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On the Regularity and Stability of the Dual-Phase-lag Equation

Abstract

In this paper we consider the following linear partial different equation which is usually seen as
an approximation to the dual-phase-lag heat equation proposed by Tzou.

Ṫ + τqT̈ +
τ2q
2

...
T = κ4T + κτT4Ṫ + κ

τ2T
2
4T̈

on a bounded domain Ω in Rn with smooth boundary. We obtain analyticity for the associated
C0−semigroup. Moreover, we also obtain exponential stability of the solutions by spectrum analysis
and Hurwitz criterion under one of the following conditions:

(i).
τT
τq

> 2−
√

3; (ii).2−
√

3 ≥ τT
τq

>

√
(1 + κτTλ1)2 + (κτTλ1)2 + (κτTλ1)3 − (1 + κτTλ1)

κτTλ1(1 + κτTλ1)
,

where λ1 is the smallest eigenvalue of the negative Laplacian on Ω with Dirichlet boundary condition.
Key words: dual-phase-lag heat equation, analyticity, exponential stability.
MSC 2000 35Q35,35Q30,35L65,76N10

1 Introduction

It is well-known that Fourier’s heat equation theory implies that the thermal disturbances at some
point will be felt instantly anywhere for every distant. This leads to the paradox of infinite speed of
propagation. Most known alternative theory is the Maxwell-Cattaneo Law which proposes a hyperbolic
damped equation for the heat conduction. We recall other models proposed by Lord and Shulman [8],
Green and Lindsay [4] and Green and Naghdi [5, 6].

In 1995, Tzou [15] proposed a modification of the Fourier constitutive equation. He suggested a theory
of thermal flux with delay. The basic constitutive equation is

q(x, t+ τq) = −κ∇T (x, t+ τT ), κ > 0. (1.1)

Where T is the temperature, q is the heat flux vector and τT and τq are two delay parameters. By Taylor
approximations of different orders to the delay equations, we obtain the following two dual-phase-lag
equations:

Ṫ + τqT̈ +
τ2
q

2

...
T = κ4T + κτT4Ṫ , (1.2)

Ṫ + τqT̈ +
τ2
q

2

...
T = κ4T + κτT4Ṫ + κ

τ2
T

2
4T̈ . (1.3)

Equation (1.2) has been well investigated. Quintanilla [11] proved the exponential stability when τq < 2τT
and the instability when τq > 2τT . Quintanilla, Borgmeyer and Racke [2] proved that the decay is not
exponential in the critical case τq = 2τT . Later on, Liu, Quintanilla and Wang [9] clarified that the
critical case actually is polynomially stable. Moreover, when the delay τT is assumed to depend on the
material point, they obtained exponential stability again even if the non-negative 2τT (x) − τq is only
locally positive on a proper subdomain in one-dimensional space. Some extension of these results in a
thermoelastic context can be found in [7, 14]. In recent years, utilization of Dual-Phase-Lag model to
simulate heat transfer in micro- or nano-structures has been considered by researchers. (see [3] and the
reference therein).

On the other hand, few results have been obtained for equation (1.3). The best we know is that it is of
parabolic type, and the point spectrum is far away from the imaginary axis when (2−

√
3)τq < τT , which

hinted the exponential stability [12]. When (2 −
√

3)τq = τT , there exist cases such that the solution of
the equation is undamped and periodic [2]. This problem was also studied in [13], but the exponential

decay of solution was obtained only when
τT
τq

> 1. Numerical simulation of this case was shown in [1].
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In this paper, we will investigate the regularity and stability of initial and boundary value problem
Ṫ + τ1T̈ +

τ2
1

2

...
T = κ4T + κτ24Ṫ + κ

τ2
2

2
4T̈ , in Ω× (0,∞), (1.4)

T (x, 0) = T 0(x), Ṫ (x, 0) = Ṫ 0(x), T̈ (x, 0) = T̈ 0(x),
...
T (x, 0) =

...
T

0
(x) in Ω, (1.5)

T (·, t)|∂Ω = 0, for t ∈ [0,∞), (1.6)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω.
Since an energy dissipative norm for system (1.3) is not easy to find, we first show analyticity for its

associated C0−semigroup in section 2. Hence, the semigroup possesses the spectrum determined growth
property. Then, in section 3 and 4, we prove exponential stability by spectrum analysis and Hurwitz
criterion under one of the following conditions:

(i).
τT
τq

> 2−
√

3;

(ii). 2 −
√

3 ≥ τT
τq

>

√
(1 + κτTλ1)2 + (κτTλ1)2 + (κτTλ1)3 − (1 + κτTλ1)

κτTλ1(1 + κτTλ1)
, where λ1 is the smallest

eigenvalue of the negative Laplacian on Ω with Dirichlet boundary condition.

Remark 1.1. The contributions of this paper are the following. The observation of the parabolic behavior
of system (1.3) is proved without any restriction on the two delay parameters. Moreover, the lower bound

of
τT
τq

for exponential stability is improved to the critical value 2 −
√

3. We would like to point out that

Condition (ii) above is not satisfied if τT is small.

Remark 1.2. We note that the involvements of the high order terms in the lags and then on the dynamics
are consequence of the handling of systems in which different energy carriers are involved. The interested
reader can find a suitable discussion in ([16] p.376).

2 Analyticity

Let
H := H1

0 (Ω)×H1
0 (Ω)× L2(Ω),

equipped with the inner product

〈Z,W 〉H = 〈∇Z1,∇W1〉+ 〈∇Z2,∇W2〉+
τ2
1

2
〈Z3,W3〉.

Denoting Z := (Z1, Z2, Z3)T = (T, Ṫ , T̈ )T , we then convert system (1.4)-(1.6) to a first-order evolution
equation on Hilbert space H, 

dZ

dt
= AZ, (2.1)

Z(0) = Z0 = (T 0, Ṫ 0, T̈ 0)T , (2.2)

where the operator A is given by

AZ =


Z2

Z3

2

τ2
1

(
− Z2 − τ1Z3 + κ4Z1 + κτ24Z2 + κ

τ2
2

2
4Z3

)
 (2.3)
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and
D(A) = {Z = (Z1, Z2, Z3)T ∈ H|Z1, Z2 ∈ H2(Ω), Z3 ∈ H1

0 (Ω) ∩H2(Ω)}, (2.4)

and τ1 = τq, τ2 = τT . Since

Re〈AZ,Z〉H = Re

(
〈∇Z2,∇Z1〉+ 〈∇Z3,∇Z2〉 − 〈Z2, Z3〉 − τ1‖Z3‖2

−κ〈∇Z1,∇Z3〉 − κτ2〈∇Z2,∇Z3〉 − κ
τ2
2

2
‖∇Z3‖2

)
, (2.5)

the dissipativeness of A is not clear under this inner product. Therefore, we consider its translation
A1 = A− ω0I for ω0 > 0 big enough.

Theorem 2.1. A1 is the infinitesimal generator of a C0−semigroup of contractions on the Hilbert space
H.

Proof. Since

Re〈A1Z,Z〉H = Re

(
〈∇Z2,∇Z1〉 − ω0‖∇Z1‖2 + 〈∇Z3,∇Z2〉 − ω0‖∇Z2‖2 − 〈Z2, Z3〉 − τ1‖Z3‖2

−κ〈∇Z1,∇Z3〉 − κτ2〈∇Z2,∇Z3〉 − κ
τ2
2

2
‖∇Z3‖2 − ω0

τ2
1

2
‖Z3‖2

)
. (2.6)

We can choose ω0 big enough such that the right-hand side of (2.6) is less than −C(‖∇Z1‖2 + ‖∇Z2‖2 +
‖∇Z3‖2) ≤ 0, C > 0. Thus, A1 is dissipative. It is easily to show that D(A1) is dense in H. Suppose
that 0 ∈ σ(A1). Then there exist a sequence λn → 0 and a sequence Zn ∈ D(A1) with ‖Zn‖H = 1 such
that

(λnI −A1)Zn → 0 in H. (2.7)

From (2.6) and (2.7), we have

Re〈A1Zn, Zn〉H ≥ C(‖∇Zn,1‖2 + ‖∇Zn,2‖2 + ‖∇Zn,3‖2)→ 0. (2.8)

We conclude that ‖Zn‖H → 0. This is a contradiction. Thus, 0 ∈ ρ(A1). By the modified Lumer-Philips
Theorem [10], we prove that A1 generates a C0−semigroup of contractions on H.

We recall the following result on analytic semigroup which will be applied to prove Theorem 2.3.

Theorem 2.2. [10] Let S(t) = eAt be a C0−semigroup of contraction in Hilbert space H. Suppose that

ρ(A) ⊇ {iβ|β ∈ R} ≡ iR. (2.9)

Then, S(t) is analytic if and only if

lim
|β|→∞

‖β(iβI −A)−1‖H <∞. (2.10)

Theorem 2.3. The semigroup eA1t is analytic.

Proof. We will use Theorem 2.2 to prove this result. It consists of the following two steps:
Step I: Assume that (2.9) is false, i.e., there is a λ = iβ ∈ σ(A1). Then there exist λn(= iβn) → λ and
normalized Zn = (Z1n, Z2n, Z3n)T such that

‖(iβnI −A1)Zn‖H → 0, (2.11)

which implies
Re〈A1Z,Z〉H = o(1). (2.12)
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For convenience, we have omitted the subscript n hereafter. Thus, ‖Z‖2H = o(1), which is a contradiction
to the assumption ‖Z‖2H = 1. Therefore, iR ⊆ ρ(A1).
Step II: Assume that (2.10) is false. Then by the uniform boundedness theorem, there exist a sequence
β →∞ and a unit sequence Z = (Z1, Z2, Z3)T ∈ D(A1) such that

‖ 1

β
(iβI −A1)Z‖H → 0. (2.13)

We rewrite (2.13) as

1

β

(
iβ∇Z1 −∇(Z2 − ω0Z1)

)
= o(1), (2.14)

1

β

(
iβ∇Z2 −∇(Z3 − ω0Z2)

)
= o(1), (2.15)

1

β

(
iβZ3 −

2

τ2
1

(−Z2 − τ1Z3 + κ∆Z1 + κτ2∆Z2 + κ
τ2
2

2
∆Z3) + ω0Z3

)
= o(1). (2.16)

Then, by dissipative Re
1

β
〈A1Z,Z〉H = o(1), which implies that

1

β
‖∇Z1‖2 = o(1),

1

β
‖∇Z2‖2 = o(1),

1

β
‖∇Z3‖2 = o(1). (2.17)

From (2.14),

i∇Z1 −
1

β
∇(Z2 − ω0Z1) = o(1). (2.18)

Then by (2.17), we obtain
‖∇Z1‖2 = o(1). (2.19)

Similarly, it follows from (2.15) and (2.17) that

‖∇Z2‖2 = o(1). (2.20)

Taking the inner product of (2.16) with Z3 in L2(Ω) gives

i‖Z3‖2 +
2

τ2
1

〈 1
β
Z2, Z3〉+

2

τ1

1

β
‖Z3‖2 +

2

τ2
1

κ〈 1
β
∇Z1,∇Z3〉+

2τ2
τ2
1

κ〈 1
β
∇Z2,∇Z3〉

+
τ2
2

τ2
1

κ
1

β
‖∇Z3‖2 + ω0

1

β
‖Z3‖2 = o(1). (2.21)

In reference of (2.19)-(2.20) and (2.17), (2.21) can be simplified to

i‖Z3‖2 = o(1). (2.22)

Therefore, we have arrived at ‖Z‖2H = o(1), which is a contradiction with assumption ‖Z‖2H = 1.

Since the operator A1 is the translation of the operator A, we have

Theorem 2.4. The Semigroup eAt is analytic.

3 Spectrum analysis

Since eAt is analytic, its growth rate is

ω = sup{Reλ | λ ∈ σ(A)}.
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Thus, for stability analysis, we need to study the spectrum of A. Suppose AZ = λZ with Z ∈ D(A) and
Z 6= 0, then 

Z2 = λZ1, (3.1)

Z3 = λZ2, (3.2)

2

τ2
1

(−Z2 − τ1Z3 + κ∆Z1 + κτ2∆Z2 + κ
τ2
2

2
∆Z3) = λZ3. (3.3)

Substituting (3.1) and (3.2) into (3.3), we have

κ(1 + τ2λ+
τ2
2

2
λ2)∆Z1 − λ(1 + τ1λ+

τ2
1

2
λ2)Z1 = 0. (3.4)

Theorem 3.1. σr(A) = ∅.

Proof. Since λ ∈ σr(A) if and only if λ ∈ σp(A∗), it suffices to show that σp(A) = σp(A∗). It is easy to
check that A∗W = λW for W ∈ D(A∗) and W 6= 0 is given by

−κW3 = λW1, (3.5)

∆W1 +W3 − κτ2∆W3 = λ∆W2, (3.6)

− 2

τ2
1

∆W2 −
2

τ1
W3 + κ

τ2
2

τ2
1

∆W3 = λW3. (3.7)

Eliminating W2,W3 in (3.5)-(3.7), we get

κ(1 + τ2λ+
τ2
2

2
λ2)∆W1 − λ(1 + τ1λ+

τ2
1

2
λ2)W1 = 0, (3.8)

which is the same with (3.4). Hence, λ ∈ σp(A∗) if and only if λ ∈ σp(A), and consequently σr(A) = ∅.

For λ = λ± =
−1

τ2
± i 1

τ2
, which are the roots of 1 + τ2λ+

τ2
2

2
λ2 = 0, equation (3.4) reduces to

(1 + τ1λ± +
τ2
1

2
λ2
±)Z1 = 0. (3.9)

Case I: If τ1 6= τ2. As 1 + τ1λ± +
τ2
1

2
λ2
± 6= 0, then by (3.9), we have Z1 = 0, which together with (3.1)

and (3.2), we obtain Z2 = 0 and Z3 = 0, i.e., Z = 0. That is, ker(A − λ±I) = 0. Let’s show that
(A− λ±I)−1 is unbounded, then λ± ∈ σc(A). We will prove that there exists ‖Fn‖2H = 1, such that

‖(A− λ±I)−1Fn‖2H →∞. (3.10)

We choose Fn = (0, 0, en)T , where λn is the eigenvalue of −∆ with Dirichlet boundary condition, λn →∞
as n→∞; en is the corresponding normalized eigenfunction. Let Zn = (Zn1, Zn2, Zn3) = (A−λ±I)−1Fn,
i.e.,

(A− λ±I)Zn = Fn, (3.11)

which is equivalent to
Zn2 − λ±Zn1 = 0, (3.12)

Zn3 − λ±Zn2 = 0, (3.13)

−Zn2 − τ1Zn3 + κ∆Zn1 + κτ2∆Zn2 + κ
τ2
2

2
∆Zn3 −

τ2
1

2
λ±Zn3 =

τ2
1

2
en. (3.14)
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Eliminating Zn2, Zn3 in (3.12)-(3.14), we have

−λ±(1 + τ1λ± +
τ2
1

2
λ2
±)Zn1 =

τ2
1

2
en, (3.15)

i.e., Zn1 = c1en, for some constant c1 6= 0. Now it is clear that ‖Zn1‖H1 → ∞, which concludes that
(A− λ±I)−1 is unbounded. Therefore, λ± ∈ σc(A).

For λ ∈ C \ (σp(A) ∪ {λ±}), and for any F = (f1, f2, f3) ∈ H, we look for solution to

(A− λI)Z = F (3.16)

in D(A), i.e., 
Z2 − λZ1 = f1, (3.17)

Z3 − λZ2 = f2, (3.18)

2

τ2
1

(−Z2 − τ1Z3 + κ∆Z1 + κτ2∆Z2 + κ
τ2
2

2
∆Z3)− λZ3 = f3. (3.19)

Again, (3.17)-(3.19) can be reduced to an elliptic partial differential equation

κ(1 + τ2λ+
τ2
2

2
λ2)∆Z1 − λ(1 + τ1λ+

τ2
1

2
λ2)Z1 = (1 + τ1λ+

τ2
1

2
λ2)f1 − κ(τ2 +

τ2
2

2
λ)∆f1

+(τ1 +
τ2
1

2
λ)f2 − κ

τ2
2

2
∆f2 + f3 (3.20)

with boundary condition Z1|∂Ω = 0, which is solvable by the standard elliptic theory. Thus, λ ∈ ρ(A)
and

σ(A) = C\ρ(A) = σp(A) ∪ {λ±}. (3.21)

Case II: If τ1 = τ2, then we also have 1 + τ1λ± +
τ2
1

2
λ2
± = 0. Thus,

Z = (1, λ±, λ
2
±)Z1, ∀Z1 ∈ H2(Ω) ∩H1

0 (Ω). (3.22)

Then dim ker(A − λ±I) = ∞, i.e., λ± ∈ σc(A). Similar to Case I, we can prove that if λ /∈ σp(A) and
λ 6= λ±, then λ ∈ ρ(A). Therefore,

σ(A) = C\ρ(A) = σp(A) ∪ {λ±}. (3.23)

4 The exponential stability of the system

In [12], it was proved by Hurwitz criterion that all three roots of the characteristic polynomial

β3 + (
2

τ1
+
κτ2

2λn
τ2
1

)β2 + (
2

τ2
1

+
2κτ2λn
τ2
1

)β +
2κλn
τ2
1

= 0 (4.1)

have negative real parts if and only if for all n

l1 =
2

τ1
+
κτ2

2λn
τ2
1

> 0, l2 =
2

τ2
1

+
2κτ2λn
τ2
1

> 0, l3 =
2κλn
τ2
1

> 0 and l1l2 > l3, (4.2)

where λn is the increasing sequence of eigenvalues of −∆ with Dirichlet boundary conditions. To make

sure l1l2 > l3,
τ2
τ1

should satisfies condition (i) or (ii) in the section of introduction.
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Let β = λ− ε, ∀ε > 0 small enough, we have

(λ− ε)3 + (
2

τ1
+
κτ2

2λn
τ2
1

)(λ− ε)2 + (
2

τ2
1

+
2κτ2λn
τ2
1

)(λ− ε) +
2κλn
τ2
1

= 0, (4.3)

i.e.,

λ3 + [(
2

τ1
+
κτ2

2λn
τ2
1

)− 3ε]λ2 + [3ε2 − 2ε(
2

τ1
+
κτ2

2λn
τ2
1

) + (
2

τ2
1

+
2κτ2λn
τ2
1

)]λ

+
2κλn
τ2
1

− ε3 + ε2(
2

τ1
+
κτ2

2λn
τ2
1

)− ε( 2

τ2
1

+
2κτ2λn
τ2
1

) = 0. (4.4)

Denote

l̂1 = (
2

τ1
+
κτ2

2λn
τ2
1

)− 3ε, l̂2 = 3ε2 − 2ε(
2

τ1
+
κτ2

2λn
τ2
1

) + (
2

τ2
1

+
2κτ2λn
τ2
1

)

and

l̂3 =
2κλn
τ2
1

− ε3 + ε2(
2

τ1
+
κτ2

2λn
τ2
1

)− ε( 2

τ2
1

+
2κτ2λn
τ2
1

).

For ε > 0 small enough, the following inequalities still hold.

l̂1 = l1 − 3ε > 0, l̂2 = l2 + 3ε2 − 2ε(
2

τ1
+
κτ2

2λn
τ2
1

) > 0,

l̂3 = l3 − ε3 + ε2(
2

τ1
+
κτ2

2λn
τ2
1

)− ε( 2

τ2
1

+
2κτ2λn
τ2
1

) > 0,

and
l̂1 l̂2 − l̂3 = l1l2 − l3 − 8ε3 + 8ε2l1 − 2εl2 − 2εl21 > 0,

under the condition (i) or (ii). Thus, Reλ < 0 which implies that Reβ < −ε, for some ε > 0 small
enough. The growth rate of the semigroup eAt is

ω = max{−ε,− 1

τ2
}.

Therefore, we have proved that equation (1.3) is exponentially stable under condition either (i) or (ii).
Acknowledgements. R. Q. is supported by the Project “Análisis Matemático de Problemas de
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