞ SOF controllers
with high-performance characteristics. In a prelimi-
nary step, we set K = K(0) = [0]nu×ny

in (9) and solve
the restricted optimization problem Po, which is now
an LMI optimization problem with the variable matrix
X. Assuming that the state-matrix A is asymptotically
stable, Po is feasible and will produce an optimal ma-

trix X̂(0) and the optimal γ-value γ
(
K(0)

)
, which is the

H∞-norm of the uncontrolled system. Next, following
the discussion in (Palacios-Quiñonero et al. 2014), we
select the L-matrix

L(0) = Q†X̂(0)CT
y

(
CyX̂(0)CT

y

)−1

(13)

with Q† =
(
QTQ

)−1
QT and consider the LMI opti-

mization problem P ′
o in (12) with the R-matrix

R(0) = C†
y + QL(0). (14)

By solving P ′
o, we obtain a new output-feedback gain

matrix K(1), which can be substituted in (9) to define
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Figure 1: Five-story building structure equipped with a complete
system of interstory force-actuation devices.

a feasible LMI optimization problem Po. After com-
pleting the preliminary step, the iterative procedure
can continue as follows:

• Step i.a : Substitute the matrix K(i) in (9) and
solve the LMI optimization problem Po to obtain

the optimal matrix X̂(i) and the value γ
(
K(i)

)

• Step i.b : Set L(i) = Q†X̂(i)CT
y

(
CyX̂(i)CT

y

)−1

and compute K(i+1) by solving the LMI opti-
mization problem P ′

o in (12) corresponding to the

R-matrix R(i) = C†
y + QL(i)

Remark. Using the results in (Palacios-Quiñonero
et al. 2014), it can be proved that the LMI optimiza-
tion problems Po and P ′

o in the i-th step are feasible,

and the values γ
(
K(i)

)
are a non-increasing sequence.

4 NUMERICAL RESULTS

4.1 Building Model

Let us consider a 5-story building model as the one
schematically depicted in Figure 1, where s0 repre-
sents the ground level; si, i = 1, . . . ,5, denotes the
i-th story; mi, ki and ci are the mass, stiffness and
damping coefficients of si, respectively; ai is an inter-
story actuation device implemented between the sto-
ries si−1 and si, which produces opposite forces of
magnitude |ui(t)| on the associated stories; and w(t)
is the seismic ground-acceleration disturbance. The
lateral displacement of the structure can be described
by the state-space model

ẋ(t) = Ax(t) + Bu(t) + Ew(t), (15)



where

x(t) =

[
q(t)

q̇(t)

]
(16)

is the state vector, q(t) = [q1(t), . . . , q5(t)]
T is the vec-

tor of story displacements with respect to the ground,
and u(t) = [u1(t), . . . , u5(t)]

T is the vector of control
actions. The matrices in (15) have the following form:

A =

[
[0]5×5 I5

−M−1Ks −M−1Cd

]
, (17)

B =

[
[0]5×5

M−1Tu

]
, E =

[
[0]5×1

−[1]5×1

]
, (18)

where [1]5×1 is a column vector of dimension 5 with
all its entries equal to 1, M = diag(m1, . . . ,m5) is the
mass matrix and

Ks=




k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0
0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5
0 0 0 −k5 k5


 (19)

is the stiffness matrix. Cd is the damping matrix,
which can be computed in a similar way to the stiff-
ness matrix when the damping coefficients ci are
known; otherwise, an approximate damping matrix
can be obtained by setting a proper damping ratio on
the building modes (Chopra 2017). Finally, Tu is the
control-input matrix, which, for the proposed actua-
tion scheme, has the following form:

Tu =




1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1


 . (20)

The interstory drift ri(t), i = 1, . . . ,5, is the relative
displacement between the stories si and si−1. Using
the matrix Cr = {Tu}T , the vector of interstory drifts
r(t) = [r1(t), . . . , r5(t)]

T can be computed in the form

r(t) = Crq(t). (21)

To define a performance index for the controller de-
signs discussed in the next subsection, we consider
the controlled-output vector

z(t) = Czx(t) + Dzu(t), (22)

defined by the matrices

Cz =

[
Cr [0]5×5

[0]5×5 [0]5×5

]
, Dz = α

[
[0]5×5

I5

]
, (23)

where α is a scaling factor that can be used to adjust
the intensity of the control action. With this choice,
we have

zT (t) z(t) =
5∑

i=1

r2i (t) + α2

5∑

i=1

u2
i (t). (24)

Table 1: Mass and stiffness coefficients for the five-story build-
ing model.

story 1 2 3 4 5

mass (×105 Kg) 2.15 2.09 2.07 2.05 2.66

stiffness (×108 N/m) 1.47 1.13 0.99 0.89 0.84

Table 2: γ-values obtained in the ILMI procedure.

step i 0 1 2

γ
(
K(i)

)
0.3619 0.0725 0.0694

In the design of the SOF controllers, we consider the
vector of interstory velocities ṙ(t) as feedback infor-
mation. In this case, the vector of measured outputs
y(t) = ṙ(t) can be written in the form y(t) = Cyx(t)
with the measured-output matrix

Cy =
[
[0]5×5 Cr

]
. (25)

4.2 Controller designs

In this section, we consider the state-space building-
model corresponding to the mass and stiffness values
collected in Table 1 (Kurata et al. 1999) and the damp-
ing matrix (in Ns/m)

Cd=105 ×
[

2.895 −0.736 −0.114 −0.040 −0.028
−0.736 2.448 −0.740 −0.134 −0.077
−0.114 −0.740 2.263 −0.719 −0.196
−0.040 −0.134 −0.719 2.137 −0.862
−0.028 −0.077 −0.196 −0.862 1.598

]
, (26)

which has been computed by setting a 2% of rel-
ative damping in the building modes. For this par-
ticular building configuration, we design a subopti-

mal H∞ SOF controller u(t) = K̃y(t) using the ILMI
procedure presented in Section 3. The proposed con-
troller only uses the interstory velocities as feedback
information and it is selected based on both the as-
sociated γ-value and its behavior on the secondary
resonant peaks. Additionally, two optimal H∞ con-
trollers are designed and are taken as a reference in
the performance assessment: (i) an ideal H∞ state-

feedback controller u(t) = Ĝx(t) that uses the full
state as feedback information, and (ii) an H∞ SOF

controller u(t) = K̂hy(t) that uses the interstory ve-
locities as feedback information and is computed with
the Matlab function hinfstruct. All the controllers
are obtained using the controlled-output in (22) de-
fined by the scaling factor α = 10−7.35. Specifically,
by solving the LMI optimization problem P ′

s in Sub-
section 2.1, we obtain the state-feedback control gain-

matrix Ĝ presented in Figure 2, which produces an

optimal H∞-norm γ(Ĝ) = 0.0691. Next, by using the
function hinfstruct with the measured-output ma-
trix Cy given in (25), we obtain the following output-
feedback control gain-matrix

K̂h=106×
[
−4.339 −4.471 −3.849 −2.879 −1.681
−5.074 −5.342 −4.704 −3.598 −2.134
−4.824 −5.168 −4.611 −3.574 −2.140
−3.940 −4.289 −3.875 −3.040 −1.835
−2.439 −2.680 −2.440 −1.928 −1.170

]
, (27)



Ĝ =106×




−2.271 0.134 0.290 −0.240 −0.778 −1.212 −0.845 −0.916 −1.037 −1.468
4.979 −2.441 −0.160 −0.043 −0.679 0.343 −1.525 −1.228 −1.317 −1.841
0.314 5.778 −3.173 −0.399 −0.304 −0.083 0.203 −1.825 −1.451 −1.928
0.835 0.261 5.945 −4.123 −0.322 −0.137 −0.238 0.123 −1.954 −1.916
0.502 0.641 −0.017 5.627 −4.824 −0.098 −0.197 −0.227 0.257 −2.281


 .

Figure 2: Control gain-matrix corresponding to the optimal H∞ state-feedback controller u(t) = Ĝx(t).
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Figure 3: Maximum singular values of the Frequency Response Functions corresponding to the uncontrolled building (black solid

line), the optimal H∞ state-feedback controller u(t) = Ĝx(t) (blue dashed line), the SOF controller u(t) = K̂hy(t) computed with the

Matlab function hinfstruct (green dotted line), and the SOF controller u(t) = K̃y(t) computed with the proposed ILMI procedure
(red dash-dotted line). (a) Overall view. (b) Close view.

with an associated H∞-norm γ(K̂h) = 0.0691. It
should be observed that, despite the limited feed-
back information, the SOF controller produced by the
hinfstruct function attains the same γ-value as the
optimal H∞ state-feedback controller. In the case of
the proposed ILMI procedure, after completing two
steps as described in Section 3, we obtain the follow-

ing output-feedback control gain-matrix K̃ = K(2):

K̃=106 ×
[
−5.181 −3.062 −2.992 −2.830 −2.049
−4.263 −6.247 −4.664 −2.625 −1.668
−4.284 −4.451 −5.579 −3.187 −1.815
−4.188 −3.061 −3.069 −4.236 −1.970
−2.960 −1.676 −1.588 −2.117 −2.710

]
. (28)

The γ-values corresponding to the different steps of
the ILMI procedure are collected in Table 2, where
γ
(
K(0)

)
= 0.3619 is the H∞-norm of the uncon-

trolled configuration, and γ
(
K(2)

)
= γ

(
K̃
)
= 0.0694

is the H∞-norm of the selected SOF controller. The
frequency-response plots of the uncontrolled building
and the considered controlled configurations are dis-
played in Figure 3, where the magnitude of the main
peaks indicate the corresponding H∞-norm. The plots
of the overall view presented in Figure 3(a) show that
all the proposed controllers produce a good attenua-
tion level of the main resonant-peak. Additionally, the
plots of the close view in Figure 3(b) evidence the su-
perior performance in the secondary resonant-peaks
of the suboptimal SOF controller obtained with the
proposed ILMI procedure when compared with the
optimal SOF hinfstruct controller.
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Figure 4: North-South Northridge 1994 ground acceleration seis-
mic record scaled to an acceleration-peak of 1m/s.

4.3 Seismic response

To complement the information provided by the
frequency-response plots, we have carried out a set
of time-response numerical simulations using the
scaled North-South Northridge 1994 seismic record
as ground-acceleration input (see Figure 4). The ab-
solute peak-values of the interstory-drifts, absolute
story-accelerations and control-efforts are displayed
in Figure 5. The plots in Figure 5(c) show that all the
proposed controllers require a similar level of control
effort. Looking at the plots in Figure 5(a) and 5(b),
it can also be appreciated that significant and similar
levels of reduction in the interstory-drift and absolute
story-acceleration peak-values are attained by the op-
timal H∞ state-feedback controller (blue dashed line
with circles) and the SOF ILMI controller (red dash-
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Figure 5: Time-response peak-values corresponding to the uncontrolled building (black solid line with squares), the optimal H∞

state-feedback controller u(t) = Ĝx(t) (blue dashed line with circles), the SOF controller u(t) = K̂hy(t) computed with the Matlab

function hinfstruct (green dotted line with triangles), and the SOF controller u(t) = K̃y(t) computed with the proposed ILMI
procedure (red dash-dotted line with asterisks) (a) Maxim absolute interstory-drifts (cm). (b) Maximum absolute story-accelerations
(m/s2). (c) Maximum absolute control-efforts (106N).

dotted line with asterisks). In contrast, the plots corre-
sponding to the SOF hinfstruct controller (green dot-
ted line with triangles) in Figure 5(a) and 5(b) show a
noticeable increase of the interstory-drift peak-values
in the upper building-levels, and a remarkable loss of
performance in the story-acceleration response in all
the building levels. The obtained results are consis-
tent with the reduced effectiveness of the SOF hin-
fstruct controller in the secondary resonant-peaks in-
dicated by the frequency-response plots in Figure 3(b)
and the broad-band characteristics of the considered
near-fault impulsive-type seismic excitation (Ohtori
et al. 2004).

5 CONCLUSIONS

In this paper, we have presented a novel Iterative Lin-
ear Matrix Inequality (ILMI) procedure for designing
static output-feedback (SOF) controllers with high-
performance characteristics. The proposed procedure
is based on a transformation of the LMI variables and
the produced SOF controllers can be effective in re-
ducing the vibrational response of MDOF systems
subjected to broad-band excitations. To demonstrate
the effectiveness of the proposed methodology, a sub-
optimal H∞ SOF controller has been designed for the
seismic protection of a five-story building equipped
with a distributed set of interstory actuators. The cor-
responding frequency and time responses have been
studied and compared with the responses produced
by an optimal H∞ state-feedback controller with full-
state information, and an H∞ SOF controller com-
puted with the Matlab function hinfstruct. The ob-
tained results indicate that, despite the reduced feed-
back information, the SOF ILMI controller attains a
level of performance similar to that achieved by the
full-state controller, and it has an improved behavior
when compared with the SOF hinfstruct controller.
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