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Abstract. A stabilized finite element method (FEM) for the multidimensional steady state
advection-diffusion-absorption equation is presented. The stabilized formulation is based on the mod-
ified governing differential equations derived via the Finite Calculus (FIC) method. For 1D problems
the stabilization terms act as a nonlinear additional diffusion governed by a single stabilization pa-
rameter. It is shown that for multidimensional problems an orthotropic stabilizing diffusion must be
added along the principal directions of curvature of the solution. A simple iterative algorithm yielding
a stable and accurate solution for all the range of physical parameters and boundary conditions is
described. Numerical results for 1D and 2D problems with sharp gradients are presented showing the
effectiveness and accuracy of the new stabilized formulation.

1 INTRODUCTION

Considerable effort has been spent in recent years to derive finite element methods (FEM)
[1] for the solution of the advection-diffusion-reaction equation. In this work we will focus on
the so called exponential regime originated by large absorptive (dissipative) reaction terms.
Here the solutions are of the form of real exponential functions. Numerical schemes find
difficulties to approximating the sharp gradients appearing in the neighborhood of boundary
and internal layers due to high Peclet and/or Damkohler numbers. Non physical oscilaltory
solution are found with the standard Galerkin FEM unless some stabilization procedure is
used.

Stabilized methods to tackle this problem have been based on streamline-upwind /Petrov-
Galerkin (SUPG) [2-7|, Galerkin/least-squares [5-11], Subgrid Scale (SGS) [5,6,12,13] and
Residual Free Bubbles [14] finite element methods. While a single stabilization parameter
suffices to yield stabilized (and even nodally exact results) for the one-dimensional (1D)
advection-diffusion and the diffusion-reaction equations (Vol. 3 in [1] and [8-15]), this is not
the case for the diffusion-advection-reaction equation. Here, in general, two stabilization pa-
rameters are needed in order to ensure a stabilized solution for all range of physical parameters
and boundary conditions [4,10,14]. As reported in [12,13] the SUPG, GLS and SGS meth-
ods with a single stabilization parameter fail to obtain a stabilized solution for some specific
boundary conditions in the exponential regime with negative (absorption) terms when there
is a negative streamwise gradient of the solution.

Onate et al. [18] have recently presented a stabilized FEM for the advection-diffusion
absorption equation based on the use of a single stabilization parameter which has the form
of a diffusion term. In [18] the formulation is detailed for 1D problems and only a brief
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introduction to the multidimensional case is given. This paper extends the ideas presented in
18] and provides evidence of the effectiveness and accuracy of the new formulation to deal
with multidimensional advection-diffusion-absorption problems with sharp gradients.

The stabilized formulation is based on the standard Galerkin FEM solution of the mod-
ified governing differential equations derived via the Finite Calculus (FIC) method [19-20).
The FIC equations are obtained by expressing the balance of fluxes in a domain of finite size.
This introduces additional stabilizing terms in the differential equations of the infinitessimal
theory which are a function of the balance domain dimensions. Although the FIC-FEM for-
mulation here presented is general, we will restrict its application in this work to linear finite
element approximations only.

The Galerkin FIC-FEM formulation described here introduces naturally an additional
nonlinear dissipation term into the discretized equations which is governed by a single sta-
bilization parameter. In the absence of the absorption term the formulation simplifies to the
standard Petrov-Galerkin approach for the advection-diffusion problem For the diffusion-
absorption case the diffusion-type stabilization term is identical to that recently obtained
by Felippa and Onate using a variational FIC approach [15]. The general nonlinear form of
the stabilization parameter is a function of the signs of the solution and its first and sec-
ond derivatives. This introduces a non-linearity in the solution scheme and a simple iterative
algorithm is described. A simpler constant expression of the stabilization parameter is also
presented.

Details of the 1D formulation and its extension to deal with multidimensional problems
are given. For the multidimensional case Onate et al. [30] have recently shown that a general
form of the stabilization parameters can be found by writting the FIC equations along the
principal curvature directions of the solution. The resulting FIC-FEM formulation is equiva-
lent in this case (for linear elements) to adding a stabilizing diffusion matrix to the standard
infinitessimal equation. The stabilizing diffusion matrix depends on the signs of the solution
and its derivatives and on the velocities along the principal curvature directions of the so-
lution. This introduces a nonlinearity in the solution process. We present a simple iterative
scheme based in assuming that the main principal curvature direction at each point is coinci-
dent with the gradient vector direction. In the last part of the paper we present a collection of
1D and 2D examples showing the effectiveness and accuracy of the new FIC-FEM formulation
for different values of the advective and absorptive terms.

2 FIC FORMULATION OF THE 1D STATIONARY ADVECTION-
DIFFUSION-ABSORPTION EQUATION

The governing equation for the 1D stationary advection-diffusion-absorption problem can be
written in the FIC formulation as

h dr

?1_5520 in 2 € (0,L) (1)
| ﬂdt]f) L A h’ o
_uqf;,hdm.q—g_r—{] on I', (2)
p—¢d?P =0 onTy (3)
where i d ”
e udm I o (k'&;) — S(i"‘" Q (4)
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In above equations ¢ is the state variable, z € [0, L] is the problem domain, L is the
domain length, u is the velocity field, & > 0 is the diffusion, s > 0 is the absorption, dissipation
or destruction source parameter, () is a constant source term, ¢ and ¢ are the prescribed
values of the total flux and the unknown function at the Neumann and Dirichlet boundaries
['y and I'y, respectively and h is a characteristic length which plays the role of a stabilization
parameter. In the 1D problem I';, and I'; consist of four combinations at the end points of
the problem domain.

Egs.(1) and (2) are obtained by expressing the balance of fluxes in an arbitrary 1D do-
main of finite size within the problem domain and at the Neumann boundary, respectively.
The variations of the transported variables within the balance domain are approximated by
Taylor series expansions retaining one order higher terms than in the infinitessimal theory
119,20]. The underlined stabilizing terms in Eqs.(1) and (2) emanate from these higher or-
der expansions. Note that as the characteristic length parameter h tends to zero the FIC
differential equations gradually recover the standard infinitessimal form.

Successful applications of the FIC method to a variety of problems in computational
mechanics can be found in [19-30,37].

3 FINITE ELEMENT FORMULATION

We will construct a standard finite element discretization {I°} of the 1D analysis domain
length L with index e ranging from 1 to the number of elements N [1]. The state variable ¢
is approximated by ¢ over the analysis domain. The approximated variable ¢ is interpolated
within each element with n nodes in the standard manner, i.e.

p~¢ for ze€(0,L] (5a)
with

b= Nig; (50)
t=1]

where IV; are the element shape functions and ¢; are nodal values of the approximate function

¢. Substituting Eq.(5a) into Eqs.(1) and (2) gives

_ hdr _
I— §£ =7rqg IMxEc (O,L) (6)
- do h _
— U kdm + ¢* 5T =Tq on s (7)
q_f?—*t;ﬁip:?"qg, 011 F¢. (8)

where 7 = r(¢) and rq, r, and r4 are the residuals of the approximate solution in the problem
domain and on the Neumann and Dirichlet boundaries I'; and Iy, respectively.
The weighted residual form of Eqgs.(6)—(8) is written as

_ hdr - - d ho\|
/};Wt (T’ — "2'&) dx + W;_ (—Hﬁb i kdﬁﬂ - Qp — §T) . =0 (9)
- - Llq

where W;(z) and W; are test functions satisfying W; = W; = 0 on L.



Assuming smooth enough solutions and integrating by parts the term involving A in the
first integral gives for W; = —W;

= | . dd L) h dW; _
-/‘;Wﬁ’dﬁ-—' hm (—TL¢+AE+Q’ )_F —|—;‘/E;§E?"d$—0 (10)

The third term in Eq.(10) is computed as the sum of the integrals over the element

interiors, therefore allowing for the space derivatives of 7 to be discontinuous. Also in Eq.(10)

- . dh o
h has been assumed to be constant within each element, (i.e. — = 0 within [°).

dzx
The weak form is obtained by integrating by parts the advective and diffusive terms

within 7 in the first integral of Eq.(10). This gives

AW - AW dé - ' - dW; dp ~ hdW; B
/L U WS R, <R B | de={Wig ]Fq_;.[ge (ﬁk de dz 2 dz Q) d =0
(11)

=

with o -
S ¢; U qf}ﬁ

P kg Tk 2@

h (12)

where a prime denotes the derivative with respect to the space coordinate.

Wee see clearly that the last term of Eq.(11) introduces within each element an additional
diffusion of value Sk.

Substituting expression (5b) into (11) and choosing a Galerkin method with W; = N;
within each element gives the discrete system of FE equations written in the standard matrix
form as

K¢ = f (13)

where ¢ is the vector of nodal unknowns and the element contributions to matrix K and
vector f are

dN; dN; dN;
e —— . i . H 1 b I . ‘
K;; = /;( U——> N; + k(1 + 5) T sNINJ) dx (14)
h dNj;
-tz : . e r— " p
f; /E (N1 =R 5 o ) Qdz — (N;q”)r, (15)

The amount of balancing diffusion in Eq.(14) clearly depends on the (nonlinear) stabilization
parameter 3. The element and critical values of 3 are deduced in the next section for linear
two node elements.

h dN;

We note that the integral of the term §d_:;Q in Eq.(15) vanishes after asssembly when

h and @) are uniform over a patch of linear elements.

4 COMPUTATION OF THE STABILIZATION PARAMETER FOR
LINEAR ELEMENTS

The matrix K¢ and the vector f¢ for two node linear elements are (for constant values of u, k,

s and Q)

e u[—1 =1 k o 1 =1 sl® [2 1
= [1 1]+ze(1+’6)l—1 1}*7«3‘[1 2] (16a)
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| 5
f*= QQ }%e % +  boundary term (16a)

In Eqgs.(16) index e denotes element values.
Assuming @) = 0, a typical stencil for elements of equal size [ can be written as

—Y(Pit1 — hi—1) — (1 + B)Pi—1 + 2(1 + B)di — (14 B) i1+
(‘?}’z 1=FE 4¢'a ¢'1+1) =(

where for simplicity a constant value of 3 across the mesh has been assumed. In Eq.(17)

2
v = ;‘i and w = % are the Peclet number and a velocity independent dimensionless number,

respectively.
From Eq.(17) we deduce

¢1+1 — ¢'1 1 ‘i’&:—l + 4¢1 o d}i—l—l B
e (ﬁf’a.ﬂ — 26 + i 1) (ﬁf’zﬂ 2¢; + ¢’1’+1) : 18)

In the vecinity of a sharp gradient zone we can take

¢'1+1 &1 1 = ‘g’ma}:Sl
qbi-l—l = 2@1 1 ¢t L = ‘i}maxsﬂ (19)
q51, T 4¢)z i ¢1+1 == ¢z+150

(17)

where ¢,,.x is the maximum value of the approximate function ¢ in the patch of elements
adjacent to the sharp gradient zone and

o m . (dg L (d*
So =sign (¢), S7 = sign (E) , SS9 = sign (@) (20)

where sign (-) denotes the sign of the magnitude within the brackets computed at the patch
mid point.

Substituting Eq.(19) into (18) leads to the following expression of the stabilization pa-

rameter B\ o s,
b= [+ (2)r

The element stabilization parameter 3¢ is now defined as

pF=08 dor =10
g% =0 for B <(

(22)

where 3 is given by Eq.(21) and the signs Sy, S1 and Sy are computed now at the element
mid-point.

It is clear from above that the computation of the stabilization parameter 3¢ requires the
knowledge of the sign of the numerical solution ¢ and that of the first and second derivatives
of ¢ within each element. This necessarily leads to an iterative scheme. A simple algorithm
which provides a stabilized and accurate solution in just two steps is presented below.



4.1 Critical stabilization parameter and unstability conditions

The following constant value of 3 over the mesh ensures a stabilized solution for all ranges
of v and w

w
6
where [ is the critical stabilization parameter. Note that (. corresponds to the maximum
value of 3 in Eq.(21) for g—g = %; = 1. A mathematical proof of Eq.(23) is given in [18].
Clearly the value of 3. of Eq.(23) is meaningful only if 3. > 0 and this can be taken as an

indicator of an unstable solution. Conversely, a value of 8. < 0 indicates that no stabilization
1s needed.

B<Be=—+y-1 (23)

4.2 lterative solution scheme

The following two steps iterative scheme is proposed in order to obtain a stabilized and
accurate solution.

Step 1. Compute a first stabilized solution c}l using the critical value 8¢ = . given by
Eq.(23). This ensures a stabilized, although sometimes slightly overdiffusive, solution.

Step 2.

Step 2.1. Compute the signs of the first and second derivatives of &;1 within each element.
T'he second derivative field is obtained as follows

2\ 1 [[dp'\"  [dp'\”
() =5 (o), (%), g

where ()¢ denotes averaged values of the first derivative at node i of element e. At the
boundary nodes the constant value of the derivative of ¢ within the element is taken in

. N 53
Eq.(24); ie. ()f = (%) = 2252,

Step 2.2. Compute the enhanced stabilized solution ¢* using the element value of /3¢ given

by Eq.(22).

In all the 1D examples solved the above two steps have sufficed to obtain a converged
stabilized and accurate solution [18]. The reason of this is that the signs of the first and

second derivative fields typically do not change any further after the second step over the
elements adjacent to high gradient zones.

5 EXTENSION TO MULTI-DIMENSIONAL PROBLEMS

Consider the general steady-state advection-diffusion-reaction equation written for the zero
constant source case (@) = 0) as

r(¢) == —u’'V¢+ V' DVe — s =0 (25)
For 2D problems
3 - [0 a]T 3 [1 0]
o V_bm,ay D=kl | (26)



are respectively the velocity vector, the gradient vector and the diffusivity matrix, respec-

tively. For simplicity we have assumed an isotropic diffusion matrix.
The FIC form of Eq.(25) is written as
1

r— 5hTV’r =0 (27)

where r is the original infinitessimal differential equation as defined in Eq.(25).
The Dirichlet and boundary conditions of the FIC formulation are

¢p—¢? =0 on Ty (28)
1
—u'ng +n'DVe + ¢ — EhTHT =0 on I, (29)

where n is the normal vector to the boundary where the normal flux is prescribed. As usual
index p denotes the prescribed values.

In Egs.(27) and (29) h = [hy, hy]? is the characteristic vector of the 2D FIC formulation
which components play the role of stabilization parameters. The underlined terms in Eqs.(27)
and (29) introduce the necessary stability in the numerical solution [19,20,21].

If vector h is taken to be parallel to the velocity u the standard SUPG method is recovered
[18-23]. The more general form of h allows to obtain stabilized finite element solutions in
the presence of strong gradients of ¢ near the boundaries (boundary layers) and within the
analysis domain (internal layers) [30]. The FIC formulation therefore reproduces the best
features of the so called shock-capturing or transverse-dissipation schemes [2,31-36].

X

U

Figure 1. Global axes (z,%) and principal curvature axes (£,7)

Let us write down the FIC balance equation in the principal curvature axes of the solution
¢,n (Figure 1). The FIC balance equation is

0p 0 0% 0% he @ |  0¢  O¢ 0%  0%¢ 7
a2k (2 29) g BB (281 58) g
hy 8 [ 0¢ @¢+k(52¢ | aﬂqs) _Sd}'

20y | CoE ap " "\ o ap? - &0
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where ug, u, are the velocities along the principal axes of curvature ¢ and n, respectively.
As & and 7 are the principal curvature axes of the solution then

¢  0%¢
OOy OndE

0 (31)
Introducing this simplification into Eq.(30) we can rewrite this equation as

o6 O (k uche  she ¢ (aﬂ¢,)—1) 524

U gy T > "2 0e\oer) |oaet o
s 32a
unhy  shy 8¢ (824 "\ 82¢ he 3¢ h, 03¢
+ | £ 4 | s — k | =
2 2 On \ On? on? 2 963 2 Ond
or
L PET s SR L SRR . L e B L 4 P
€~ o T " o2 2063 203~

We can see clearly from Eq.(33) that the FIC governing equations introduce orthotropic
diffusion parameters of values B¢k and 3,k along the £ and 7 axes, respectively with

g, — Yehe | 8hg 00 AN 4. - Y% g 0p RN (33)
T 2k 2koc\oez] > T ok 2k on \ on2

Also note that the last term of Eq.(32b) will vanish after discretization for linear elements.
Eq.(32b) can be rewritten in matrix form (neglecting the last term) as

uTV'$+ V(D + D)V — 56 =0 (34)
g 0

r T N " W . " " " —
where v’ = [ug,uy|', V' = [Fgr —3-}}] , D is the “physical” isotropic diffusion matrix and D’
is the balancing diffusion matrix in the local axes £ and n. The form of this matrix is

—

i _ | Bek O

0 Bk (35)

"The velocities along the principal curvature axes u¢ and u, can be obtained by projecting
the cartesian velocities into the principal curvature axes ¢ and 7 as

u : Gy 3 u
= * 3=Tu with T = coe o = (36)
U I —Sa Cq | v
where ¢, = cosa, s, = sina and « is the angle which the £ axis forms with the z axis

(Figure 1). Note that as the solution is continuous the principal curvature directions ¢ and 7
are orthogonal.

The values of 3 and 3, are computed by considering the solution of two uncoupled 1D
problems along the £ and 7 directions. This gives from Eqs.(21) and (22)

e W Se, ] uglg SZ%
y— : _ 1 3 — 3 — 37
e -(Sﬁz) 6 (S'SE e ) % 2k - k (37a)




SN wy [ Sp ; wyly 12
— — — e — 1 = i n — -
P _(Sm) 6 (Sﬂg)”’” | + 5 = TG (370)

- O 0%
So =sign (¢) , Sg =sign (j) , g, = sign ( ¢)

0&?2
. O¢ | 0% p

and ¢ is as usual the approximate solution.
The lengths ¢ and [, are taken as the maximum projection of the velocities ue and w,,
along the element sides (for triangles) and the element diagonals (for quadrilaterals), i.e.

where

b= max(d?ui) . f=E&% (39a)

with
7 =1,2,3 (for triangles) and

7 = 1,2 (for quadrilaterals) (39b)

In Eq.(39a) us and u, contain the global components of the velocity vectors @ and Uy,
respectively. For triangles d; are the element side vectors, whereas for quadrilaterals d; are
the element diagonal vectors [30].

The next step is to transform Eq.(34) to global axes z,y. The resulting equation is

—u’'V¢+VIDgVe — sp =0 (40)
where the global diffusion matrix D¢ is given by
Dec=D+D (41a)

where the global balancing diffusion matrix D is

D=T"D'T (41b)

Remark

Similarly as for the 1D problems, a negative value of the parameters ¢ and 3, indicates
that no stabilization is needed along the directions & and 7, respectively. A zero value of the
corresponding stabilization parameter is chosen in this case.

Remark

The expressions of B¢ and £, in Eq.(37) can be simplified to

w
Be ~ Be, = *—5*+|’Tel—1
ﬂ?]ﬁﬁnc =

Wy

6
This avoids the computation of the sign of the solution and of its first and second derivatives.
The expressions of B¢, and 3, in Eq.(42) are equivalent to that of the 1D critical stabilization
parameter . of Eq.(23). The main difference is that the computation of the local directions

¢ and 7 is still mandatory in the multidimensional case and, therefore, the nonlinearity of the
process can not be avoided here.

(42)
+ || — 1



5.1 Computation of the principal curvature axes for linear elements

Excellent results have been obtained in our work by approximating the main curvature direc-
tion & by the direction of the gradient vector V.

This simplification allows us to estimate the direction 5 in a very economical manner as
the gradient vector V¢ can be directly computed at any point of a linear element. Direction
77 is taken orthogonal to that of E’ in an anti-clockwise sense.

For linear triangles V¢ is constant within the element. For four node quadrilaterals V¢
varies linearly. We have assumed in this case that the direction of ¢ is constant within the
element and equal to the direction of vector V¢ computed at the element center.

The computation of the signs of the second derivative of ¢ in Eq.(38) involves the following
steps: 1) recovery of the cartesian first derivative field at the nodes using a nodal averaging
procedure; 2) computation of the second derivative tensor at the element center and 3)
transformation of this tensor to the local axes & and 7.

We note that in problems where positive values of ¢ are prescribed at the Dirichlet
boundary, the signs of S¢,, Sy, are positive due to the convexity of the numerical solution.

As mentioned above the dependence of the balancing diffusion matrix D with the prin-
cipal curvature directions 5 and 177 introduces a nonlinearity in the solution process. A simple
and effective iterative algorithm is described next.

5.2 General iterative scheme

A stabilized numerical solution can be found by the following algorithm.

Step 1. For elements in the interior of the domain choose ¢ = u, i.e. the gradient direction
is taken coincident with the velocity direction. If u = 0 then ¢ is taken coincident with
the global x axis.

In elements adjacent to a boundary choose 'é = n where n is the normal to the
boundary.

Compute '9,'D’, 'D and D¢ using the expressions of B¢ and f3, from Eq.(42).
Solve for 1¢.

Verify that the solution is stable. This implies that there are not undershoots or over-
shoots in the numerical results with respect to the expected physical values. If the
numerical solution is unstable, then go to step 2.

Step 2. For all elements, compute at the element center ¢ = V'¢. Then compute 2, 2D’
“D and “D¢ using the expressions of ¢ and 3, from Egs.(37).

Solve for 2¢.

?

Step 3. Estimate the convergence of the process. We have chosen the following convergence
norm

=

- 11/2
|
Npmax |4

o]l =

(6 -'%) | <e (43)
J

- il

Il

where N is the total number of nodes in the mesh and ¢y,ax is the maximum prescribed
value at the Dirichlet boundary (if ¢pax = 0 then ¢pax = 1). In above steps the left
upper indices denote the iteration number.
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In the examples shown in the next section € = 103 has been taken.

If condition (43) is not satisfied, repeat steps 2 and 3 until convergence.

Remark

For the advective-diffusive problems (i.e. s = 0) the expression of the balancing diffusion

matrix in the interior elements for step 1 coincides with the standard (linear) SUPG form
130].

Remark

An alternative solution scheme is to use a time relaxation technique based in the solution of
a pseudo transient problem with a forward Euler scheme and a diagonal mass matrix.

6 1D NUMERICAL EXAMPLES

The examples presented in this section are solved in a 1D domain discretized with eight two-
node linear elements of unit size. The examples are solved with the same Dirichlet conditions
! =8 and ¢g = 3 and two different values of v and w (y = 1,w = 20 and v = 10,w = 20).
We note that for both cases the instability condition (8. > 0) is violated and, hence, the
Galerkin solution should yield non-physical results.
Figures 2 and 3 show the numerical results obtained with the standard Galerkin method
(8 = 0) and using the element (3¢) and critical (3.) values of the stabilization parameter given
by Eqgs.(22) and (23), respectively. The exact analytical solution is also shown for comparison.
Table 1 shows the nodal values of the results of the example of Figure 3 for comparison
with the 2D solutions presented in the next section.

T'he following conclusions are drawn from the 1D results.

1. The Galerkin solution (f = 0) is unstable for both problems, as expected.

2. The solution obtained with the critical value 3, is always stable, although it yields
slightly overdiffusive results in both cases.

3. The results obtained with 3¢ are less diffusive and more accurate than those obtained
with .. The explanation is that the sign of the ratio Sj /S5 is negative in the region close
to the left end point of the domain. This naturally reduces the value of the stabilizing

diffusion parameter 8 in Eq.(21) with respect to that of 8. in Eq.(23) where the sign
effect is not relevant.

4. The FIC algorithm provides a stabilized solution for Dirichlet problems when there is a
negative streamwise gradient of the solution. This is an advantage versus SUPG, GLS

and SGS methods using a single stabilization parameter which fail in some cases for
these type of problems [12,13].

Above conclusions have been confirmed in the solution of a wider collection of 1D prob-
lems presented in [18).

i



Node numbers

Figure 2. ¢ = 8,¢5 = 3,7 = 1 and w = 20. FIC results for a mesh of 8 linear elements
obtained for = 0 (Galerkin), £ and .. Comparison with the analytical solution.

10
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Node numbers
Figure 3. ¢ = 8,¢§ = 3,7 = 10 and w = 20. FIC results for a mesh of 8 linear elements

obtained for f = 0 (Galerkin), 8¢ and .. Comparison with the analytical solution.
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7 2D EXAMPLES

The analysis domain in the first two 2D examples presented is a square of size 8 units. The
problems are solved first with relatively coarse meshes of 8 x 8 four node bi-linear square
elements and 8 x 8 x 2 linear triangles.

The boundary conditions for both examples are ¢? = 8 and ¢” = 3 at the boundaries
z = 0 and x = 8, respectively and zero normal flux at y = 0 and y = 8. This reproduces
the condition of the two 1D examples solved in the previous section. The first example is
analized for u = [2,0]7, k = 1 and s = 20 giving w = 20, Y= = 1 and 7, = 0 which
corresponds to the first 1D example (Figure 2). The correct solution for this problem has a
boundary layer in the vecinity of the two sides at x = 0 and = = 8 where ¢ is prescribed
(Figure 4). The numerical results obtained with the standard Galerkin solution are oscillatory
as expected. The stabilized FIC formulation elliminates the oscillations and yields the correct
physical solution. Good results are obtained for both meshes of linear rectangles and triangles
(Figures 4 and 5).

Results labelled as FIC-1 and FIC-2 in the figures correspond to those obtained in the
first and second iteration of the algorithm presented in Section 5.2, respectively. We note that
the FIC-1 results agree precisely with those obtained in the 1D case for 8 = f3., whereas the
FI1C-2 results agree with the more accurate 1D values obtained with the element stabilization
parameter 3¢ (see Figure 2).

The second example is similar to the first one with u = [20,0]?, & = 1 and s = 20
giving w = 20, 7, = 10 and -, = 0. These values correspond to the second 1D problem of
the previous section (Figure 3). The Galerkin solution is again oscillatory, whereas the FIC
results are physically sound (Figures 6 and 7). Once more the FIC-1 and FIC-2 results are
in good agreement with the 1D values shown in Figure 3 for 8. and f3., respectively for both
meshes of square and triangular elements. The coincidence of the 1D and 2D results for this
problem can be clearly seen in Table 1.

1D 2D (nodes along line A-A”)
Figure 3 4 node quads. (Fig. 6) [ 3 node triangles (Fig. 7)
Node | ¢(8=0) | ¢(B8°) | ¢(B.) | ¢ (exact) | FIC-1 FIC-2 FIC-1 FIC-2
1 8,00 8 8 8 8 8 8 3
2 2,94 3,06 4 3,08 3,99 3,057 4,0 3,059
3 1,32 L LT 2 1,19 2,00 1,170 2,0 1,167
1 1,80 | 0,447 T 0.457 1,00 0,443 1.0 0,452
5 0,599 0,172 0,5 0,176 0,49 0,172 0,499 0,166
6 -0,633 | 0,0646 | 0,25 0,0677 0,248 0,0648 0,2501 0,0681
7 ,16 [ 0,0264 | 0,125 | 0,0261 | 0.1%5 0,0255 0.1250 0,0257
8 -1,83 0,0073 | 0,0625 0,01 0,0615 0,0101 0,0624 0,0072
9 3 3 3 3 3 3 3 3

lable 1. Comparison of 1D and 2D solutions for the advection-diffusion-absorption problem
of Figure 3 (v, = 10, w = 20)

Note that, similarly to the 1D case, the FIC-2 results are more accurate (less diffusive)
than those obtained in the first iteration (FIC-1). This is due to the more precise evaluation

of Bs and (3, in Eqs.(37) accounting for the correct sign of all the terms.
Figures 8-11 show results for the two 2D problems above described solved now with
relatively coarse unstructured meshes of linear triangles and quadrilaterals. The effectiveness

13
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Figure 4. 2D advection-conduction-absorption problem over a square domain of size equal to
Bunits. PP =8atas=0,¢* =3 at =8, g =0t y=0and y=8 u=[2,0]", k=1,
s = 20, w = 20, v, = 1 and ~y, = 0. Galerkin and FIC solutions for a mesh of 8 x 8 four node
square elements.

and accuracy of the FIC iterative scheme is again noticeable in all cases. Note the agreement
of the FIC-2 results of Figures 10 and 11 with the exact solution for the equivalent 1D problem
of Figure 3.

Figure 12 presents the solution of a similar problem where the values of ¢ are prescribed
at the four boundaries. The solution domain has now 10 units and the problem is solved first
with a mesh of 10 x 10 four node square elements. Details of the physical parameters are
given in Figure 12. Excellent results are again obtained with the FIC scheme. Similar good
results are obtained with a structured mesh of linear triangles (Figure 13) as well as with
non structured meshes of linear quadrilateral and triangles (Figures 14 and 15).
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Figure 5. Solution of problem of Figure 4 with a mesh of 8 x 8 x 2 linear triangles.

The effectiveness of the FIC scheme for a diffusive-absorptive problem with Dirichlet
boundary conditions is shown in Figure 16. The results shown have been obtained with
structured meshes of linear quadrilateral and triangles. Note that the four boundary layers
are well captured in the first step of the iterative solution. Similar good results have also been
obtained with unstructured meshes not shown here.

The final example is a standard benchmark problem of advection-diffusion where sharp
layers appear at both the boundary and the interior of the domain. The problem is the
advective-diffusive transport of ¢ in a square domain with non uniform Dirichlet conditions,
downwards diagonal velocity and zero source terms (i.e. @ = 0 and s = 0). Figure 17 displays
the SUPG solution and FIC results obtained after two iterations using a structured mesh of
20 x 20 linear four node square elements. It is remarkable that the FIC results capture the
sharp gradient zones at the boundaries where ¢ is prescribed to zero and at the interior of

15
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Figure 6. 2D advection-conduction-absorption problem over a square domain of size equal to
8 units. qb’-"":Ba,t:I::O,ng:Bat:rr:g,qn:f)aty:(}andy:&u=[2D?O]T,k:1,
s = 20, w = 20, 7, = 10 and ~, = 0. Galerkin and FIC solutions for a mesh of 8 x 8 four
node square elements.

the domain and elliminate all the spurious oscillations present in the SUPG method.
Similar good results obtained with the FIC method for a wide range of advective-diffusive

problems are presented in [30]. Recent applications of the FIC method to incompressible fluid
flow problems are reported in [37].

8 CONCLUSIONS

The FIC-FEM formulation presented allows to obtain a stabilized and accurate solution for
the advection-diffusion-absorption equation. For the 1D problem the formulation is equivalent
to adding a non-linear diffusion term to the standard discretized equations which is governed
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Figure 7. Solution of problem of Figure 5 with a mesh of 8 x 8 x 2 linear triangles.

by a single stabilization parameter. The use of the constant critical value of the 1D stabi-
lization parameter provides a stabilized numerical solution in a single step. A more accurate
(less diffusive) solution can be obtained using the two step iterative scheme proposed.

The equivalence of the FIC method with a nonlinear stabilizing diffusion term extends
naturally to multidimensional problems using structured and unstructured meshes. The key
step is to express the governing equations of the FIC formulation in the principal curvature
directions of the solution. The resulting FIC equation is equivalent to adding a nonlinear
diffusion matrix to the infinitessimal governing equations. The solution process becomes non
linear and a simple iterative algorithm has been presented. The approximation of the main
principal curvature direction by that of the gradient vector simplifies the computations in
the iterative scheme. Excellent results have been obtained for all the 2D problems solved in
just two iterations for structured and nonstructured meshes.

It is remarkable that, similarly to the 1D case, good stabilized results are obtained in
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Figure 8. Solution of problem of Figure 4 with an unstructured mesh of 209 four node bi-linear

quadrilaterals

the first iteration of the scheme proposed (FIC-1 results) and this may be suf

icient for many

practical cases. More accurate (less diffusive) results are obtained by performing a second

iteration at a relatively small additional computational cost.
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