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Summary

Twitter has become the largest microblogging platform where users can interact

between each other expressing opinions, thoughts and feelings related to any topic

or source of news in a compressed 280 character message, called tweet. Hashtags

are popular keywords used to label these tweets according to its content. This

work tries to find out if the usage of hashtags to label tweets with similar content

is accurate enough. To do so, tweets from different popular hashtags have been

retrieved and processed in order to have a dataset with a content as close to

reality as possible. Several embedding methods and learning algorithms have been

studied to classify tweets from different hashtags based on the content. Results

showed that the best performance is achieved when using the Tf-idf embedding

method and support vectors machine. The learning algorithm obtained a precision

around 90% for classification on 10 classes and above 70% when dealing with 100

classes trained on datasets of only 13680 and 143067 samples respectively. The

results also indicated that BoW and Tf-idf methods outperformed other state of

the art methods for other natural language processing tasks, such as GloVe or

Word2Vec.
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Chapter 1

Introduction

The amount of information available on the internet has exponentially increased

over the last few years and has become the universal source of information for

millions of users around the globe. With a penetration rate of 54.4% of the world

population by the end of 2017 1, the world wide web has changed forever the way

we communicate.

With the digitalization of the traditional news sources, such as newspapers

and television, the content related to breaking news is available online a few min-

utes after it occurs and can be accessed from anywhere. This fact has facilitated

the appearance of microblogging sites. Twitter has become the largest microblog-

ging platform where users can interact between each other expressing opinions,

thoughts and feelings related to any topic or source of news in a compressed 280

character message, called tweet. When an important event occurs somewhere on

the globe, articles from the media and thousands and thousands of opinions from

users appear on Twitter in a matter of minutes.

This huge amount of tweets available have some drawbacks. The main one is

the possibility for the information to get lost in the servers given the enormous

amount of data. To give access to the content by the interested users the hashtags

were invented. Hashtags are popular keywords used to label tweets according to

its content. Using this label method, tweets related to the same topic can be

searched and tracked.

1 https://www.internetworldstats.com
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INTRODUCTION 1.1 Motivation

1.1 Motivation

Hashtags are written in the tweet by the user and they have total freedom when

it comes to selecting the desired one. From a machine learning perspective, the

users label the content created by themselves. The correspondence between the

hashtag and the content is not verified in any way and this opens the possibility

to use it in an inadequate way.

Are the users good enough when selecting the hashtag? Is the hashtag a

representative way to cluster the content of the tweets? It is possible to check it

in an automatic way instead of manually verifying the relation between the tweet

content and the hashtag?

These are some questions I asked myself when interacting with the platform

and are going to be answered in this work.

1.2 Goals of the thesis

This work will try to answer the questions suggested in Section 1.1. This is

equivalent to solving a multi-class classification problem. The algorithm is going

to be trained using a dataset of tweets retrieved from Twitter. The tweet content

is going to be used as the input for the model while the hashtag will be used to

label the sample.

Transforming the tweet content into a numerical fixed length vector is a chal-

lenging task and for that reason a comparative study of several embedding meth-

ods is going to be conducted. This embedding methods are going to be imple-

mented using different learning algorithms to identify the best combination of

model and embedding method where the best performance is achieved. If the

model is able to correctly classify a large portion of samples, that will mean that

there are similarities between tweets of the same hashtag and therefore the hashtag

was appropriate for labeling the tweet content.

4



Chapter 2

Related Work

In recent years, the research in the feature extraction field for text classification

has been focused on two main approaches. While a part of the research has focused

on the representation of words using vectors, the others have been investigating a

character level approach for text representation.

Rumelhart et al. introduced in 1986 one of the earliest uses of word repre-

sentations [15] and has been applied to statistical language modeling since then.

The distributed representation of words in a vector space have been proven to

achieve better performance by grouping similar words. These vectors can be used

as the input in a wide range of applications, such as document classification [18],

question answering [20] and information retrieval [10]. Neural networks to learn

distributed representation of words dates back to 2003, where a feedforward neural

network with a linear projection layer and a non-linear hidden layer was used [2].

In 2013, Mikolov et al. introduced an efficient method for learning high-quality

vector representations of words from unstructured text data using the Skip-gram

model. This method suffers from the disadvantage that it does not operate di-

rectly on the co-occurrence statistics of the corpus. For that reason, a new global

log-bilinear regression model called GloVe [13] was emerged by combining local

context window methods, such as the skip-gram model [11] and global matrix

factorization introduced in LSA [5].

Traditional NNLM methods treat words as the basic units of language and

assign an independent vector to each word type, requiring the storage of an ex-

tremely large table of vectors. It also demands for a strong preprocessing when

dealing with social network domains like Twitter. In 2015, Ling et al. presented

a bidirectional LSTM for composing word vectors from their constituent charac-

ters [9]. With this approach the large word lookup tables can be compacted into

5



RELATED WORK

character lookup tables, scaling to large datasets and obtaining better results than

other state of the art approaches. However, Dhingra et al. took one step further

in 2016 and generated vector representations of the entire tweet from characters

by learning complex, non-local dependencies in character sequences [6].
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Chapter 3

Proposed Approach

In this chapter the proposed method is detailed. The first step is to create a

dataset with a large amount of samples . This can be done by retrieving tweets

through the Twitter API, filter and process them to finally store in a database

for further usage. In order to drop this data into a model some numerical char-

acteristics have to be extracted from the tweets. In this work several embedding

vector methods have been used and are detailed in Section 3.2. In the last section

of this chapter, the theoretical formulation of the different models used for the

multi-class classification problem are explained.

3.1 Data acquisition

In order to train a classifier a lot of data needs to be collected. For this project

a huge amount of tweets with its corresponding hashtag are needed. Twitter has

developed some APIs to retrieve any kind of useful material. Information about

the trending topics in a specific region can be obtained. This trending topics can

be used to search for tweets with this specific content.

There is another Twitter API to retrieve real time tweets. The user can be

subscribed to a channel and twitter streams all the tweets that match with a cer-

tain specifications such as keywords, language or location in near real time. If the

list of matching words to be streamed is too general or involved in some trending

topics the amount of tweets retrieved is huge and this can be a problem. If the

user is not able to process this amount of information because some time consum-

ing action is required such as post-filtering or pre-processing of the data, Twitter

automatically disconnects the user to the streaming to prevent buffer saturation.

When this occurs the user needs to wait to reconnect again due to connection

limits exceeded.

7



PROPOSED APPROACH 3.1 Data acquisition

This problem can be solved considering the following approach. All the un-

processed data retrieved from Twitter is stored in a queue message generator.

This information is accessed through queries and the message obtained is then

processed and if fulfills a set of requisites is then stored in a database. All the

mentioned functionalities have been implemented using Python3 and a set of li-

braries explained in the following subsections. Figure 3.1 illustrates the workflow

diagram used in this approach to solve the buffer saturation problem.

Social

stream

consumer

Twitter

Streaming

API

Queue

storage

Filtering

and data

processing

Database

request

data retrieve

message consumer

storage

Figure 3.1: Structure for the data retrieve and storage.

3.1.1 Retrieving tweets from Twitter Streaming API

Connecting to the Twitter stream of tweets in near real time is possible with the

Twitter Streaming API1. This can be done using Tweepy 2, a Python library used

to handle the API connection in an easy way.

The first step is to set up the authentication, in that case Twitter API uses the

OAuth authentication protocol. For comunicating with the Twitter API four keys

are required: Consumer Key, Consumer Secret, Access Token and Access Token

Secret.

1 Twitter Streaming API Documentation: https://developer.twitter.com/en/docs

2 Tweepy Library Documentation: http://tweepy.readthedocs.io/en/v3.5.0/
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PROPOSED APPROACH 3.1 Data acquisition

In order to obtain the mentioned keys its necessary to create a new application

using an existing user’s account in the Twitter Applications Portal3. After filling

the required information the four keys can be obtained in the Keys and Access

Tokens tab as illustrated in Figure 3.2.

Figure 3.2: Consumer and access token needed for the communication with the

Twitter API.

Once the API connection have been set up using the Tweepy library it is

possible to obtain the trends in a certain location using the WOEID identifier.

The WOEID is a unique 32-bit reference identifier that identifies any feature on

Earth 4. In Table 3.1 the identifiers for some regions are stated.

3 https://apps.twitter.com

4 WOEID: https://en.wikipedia.org/wiki/WOEID
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PROPOSED APPROACH 3.1 Data acquisition

Country WOEID

Global 1

Japan 23424856

Spain 23424950

United States 23424977

United Kingdom 23424975

China 23424781

Table 3.1: WOEID identifiers for some countries.

This work is focused on the english language processing and for that reason

only global, United States and United Kingdom trending topics have been con-

sidered. In Twitter, the trending topics can be composed by either hashtags or

trends. While hashtags are popular keywords with a # at the beginning that cat-

egorizes the accompanying text, trends are words contained in the tweets that are

immediately popular at a particular time. To make this work more challenging,

only trending topics containing hashtags have been taken into account.

This set of hashtags has been used to track english tweets containing those

words in near real time. When a tweet containing any of those mentioned words

is published by a user, all the information regarding this tweet is retrieved by

Twitter Streaming API through a stream listener and published to the message

queue generator.

3.1.2 RabbitMQ, a message queue generator

The main disadvantage of using the Twitter Streaming API to retrieve tweets

containing popular words is the huge amount of data that needs to be processed.

In this case, a filtering has to be performed before storing the information. This

time consuming process can lead to not be able to process such amount of infor-

mation retrieved and be disconnected of the streaming channel by Twitter due to

buffer saturation.

The aforementioned situation can be avoided using RabbitMQ 5, a message-

queuing software where queues can be defined and applications can be connected

5 RabbitMQ Message Broker: https://www.rabbitmq.com

10



PROPOSED APPROACH 3.1 Data acquisition

to transfer messages onto it or to take off the queue a message and start processing

it as illustrated in Figure 3.3. This solution also introduces the ability to have

multiple consumers connected to process the messages, meeting high-scale and

high-availability requirements.

MESSAGE QUEUE

MESSAGE #2

MESSAGE #1

Enqueue Dequeue

Figure 3.3: RabbitMQ structure for queueing messages.

There are two different possibilities to use the RabbitMQ software, use an

existing server in the cloud or create your own server locally. In order to use

the second option it is necessary to download the required software and set up

the server using the terminal command line. Pika6 is a python library created to

manage the connections and queries between the queue generator software and

the sender and consumer processes. The necessary steps to set up the server and

handle the connections are:

• Server: Initialize the server

• Sender process:

1. Create a connection to the server, in this case to ’localhost’.

2. Open a channel.

3. Declare the name of the queue to the channel.

4. Start sending messages.

5. Close the connection at the end of the process

• Consumer process:

6 https://pika.readthedocs.io
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PROPOSED APPROACH 3.1 Data acquisition

1. Create a connection to the server, in this case to ’localhost’.

2. Open a channel.

3. Declare the name of the queue to the channel.

4. Start consuming the messages and performing the filtering.

5. Stop the consumption.

6. Close the connection at the end of the process.

3.1.3 Filtering the retrieved tweets

The amount of tweets retrieved by twitter is huge but this does not mean all the

information is useful. When collecting data from a giant source it is required

to pre-process the information and this is not an exception. A lot of tweets have

been discarded due to the strong filtering that has been carried out. This work has

strongly focused in obtaining a dataset with meaningful and full of content tweets

but keeping in mind that in Twitter misspellings, plain language and abbreviations

are commonly used.

In Twitter is very common to repost or forward another user’s tweet or to

post a new one referring to a previous tweet as can be seen in Figure 3.4 . These

examples have not been taken into account because this work is focussed in only

new content creation tweets.

(a) Retweet

(b) Reply

Figure 3.4: Examples of tweets not taken into account.
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PROPOSED APPROACH 3.1 Data acquisition

On the other hand, there are some tweets composed only by hashtags or con-

taining the most populars hashtags just to appear in the flow of tweets related to

that trend. For that reason, only tweets with less than 4 hashtags, 2 user mentions

and more than 5 words without considering hashtags and user mentions have been

taken into account. Figure 3.5 shows the difference between a useful tweet and a

spam one. With this first filtering around 80% of the retrieved tweets have been

discarded. Next step is to process the selected tweets and store them in a data

base.

(a) Spam tweet

(b) Useful tweet

Figure 3.5: Difference between an useful and a spam tweet.

3.1.4 Processing the selected tweets

Once the tweets to be used in this work have been selected, a processing of the

data is required. First of all it is necessary to delete line breaks and multiple

white spaces between words. It is also necessary to add a white space after a full

stop, question and exclamation marks. Another type of characters used by people

when publishing tweets are Emojis. These small icons can represent a feeling, an

emotional state or even to describe some wish in a compressed way. The emojis

have been replaced by words describing the emoji as illustrated in Figure 3.6 using

the python library emoji7. Duplicated emojis in the same tweet have been ignored.

7 https://pypi.org/project/emoji/
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PROPOSED APPROACH 3.1 Data acquisition

(a) Tweet containing emojis

(b) Same tweet after the preprocessing

Figure 3.6: Difference between before and after the emojis processing.

Another required step is to extract the popular hashtag from the text to use

as label for that tweet. Furthermore, the tweet can contain other hashtags that

need to be deleted. There are several ways to write hashtags in a tweet. Some

people write all the hashtags at the beginning of the tweet, followed by the text

while others write the text first and the hashtags at the end. Figure 3.7 provides

examples of the aforementioned situations.

Figure 3.7: Example of tweet processing with hashtag at the beginning and at the

end of the tweet.
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However, there are some users that use the hashtag itself to name a place, a

person or and action in the text. Deleting the hashtag in this case can lead to

obtain a text with no sense. For that reason the approach conducted to solve

this situation is to delete only the ’#’ character as can be seen in Figure 3.8 .

Finally, combinations of all of the three possibilities have been also considered

and processed accordingly.

Figure 3.8: Example of a tweet with hashtags inside the content.

3.1.5 Storing tweets into a Data base

Last step is to store the processed tweets in an easy way to handle the access to

the information again. One of the possible solutions is to lock away all this data

in a ’.csv’ or ’.txt’ files. The main drawback of this choice is the lack of data

organization. A more reasonable solution is to create a database and store the

data using tables. The information is stored in an organized way and the access

to the data can be done using Peewee 8, a small and simple ORM with built-in

support for SQLite, MySQL and Postgresql.

To create a new database is only necessary to specify the desired name, define

the tables needed and use the create table command to generate them in the

database. The following information related to a tweet have been stored in the

database:

8 http://docs.peewee-orm.com/en/latest/
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• Tweet id: Unique identifier for each tweet

• Text: The obtained text after processing it

• Original Text: Original text retrieved form Twitter

• Created Time: Time the tweet was published

• User Name: Name of the user who created the tweet

• User Name Id: Unique identifier used for twitter for each user

• User Location: Geographical location of the user

• Label: Hashtag to identify the content of the tweet

3.2 Feature extraction

It is not possible for a classifier or learning algorithm to process tweets in its orig-

inal form, only numerical inputs can be used instead. It is necessary to transform

the distinctive characteristics of this original tweet into numerical vectors of fixed

length. In this work only word level approaches have been taken into account.

Despite character level approaches outperform state of the art results in hashtag

prediction with little text preprocessing they require a huge dataset to be trained.

On the other hand, word level approaches required more text processing before

extracting the features but can be trained with smaller datasets and achieve good

results in the multi-class classification problem.

3.2.1 Bag of Words

Bag of Words [16] is the most common way for representing texts as a fixed length

vector. In this approach the words are tokenized for each tweet and then the fre-

quency of each word in the dataset is taken into account. Before the counting

takes place it is necessary to have a dictionary containing all words that appeared

in the dataset. Despite the most common english words such as prepositions and

pronouns are omitted, the obtained featured vector has as much columns as non-

discarded words in the dataset.
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When the words or tokens are considered individually, the obtained model repre-

sentation is called “unigrams”. However it is possible to calculate the frequency

in which n consecutive words appear in the dataset. This model representation is

called n-gram.

An example is provided to illustrate the concept in a easier way. Figure 3.9

shows all the tweets included in this dataset.

Figure 3.9: Tweets used as dataset for the example.

The list of all words from the tweets illustrated in Figure 3.9 after removing

the stop words is

“fight”, “again”, “today”, “happy”, “flexed biceps”, “beaming face with smilling eyes”,

“play”, “tenis”, “brother”, “win”, “grinning face”, “good”, “morning”, “victory hand”

And the corresponding feature vectors for the tweets are

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]

[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

Despite its simplicity, this approach can only be used when dealing with small

datasets because they suffer for its high dimensionality. Furthermore, the obtained

representations don’t take into account the distances between words neither the

semantic of the words represented.
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3.2.2 Term Frequency - Inverse Document Frequency

In the BoW approach all words included in the vocabulary are considered equally

important leading that certain terms have no discriminating power in determining

relevance. The Tf-idfintroduces a mechanism for attenuating the effect of terms

that occur too often in the collection to be meaningful for relevance determina-

tion [17], composed by two terms.

The term frequency component measures the local importance of a word. This

is achieved by looking at how frequently a word appears in a tweet in the same

way as in the BoW approach but instead of counting the number of occurrences,

computing the frequency.

tf(W ) =
# times W in a tweet

# words in a tweet
(3.1)

On the other hand, the inverse document frequency is related to the number of

times a word appears in different documents. For a word to be considered a

keyword of a tweet it shouldn’t appear that often in the other tweets. If that

frequency has to be low, the inverse has to be high and can be computed as

idf(W ) = log
# tweets

# tweets containing word W
(3.2)

where W is a word in the corpus.

3.2.3 Word2Vec

Mikolov et al. introduced in 2013 an efficient method for learning high quality vec-

tor of words from large amounts of unstructured text data [11]. Two new model

architectures were presented. While Skip-gram architecture predicts surrounding

words given a word, the CBOW can predict a word using its context. Both model

architectures are illustrated in Figure 3.10.

Since this work is focused in tweets classification based on its content, the

BoW approach has been considered. This architecture is similar to the feedfor-

ward NNLM proposed in [2]. The main difference is that while in the NNLM the

neural network is composed by input, projection, hidden and output layers, in

the CBOW architecture the hidden layer has been removed reducing the model
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Figure 3.10: Model architectures for the Word2Vec implementation.

complexity. Despite the words representations will not be as accurate as with the

neural network approach, this opens the possibility to be trained with more data

in an efficient way.

Another difference is that the projection layer is shared for all words, meaning

that the vectors of the projected words are averaged. This new architecture for

learning word vectors does not involve dense matrix multiplications, making train-

ing extremely efficient. Once the vector representations for the words contained

in a tweet are computed, the tweet embedding is obtained by averaging the vector

representations of its words, as can be shown in Figure 3.11, where win represents

the embedding vector for word n in tweet i.
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Figure 3.11: Tweet embedding using the Word2Vec architecture.

3.2.4 Global Vectors

The BoW approach introduced in Section 3.2.1 does not take into account the

semantics neither the syntactics of the sentences. The neighboring words can be

very useful in order to analyze the context a word is used. Setting a window size

of n means that a word will be defined by its n neighboring words to the left

and to the right. Using this technique to define all the words in the corpus the

co-occurrence matrix can be obtained.

The results obtained with this method are very powerful. However, since all

the words from the corpus are taken into account, the obtained vectors are placed

in a high-dimensional space. A dimensionality reduction can be performed, using

the SVD technique as stated in [7]. The main idea is to keep as much as possi-

ble the same information as before but with a lower number of dimensions. The

computational cost of this approach scales quadratically since the n×m matrix,

leading to a computational complexity runtime issue. Pennington et al. intro-

duced Global Vector in which the global corpus statistics are captured directly by

the model [13], solving this complexity runtime issue. Instead of using the entire

corpus to scan context windows, GloVe predicts the surrounding words of every

word by maximizing the probability of a context word occurring given a center

word.
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GloVe uses as starting point for word vector learning the ratios of co-occurrence

probabilities rather than the probabilities themselves. Let the matrix of co-

occurrence probabilities be denoted by X. Xij is the number of times word j

occurs in the context of word i and Xi =
∑

kXik the number of times any word

appears in the context of word i. Finally, Pij = P (i|j) = Xij/Xi is the probability

that word j appear in the context of word i. With all the notation mentioned

above and keeping in mind that the ratio Pik/Pjk depends on the words i, j and

k, the most general model takes the form

F (wi, wj, w̃k) =
Pik
Pjk

(3.3)

where w ∈ Rd are word vectors and w̃ ∈ Rd are separate context word vectors.

After some transformations and manipulations, equation 3.3 can be expressed

in terms of a least squares regression model, giving the following cost function

J =
V∑

i,j=1

f (Xij)
(
wTi w̃j + bi + b̃j − logXij

)2
(3.4)

where V is the vocabulary size, bi is a bias term that encompasses log(Xi) in order

to achieve exchange symmetry, b̃k is another bias for w̃k and f() is a weighting

function that can be parametrized as

f (x) =

{
(x/xmax)

α if x < xmax

1 otherwise
(3.5)

with α = 3/4 and xmax = 100.

Equation (3.5) can be seen as ill-defined since log(Xij) diverges when Xij = 0.

One possible solution is to include an additive shift in the logarithm log(1 +Xij)

but this model weighs all co-occurrences equally, even those that rarely happen.

For that reason the weighting function f () was selected assuring x → 0 would

vanish fast enough that the limx→0f (x) log2x is finite.

21



PROPOSED APPROACH 3.3 Learning Algorithm

3.3 Learning Algorithm

In this section the three different learning algorithms used in this work are ex-

plained. Despite there are a wide range of different methods for classification tasks,

when it comes to the NLP domain some special characteristics are required. The

algorithms used need to deal well with high dimensional input vector since a lot

of features are extracted from the data in word-level approaches. The models pre-

sented are fast, have simple designs and are accurate in a number of applications

of NLP while well suited for high dimensional input vectors.

3.3.1 Multinomial Naive Bayes

Naive Bayes methods are a set of supervised learning algorithm commonly used

in text classification problems due to its computationally efficiency and easy im-

plementation. The idea is to apply Bayes theorem with the naive assumption of

independence between every pair of features as in [19].

Let C denote the class of a tweet T . In order to predict the class of the tweet T

using the Bayes rule, the following probability should be found

P (C|T) =
P (C)P (T|C)

P (T)
(3.6)

Using the naive independence assumption, equation 3.6 is simplified to

P (C|T) =
P (C)

∏n
i=1 P (xi|C)

P (T)
(3.7)

where xi are the different terms of the feature vector for tweet T .

Since P (T) is constant given the input, the following classification rule can be
used

P (C|T) ∝ P (C)
n∏
i=1

P (xi|C) (3.8)

⇓

Ĉ = arg max
C

n∏
i=1

P (xi|C) (3.9)
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and the MAP estimation can be used to estimate P (C) and P (xi|C). While the

former is the relative frequency of class C in the training set, the latter depends

on the naive classifier used.

Two models are mainly used, the multivariate Bernoulli classifier and the

multinominal one. The difference between them is that while the former cares

about counts for a single feature that do occur and for the same feature that do

not occur, the latter cares about counts for multiple features that do occur. Since

the focus of this work is in multi-class classifications problem, the Multinomial NB

classifier has been implemented. In the Multinomial NB classifier, the distribution

is parametrized by vectors θC = (θC1, ..., θCn) for each class C, where n is the

vocabulary size and θCi is the probability P (xi|C) of feature i appearing in a

sample belonging to class C.

The parameters θCi are estimated by a smoother version of maximum likelihood

like the relative frequency counting

θ̂Ci =
NCi + α

NC + αn
(3.10)

where NCi =
∑

x∈S xi is the number of times feature i appears in a sample of class

C in the training set S and NC =
∑|S|

i=1NCi is the total count of all features for

class C.

3.3.2 Support Vector Machines

Text data have some particular properties when referring to automatic classifi-

cation purposes. Text classifiers have to deal with high dimensional input space

due to the fact that a lot of features are usually extracted from the data. In the

classification of other data types it can be assumed that most of this features

are irrelevant but when dealing with text data only a few of them are. Finally,

most of the text categorization problems are linearly separable. Support Vector

Machines classifiers, introduced by Vapnik et al. [4], acknowledge the mentioned

particularities and are a well suited solution for the text classification problem.

The idea behind SVM is to find the best separation between hyperplanes de-

fined by different classes of data. If the data is no linearly separable, the input

vectors are non-linearly mapped into a very high dimensional space where a linear
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decision surface can be constructed. This surface is obtained based on the SRM

principal from computational learning theory [21] trying to find a hypothesis h

for which the lowest true error can be guaranteed.

Let xi be a training example and the target values can be yi ∈ {−1, 1}. SVM

searches for the separating hyperplane which separates positive and negative ex-

amples from each other with maximal margin [14] as can be seen in Figure 3.12.

Figure 3.12: Concept of SVM and the terms of decision surface, hyperplane and

margin [1].

The equation of a hyperplane is

wTx + b = 0 (3.11)

then, the classification of a new test sample xi is based on the hyperplane sign.

This can be formalized as

wTxi + b ≥ 1 iff yi = +1 (3.12)

wTxi + b ≤ 1 iff yi = −1 (3.13)

The optimization problem of SVM to handle non-separable cases is

1

2
· wTw + C ·

n∑
i=1

ξi (3.14)
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subject to

∀ni=1 : yi
[
wTxi + b

]
≥ 1− ξi (3.15)

where C is a constant to trade off between margin and training error.

SVM are inherently two-class classifiers. However is it possible to use SVM for

multi-class classification problems using one of the following two approaches. In

the One-vs.-rest strategy it is required to train a single classifier per class. Each

classifier will decide if the sample belongs to one class or not and the sample will

be classified as the class with the highest decision score. The main drawbacks

of using this technique are that the binary classification learners see unbalanced

distributions because the negative samples are larger than the positives ones, even

if the class distribution is balanced. Second, the scale of the confidence score may

differ between the binary classifiers.

On the other hand, in the One-vs.-One approach K (K − 2) /2 binary clas-

sifiers need to be trained, where K is the number of classes. Each receives the

samples of a pair of classes from the original training set and must learn to dis-

tinguish between these two classes. Then a vote is applied and the class that got

the highest number of positive predictions gets predicted by the combined classi-

fier. The main disadvantage appears when a sample receives the same number of

votes [3].

3.3.3 Logistic Regression

The goal of an analysis using the Logistic Regression method is to find the best

fitting model to describe the relationship between an outcome variable and a set

of independent variables [8]. The difference between this method and the others

described in Section 3.3.1 and Section 3.3.2 is the procedure used for training the

optimal coefficients and the way the score is implemented.

The logistic regression model can be defined as

π (xi) =
eβ

T xi

1 + eβT xi
= E (Y |X = xi) (3.16)

where β is a vector composed by the different weights, xi is the input vector for

the sample i with xi0 = 1 and E (Y |X = xi) is the expected value of Y given xi.
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To express the probability of the observed data as a function of the weights β, the

likelihood of Equation 3.16 for a sample i can be stated as

l (βi) = E (Y |xi)yi [1− E (Y |xi)]1−yi (3.17)

Since the expected values of Y are assumed to be independent, the likelihood

function can be expressed in terms of logarithm as

L (β) = ln (l (β)) =
n∑
i=1

[yiln (ŷi) + (1− yi) ln (1− ŷi)] (3.18)

where ŷi = E (Y |X = xi) is the prediction. In order to maximize the expected

value, the maximum of the log-likelihood function can be found using the gradient

descent algorithm.

In the Logistic Regression model the output variable is binary but for the

multi-class classification problem two approaches can be used. In the One-vs.-rest

approach k different binary classifiers are build, where each classifier tries to iden-

tify only the samples of one class.

h
(i)
θ (x) = P (y = i|x; θ) (i = 1, .., k) (3.19)

Otherwise, the multinomial method is a modification of the binary model to han-

dle an outcome with more than two levels. The number of logit functions needed

for the multi-class problem is K−1, where K is the number of classes. Let assume

K = 0 as the baseline outcome to be compared to. Then the logit function for

each k category can be stated as

gk (x) = ln

[
P (Y = k|x)

P (Y = 0|x)

]
= βk0 + βk1x1 + ...+ βkxj = βTk x (3.20)

where x is the input vector with j features and βk is the weight vector for class k.

Then, a general expression for the conditional probability is

P (Y = k|x) =
egk(x)∑K
k=0 e

gk(x)
(3.21)

where β0 = 0 and g0 (x) = 0.

In order to build the likelihood function, K binary variables are needed to indicate
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the group membership of an observation. It has to be noted that the sum of this

binary variables will be always
∑K

k=0 Yk = 1. The conditional likelihood function

for an observation i is

l (βi) =
K∏
k=0

E (Y = k|xi)yki (3.22)

The log-likelihood function can be expressed in terms of

ln (l (β)) =
n∑
i=1

K∑
k=0

ykiln [E (Y = k|xi)] (3.23)

The maximum likelihood estimator, β̂, is obtained by deriving the likelihood equa-

tions, setting these obtained equations to zero and solving for β using the descent

gradient method.
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Chapter 4

Model Evaluation

In this chapter, different aspects regarding the evaluation of the model are intro-

duced. In the first section, the environment where the models have been trained

is described. In Section 4.2, the learning algorithms are tuned in order to find the

combination of parameters to obtain a better performance in the results. Section

4.3 explains the input data for the different experiments. In Section 4.4 the dif-

ferent metrics used to evaluate the models are introduced. Finally, Section 4.5

details the different experiments conducted.

4.1 Experiment environment

The experiments have been carried out in a server with CPU: 2 x Intel(R)

Xeon(R) E5-3643, 3.30GHz and GPU: Tesla K20c, 706MHz with 64 GB RAM

while the input files containing the tweets and the hashtags and other required

files have been generated in a MacBook Pro (late 2013) with 2,4GHz Intel Core

i5 and 4 GB 1600 MHz DDR3.

The learning algorithms used in this work have been implemented using the

free machine learning library for Python Scikit-learn [12].

4.2 Tuning the model parameters

In machine learning algorithms most of the parameters such as, the support vec-

tors in the SVMs or the weights in the logistic regression model, are learned while

looking at the training data. However, there are some parameters that must be

manually tuned by the person using these algorithms.
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In the Scikit-learn library these model parameters are set to a value by default

when initializing one of the models. However, the learning algorithms are used

in a wide range of applications with notable differences in the input data intro-

duced. These hyper parameters affect significantly the performance of the model

and finding the right combination of values for the required needs is one of the

most important problems that need to be faced.

The tuning of the parameters can be automatically done using the Grid-

SearchCV method from the Scikit-learn library. This method trains the same

learning method with all the possible combinations to find the optimal values

using a cross validation to evaluate the performance of the model such as, the

precision or the recall.

All the learning models have been tuned using the BoW approach and taking

into account the same dataset, containing tweets from 10 different hashtags. The

hashtags used and the number of samples from each hashtag are detailed in Table

4.1.

Hashtag Training Set Test Set

#HappyBirthdaySachin 1462 486

#heatwave 1441 506

#LateLateShawn 1474 473

#TuesdayThoughts 1470 477

#ITrySoHardBut 1490 457

#SoldAtDevilsYardSale 1443 486

#GreysAnatomy 1415 455

#TheBachelerotte 1168 419

#DebateINE 963 328

#TrumpKimSummit 930 333

Total 13256 4419

Table 4.1: Hashtags used for tuning the parameters.
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4.2.1 Multinomial Naives Bayes

One of the main advantages of using Multinomial Naives Bayes for classification is

its easy implementation. The only parameter to be tuned is the alpha parameter,

related to the Laplace/Lidstone additive smoothing. The values used for the

automatic tuning of the alpha parameter are

α = [0, 0.01, 0.02, 0.03, ..., 1.98, 1.98, 1.99, 2]

The best performance is achieved using and alpha α = 0.05 and the obtained

score is 0.7805 as can be seen in Figure 4.1.

Figure 4.1: Obtained scores for α.
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4.2.2 Support Vector Machines

In the SVM algorithm there are more parameters to be tuned. In this work the

ones tuned are the regularization parameter of the error term C, the penalty that

specifies the norm used in the penalization, the loss function and the tolerance for

stopping criterion. The values used for each parameter are

C = [0.1, 0.6, 1.1, ..., 9.1, 9.6, 10.1.]

penalty = [’l2’]

loss = [’hinge’, ’squared hinge’]

tol =
[
10−5, 8.07 · 10−5, 0.00015, ..., 0.00086, 0.00093, 0.001

]
The results after evaluating 600 model combinations are presented in Figure 4.2.

Figure 4.2: Obtained scores for the SVM tuning parameters.

The highest score achieved is 0.8031 and seems to be obtained in a range of

combinations. In this combinations the only parameter not remaining constant is

the tolerance tol. A detailed analysis is presented in Figure 4.3.
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Figure 4.3: Obtained scores for the SVM modifying the tolerance.

As can be seen in Figure 4.3 the score is independent of the tolerance used,

for this reason the tolerance has been set by default. The maximum score is

obtained when the parameters are set to C = 7.1, ’loss’=’squared hinge’ and

’penalty’=’l2’.

4.2.3 Logistic Regression

One of the main advantages of the logistic regression model is its simplicity for the

parameter tuning. The parameter C is used as regularization parameter C = 1/λ.

λ controls the trade-off between keeping the model simple while trying to increase

its complexity. If λ is very low, the model will have the power to increase its com-

plexity and reach overfitting. On the other hand, with an increase of the value of

λ, the model will become too simple and will tend to underfit.
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The other parameters tuned are the penalty to specify the norm used in the pe-

nalization, the tolerance for stopping criteria, the solver used and the multi class

to specify the multi class approach used. The values used for each parameter are

C = [0.1, 0.6, 1.1, ..., 9.1, 9.6, 10.1]

penalty = [’l2’]

tol =
[
10−5, 8.07 · 10−5, 0.00015, ..., 0.00086, 0.00093, 0.001

]
solver = [’newton-cg’, ’liblinear’]

multi class = [’ovr’, ’multinomial’]

The multinomial multi classification approach can only be used when using the

newton-cg solver. The tolerance for stopping criteria is set to default when this

solver is used due to problems with the algorithm convergence. The results ob-

tained using the liblinear solver are presented in Figure 4.4.

Figure 4.4: Obtained scores for the logistic regression using liblinear solver.
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The highest score is 0.8168 and is obtained when C = 3.1, using the ovr ap-

proach for multi-classification and when the tolerance is set to 0.00071714. On the

other hand, when using the newton-cg solver the highest score obtained is 0.8228

as can be seen in Figure 4.5. The score is obtained when using C = 0.6 and the

multi-class approach is multinomial.

Figure 4.5: Obtained scores for the logistic regression using the newton-cg solver.

4.3 Dataset used

Tweets in english with the top trending topics were collected between April 20th

to June 20th 2018. The number of tweets collected from each hashtag can be seen

in Figure 4.6. Table A.1 in Appendix A includes all hashtags collected.
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Figure 4.6: Number of samples for each hashtag in the dataset.

From Figure 4.6 can be concluded that the dataset is strongly unbalanced. It

was expected due to the fact that users don’t post tweets about different topics

with the same frequency. In order to avoid classifying all samples to the same

class an under-sampling has been performed to obtain a more balanced dataset.

Figure 4.7 illustrates the dataset used in this work, containing 193926 tweets.
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Figure 4.7: Obtained dataset after under-sampling

4.4 Metrics

In order to measure the performance of each model, the following measures have

been computed

Precision

Precision =
tp

tp+ fp

where tp is the number of true positives and fp the number of false positives.

Recall

Recall =
tp

tp+ fn
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where tp is the number of true positives and fn is the number of false negatives.

F1-score

F1-score = 2 · precision · recall

precision + recall

4.5 Experiments

Detect if users label the tweet content with the proper hashtag can be achieved

by evaluating the model performance in classifying tweets into different hashtags

based on its content. If the classifier is able to find similarities between tweets

with the same hashtag and differences with the ones with different hashtag then

it can be concluded that the tweets were labelled by users with the proper hash-

tag. This is equivalent to evaluate the performance of the model and in this work

several embedding methods and learning algorithms have been considered.

Embedding methods:

• BoW

• Tf-idf

• GloVe with a pre-trained twitter 25d vector using 27B words 1 (GloVe-pre)

• GloVe with vector created with the tweets vocabulary (GloVe)

• Word2Vec

Learning Algorithms

• MNB

• SVM

• Log Reg

1 https://nlp.stanford.edu/projects/glove/
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Initially, 10 different experiments have been performed. In every experiment,

the different embedding methods have been evaluated using all the learning al-

gorithms. Tweets from 10 different hashtags have been taking into account as

starting point for the experiments. In subsequent experiments, the number of

hashtags used have been slightly increased, until the last experiment where the

dataset was composed by tweets from 100 different hashtags. It should be noted

that the hashtags have been randomly chosen in each of the experiments and no

pre-selection has been conducted to select highly differentiated hashtags. The

experiments are detailed in the following subsections.

4.5.1 Experiment 10#

In this experiment tweets from 10 different hashtags from the database have been

randomly selected. The hashtags involved in this experiment are detailed in Table

4.2. The training set was composed by 13680 samples while the test set by 4561.

Hashtag Label

#MondayMotivation 0

#ARMYHiveStreamingParty 1

#MITB 2

#StormHector 3

#IAmwayForward 4

#BMWMotorrad310 5

#Game7 6

#MLBDraft 7

#Redemption18 8

#BelowDeckMed 9

Table 4.2: Hashtags used in the 10# experiment.

4.5.2 Experiment 20#

The model has been evaluated using as input tweets from 20 different hashtags

selected randomly from the database. Table 4.3 shows the hashtags used and its

respective label. The models have been trained and evaluated using 29115 tweets

as input and 9705 respectively.
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MODEL EVALUATION 4.5 Experiments

Hashtag Label Hashtag Label

#SaveShadowhunters 0 #LateLateShawn 10

#SDLive 1 #BBNaija 11

#The100 2 #WorldBookDay 12

#LHHATL 3 #BMWMotorrad310 13

#the100 4 #Origin 14

#WednesdayWisdom 5 #ComeyTownHall 15

#TeenMom2 6 #PoseFX 16

#civility 7 #ChicagoFire 17

#HappyBirthdayAriana 8 #90DayFianceHappilyEverAfter 18

#MITB 9 #BelowDeckMed 19

Table 4.3: Hashtags used in experiment 20#.

4.5.3 Experiment 30# to 100#

The hashtags and the labels used for experiments 30# to 100# are detailed in

Appendix B, in Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7 and B.8 respectively.

39



Chapter 5

Results

In this chapter the obtained results of the experiments are detailed. Section 5.1

refers to the experiments proposed in Section 4.5. Due to the obtained results,

new experiments have been executed for several purposes and are detailed in

Section 5.2. The aim of the experiment described in Subsection 5.2.1 was to

identify the best combination of learning algorithms and embedding methods.

The experiments detailed in subsections 5.2.2 and 5.2.3 have been conducted by

modifying the dataset in order to improve the performance of the algorithm.

5.1 Results experiment 10# to 100#

The number of samples used for training and test sets for all the experiments are

detailed in Table 5.1.

Hashtag Training Set Test Set

Experiment 10# 13680 4561

Experiment 20# 29115 9705

Experiment 30# 44730 14910

Experiment 40# 58347 19449

Experiment 50# 74472 24825

Experiment 60# 87895 29299

Experiment 70# 101955 33985

Experiment 80# 114802 38268

Experiment 90# 129868 43290

Experiment 100# 143067 47690

Table 5.1: Training and data sets used in each experiment.
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5.1.1 Results experiment 10#

The obtained results in this experiment are summarized in Table 5.2.

Model Embedding Method Precision Recall F1-Score

MNB BoW 0.889 0.886 0.886

Tf-idf 0.895 0.876 0.883

GloVe-pre 0.497 0.456 0.446

GloVe 0.779 0.75 0.758

Word2Vec 0.765 0.736 0.741

SVM BoW 0.864 0.848 0.854

Tf-idf 0.898 0.887 0.892

GloVe-pre 0.515 0.496 0.473

GloVe 0.802 0.789 0.792

Word2Vec 0.837 0.82 0.827

Log Reg BoW 0.887 0.857 0.868

Tf-idf 0.899 0.851 0.868

GloVe-pre 0.524 0.514 0.505

GloVe 0.807 0.793 0.798

Word2Vec 0.827 0.799 0.809

Table 5.2: Results obtained in Experiment 10#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.

Focusing in Table 5.2 on the learning algorithms, all of them achieve similar

results when comparing with the same embedding method used. On the other

hand, the differences between embedding methods are significant. The biggest

difference can be found in the GloVe-pre method. The precision achieved in the

best case is only 0.524 while compared to the rest of embedding methods, where

the precision is above 0.75 in the worst case. The best performances have been

obtained using Log Reg model regarding the precision (0.899) and the SVM when

it comes to recall (0.887) and F1-Score (0.892). The best performance is achieved

when using the Tf-idf as the embedding method.

In order to take a deeper look into the discrepancies between predicted and

actual labels, the confusion matrix has been computed. In Figure 5.1, the confu-

sion matrix for the SVM model using Tf-idf as embedding method is detailed.
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Figure 5.1: Confusion matrix for the SVM model using Tf-idf embedding method

in Experiment 10#.

Most of the predictions are on the diagonal, which means that most of the

predicted labels correspond to the correct ones. However, there are a number of

misclassifications that have been summarized in Table 5.3.

Label False positive False negative Samples fp % fn %

0 134 112 569 23.55 19.68

1 76 38 564 13.48 6.74

2 68 51 548 12.41 9.31

3 59 54 538 10.97 10.04

4 33 23 512 6.45 4.49

5 9 10 480 1.88 2.08

6 34 72 412 8.25 17.48

7 21 30 408 5.15 7.35

8 25 49 273 9.16 17.95

9 25 45 257 9.73 17.51

Table 5.3: Misclassifications obtained with the SVM model and the Tf-idf embed-

ding method. fp% and fn% are the percentage of false positive and false negative

over the number of samples respectivley.
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The highest number of misclassifications are related to the hashtag with the

label 0. According to Table 4.2 in Section 4.5 this label corresponds to the hashtag

#MondayMotivation which is very general and can cover a wide range of mean-

ings. This means that the words used in tweets labelled with this hashtag are

similar to tweets with other hashtags, such as the ones with labels 3 and 4, which

correspond to #StormHector and #IAmwayForward.

5.1.2 Results experiment 20#

The obtained results in this second experiment are detailed in Table 4.3 and are

similar to the ones obtained in Experiment #10 but with lower performance, as

expected due to the increase on the number of classes.

Model Embedding Method Precision Recall F1-Score

MNB BoW 0.801 0.788 0.793

Tf-idf 0.811 0.773 0.785

GloVe-pre 0.315 0.301 0.270

GloVe 0.635 0.574 0.582

Word2Vec 0.575 0.569 0.565

SVM BoW 0.767 0.754 0.759

Tf-idf 0.812 0.801 0.806

GloVe-pre 0.309 0.328 0.274

GloVe 0.644 0.631 0.625

Word2Vec 0.666 0.649 0.65

Log Reg BoW 0.811 0.776 0.789

Tf-idf 0.810 0.761 0.775

GloVe-pre 0.358 0.353 0.333

GloVe 0.661 0.641 0.647

Word2Vec 0.668 0.651 0.654

Table 5.4: Results obtained in Experiment 20#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.

The number of possible classes have been increased by a factor of 2 while the

obtained results for Precision, Recall and F1-Score are above 0.8 in all three cases.

The best results are achieved when using SVM as learning algorithm and Tf-idf

as embedding method. The obtained Precision, Recall and F1-Score are 0.812,

0.801 and 0.806 respectively.
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On the other hand, the performance of the GloVe-pre has decreased significantly

between 0.30 and 0.36 in all three metrics and models. The GloVe and Word2Vec

have achieved better performance than GloVe-pre but are far away from the re-

sults achieved by Tf-idf or BoW methods. The obtained results by using the BoW

embedding are over 0.75 and can also be accepted as good. The confusion matrix

have been computed and is presented in Figure 5.2.

Figure 5.2: Confusion matrix for the SVM model using Tf-idf embedding method

in Experiment 20#.

Most of the predictions remain in the diagonal. However, there are predictions

regarding hashtags with labels 2 and 4 that seems to be problematic. According to

Table 4.3 in Section 4.5 this labels correspond to hashtags #the100 and #The100

respectively. In this case the source of the error is that both hashtags are the same

and are used to label tweets equally. The classifier is not able to find differences

between both categories which reinforces the fact the users handle hashtags in a

proper way. The obtained results repeating the experiment again but deleting the

tweets from label 2 and the label itself are presented in Table 5.5.
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Experiment Precision Recall F1-Score

19# with SVM Tf-idf 0.844 0.835 0.839

20# with SVM Tf-idf 0.812 0.801 0.806

Table 5.5: Comparison between experiment with 19 and 20 hashtags using the

SVM model with Tf-idf embedding.

5.1.3 Results experiment 30# to 100#

The obtained results in experiments with 30 hashtags to 100 are presented in Ap-

pendix C, in Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7 and C.8, respectively. The

evolution of the evaluated metrics as the number of hashtags increased taking into

account all the embedding methods have been summarized in Figures 5.3, 5.4 and

5.5 for each learning algorithm.

Figure 5.3: Evolution of the Precision, Recall and F1-Score obtained in the Multi-

nomial Naives Bayes model.

The precision, recall and F1-Score tends to decrease as the number of classes

increases. Anyway, the decrease is more pronounced when going from 10 to 40

hashtags rather than from 60 to 100. As can be stated, the bests embedding

methods are by far the BoW and Tf-idf while the worst performance is achieved

when using the GloVe-pre. On the other hand, the GloVe and Word2Vec achieved

a good results when dealing with the simplest case where the classification was

only between 10 different classes. However, as the number of classes has been

increased, the obtained precision, recall and F1-score have been reduced ending

in around 0.5, 0.45 and 0.45 respectively in the experiment with 100 different

hashtags.
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Figure 5.4: Evolution of the Precision, Recall and F1-Score obtained in the Sup-

port Vector Machine model.

From Figures 5.3, 5.4 and 5.5, it can be concluded that the best embedding

methods are the BoW and the Tf-idf. However, it can not be stated which of the

learning algorithms achieve better results. For this reason, a comparison between

them has been evaluated in Section 5.2.1. On the other hand, it should be men-

tioned the poor performance achieved by GloVe-pre algorithm. This is caused

because pre-trained vectors from another twitter dataset have been used. The

poor performance acheived suggests that the words and expressions used in one

dataset differ a lot from the ones used in the other.

Figure 5.5: Evolution of the Precision, Recall and F1-Score obtained in the Lo-

gistic Regression model.
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5.2 Other results

In this section the results of other experiments conducted are explained. After

analyzing the results of experiments described in Section 4.5, another experiment

has been considered in order to detect the model and the embedding method that

achieved the best performance. Furthermore, an experiment with 10 different

hashtags using a larger dataset and an another one deleting the duplicated or

similar hashtags have also been explored and presented.

5.2.1 Comparison between learning algorithms

From Section 5.1 can only be concluded that the Tf-idf and BoW are the best

options to convert the tweets content into a way to be understand by the learn-

ing algorithms. In this subsection, a comparison between the learning algorithms

when using those two embedding methods have been conducted. The evolution

of the precision, recall and F1-Score while increasing the number of classes are

presented in Figure 5.6.

Figure 5.6: Precision, recall and F1-score comparison between the models.

According to Figure 5.6, the best results are achieved when the Support Vector

Machine with the Tf-idf approach is used. However, when comparing different

models and methods, it is also important to evaluate the computational time

required for the learning algorithm to be trained. A detailed analysis has been

conducted considering the three learning algorithms and the BoW and Tf-idf

embedding methods. The results are presented in Figure 5.7.
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Figure 5.7: Training computational time comparison between learning algorithms.

As can be observed in Figure 5.7, the Logistic Regression algorithm needs more

time to be trained than the other methods. As can be expected the required time

increase while increasing the number of samples of the dataset used. The required

time for training using the BoW approach is around 3500 seconds and 2168 for the

Tf-idf. On the other hand, the fastest algorithm is the Multinomial Naives Bayes

approach. It only needs less than 6 seconds to be trained in both methods when

dealing with more than 143.000 samples. Finally, the Support Vector Machine

algorithm needed 454 seconds using the BoW approach and 265 for the Tf-idf.
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5.2.2 Experiment 10# using a bigger dataset

GloVe and Word2Vec approaches used are usually trained with a larger dataset as

stated in [13] and [11] respectively. Since they have achieved state of the art re-

sults in other natural language processing problems, one of the reasons of the poor

results obtained in the experiments could have been the size of the dataset used.

For this reason another experiment has been conducted using a larger dataset.

The hashtags and the number of samples used are detailed in Table 5.6.

Hashtag Label Training Sample Test Sample

#BETAwards 0 12489 4343

#TrumpKimSummit 1 12629 4215

#NFLDraft 2 12694 4186

#SaveShadowhunters 3 12713 4140

#TheBachelorette 4 12640 2919

#MetGala 5 11889 3887

#Westworld 6 8852 2919

#PlayStationE3 7 8710 2913

#WorldEnvironmentDay 8 7340 2432

#ShawnMendesTheAlbum 9 7045 2353

Table 5.6: Hashtag and samples used for the experiment.

For this experiment 107001 samples were used for training purposes and 35667

for testing, using the SVM as learning algorithm. The obtained results are pre-

sented in Table 5.7.
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Experiment Embedding Method Precision Recall F1-Score

Larger BoW 0.872 0.866 0.868

Dataset Tf-idf 0.895 0.891 0.893

GloVe-pre 0.482 0.46 0.444

GloVe 0.801 0.788 0.792

Word2Vec 0.845 0.841 0.843

Original BoW 0.864 0.848 0.854

Dataset Tf-idf 0.898 0.887 0.892

GloVe-pre 0.515 0.496 0.473

GloVe 0.802 0.789 0.792

Word2Vec 0.837 0.82 0.827

Table 5.7: Comparison between experiments using a larger dataset and the original

dataset.

The obtained results are not better that those obtained in the original ex-

periment in general terms. This suggests that the number of tweets used in the

original experiment was correct.

5.2.3 Experiment deleting similar hashtags

The results using 100 different hashtags have shown that with some hashtags the

algorithm was not able to distinguish the features between tweets from different

hashtags and badly classified an important number of samples. After carefully

reviewing the hashtags used, it has been observed that in some cases the hashtags

were repeated or have a very similar meaning. Based on the hashtags used in ex-

periment 100#, a new experiment has been performed deleting the corresponding

hashtags. The hashtags deleted are presented in Table 5.8.

Hashtags

#DDay #the100

#FifaWorldCup BTS #TheBachelerotte

#FortniteE3 #ThursdayThoughts

#HappyBirthdaySachin #TuesdayThoughts

#MondayMotivation #WednesdayWisdom

#saveshadowhunters #WorldCup

Table 5.8: Deleted hashtags from the 100# dataset.
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For this experiment only the SVM learning algorithm with the Tf-idf approach

have been considered. The training dataset used is made up of 121666 tweets from

88 different hashtags. The model is tested using 40556 samples. The obtained

results are presented in Table 5.9.

Experiment Precision Recall F1-Score

88# with SVM Tf-idf 0.754 0.750 0.751

100# with SVM Tf-idf 0.712 0.711 0.711

80# with SVM Tf-idf 0.721 0.721 0.721

Table 5.9: Results comparison between experiment 88#, 80# and 100#.

The results in this experiment are higher that the ones obtained in the exper-

iment with 100#. It could be possible to think that the reason for this better

performance is because the number of classes is lower. However, when comparing

the results with the ones obtained in the experiment with 80 classes, the precision,

recall and F1-score are also higher.
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Chapter 6

Future Work

The study presented in this work has focused in the feature extraction using a

word level approach. Further work could extend this study to the character level

approach. It would be interesting to see if other state of the art methods in other

tasks such as hashtag prediction can outperform the results achieved so far with

the same small dataset used in this work. Tweet2Vec, introduced by Dhingra et al.

proposed a Bi-directional Gated Recurrent Unit neural network for learning tweet

representations [6] scoring a precision of 33.1% on a datasize with 933 hashtags

and 2 million tweets for training, outperforming the Word2Vec used as baseline.

Another continuation is to apply this study on tweets and hashtags in other

non-english languages and compare the performance using datasets where tweets

from several languages are included. Yang et al. introduced a linear translation

for multi-language classification creating a translation matrix to bridge the gap

between languages for twitter election classification [22].

Finally, another possibility is to conduct a more extensive study of the hashtags

usage. Identifying different hashtags types and evaluating the performance of the

model using training datasets composed by hashtags from the same type could

be an option. Another interesting possibility could be to compare these results to

the ones achieved when using hashtags from different classes.
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Chapter 7

Conclusions

The main goal of this thesis was to study the proper usage of hashtags by the

users when labelling the tweet content. If a learning algorithm was able to handle

this classification task based on the tweet content then it could be said that the

hashtags were used in a proper way because a relation between tweets from the

same hashtag could be found. For this reason, a comparative study of different

word level approaches and learning algorithms have been presented.

As stated before, extracting features from Tweets is a challenging task. People

write content in an informal way and spelling and grammar errors are commonly

found. In addition, the length restriction causes words to be abbreviated or omit-

ted more often than desired. For those reasons, a lot of preprocessing was required

and a lot of tweets were discarded when creating the dataset. The idea behind

this strong data processing was in order to obtain a dataset with strongly related

content to the hashtags, such as keywords or common expressions for that hash-

tag, instead of having a dataset full of raw data.

From the obtained results it can be concluded that the Support Vector Machine

with the Tf-idf approach was the best combination of learning algorithm and

embedding method, scoring precision above 70% for classification on 100 classes.

The results also showed that if tweets from similar hashtags were deleted, the

precision increased to 75% for classification on 88 classes. This states that the

algorithm performance depends on the set of hashtags used due to the fact that

not all the hashtags are used in the same way. Some of them describe a specific

event that is taking place, others help to express random thoughts while others

are used as a general topic. However, this problem also takes place when trying to

solve this classification problem manually and it can be concluded that hashtags

are used in the way they were originally invented, to label related content.

53



References

[1] M. Abtahi, J. V. Gyllinsky, B. Paesang, S. Barlow, M. Constant, N. Gomes,

O. Tully, S. E. D?Andrea, and K. Mankodiya. Magicsox: An e-textile iot

system to quantify gait abnormalities. Smart Health, 5-6:4 – 14, 2018.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic

language model. J. Mach. Learn. Res., 3:1137–1155, Mar. 2003.

[3] C. M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, Sep 1995.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science (JASIS), 41(6):391–407, 1990.

[6] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen.

Tweet2vec: Character-based distributed representations for social media.

CoRR, abs/1605.03481, 2016.

[7] P. W. Foltz. Latent semantic analysis for text-based research. Behavior

Research Methods, Instruments, & Computers, 28(2):197–202, Jun 1996.

[8] D. W. Hosmer and S. Lemeshow. Applied logistic regression (Wiley Series in

probability and statistics). Wiley-Interscience Publication, 2 edition, 2000.

[9] W. Ling, I. Trancoso, C. Dyer, and A. W. Black. Character-based neural

machine translation. CoRR, abs/1511.04586, 2015.

[10] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information

Retrieval. Cambridge University Press, Cambridge, UK, 2008.

54



REFERENCES

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for

word representation. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, 2014.

[14] I. Pilszy. Text categorization and support vector machines. 6th International

Symposium of Hungarian Researches on Computational Intelligence, 11 2005.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foun-

dations of research. chapter Learning Representations by Back-propagating

Errors, pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

[16] Z. S. Harris. Distributional structure. Word, 10:146–162, 08 1954.

[17] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., New York, NY, USA, 1986.

[18] F. Sebastiani. Machine learning in automated text categorization. ACM

Comput. Surv., 34(1):1–47, Mar. 2002.

[19] S. Taheri and M. Mammadov. Learning the naive bayes classifier with op-

timization models. Int. J. Appl. Math. Comput. Sci., 23(4):787–795, Dec.

2013.

[20] S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton. Quantitative eval-

uation of passage retrieval algorithms for question answering. In Proceedings

of the 26th Annual International ACM SIGIR Conference on Research and

Development in Informaion Retrieval, SIGIR ’03, pages 41–47, New York,

NY, USA, 2003. ACM.

[21] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

Berlin, Heidelberg, 1995.

55



REFERENCES

[22] X. Yang, R. McCreadie, C. Macdonald, and I. Ounis. Transfer learning for

multi-language twitter election classification. The 2017 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining

(ASONAM), pages 341–348, July 2017.

56



Appendix

A Tweets Database

Hashtag Samples Hashtag Samples

#BETAwards 66816 #FathersDay 2270

#TrumpKimSummit 38633 #StormHector 2243

#NFLDraft 31936 #DebateINE 2195

#MondayMotivation 20285 #ALLCAPS 2194

#SaveShadowhunters 19319 #LateLateShawn 2117

#TheBachelorette 18007 #WorldOceansDay 2111

#MetGala 15776 #IAmwayForward 2083

#ARMYHiveStreamingParty 12739 #BBNaija 2057

#mprraccoon 11795 #WorldBookDay 2031

#Westworld 11771 #GreysAnatomy 1965

#PlayStationE3 11623 #BMWMotorrad310 1930

#WorldEnvironmentDay 9872 #RHONY 1929

#ShawnMendesTheAlbum 9398 #heatwave 1929

#SDLive 8799 #HAHN 1906

#The100 8343 #HappyBirthdaySachin 1870

#LHHATL 7261 #Supergirl 1852

#Brooklyn99 5901 #Origin 1820

#NBAAwards 5854 #ComeyTownHall 1714

#the100 5821 #LoveIs 1697

#WorldCup 5708 #SpaceForce 1691

#MTVAwards 5606 #CAGovDebate 1639

#WorldCupRussia2018 5272 #TheBoldType 1601

#BasketballWives 4704 #ITrySoHardBut 1587

#saveshadowhunters 4631 #DaytimeEmmys 1567

#E32018 4546 #Game7 1562

#WednesdayWisdom 4501 #MLBDraft 1557
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#INDvAFG 4184 #WWENXT 1497

#HeartMCSeokjin 4175 #TheProblemWithMeIn5Words 1484

#NoTearsLeftToCry 3737 #FortniteProAM 1433

#TuesdayThoughts 3578 #DDay 1384

#MarriedAtFirstSight 3544 #PoseFX 1355

#PickUpShadowhunters 3518 #Voicenotes 1347

#StGeorgesDay 3378 #GreenForGrenfell 1344

#MyHandleExplained 3102 #Riverdale 1335

#TonyAwards 2976 #ENGTUN 1331

#TeenMom2 2892 #TheLightIsComing 1302

#EarthDay 2833 #TheBachelerotte 1291

#civility 2731 #SoldAtDevilsYardSale 1263

#InfinityWar 2681 #WorldBloodDonorDay 1260

#WhateverItTakes 2674 #TheRealityOfDepressionIs 1193

#HappyBirthdayAriana 2664 #AmericanIdol 1190

#ThursdayThoughts 2648 #CaliforniaPrimary2018 1189

#RHOBHReunion 2614 #BTSxCorden 1168

#TeenChoice 2590 #GE14 1154

#RHOA 2506 #Congrats5SOS 1148

#FIFAWorldCup BTS 2476 #90DayFianceHappilyEverAfter 1123

#MITB 2446 #ChicagoFire 1123

#FridayFeeling 2396 #Redemption18 1120

#LoveIsland 2361 #GlobalRunningDay 1114

#FortniteE3 2293 #BelowDeckMed 1068

Table A.1: Original dataset of retrieved tweets
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B Hashtags used in the experiments

Hashtag Label Hashtag Label

#BETAwards 0 #ThursdayThoughts 15

#TheBachelorette 1 #FIFAWorldCup BTS 16

#Westworld 2 #MITB 17

#PlayStationE3 3 #FridayFeeling 18

#WorldEnvironmentDay 4 #FathersDay 19

#ShawnMendesTheAlbum 5 #StormHector 20

#The100 6 #IAmwayForward 21

#LHHATL 7 #RHONY 22

#WednesdayWisdom 8 #DDay 23

#INDvAFG 9 #GreenForGrenfell 24

#NoTearsLeftToCry 10 #TheLightIsComing 25

#TonyAwards 11 #AmericanIdol 26

#TeenMom2 12 #BTSxCorden 27

#civility 13 #90DayFianceHappilyEverAfter 28

#HappyBirthdayAriana 14 #BelowDeckMed 29

Table B.1: Hashtags used in experiment 30#.

Hashtag Label Hashtag Label

#TrumpKimSummit 0 #LoveIsland 20

#ShawnMendesTheAlbum 1 #StormHector 21

#SDLive 2 #ALLCAPS 22

#LHHATL 3 #IAmwayForward 23

#Brooklyn99 4 #RHONY 24

#NBAAwards 5 #HappyBirthdaySachin 25

#WorldCupRussia2018 6 #Supergirl 26

#BasketballWives 7 #LoveIs 27

#saveshadowhunters 8 #SpaceForce 28

#E32018 9 #TheBoldType 29

#WednesdayWisdom 10 #DaytimeEmmys 30

#INDvAFG 11 #Game7 31

#NoTearsLeftToCry 12 #FortniteProAM 32

#PickUpShadowhunters 13 #DDay 33
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#TeenMom2 14 #PoseFX 34

#HappyBirthdayAriana 15 #GreenForGrenfell 35

#ThursdayThoughts 16 #ENGTUN 36

#RHOBHReunion 17 #TheLightIsComing 37

#FIFAWorldCup BTS 18 #TheBachelerotte 38

#MITB 19 #Congrats5SOS 39

Table B.2: Hashtags used in experiment 40#.

Hashtag Label Hashtag Label

#BETAwards 0 #InfinityWar 25

#TrumpKimSummit 1 #RHOBHReunion 26

#NFLDraft 2 #FIFAWorldCup BTS 27

#MondayMotivation 3 #MITB 28

#SaveShadowhunters 4 #LoveIsland 29

#TheBachelorette 5 #StormHector 30

#MetGala 6 #WorldOceansDay 31

#ARMYHiveStreamingParty 7 #IAmwayForward 32

#Westworld 8 #WorldBookDay 33

#WorldEnvironmentDay 9 #heatwave 34

#ShawnMendesTheAlbum 10 #RHONY 35

#SDLive 11 #Supergirl 36

#The100 12 #ComeyTownHall 37

#Brooklyn99 13 #SpaceForce 38

#the100 14 #ITrySoHardBut 39

#WorldCupRussia2018 15 #DaytimeEmmys 40

#BasketballWives 16 #MLBDraft 41

#saveshadowhunters 17 #PoseFX 42

#WednesdayWisdom 18 #GreenForGrenfell 43

#INDvAFG 19 #TheLightIsComing 44

#NoTearsLeftToCry 20 #TheBachelerotte 45

#TuesdayThoughts 21 #SoldAtDevilsYardSale 46

#PickUpShadowhunters 22 #GE14 47

#StGeorgesDay 23 #ChicagoFire 48

#TeenMom2 24 #GlobalRunningDay 49

Table B.3: Hashtags used in experiment 50#.
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Hashtag Label Hashtag Label

#BETAwards 0 #FridayFeeling 30

#TrumpKimSummit 1 #FortniteE3 31

#NFLDraft 2 #FathersDay 32

#MondayMotivation 3 #StormHector 33

#MetGala 4 #DebateINE 34

#ARMYHiveStreamingParty 5 #LateLateShawn 35

#PlayStationE3 6 #WorldOceansDay 36

#WorldEnvironmentDay 7 #BBNaija 37

#ShawnMendesTheAlbum 8 #GreysAnatomy 38

#The100 9 #BMWMotorrad310 39

#LHHATL 10 #RHONY 40

#Brooklyn99 11 #HAHN 41

#NBAAwards 12 #Origin 42

#the100 13 #ComeyTownHall 43

#WorldCup 14 #LoveIs 44

#BasketballWives 15 #SpaceForce 45

#saveshadowhunters 16 #TheBoldType 46

#WednesdayWisdom 17 #DaytimeEmmys 47

#HeartMCSeokjin 18 #MLBDraft 48

#TuesdayThoughts 19 #WWENXT 49

#PickUpShadowhunters 20 #FortniteProAM 50

#StGeorgesDay 21 #DDay 51

#MyHandleExplained 22 #Voicenotes 52

#TonyAwards 23 #TheRealityOfDepressionIs 53

#TeenMom2 24 #AmericanIdol 54

#WhateverItTakes 25 #BTSxCorden 55

#HappyBirthdayAriana 26 #GE14 56

#ThursdayThoughts 27 #ChicagoFire 57

#RHOBHReunion 28 #90DayFianceHappilyEverAfter 58

#FIFAWorldCup BTS 29 #BelowDeckMed 59

Table B.4: Hashtags used in experiment 60#.
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Hashtag Label Hashtag Label

#BETAwards 0 #FortniteE3 35

#NFLDraft 1 #FathersDay 36

#MetGala 2 #StormHector 37

#ARMYHiveStreamingParty 3 #DebateINE 38

#mprraccoon 4 #ALLCAPS 39

#Westworld 5 #LateLateShawn 40

#PlayStationE3 6 #WorldOceansDay 41

#WorldEnvironmentDay 7 #IAmwayForward 42

#ShawnMendesTheAlbum 8 #GreysAnatomy 43

#SDLive 9 #RHONY 44

#LHHATL 10 #HAHN 45

#NBAAwards 11 #Supergirl 46

#the100 12 #Origin 47

#WorldCup 13 #ComeyTownHall 48

#MTVAwards 14 #LoveIs 49

#WorldCupRussia2018 15 #SpaceForce 50

#BasketballWives 16 #CAGovDebate 51

#saveshadowhunters 17 #TheBoldType 52

#WednesdayWisdom 18 #ITrySoHardBut 53

#INDvAFG 19 #DaytimeEmmys 54

#HeartMCSeokjin 20 #Game7 55

#NoTearsLeftToCry 21 #MLBDraft 56

#TuesdayThoughts 22 #FortniteProAM 57

#MyHandleExplained 23 #PoseFX 58

#TonyAwards 24 #GreenForGrenfell 59

#TeenMom2 25 #Riverdale 60

#EarthDay 26 #ENGTUN 61

#HappyBirthdayAriana 27 #TheLightIsComing 62

#ThursdayThoughts 28 #SoldAtDevilsYardSale 63

#RHOBHReunion 29 #WorldBloodDonorDay 64

#TeenChoice 30 #CaliforniaPrimary2018 65

#RHOA 31 #GE14 66

#FIFAWorldCup BTS 32 #Congrats5SOS 67

#FridayFeeling 33 #90DayFianceHappilyEverAfter 68

#LoveIsland 34 #BelowDeckMed 69

Table B.5: Hashtags used in experiment 70#.
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Hashtag Label Hashtag Label

#BETAwards 0 #FathersDay 40

#TrumpKimSummit 1 #StormHector 41

#MondayMotivation 2 #DebateINE 42

#TheBachelorette 3 #ALLCAPS 43

#MetGala 4 #WorldOceansDay 44

#mprraccoon 5 #IAmwayForward 45

#Westworld 6 #BBNaija 46

#PlayStationE3 7 #GreysAnatomy 47

#WorldEnvironmentDay 8 #BMWMotorrad310 48

#ShawnMendesTheAlbum 9 #RHONY 49

#SDLive 10 #heatwave 50

#The100 11 #HappyBirthdaySachin 51

#LHHATL 12 #Supergirl 52

#Brooklyn99 13 #ComeyTownHall 53

#NBAAwards 14 #LoveIs 54

#WorldCup 15 #SpaceForce 55

#MTVAwards 16 #CAGovDebate 56

#WorldCupRussia2018 17 #TheBoldType 57

#BasketballWives 18 #ITrySoHardBut 58

#saveshadowhunters 19 #DaytimeEmmys 59

#E32018 20 #Game7 60

#WednesdayWisdom 21 #MLBDraft 61

#INDvAFG 22 #WWENXT 62

#HeartMCSeokjin 23 #TheProblemWithMeIn5Words 63

#TuesdayThoughts 24 #FortniteProAM 64

#MarriedAtFirstSight 25 #DDay 65

#PickUpShadowhunters 26 #PoseFX 66

#StGeorgesDay 27 #Voicenotes 67

#MyHandleExplained 28 #ENGTUN 68

#TonyAwards 29 #TheLightIsComing 69

#TeenMom2 30 #TheBachelerotte 70

#EarthDay 31 #SoldAtDevilsYardSale 71

#civility 32 #WorldBloodDonorDay 72

#InfinityWar 33 #AmericanIdol 73
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#HappyBirthdayAriana 34 #CaliforniaPrimary2018 74

#ThursdayThoughts 35 #BTSxCorden 75

#RHOBHReunion 36 #GE14 76

#MITB 37 #Congrats5SOS 77

#FridayFeeling 38 #ChicagoFire 78

#LoveIsland 39 #BelowDeckMed 79

Table B.6: Hashtags used in experiment 80#.

Hashtag Label Hashtag Label

#BETAwards 0 #FathersDay 45

#TrumpKimSummit 1 #StormHector 46

#NFLDraft 2 #DebateINE 47

#SaveShadowhunters 3 #ALLCAPS 48

#TheBachelorette 4 #LateLateShawn 49

#MetGala 5 #WorldOceansDay 50

#ARMYHiveStreamingParty 6 #IAmwayForward 51

#mprraccoon 7 #BBNaija 52

#Westworld 8 #WorldBookDay 53

#PlayStationE3 9 #GreysAnatomy 54

#WorldEnvironmentDay 10 #BMWMotorrad310 55

#ShawnMendesTheAlbum 11 #heatwave 56

#The100 12 #RHONY 57

#LHHATL 13 #HAHN 58

#Brooklyn99 14 #HappyBirthdaySachin 59

#NBAAwards 15 #Supergirl 60

#the100 16 #Origin 61

#WorldCup 17 #ComeyTownHall 62

#MTVAwards 18 #LoveIs 63

#WorldCupRussia2018 19 #SpaceForce 64

#BasketballWives 20 #TheBoldType 65

#saveshadowhunters 21 #ITrySoHardBut 66

#E32018 22 #DaytimeEmmys 67

#WednesdayWisdom 23 #Game7 68

#INDvAFG 24 #MLBDraft 69
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#HeartMCSeokjin 25 #WWENXT 70

#NoTearsLeftToCry 26 #FortniteProAM 71

#TuesdayThoughts 27 #DDay 72

#MarriedAtFirstSight 28 #PoseFX 73

#PickUpShadowhunters 29 #Voicenotes 74

#MyHandleExplained 30 #GreenForGrenfell 75

#TonyAwards 31 #Riverdale 76

#TeenMom2 32 #ENGTUN 77

#EarthDay 33 #TheLightIsComing 78

#civility 34 #TheBachelerotte 79

#InfinityWar 35 #SoldAtDevilsYardSale 80

#WhateverItTakes 36 #WorldBloodDonorDay 81

#HappyBirthdayAriana 37 #TheRealityOfDepressionIs 82

#ThursdayThoughts 38 #AmericanIdol 83

#RHOBHReunion 39 #BTSxCorden 84

#TeenChoice 40 #GE14 85

#RHOA 41 #Congrats5SOS 86

#FIFAWorldCup BTS 42 #90DayFianceHappilyEverAfter 87

#MITB 43 #Redemption18 88

#LoveIsland 44 #GlobalRunningDay 89

Table B.7: Hashtags used in experiment 90#.

Hashtag Label Hashtag Label

#BETAwards 0 #FathersDay 50

#TrumpKimSummit 1 #StormHector 51

#NFLDraft 2 #DebateINE 52

#MondayMotivation 3 #ALLCAPS 53

#SaveShadowhunters 4 #LateLateShawn 54

#TheBachelorette 5 #WorldOceansDay 55

#MetGala 6 #IAmwayForward 56

#ARMYHiveStreamingParty 7 #BBNaija 57

#mprraccoon 8 #WorldBookDay 58

#Westworld 9 #GreysAnatomy 59

#PlayStationE3 10 #BMWMotorrad310 60
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#WorldEnvironmentDay 11 #RHONY 61

#ShawnMendesTheAlbum 12 #heatwave 62

#SDLive 13 #HAHN 63

#The100 14 #HappyBirthdaySachin 64

#LHHATL 15 #Supergirl 65

#Brooklyn99 16 #Origin 66

#NBAAwards 17 #ComeyTownHall 67

#the100 18 #LoveIs 68

#WorldCup 19 #SpaceForce 69

#MTVAwards 20 #CAGovDebate 70

#WorldCupRussia2018 21 #TheBoldType 71

#BasketballWives 22 #ITrySoHardBut 72

#saveshadowhunters 23 #DaytimeEmmys 73

#E32018 24 #Game7 74

#WednesdayWisdom 25 #MLBDraft 75

#INDvAFG 26 #WWENXT 76

#HeartMCSeokjin 27 #TheProblemWithMeIn5Words 77

#NoTearsLeftToCry 28 #FortniteProAM 78

#TuesdayThoughts 29 #DDay 79

#MarriedAtFirstSight 30 #PoseFX 80

#PickUpShadowhunters 31 #Voicenotes 81

#StGeorgesDay 32 #GreenForGrenfell 82

#MyHandleExplained 33 #Riverdale 83

#TonyAwards 34 #ENGTUN 84

#TeenMom2 35 #TheLightIsComing 85

#EarthDay 36 #TheBachelerotte 86

#civility 37 #SoldAtDevilsYardSale 87

#InfinityWar 38 #WorldBloodDonorDay 88

#WhateverItTakes 39 #TheRealityOfDepressionIs 89

#HappyBirthdayAriana 40 #AmericanIdol 90

#ThursdayThoughts 41 #CaliforniaPrimary2018 91

#RHOBHReunion 42 #BTSxCorden 92

#TeenChoice 43 #GE14 93

#RHOA 44 #Congrats5SOS 94

#FIFAWorldCup BTS 45 #90DayFianceHappilyEverAfter 95

#MITB 46 #ChicagoFire 96
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#FridayFeeling 47 #Redemption18 97

#LoveIsland 48 #GlobalRunningDay 98

#FortniteE3 49 #BelowDeckMed 99

Table B.8: Hashtags used in experiment 100#.
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C Experiment results for 30# to 100#

Model Embedding Method Precision Recall F1-Score

MNB BoW 0.785 0.776 0.778

Tf-idf 0.792 0.763 0.771

GloVe-pre 0.339 0.268 0.244

GloVe 0.603 0.556 0.559

Word2Vec 0.595 0.575 0.575

SVM BoW 0.753 0.748 0.749

Tf-idf 0.793 0.792 0.792

GloVe-pre 0.307 0.280 0.231

GloVe 0.593 0.598 0.581

Word2Vec 0.641 0.643 0.635

Log Reg BoW 0.792 0.761 0.773

Tf-idf 0.793 0.750 0.764

GloVe-pre 0.315 0.308 0.291

GloVe 0.626 0.618 0.615

Word2Vec 0.661 0.646 0.651

Table C.1: Results obtained in Experiment 30#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.762 0.748 0.751

Tf-idf 0.773 0.742 0.750

GloVe-pre 0.282 0.221 0.197

GloVe 0.571 0.515 0.522

Word2Vec 0.56 0.545 0.545

SVM BoW 0.735 0.722 0.726

Tf-idf 0.776 0.769 0.771

GloVe-pre 0.232 0.236 0.191

GloVe 0.555 0.566 0.541

Word2Vec 0.607 0.616 0.601

Log Reg BoW 0.775 0.744 0.756

Tf-idf 0.771 0.729 0.743

GloVe-pre 0.266 0.264 0.248

GloVe 0.593 0.589 0.586

Word2Vec 0.645 0.633 0.637

Table C.2: Results obtained in Experiment 40#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.704 0.692 0.693

Tf-idf 0.716 0.686 0.691

GloVe-pre 0.211 0.186 0.166

GloVe 0.481 0.44 0.438

Word2Vec 0.521 0.512 0.508

SVM BoW 0.678 0.668 0.671

Tf-idf 0.712 0.711 0.710

GloVe-pre 0.185 0.198 0.147

GloVe 0.452 0.474 0.433

Word2Vec 0.543 0.566 0.539

Log Reg BoW 0.722 0.692 0.703

Tf-idf 0.713 0.674 0.686

GloVe-pre 0.221 0.223 0.204

GloVe 0.502 0.499 0.492

Word2Vec 0.587 0.584 0.582

Table C.3: Results obtained in Experiment 50#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.728 0.713 0.717

Tf-idf 0.743 0.709 0.718

GloVe-pre 0.205 0.199 0.176

GloVe 0.508 0.459 0.461

Word2Vec 0.510 0.501 0.495

SVM BoW 0.69 0.687 0.687

Tf-idf 0.735 0.737 0.735

GloVe-pre 0.225 0.211 0.161

GloVe 0.478 0.498 0.463

Word2Vec 0.55 0.567 0.543

Log Reg BoW 0.743 0.716 0.727

Tf-idf 0.738 0.696 0.71

GloVe-pre 0.242 0.24 0.221

GloVe 0.525 0.527 0.52

Word2Vec 0.591 0.588 0.587

Table C.4: Results obtained in Experiment 60#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.738 0.719 0.723

Tf-idf 0.753 0.717 0.725

GloVe-pre 0.202 0.192 0.173

GloVe 0.505 0.455 0.456

Word2Vec 0.53 0.507 0.509

SVM BoW 0.712 0.705 0.706

Tf-idf 0.751 0.750 0.749

GloVe-pre 0.179 0.197 0.147

GloVe 0.501 0.494 0.469

Word2Vec 0.561 0.572 0.553

Log Reg BoW 0.756 0.726 0.738

Tf-idf 0.751 0.706 0.721

GloVe-pre 0.23 0.23 0.211

GloVe 0.538 0.533 0.528

Word2Vec 0.6 0.592 0.593

Table C.5: Results obtained in Experiment 70#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.711 0.686 0.689

Tf-idf 0.725 0.684 0.691

GloVe-pre 0.191 0.16 0.138

GloVe 0.468 0.418 0.416

Word2Vec 0.496 0.481 0.480

SVM BoW 0.685 0.675 0.678

Tf-idf 0.721 0.721 0.721

GloVe-pre 0.155 0.172 0.116

GloVe 0.433 0.455 0.421

Word2Vec 0.528 0.543 0.521

Log Reg BoW 0.733 0.698 0.710

Tf-idf 0.716 0.675 0.687

GloVe-pre 0.203 0.206 0.182

GloVe 0.498 0.489 0.484

Word2Vec 0.566 0.563 0.561

Table C.6: Results obtained in Experiment 80#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.715 0.692 0.696

Tf-idf 0.731 0.690 0.699

GloVe-pre 0.178 0.159 0.138

GloVe 0.487 0.419 0.422

Word2Vec 0.509 0.49 0.489

SVM BoW 0.682 0.676 0.677

Tf-idf 0.721 0.721 0.721

GloVe-pre 0.152 0.167 0.115

GloVe 0.449 0.456 0.425

Word2Vec 0.527 0.547 0.523

Log Reg BoW 0.731 0.702 0.713

Tf-idf 0.719 0.678 0.689

GloVe-pre 0.202 0.198 0.176

GloVe 0.495 0.488 0.482

Word2Vec 0.573 0.57 0.568

Table C.7: Results obtained in Experiment 90#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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Model Embedding Method Precision Recall F1-Score

MNB BoW 0.705 0.675 0.68

Tf-idf 0.723 0.672 0.683

GloVe-pre 0.168 0.154 0.134

GloVe 0.484 0.412 0.415

Word2Vec 0.497 0.476 0.476

SVM BoW 0.674 0.663 0.666

Tf-idf 0.712 0.711 0.711

GloVe-pre 0.14 0.16 0.108

GloVe 0.436 0.45 0.416

Word2Vec 0.512 0.53 0.505

Log Reg BoW 0.723 0.689 0.702

Tf-idf 0.71 0.666 0.678

GloVe-pre 0.19 0.194 0.172

GloVe 0.496 0.484 0.481

Word2Vec 0.557 0.556 0.553

Table C.8: Results obtained in Experiment 100#. The underlined numbers are

the highest values obtained in each model while the bold ones are the best in all

models.
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