
 1 

Multivariate Identification of Extruded PLA Samples from the Infrared Spectrum 

Jordi-Roger Riba (orcid: 0000-0001-8774-2389)*1, Rosa Cantero (orcid: 0000-0002-0914-

9675)2, Violeta García-Masabet(orcid: 0000-0002-5362-2896)3, Jonathan Cailloux(orcid: 0000-

0003-3785-0829)3, Trini Canals(orcid: 0000-xxxxxxxxxxxx)2, Maria Lluïsa Maspoch(orcid:  

0000-0002-4813-6412)3. 

*Corresponding Author:  riba@ee.upc.edu 

1Universitat Politècnica de Catalunya Tech, 08222 Terrassa (Barcelona), Spain 
2Universitat de Lleida, 08700 Igualada (Barcelona), Spain 
3Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (UPC-EEBE), 

C/Colom 114, 08222 Terrassa, Spain 

ABSTRACT 

Polylactid acid (PLA) is a biodegradable thermoplastic polymer that is presented as a good 

alternative to petroleum-derived plastics. Some of the major drawbacks of this material are its lack 

of thermal stability and rapid degradation in large-scale production, thus a special care must be put 

in the manufacturing processes involved. To improve their properties, a reactive extrusion with a 

multi-epoxy chain extender (SAmfE) has been performed at pilot plant scale. The induced 

topological modifications produce a mixture of several types of non-uniform structures. 

Conventional chromatographic (SEC-static light scattering) or spectroscopic (NMR-nuclear 

magnetic resonance) techniques usually fail in characterizing non-uniform structures. A method 

for the classification of modified PLA samples based on a multivariate treatment of the spectral 

data obtained by Fourier-transform infrared spectroscopy (FTIR) spectroscopy, jointly with the 

application of feature extraction and classification algorithms, has been applied in this study. The 
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results of this work show the potential of the methodology proposed as a fast tool for process 

control. 
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1. INTRODUCTION 

One of the key bio-based polymers to substitute petroleum-based polymers in common 

applications is Poly(lactic acid) (PLA) [1]. PLA is a polyester, specifically a linear aliphatic 

thermoplastic. It is obtained by ring-opening polymerization of lactide, whose lactic acid 

monomers are usually produced by fermenting sugar feed stocks [2].  

PLA has several applications in different sectors, including film and packaging, textile and 

fibers, or construction and automotive products [2, 3]. Moreover, due to its non-toxic 

characteristics, biodegradability and biocompatibility, PLA is often considered for biomedical 

applications, in areas such as tissue engineering, drug delivery, blood vessel, scaffolding [4] or 

temporary implants [5].  

Regardless of its prominent properties some difficulties had to be dealt with for PLA to properly 

occupy a position as a commodity plastic, along with the advantages of been a biosourced one.  

Some of the drawbacks of PLA can affect directly the kind of processing available, particularly 

the polyester nature of PLA will require a special processing due to its thermal stability and rapid 

degradation that difficult its manufacturing and application in large-scale productions. Likewise, 

PLA can have a low melt strength that could reduce the available processes to use, like extrusion 

blowing or deep thermoconforming. These drawbacks had led to several approaches and 

numerous studies in order to improve PLA behavior [3, 6–8]. 
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Therefore, reactive extrusion in combination with a multifunctional reactive agent, is considered 

as a promising method for enhancing and stabilizing melt PLA properties [3, 6]. Among the most 

frequently applied chain extenders, the different reactives which are able to react with PLA 

functional end groups -OH and -COOH are, isocyanate [8], epoxy [7], isocyanurate and 

anhydride [9] functions. Among the most common reactive agents used as chain extenders in 

PLA, it can be found SAmfE (Joncryl®), this epoxy multifunctional reactive can develop 

chemical bonding of several PLA chains. The topological modifications induced with the 

reactive agent produce a mixture of diverse types of non-uniform structures with different 

architectures and molecular weights, due to the possible competition between chain degradation, 

chain extension, and chain branching [9]. 

Unfortunately, there is a lack of characterization methods to evaluate the modification of the 

PLA with the reactive agent in a molecular level due to a limited sensibility to highlight the non-

uniform changes with conventional techniques as Nuclear Magnetic Resonance Spectroscopy 

(NMR) or Chromatography like SEC-static light scattering (SEC-LS). On this basis, an indirect 

method has been used to evaluate a final property like viscosity to assess the performance of the 

reactive agent and develop a method to control the structural modification at large scale 

processing. However, the control of the process is difficult, not only the reactions are random but 

the processing require a continuous system where the control is mainly in the feed stage of the 

extrusion to produce the desired outcome, the reaction inside the equipment only can be 

controlled with the content of the reactive in the feed and subsequently the characterization of 

the output of the process that has been established that can be problematical [10]. 

A characterization technique like Fourier Transform Infrared spectroscopy (FTIR) has been 

used to evaluate the possible reactions with the chain extender without success due to the few 
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content of covalent bonding produce in the reaction to be around the detection limit of the 

technique. FTIR is a nondestructive instrumental technique that allows extracting the chemically 

relevant information contained in every sample [11]. It is known that the joint use of a limited 

amount of experimental data and suitable mathematical models, it is possible to predict with 

reliability some key properties of the chemical samples analyzed [12]. However, a multivariable 

mathematical method using a computing analysis of principal components (PCA) in FTIR 

together with canonical variables (CVA) has been successfully applied to evidence possible 

coupling reactions between PLA functional end groups and the epoxy groups of the SAmfE. As a 

result of the limited alternative to directly evaluate the relationship between structural changes 

and the concentration of additive use, the aim of this work is to evaluate the applicability of the 

PCA-CVA multivariable methods coupled to FTIR to highpoint the concentrations applied in the 

polymer modified through reactive extrusion in a pilot plant.   

This paper makes different contributions in the area of PLA production, including the inherent 

environmental advantages of using such biodegradable polymer in front of other oil-derived 

polymers. First, the outcomes of this work contribute to the optimization of the percentage of 

chain extender (SAmfE), which plays a fundamental role on providing PLA polymer the required 

stability to be produced on an industrial scale. Next, the multivariate approach presented has 

several appealing features, including very fast response, easy application, high reliability, or the 

fact that it does not require treatment or destruction of the samples, with the consequent saving 

of contaminating reagents. Therefore, it can be applied as a possible control tool during 

production of PLA polymer. 
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2. THE SAMPLES ANALYZED 

As explained, this paper performs an identification of PLA samples containing styrene-acrylic 

multifunctional-epoxide (SAmfE) from those that do not include this reactive agent. But even 

more, it identifies the concentration or percentage composition of SAmfE. 

A commercial PLA extrusion grade (Ingeo PLA 4032D) was purchased from NatureWorks and 

used as received. SAmfE reactive agent, namely Joncryl® ADR-4300F), was kindly supplied by 

BASF in flake form. It has a functionality of 12, a molecular weight of 5443 g.mol-1 and an 

epoxy equivalent weight of 433 g.mol-1.  

Prior to each processing, PLA pellets were dried during 4h at 80ºC in a PIOVAN (DSN506HE) 

hopper-dryer (dew point =-40ºC). Initially, a PLA-based masterbatch of SAmfE was prepared 

using a single screw extruder (IQAP-LAP E-30/25, screw diameter: 30mm, L/D=25). The 

temperature profile was 120, 130, 130 and 135 ºC from the feeding zone to the die, respectively 

and the screw speed was fixed at 35 rpm. The extrudate was water-cooled and pelletized for 

further use.  

Afterwards, the masterbartch pellets were diluted with neat PLA to obtain a nominal 

concentration of 0.5, 0.6 and 1.25 wt.% of SAmfE, respectively. These groups of materials were 

achieved through reactive extrusion using a co-rotating twin-screw extruder (COLLIN Kneter 

25X24D, screw diameter: 25 mm, L/D = 36) with a screw speed of 35 rpm. The seven heating 

zone were set to 45, 165, 165, 170, 180, 190, 190 °C from the feeding zone to the die, 

respectively. A N2 blanket was introduced in the hopper of the feeding zone and vacuum was 

applied to the metering zone.  
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Since SAmfE is a multi-functional reactive agent, Figure 1 shows the different reaction 

mechanisms that can take place between the functional end groups of PLA and the epoxy groups 

of SAmfE.  

 
Figure 1. Proposed reaction mechanisms between PLA and SAmfE  

In this paper a total of 200 PLA samples were analyzed, which contain different composition of 

SAmfE. The 200 PLA samples are divided in four groups of 50 samples each, namely 0%, 0.5%, 

0.6% and 1.25%, respectively, according to the percentage composition of SAmfE. The 

reference percentage of SAmfE was calculated as the mass percentage added during the PLA 

manufacturing process in the pilot plant. 

3. MATERIALS AND METHODS 
This research has been performed at pilot plant level and is proposed to be applied as a quality 

control method. 
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As in other works [13], A PerkinElmer Spectrum One (S/N 57458, Beaconsfield, UK) ATR-

FTIR spectrometer was used to acquire the reflectance spectra of the 200 analyzed PLA samples. 

The spectra were acquired in a controlled laboratory at 25 ± 1ºC. To reduce the noise, 4 scans per 

sample were taken in the 4000–650 cm−1 wavenumber interval, with 1 cm-1 resolution. Therefore, 

each raw spectrum includes 3351 spectral points. The first and second derivative of all spectra was 

performed in order to increase the performance of the multivariate statistical methods applied to 

identify the PLA samples with different composition. 

To generate the classification model, the whole set of samples is split them into a calibration and 

a prediction set. Whereas the calibration set is used to calibrate the mathematical model, the 

prediction set is used to evaluate the performance of the mathematical model. To this end the whole 

body of 200 PLA samples was randomly slit into 100 calibration samples and 100 prediction 

samples, as detailed in Table 1. 

Table 1. Number of PLA samples in each set of data 

Identification groups Calibration set Prediction set 

0% SAmfE 25 25 

0.5% SAmfE 25 25 

0.6% SAmfE 25 25 

1.25% SAmfE 25 25 

Spectral data is the input information provided to the multivariate methods to identify or classify 

unknown incoming samples within their pertinence group, according to their composition. Figure 

2 shows the approach applied to identify the samples, which is based on the of a preprocessing of 

the spectral data flowed by the subsequent application of principal components analysis (PCA), 

canonical variate analysis (CVA) and the k nearest neighbor algorithm (k-NN), as summarized in 
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Figure 2. It is noted that the preprocessing stage consists calculating the first and second derivatives 

of the spectral data. 

Since the ATR-FTIR spectra are composed of 3351 wavenumbers, there is an imperious need to 

apply suitable multivariate methods to reduce their dimensionality, thus retaining the analytically 

significant data in a reduced set of latent variables [14, 15] while minimizing the random noise 

included in the raw spectra. 

In this paper a three-steps transformation of the original data set X(n,m) is performed by applying 

a preprocessing stage, followed by the application of PCA and CVA multivariate methods. All this 

mathematical process can be understood as a transformation in which the transformation matrix if 

found as, 

Xtransformed(n,m**) = X(n,m) ·Vtotal(m,m**)     (1) 

where  

Vtotal(m,m**)=Vprep(m,m)·VPCA(m,m*)·VCVA(m*,m**)   (2) 

n being the number of PLA samples analyzed, m the number of wavenumbers in each spectrum, 

m* << m the number of latent variables provided by the PCA algorithm , also known as principal 

components (PCs), and  m**< m* the number of latent variables provided by the CVA algorithm 

[16, 17], the canonical variates (CVs). It is noted that CVA is closely related to the linear 

discriminant analysis (LDA) transformation, which foundations are found in [18, 19]. Finally, 

Vprep, VPCA and VCVA are the transformation matrixes found in the preprocessing, PCA and CVA 

stages. It is noted that both PCA [20] and CVA algorithms aim at reducing the dimensions of the 

problem, so m* << m and m** < m. Further background and mathematical details about the PCA 

and CVA algorithms can be found in [21–23]  and [24–26], respectively. 
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Finally, to identify in which group an unknown sample of the prediction set belongs, the k-NN 

classifier algorithm [27–29] is applied to the transformed data matrix Xpre,transformed(n,m**). It is worth 

noting that this mathematical method provides as many output values as classes or groups have 

been defined, four in this case. These output values are normalized in within 0-1, this value 

quantifying the membership degree of the sample analyzed in each class. 
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Outputs clas_numb values ϵ [0,1] per sample 

MODEL CALIBRATION
(supervised stage)

Preprocessing stage
Raw data or first derivative 

or second derivative

Vtotal(m,m**) = VPrep-PCA-CVA(m,m**) 
Calibration transformation matrix

VPCA(m,m*)

Xcal(n,m) raw spectral data matrix

Preprocessing transfor. matrix
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STAGE 1

STAGE 2 PREDICTION of unknown 
incoming samples

n’ samples, m wave-numbers

Xcal,transformed(n,m**)

 
Figure 2. Flowchart of the multivariate approach proposed in this paper to identify unknown 

incoming samples from the spectral information provided by the FTIR spectra. It is based on a 

preprocessing stage, followed by the subsequent application of PCA, CVA and k-NN. 
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4. RESULTS 

Figure 3 shows the ATR-FTIR spectra of one sample of each group. From a simple visual 

inspection of such spectral data it is not possible to detect differences among the different spectral 

bands between the samples that do not contain the extruder agent and those containing several 

amounts of the same, thus corroborating the need of applying powerful multivariate mathematical 

tools to correctly classify unknown incoming samples in the different groups.  

This work assumes that the differences among the molecular structures of the four groups of 

samples studied can be revealed by analyzing the data in the 3351 wavenumbers of the ATR-FTIR 

spectra. 
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Figure 3. ATR-FTIR reflectance data of one sample of each analyzed group (0%, 0.5%, 0.6% and 

1.25% SAmfE).  

The characteristic band assignments for each PLA-based material are summarized in Table 2. 

These are the characteristic bands of PLA, so the extruder agent does not cause any significant 

difference in these bands. 
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Table 2.  Wavenumbers and their corresponding vibrational assignments for PLA-based samples 

IR spectra [3, 30]. 

Wavenumbers, ν (cm-1) Assignments Nature of vibration *  

756 Crystalline phase - 

871 Amorphous phase - 

868 C-C st 

1045 C-CH3 st 

1093, 1130, 1184 C-O-C st as 

1268 C=O δ 

1360, 1382 CH δ (s and as) 

1453 CH3 δ as 

1757 C=O st 

2880 C-H st s 

2945, 2994 C-CH3 st (s and as) 

* st: stretching (ν), δ: bending, s: symmetrical, as: asymmetrical 

Figure 4 shows the FTIR spectrum of the extraction product SAmfE, where the characteristic 

bands of the styrene function are observed at 3000-3100 cm-1, 2000-1800 cm-1 and 800-600 cm-1, 

of the carboxylic ester, ester and alkyl groups described in Table 2. In addition, Figure 4 shows 

another band or multiple signal near 1250 cm-1, which is characteristic of the epoxy function. 
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Figure 4. ATR-FTIR spectrum of the chain extender SAmfE.  

The ATR-FTIR spectra of the studied samples presented in Figure 3 almost do not allow to 

observe the characteristic signal of the described epoxy group, nor in the form of the spectral bands 

nor in the intensity of the same.  

PLA samples are classified based on the information extracted from the ATR-FTIR spectra.  

Therefore, the strategy summarized in the flowchart shown in Figure 2. Therefore, the 

preprocessing (first and second derivative of the reflectance spectra), PCA and CVA algorithms 

are sequentially applied to the samples in the calibration set to build or calibrate the mathematical 

model. Next, with the samples in the prediction set are identified from the transformation matrix 

obtained in the calibration stage and by applying the k-NN algorithm.   

Next sections show the identification results attained taking into account the raw spectral ATR-

FTIR data, and the first and second derivatives of the spectra. 

4.1 First study analyzing 200 samples of four groups (0%, 0.5%. 0.6% and 1.25%) 
In this study the 200 PLA samples with different content of SAmfE are analyzed. As explained, 

100 samples randomly selected were assigned to the calibration set, whereas the remaining 100 
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samples were assigned to the prediction set. The elements in each group are detailed in Table 1. 

The aim of this study is to correctly identify the 100 samples in the calibration set from the ATR-

FTIR spectral data. 

Since raw spectra include the reflectance values corresponding to 3351 wavenumbers, the 

different matrixes dealt with in this work are summarized in Table 3. 

Table 3. Raw ATR-FTIR data matrixes of the 200 PLA samples analyzed 

Identification groups Calibration set Prediction set 

0% SAmfE Xcal,0%(25,3351) Xpre,0%(25,3351) 

0.5% SAmfE Xcal,0.5%(25,3351) Xpre,0.5%(25,3351) 

0.6% SAmfE Xcal,0.6%(25,3351) Xpre,0.6%(25,3351) 

1.25% SAmfE Xcal,1.25%(25,3351) Xpre,1.25%(25,3351) 

The n rows of X(n,m) correspond to the different samples, whereas the m columns correspond to 

the reluctance value of each wavenumber. The raw spectral data matrix Xcal(n,m) includes n = 100 

calibration samples and m = 3351 wavenumbers. The PCA outputs the same number of PCs as 

wavenumbers, that is, 3351 PCs. However, in order to boost the discrimination among groups, 

only the first ranked PCs explaining 99.9% of the overall variance are retained. It usually implies 

a great dimensionality reduction, which is required for a subsequent application of the CVA 

algorithm.  

In this section three studies were carried out, with the raw ATR-FTIR spectral data and the first 

and second derivative of the raw spectra, respectively.  

Figure 5 shows the results attained from the raw spectral data when retaining the first 46 PCs 

(99.9% of variance), which lead to a success rate in identifying prediction samples between 92 and 

94%, as summarized in Table 4.  
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Figure 5. Identification results from the raw ATR-FTIR spectra. Calibration and prediction PLA 

samples plotted in the space defined by the three CVs calculated from the CVA algorithm, previous 

application of the PCA algorithm. 

Next, the same strategy was applied from the first derivative of the spectral data. Figure 6 shows 

the results attained from the raw spectral data when retaining the first 73 PCs (99.9% of variance), 

which lead to a success rate in identifying prediction samples between 88 and 90%, as shown in 

Table 4.  
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Figure 6. Identification results from the first derivative of the ATR-FTIR spectra. Calibration and 

prediction PLA samples plotted in the space defined by the three CVs calculated from the CVA 

algorithm, previous application of the PCA algorithm. 

Finally, the performance of the second derivative of the spectral data was studied. Figure 7 shows 

the results attained from the raw spectral data when retaining the first 73 PCs (99.9% of variance), 

which lead to a success rate in identifying prediction samples between 91 and 92%, as shown in 

Table 4. 
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Figure 7. Identification results from the second derivative of the ATR-FTIR spectra. Calibration 

and prediction PLA samples plotted in the space defined by the three CVs calculated from the 

CVA algorithm, previous application of the PCA algorithm. 

Table 4. Identification success rate following the preprocessing + PCA + CVA + k-NN approach 

(200 PLA samples of groups 0%, 0.5%, 0.6% and 1.25% SAmfE)  

Preprocessing k = 3 k = 4 k = 5 k = 6 

Raw spectral data 92/100 93/100 93/100 94/100 

First derivative 88/100 89/100 90/100 90/100 
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Second derivative 91/100 92/100 92/100 92/100 

 

4.2 Second study analyzing 100 samples of two similar groups (0.5% and 0.6%) 
Previous studies show that the manufactured material achieves the best properties when the 

concentration of SAmfE is approximately 0.5% [9]. In order to focus special attention on this range 

of concentrations, a second study is carried out. In this second study the discrimination power of 

proposed approach is tested by only analyzing the samples in the 0.5% and 0.6% groups, since 

these samples have very similar compositions. Therefore this is a challenging problem. 

In this study 100 PLA samples of with 0.5% and 0.6% of SAmfE are analyzed. As before, 50 

samples were randomly assigned to the calibration set, whereas the remaining 50 samples were 

assigned to the prediction set. The elements in each group are detailed in Table 5.  

Table 5. Raw data ATR-FTIR matrixes  

Identification groups Calibration set Prediction set 

0.5% SAmfE Xcal,0.5%(25,3351) Xpre,0.5%(25,3351) 

0.6% SAmfE Xcal,0.6%(25,3351) Xpre,0.6%(25,3351) 

This section performs three studies. The first one considers the raw ATR-FTIR spectral data, 

whereas the second and third studies consider the first and second derivative of the raw spectral 

data, respectively.  

Figure 8 shows the results attained from the raw spectral data when retaining the first 31 PCs 

(99.9% of variance), which lead to a success rate in identifying prediction samples of 98%, as 

summarized in Table 6.  
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Figure 8. Identification results from the raw ATR-FTIR spectra. Calibration and prediction PLA 

samples plotted in the space defined by the unique CV calculated from the CVA algorithm, 

previous application of the PCA algorithm. 

Next, the same strategy was applied from the first derivative of the spectral data. Figure 9 shows 

the results attained from the raw spectral data when retaining the first 48 PCs (99.9% of variance), 

which lead to a success rate of 100% in identifying the 50 prediction samples, as shown in Table 

6.  
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Figure 9. Identification results from the first derivative of the ATR-FTIR spectra. Calibration and 

prediction PLA samples plotted in the space defined by the unique CV calculated from the CVA 

algorithm, previous application of the PCA algorithm. 
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Finally, the performance of the second derivative of the spectral data was studied. Figure 10 

shows the results attained from the raw spectral data when retaining the first 44 PCs (99.9% of 

variance), which lead to 100% success rate in identifying the 50 prediction samples, as shown in 

Table 6. 
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Figure 10. Identification results from the second derivative of the ATR-FTIR spectra. Calibration 

and prediction PLA samples plotted in the space defined by the unique CV calculated from the 

CVA algorithm, previous application of the PCA algorithm. 

Table 6 summarizes the results attained with the PCA + CVA + k-NN approach from the raw 

spectral data, and the first- and second-derivate of the spectra. 

Table 6. Identification success rate following the preprocessing + PCA + CVA + k-NN approach 

(100 PLA samples of groups 0.5% and 0.6%)  

Preprocessing k = 3 k = 4 k = 5 k = 6 

Raw spectral data 49/50 49/50 49/50 49/50 

First derivative 50/50 50/50 50/50 50/50 

Second derivative 50/50 50/50 50/50 50/50 

Results shown in Table 6 prove the accuracy and reliability of the proposed approach, since the 

identification success rate is close to 100% for all samples analyzed. 
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5. CONCLUSIONS 

In this study, PLA linear topology was modified through reactive extrusion using a multi-

functional reactive agent. The different controls carried out in the manufactured product only allow 

to compare the properties obtained according to the proportions of the reagent added to extrude 

the polymer. 

In this paper, a non-invasive, non-destructive, fast and easy-to-apply method to determine the 

amount of SAmfE reagent added has been proposed. It is based on a multivariate chemometric 

treatment of FTIR spectral data through the PCA + CVA algorithms and the k-NN classifier. 

Results reported in this paper have shown the suitability and applicability of this method since 

success rates in classifying unknown incoming PLA samples, 94% in the first study (4 groups) and 

can be as high as 100% in the second study (2 groups) in spite of the little difference of 

concentration of extruder agent in both groups. 
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