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Abstract

Mobile devices have emerged as one of the most rapidly spread technolo-
gies, with users spending a significant amount of time playing games on
these devices. The evolution of smartphone games along with a supplemen-
tary increase in resolution has lead to a growing demand for more visually
compelling graphics on mobile devices, which require significant energy con-
sumption to maintain. However, the battery capacity of these devices does
not grow at the same time as the computing capabilities, creating an ever-
increasing gap. Therefore, it has become increasingly important to facilitate
the study of energy-efficient architectures for GPUs in mobile devices. In-
spite of this, accurate full-system simulators for mobile graphics systems are
rare.

TEAPOT is a cycle-accurate simulator for mobile-GPU systems and is
the state of the art in this area. There were certain aspects of the shader core
in TEAPOT that were identified to be capable for improvement. The ob-
jective of this project is to redesign the shader cores in TEAPOT to match
the contemporary microarchitecture of shader cores. The register file was
changed and a banking mechanism used. A new stage named ‘Operand Col-
lector’ was added in order to buffer instructions with register bank conflicts.
A new Issue Scheduling mechanism was implemented. The width of the
pipeline was changed to two. An I-Buffer was included in the Fetch stage.
The Execute unit was pipelined and more write ports were added to the
Writeback stage. After this, the functionality and accuracy of the new fea-
tures of the implemented model were validated using various tests. The tests
involved observing different metrics of the shader core, like IPC, while some
parameters of the newly implemented model were varied.

Lastly, three experiments were conducted in order to explore some mi-
croarchitectural designs with a representative set of current mobile graphics
applications. With these, we first studied the improvement in performance
using the register allocation scheme used in TEAPOT. We also found the
optimum range of the total number of warps and the optimum register file
size for the benchmarks used.
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Chapter 1

Introduction

Mobile technology has spread rapidly around the globe. Nowadays, more
than 5 billion people have mobile devices, and over half of these connections
are smartphones [1]. Figure 1.1 shows the number of smartphones sold to
end users worldwide from 2007 to 2018. For 2018, we see that this number
is around 1.56 billion [2]. This is a significant increase from the 680 million
units sold in 2012. It is estimated that over 28 percent of the world’s total
population owned a smart device in 2016, a figure that is expected to increase
to 37 percent by 2020. In the same year smartphone penetration is set to
reach 60.5 percent in North America as well as in Western Europe. This is
a large rise in the 29.3 percent of people in North America and 22.7 percent
of Western Europeans who had smartphones in 2011 [1].

It is evident that mobile devices have emerged as one of the most rapidly
spread technology [3]. At the same time, mobile user interfaces have evolved
from simple text-based displays to interactive high definition 3D graphics.
Smartphones cater to a variety of uses these days such as mobile web brows-
ing, gaming, voice calls and multimedia capabilities. It is noteworthy that
users spend 43% of their “smartphone time” playing games [4]. As of 2019,
there are 2.2 billion mobile gamers worldwide [4]. As the interest to play
videos in smartphones has grown, so has their screen size and resolution. In
order to provide the necessary frame rates, mobile phones had to deviate
from the early software rendering approaches and embrace a hardware-based
accelerator, a Graphics Processing Unit (GPU). With greater rendering ca-
pabilities, the multimedia and gaming demands increased, and bigger phones
with Full HD resolution and more powerful GPUs to sustain the frame rates
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were released. According to various studies the GPU and the screen have
been seen to consume the most battery power [5, 6].

Figure 1.1: Number of smartphones sold to end users worldwide from 2007
to 2018 (in million units)[1]

A growing demand for more visually compelling graphics on mobile re-
quires more computing capabilities, which in turn consumes more energy.
Energy is a scarce resource in mobiles as all of the mobile segment devices
are battery-operated and thus power consumption is a key design aspect.
Therefore, it has become increasingly important to facilitate the study of
energy-efficient architectures for GPUs in mobile devices.

Prior work on GPU simulation tools [7, 8, 9, 10] focuses mainly on mod-
elling desktop-like GPUs. These simulators do not represent the mobile seg-
ment. In fact, none of them have support for the OpenGL ES API [11],
which means that they cannot run smartphone applications. Furthermore,
most of them do not provide a power model. It is also noteworthy that none
of the existing simulators provide energy estimations for the OLED screens.
This is an important aspect of graphics simulation as the screen is one of the
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main battery consumers and its energy depends on the output generated by
the GPU [12]. Full system GPU simulation is another important benefit pro-
vided by our simulator that is not available in any existing GPU simulation
infrastructure. This means that frequent GPU-related tasks such as image
composition, or rendering of background applications (e.g., advertisements),
are usually not taken into consideration. It has been shown [13] that the OS
GPU usage is non-negligible, representing up to 52% of GPU time and up to
48% of GPU energy for commercial Android games. TEAPOT, is one such
toolset for evaluating the performance, energy and image quality of a mobile
graphics subsystem, that facilitates to this need [13]. It is developed in the
ARCO lab.

1.1 Motivation

Although TEAPOT is the state-of-the-art simulator for mobile Graphics Pro-
cessors, it has components that are not representative of contemporary ar-
chitectures. The main one that we identified was the shader core, which
requires accurate modelling as it is the part that contributes most towards
energy consumption [6, 14, 15, 16]. The shader core presently is a very simple
in-order, SIMT processor with four pipeline stages and non-pipelined func-
tional units. It has a huge register file with more than sufficient number
of registers for each warp. In order to conduct accurate microarchitectural
research on the shader cores of GPUs, this part of the simulator needed to
be redesigned to match contemporary architectures.

1.2 Objectives

• Build a cycle-accurate simulator of the shader core of GPUs close to a
contemporary GPU and integrate it into the already existing simulation
framework of TEAPOT.

• Validate the model, built and embedded into TEAPOT, by performing
tests and analyzing the results.

• Test alternative microarchitectural configurations for the new shader
core and analyze differences in performance and resource utilization.
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Chapter 2

Background

This chapter lays some groundwork to facilitate understanding the details of
this project. The Graphics pipeline is first explained to give context to the
purpose of a shader core. The second gives an overview of how TEAPOT
works and the architecture it uses. The last section is about related work in
the area of GPU simulators.

2.1 The Graphics Pipeline

Rendering or image synthesis is the automatic process of generating a two
dimensional image from a two-dimensional or three-dimensional model, given
a virtual camera, light sources, texture information or more inputs [17]. This
process is performed in a pipeline which is shown in Figure 2.1.

Figure 2.1: The basic construction of the Graphics Pipeline [18]

The application stage is typically implemented in software running on
general-purpose CPUs, which performs some tasks such as collision detec-
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tion, global acceleration algorithms, animation, physics simulation. Since
CPUs commonly include multiple cores that are capable of processing multi-
ple threads of execution in parallel, CPUs are able to efficiently run the large
variety of tasks that are the responsibility of the application stage. The ap-
plication stage also communicates with a Graphics Processing Unit (GPU),
an accelerator for rendering.

The next main stage is geometry processing, which deals with transforms,
projections, and all other types of geometry handling. This stage computes
what is to be drawn, how it should be drawn, and where it should be drawn.
The geometry stage is typically performed on a GPU that contains many
programmable cores as well as fixed-operation hardware. Here the pipeline
receives a list of vertices as its input, and executes the vertex shader: a pro-
gram that applies lighting operations and unifies all the coordinate systems
of the different objects of the scene. This program is run on a vertex shader
core. These shaded vertices are then assembled into triangles and projected
onto the screen plane, which allows to discard the triangles that would ap-
pear off-screen.

The rasterization stage typically takes as input three vertices that form
a triangle, and generates the list of fragments that cover it. Fragments are
pixel-sized elements with the necessary information to compute the colour of
a pixel, mainly interpolated data from the shaded vertices.

Finally, in the the pixel processing stage, these fragments are processed
by the fragment shader cores, processors that compute the final colour of
the visible pixels based on user-defined programs that consider texture and
light information. This stage may involve depth testing to see whether the
computed colour of the pixel is visible or not. It may also perform per-pixel
operations such as blending the newly computed color with a previous color.

2.2 TEAPOT Description

TEAPOT [13] is a toolset for evaluating the performance, energy and image
quality of a mobile graphics subsystem. It provides full-system simulation
of unmodified commercial Android applications. It includes a cycle-accurate
GPU simulator, a power model for mobile GPUs based on McPAT [19],
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and a power model for OLED screens [12]. Furthermore, it is able to pro-
vide image quality assessment using the models presented in the work of
Wang et al. [20]. In terms of the GPU microarchitecture, TEAPOT models
Tile-Based Deferred Rendering (TBDR) [21, 22]. While Immediate Mode
Rendering(IMR) is more popular for desktop GPUs, TBDR seems to be the
design of choice for GPUs targeting energy efficiency, like the ARM Mali [22]
and PowerVR [23].

In TBDR, shown in Figure 2.2, the screen is divided into tiles, rectangu-
lar blocks of pixels. Transformed triangles are not immediately sent to the
Raster Unit. Instead, the Tiling Engine stores the triangles in memory and
sorts them into tiles, so that for each tile that a triangle overlaps, a pointer to
that triangle is stored. Once all the geometry for the frame has been fetched,
transformed and sorted, the rasterization starts. Just one tile is processed
at a time in each Raster Unit, so all the color and depth information of the
pixels of the tile can be stored in local on-chip memory. The final colors of
the tile are transferred just once to the off-chip color buffer when the tile is
ready, which saves a lot of traffic with main memory. However, transformed
triangles have to be stored in memory and fetched back for their processing,
so there is a trade-off between memory traffic for geometry and memory traf-
fic for pixels.

Figure 2.2: Tile-Based Deferred Renderer [13]
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The two main strengths of TEAPOT are that firstly TEAPOT allows full-
system mobile GPU simulation, which is crucial to achieve accurate results,
since common OS tasks such as image composition consume a significant
amount of GPU time and energy [13]. Moreover, TEAPOT can be employed
to evaluate energy saving techniques that trade quality for energy, which are
a popular research area in low-power graphics [16, 24].

2.2.1 Tools

Figure 2.3 illustrates the overall infrastructure of TEAPOT. TEAPOT lever-
ages existing tools, such McPAT [19] or Gallium3D [25], that have been cou-
pled with its GPU models and adapted for the low-power segment. The Gal-
lium3D driver has been modified in order to profile OpenGL ES commands
and collect a complete GPU instruction and memory trace. This trace is then
fed to a cycle-accurate GPU simulator with which the power and performance
for the given application are estimated. As mentioned earlier, TEAPOT also
includes a power model for OLED screens. Thus, when analyzing an energy
saving technique for mobile GPUs it must be ensured that possible energy
savings in the GPU are not compensated by an increment in screen energy
and vice versa. The workflow of the simulation infrastructure of TEAPOT
is explained below.

Figure 2.3: TEAPOT: Mobile GPU simulation infrastructure [13]
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Application Level

TEAPOT uses the Android Emulator available in the last version of the
Android SDK for running mobile applications on a desktop computer. The
OpenGL ES Trace Generator component captures the OpenGL ES command
stream generated by the Android applications and redirects it to the appro-
priate GPU driver. Therefore, OpenGL ES commands are not processed
inside the emulator but in the desktop GPU, which makes them completely
visible to the host system. The GPU commands are saved in a trace file,
which contains the GLSL vertex and fragment shaders [26], i.e. the code
executed by the GPU, and all the data employed for rendering including
textures, geometry and state information.

Driver Level

The Gallium3D driver provides GPU functional emulation in TEAPOT. Gal-
lium3D is an infrastructure for developing GPU drivers. It includes several
front-ends for different graphics APIs, including OpenGL ES, and multiple
back-ends for distinct GPU architectures. An Instrumented version of Gal-
lium3D is employed for executing the commands stored in the OpenGL ES
trace file. A software-based backend is selected for rendering since it can be
easily instrumented in order to get a complete GPU instruction and memory
trace. Off-screen rendering is employed so the frames are written into an
image file instead of being displayed on the screen.

Hardware Level

A Cycle-accurate GPU simulator is employed for estimating the GPU exe-
cution time taking as input the instruction and memory traces generated by
Gallium3D. GPU energy estimations are also provided by using a modified
version of McPAT and the GPU activity factors obtained by the simulation.
The output frames generated by Gallium3D are then used for computing the
energy consumed by the OLED screen. Finally, the image quality assessment
module estimates the visual quality of the output images.

• Cycle-Accurate GPU Simulator TEAPOT models the TBDR ar-
chitecture shown in Figure 2.2. The mobile GPU employs several first
level caches for storing vertices, instructions and textures. These caches
are connected through a bus to a second level shared cache. In TBDR,
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local on-chip memories are employed for storing all the color and depth
of the pixels within a tile.
As shown in Figure 2.2, there are more than one vertex and fragment
processors. TEAPOT has made the number of these processor pa-
rameterised. These processors (also known as shader cores) are the
programmable part of the Graphics Pipeline. The architecture of the
shader core is explained in detail in Chapter 3. Vertex Processors are
similar to Fragment Processors, but they do not have to handle memory
or texture instructions so they do not include Memory units, Textures
Units or Pixel/Texture caches. We assume a non-unified architecture
as opposed to a unified architecture where all the processors can handle
both vertices and fragments. Usually, unified architectures offer bet-
ter workload balance, whereas non-unified architectures can exploit the
difference between vertex and fragment processing to build more spe-
cialized and optimized processors. For instance, the results obtained
by using McPAT indicate that a Vertex Processor has just 64% of the
area of a Fragment Processor.

• Power Model A modified version of McPAT [19] is used for estimating
GPU energy consumption. During start-up, the GPU simulator calls
to McPAT passing all the microarchitectural parameters, such as the
number of processors or the cache sizes, so it can build the internal
chip representation. McPAT estimates the dynamic energy required
to access each one of the hardware structures and the leakage power.
During simulation, the cycle-accurate GPU simulator collects statistics
for each unit and, at the end of every frame, it submits all the activity
factors to McPAT. The dynamic energy is computed by accounting for
events in the GPU simulator and then multiplying these events by a
given energy cost estimated by McPAT. The static energy is obtained
by multiplying the total GPU leakage by the execution time.

• Image Quality Assessment Image quality is evaluated by comparing
a reference image, usually as a result of a high quality rendering, with
a distorted image. TEAPOT implements the two types of metrics
typically employed for image quality assessment: metrics based on per-
pixel errors (Mean Squared Error and Peak Signal-to-Noise Ratio) and
metrics based the human visual perception system (Mean Structural
Similarity).
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2.3 Related Work

Several simulators for evaluating GPU workloads exist, such as GPGPUSim
[7], which models General Purpose GPU (GPGPU) architectures. This tools
support CUDA [27] or OpenCL [28], but it does not support graphics APIs
such as OpenGL up until the conception of this project. GPGPUSim in-
cludes a power model, GPUWattch [29], which is also based on McPAT as
in TEAPOT. Both power models are similar, but GPUWattch focuses on
GPGPU specific features whereas TEAPOT models more specialized graph-
ics hardware. For instance, GPGPUSim models FP units that can be com-
bined to execute 1 double-precision (DP) or 2 single-precision (SP) oper-
ations, but TEAPOT relies on SP units since DP is common in scientific
workloads but not in games. On the contrary, TEAPOT models specialized
Texture Sampling units since texture fetching instructions are frequent in
graphical workloads.

ATTILA [9], though now an inactive project provided an OpenGL frame-
work for collecting traces of desktop games and a cycle-accurate GPU simu-
lator. Although ATTILA provided full support for desktop games, it cannot
run applications for smartphones. Furthermore, its GPU simulator models a
desktop-like immediate-mode renderer. Finally, ATTILA does not include a
power model. Other simulators like the GLTraceSim [30] is a graphics tracing
framework to explore system-level effects on heterogeneous CPU+GPU mem-
ory systems. Qsilver [10] can also collect and simulate traces from desktop
OpenGL games, and it includes a power model. GRAAL [31] also provides
OpenGL support and a power model for GPUs. Furthermore, it models a
low-power GPU based on TBDR. However, OpenGL ES support is not avail-
able in any of these simulators so they cannot run mobile applications for
smartphones and tablets.

Unlike the aforementioned tools, TEAPOT supports full-system GPU
simulation, being able to profile multiple applications accessing the GPU
concurrently. TEAPOT additionally provides image quality metrics for au-
tomatic image quality assessment and includes a power model for OLED
screens, since it has been designed for analyzing graphical workloads in the
low power segment.
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Chapter 3

Description of the
Microarchitecure

This chapter details the architecture of the baseline shade core and all the
modifications added to it.

3.1 Initial Shader Core Architecture

The smallest unit of work in a shader core is a warp. A warp is a group of
threads executed in lockstep mode. This implies that the same instruction is
executed by all the threads but each thread operates on a different set of data.
In graphics workloads, threads correspond to fragments and vertices, which
are grouped in warps of four threads by the control logic in the Fragment
Stage and the Vertex Stage, respectively. A Warp-Entry scheduler issues
a warp to a shader core if this does not exceed the total number of warps
allowed. The warp is then assigned a warp ID by the core. This ID is
the lowest Warp ID that is free. The warp is also assigned a total of 80
registers regardless of the number of registers the program of the warp will
use. Another point to note is that there are two L1 caches connected to the
shader core: an Instruction Cache and a Texture Cache. Both caches have
request queues that let only one request to be sent and served per cycle. The
shader core has four pipeline stages as shown in Figure 3.1. Each pipeline
stage will be explained in the next subsection.
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Figure 3.1: The baseline version of TEAPOT’s shader core. The numbers
next to the Instruction Flow arrows represent the number of instructions
that can be transferred.

3.1.1 Pipeline Stages

Fetch

A fetch warp scheduler implementing a Round Robin scheme decides which
warp gets to fetch every cycle. A single warp is selected, which sends only
one request to the I-Cache each cycle.

Decode

The Decode operands checks for dependencies and reads operands from the
Register File. An instruction does not advance to the Execute stage un-
til their dependencies with previous instructions from the same warp are
resolved. This is done using a scoreboard. Scoreboarding is a mechanism
implemented to reserve the registers of the instructions being executed and
free them after the Writeback stage. If a warp is stuck at Decode because it
is executing an older instruction in the Execute Stage, then the Decode and
Fetch stages get stalled. There is no buffer between the Fetch and Decode
stages, which limits the parallelism of the front-end and back-end because a
stall in the back-end leads to a stall up until the Fetch stage.
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Execute

An unbounded limit of funcional units is assumed: as many instructions as
in-flight warps can be executed, regardless of their type. Additionally, the
functional units are not pipelined.

Writeback

The Register File stage has just one write port, so only the result of one
warp can be written in each cycle. This stage frees the register that is being
written back by changing its state in the scoreboard.

3.2 Implemented Shader Core Architecture

The register file in the baseline shader core was unbounded, able to assign
80 registers to every warp that entered the core. This number was dimen-
sioned to match the requirements of the OpenGL specification [32], which is
a worst-case scenario that rarely occurs. Not only is the number 80 too high
for mobile graphics workloads, contemporary GPU architectures dynamically
assign registers to warps rather than a static set. The register file has thus
been modified to have an absolute bounded number of registers which is not
a function of the number of active warps in the core. The Warp-Entry Sched-
uler has also been modified to check if there are enough physical registers
in the core for the new warp that is requesting entry. The baseline shader
would assign the lowest Warp ID available to the warp that is entering. This
has been modified to a Round Robin scheme to allocate a free Warp ID to
the warp. In order to increase the throughput in such a huge register file,
register banks were employed. Even though there are now as many read
ports as there are number of banks, one cannot ensure that at a particular
time, all instructions ready to read from the register file have source operands
belonging to different register banks. This called for a mechanism to buffer
instructions while they waited for all their source operands to be read.

A separate pipeline stage was created called Operand Collector which has
buffer units that store information about instructions. Each instruction in
the Operand Collector has a separate buffer, called Collector Unit (CU).
Once an instruction has a CU allocated, its source operands get sent to sep-
arate request queues depending on their bank ID. The requests to each bank
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are resolved using an Arbiter. Instructions take a variable number of cycles
in the Operand Collector, depending on their number of operands and the
occupancy of the read queues of each bank.

The baseline shader has a pipeline width of one instruction whereas modern
GPUs have wider pipelines. Therefore, the pipeline width has been modified
to allow 2 fetches per cycle and 2 issues per cycle. The Execute stage has now
been modified to have a parameterised number of functional units which are
pipelined. Unlike desktop GPUs such NVIDIA’s Volta architecture, which
have close to a hundred functional units per core [33], mobile GPUs have a
much modest number, ranging from 4 ot 16 functional units per core [34].
The baseline Register File had only one write port, which limited the Write-
back stage throughput. The new architecture has now one write port for
each bank in the Register File and one write port specifically allocated for
memory instructions. The next section describes the various stages of the
pipeline in detail.

3.2.1 Pipeline Stages

Figure 3.2 shows the implemented model of the shader core.

Figure 3.2: The implemented version of TEAPOT’s shader core. The num-
bers next to the Instruction Flow arrows represent the number of instructions
that can be transferred. P indicates parameterised.
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Fetch

The Simulator allows two consecutive instructions from the same warp to be
fetched in one cycle. The FetchScheduler decides using a Loose Round Robin
scheme which warp is going to fetch. The looseness refers to the exceptions
made in Round Robin such as not choosing a warp that has been blocked and
not choosing a warp that has an instruction still waiting to be issued in the
I-Buffer (explained in Section.3.2.1). If the chosen warp encounters a miss,
then it does not forward anything to Decode until it receives the instruction.

Decode

This stage reads the instructions present in the I-Buffer and stores them back
decoded.

The I-Buffer is used to store instructions that have been fetched but not
issued. It is crucial to this design of a multi-warp processor, as it allows the
front end to keep working even if some instruction could not get issued right
after the Decode stage. The I-Buffer has a two instruction wide slot for every
warp. Each of the instruction slots also has a valid bit.

Issue

This stage allows a parameterised number of warps to be issued in a cy-
cle. The warps to be issued are chosen by another scheduler called the Issue
Scheduler, which also employs a Loose Round Robin Scheme to select warps.
The looseness here refers to exceptions made in Round Robin such as not
choosing warps with instructions that have Read After Write and Write After
Write dependencies with the instructions from the same warp that have been
issued but have not finished. The looseness also refers to the exception for
end of program instructions which do not get issued until all the instructions
from that warp have retired.

The dependencies are checked through scoreboarding, as mentioned before.
Since instructions spend a variable amount of time in the Operand Collector
and the Execute stages, an instruction might finish before an older instruc-
tion of the same warp. This has a potential to cause Read after Write, Write
after Write and Write after Read hazards. This possibility is removed by
using a scoreboard which does not issue instructions that might cause one
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of these hazards.The instructions issued from each warp are then put into a
buffer called IS OC Buffer.

The IS OC Buffer is a FIFO structure of parameterised size that holds the
instructions that have been issued until there is a free CU in the Operand
Collector. When the buffer gets filled, no more instructions are allowed to be
issued. The width of the input port and the output port is parameterised.
The instructions sit in the buffer until the Operand Collector finds free CUs
for them.

Operand Collector (OC)

This stage has three sub-stages: Allocate Collector Unit, Read Operands and
Dispatch.

• Allocate - This stage takes a parameterised number of instructions
from the IS OC Buffer and allots them free Collector Units. Collector
Units are buffers specially built for storing instruction and operand
information. They have fields for warp ID, Opcode and three operands.
The fields for operands contain a valid bit, a register index field, a field
to store the value of the register after being read and a ready bit to
indicate that this operand has been read successfully.

• Read Operands - This stage takes all the requests from the Collector
Units and sends them to their respective read request queue depending
on their Bank ID. The scheme for the allocation of registers to register
banks follows the Warp shift scheme shown in Equation.3.1.

RegisterBankID = (WarpID+RegisterIndex)%(NumberofRegisterBanks)
(3.1)

Each register bank has a read request queue from which only one re-
quest is served per cycle. After the requests have been serviced, the
operand values are filled in respective CUs, and the corresponding ready
bits are set. Reading from multiple CUs to the same bank in a single
cycle would require important area overheads in read ports and cross-
bar communication. Reading is, therefore, limited to one request per
bank and one request per CU, which calls for an arbitration mechanism
to decide the requests that will be serviced in a particular cycle. The
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mechanism used is a well known algorithm called Wavefront Allocator
[35, 36]. This allocation scheme works on the principle of an arbitration
“wave” across an array of arbitration cells. Studies done on Allocators
show that the Wavefront Allocator works best for crossbars that have
a small number of input and output ports.

• Dispatch - This stage uses a Loose Round Robin mechanism to check
which CUs are ready with all operands and are ready to be dispatched
to the next stage. The looseness here refers to exceptions made when
the CU is not ready for dispatch. The number of instructions that can
be dispatched in one cycle is parameterised. These instructions are
then moved onto the OC EX Buffer which sit there to be taken up by
the Execute stage.

The OC EX Buffer holds the instructions that have been dispatched
from the Operand Collector. Its size is parameterised. Each slot in the
buffer can hold one instruction. This buffer is emptied giving priority
to the oldest but it can move on to another instruction if the first one
cannot be executed as per restrictions posed by the execute unit. The
width of the input port and the output port is parameterised.

Execute

This stage takes in a parameterised number (N) of instructions from the
OC EX Buffer depending on the availability of the functional unit that the
instruction is requesting. A maximum of N number of memory operations are
allowed in one cycle. As mentioned before, the cache has request queues but
only allows one request to be sent and serviced in a single cycle. A maximum
of N End of Program Instructions are allowed in one cycle. And all the other
instructions use a general purpose ALU which has a parameterised number
of replicas. As different instructions take varying number of cycles to finish
execution, structural hazards may occur during Writeback. Such conflicts
between instructions are resolved before being picked for execution.

Writeback

This stage frees the register being written back by changing its state in the
scoreboard. All the functional units together have as many Writeback ports
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as the number of register banks. The memory operations have a separate
Writeback port.
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Chapter 4

Validation

This section characterizes the benchmarks and the experiments used in order
to validate the functionality and accuracy of the new features of the model.
For the purpose of all tests in validation, the parameters in the shader core
have been kept constant with the values shown in Table 4.1.

Table 4.1: Shader Core Simulation Parameters

Parameter Value
Number of Functional Units 4

Issue Width 2
IS OC Input Port Width 16

IS OC Output Port 16
IS OC Buffer Size 25

OC EX Input Port Width 16
OC EX Output Port 16
OC EX Buffer Size 25

Total Number of Warps 32
Total Number of Registers 8000

4.1 Benchmarks Used

Table 4.2 lists the benchmarks that have been used in the validation process,
which correspond to commercial, unmodified Android applications. The se-
lection of these application has been made with the intent that the benchmark
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suite illustrates the mobile gaming landscape: it includes widely popular ap-
plications (with hundreds of thousands of downloads in the Google Play Store
[37]), in a variety of genres and a mix of 2D and 3D graphics. The analysis of
the different studies has been performed with a single frame corresponding
to a typical use case from each benchmark, i.e., not loading or menu screens.
A single frame is representative of the whole benchmark since all frames in
the same scene have almost identical geometry and shader programs.

Table 4.2: Benchmark Suite

Benchmark Alias Genre Type
Candy Crush Saga CCS Puzzle 2D

Shoot War: Professional Striker SWa First-Person Shooter 3D
TempleRun TRu Endless runner 3D
City Racing CRa Arcade 3D

Rise of Kingdoms: Lost Crusade RoK Strategy 2D
Derby Destruction Simulator DDS Racing 3D

4.1.1 Characterization

The following plots depict some basic characterization of the benchmarks,
both to show the main differences between traditional CPU/GPGPU work-
loads and mobile graphics workloads and as a means for better understanding
the results obtained by the validation process.

Average number of registers per shader program

Figure 4.1 shows the average number of registers used per shader program.
This metric is an indicator of the resources that each warp will use in its life-
time inside the shader core. This is also an indicator of how many register
banks are appropriate for graphics workloads. It can be seen that four of the
benchmarks demand around 10-15 registers per program whereas two of the
benchmarks have a relatively lower demand for registers. The average num-
ber of registers is around 11. We can thus also predict that the improvement
in performance will quickly plateau as the number of register banks increase.
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Figure 4.1: Average number of registers per shader program for different
benchmarks

Average number of instructions per shader program

Figure 4.2 plots the average number of instructions per shader program, a
metric indicative of each program’s complexity and its average stay within
a core. CCS has an average of only four instructions per program whereas
DDS has an average of twenty instructions. The simple models and textures
used in CCS require very short programs to be rendered, while the realism
and detailed effects in DDS demand, comparatively, programs that are five
times bigger. The other benchmarks lie somewhere in the middle of both
these values and the average value is about 10 instructions.
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Figure 4.2: Average number of instructions per shader program for different
benchmarks

Total number of instructions for one frame

Figure 4.3 is a plot of the total number of instructions run in the fragment
processor for one frame of the benchmarks. Since every pixel in the screen
must have a color assigned, the lower bound of the total instructions exe-
cuted corresponds to the resolution of the frame and the average number
of instructions per shader program. However, since hidden-surface determi-
nation is done using either the painter’s algorithm or depth buffering [38],
it is normal that the color of two or more fragments are computed for the
same position in the screen. This means that the total number of instruc-
tions might exceed the average number of instructions per shader program
multiplied by the total number of quads(a group of four fragments). Each
shader program works on a quad and the total number of quads are de-
termined by the resolution of the frame. As expected, it is seen that the
values for total number of instructions range from 2 million instructions to
10 million instructions for the different benchmarks. The lower value being
for CCS which has less instructions per shader core and the higher for DDS
which has a higher number of instructions per shader. On an average every
benchmark has about 4 million instructions per frame.
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Figure 4.3: Total number of instructions executed in the Fragment Cores

Average distribution of number of operands per instruction

Figure 4.4 is a plot of the distribution of the number of operands per instruc-
tion on an average. Since the TGSI ISA allows upto three operands (like in
the case of ’Multiply and Add’) and no operands (like in the case of ’End
of Program’), the distribution is between the numbers zero and three. It
is an important characteristic since the number of operands is an indicator
for how long an instruction might spend in the Operand Collector. Since
only one operand per instruction is allowed to be read per cycle, the instruc-
tion would have to spend at least that amount of cycles just reading in the
Operand Collector. This characteristic allows us to estimate the minimum
average number of cycles that an instruction must spend in the Operand
Collector.
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Figure 4.4: Average Distribution of Number of Operands per Instruction in
different benchmarks

Average number of operands per instruction

Figure 4.4 shows the average number of operands per instruction. This has
been derived from the previous distribution plot. This is also an important
plot to estimate the minimum time spent by instructions in the Operand
Collector on an average. We see that for all the values this average lies near
1.5. This implies that on an average each instruction must at least spend
3.5 cycles in the Operand Collector including one cycle each for the Allocate
and Dispatch stages.
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Figure 4.5: Average number of operands per instruction in different bench-
marks

4.2 Tests

4.2.1 Cycle by Cycle

The context of each instruction in each stage and buffer was printed out for
the cycles that the shader core was active with at least one warp. This was
done only to ensure the basic working of the pipeline stages. This is a very
crude test but it weeds out the very basic bugs or even design faults. Some
operations like the conversion of logical register IDs to physical register IDs,
the Round Robin schemes of the two schedulers, the Round Robin assignment
of warp IDs when a warp enters a shader core can be validated. Operations
like the freeing of physical registers when the warp exits the core, the proper
functioning of the pipelined Execute Units and various other basic things can
also be validated by this method. It is a crude method as not a lot of cycles
can be checked. But it weeds out trivial errors.

4.2.2 Count Instructions

A measure of instructions entering and leaving the pipeline is a good way
of ensuring all the instructions went through all the stages and finished cor-
rectly. Since there are various buffers in the model, there is a chance that
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if coded carelessly, the simulator might allow the overwriting of instructions
in the buffers. Counters were kept in the stage where the warp enters the
pipeline, in the Operand Collector and after the Execute Unit. The numbers
were matched and corroborated.

4.2.3 IPC

Firstly, the absolute value of the IPC of a shader core was checked for differ-
ent benchmarks to ensure that it was in the correct range. Since the pipeline
was designed to be two instruction wide, the upper limit of the IPC is 2.
There is technically no hard lower limit as a lot of things may vary with dif-
ferent benchmarks. But skepticism can arise when the IPC is too low which
may lead to a closer investigation of the model. The IPC should tend to in-
crease as the number of register banks increases. This is because an increase
in banks implies more ports in the register file and that implies a potential
to service more register reads every cycle.

The IPC in all the cases is seen to be below 2. The IPC shows a mono-
tonic increase as the number of banks increase. The increase is not linear.
For most of the benchmarks, the plot plateaus after 4 banks. Since there is
a monotonic increase in the IPC with the increase in the number of banks,
it is an indicator to the correctness of the implementation.

In case of the benchmark CCS, it can be seen that the plot plateaus at
two banks. It shows that this benchmark does not benefit from having more
than two banks. It must be noted that the average number of registers in a
shader program for CCS is just about five registers (see Figure 4.1) and the
average number of instructions per program is just four (see Figure 4.2). This
is one of the reasons for a need for lesser number of register banks. On the
other hand the benchmark RoK shows an increase in IPC from four banks
to five banks. The registers in this case is around fifteen and the number of
instructions per program is also fifteen and hence the improvement seen in
the IPC.
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 4.6: IPC of different benchmarks as the number of banks increases

4.2.4 Buffer Occupancies

• IS OC Buffer - As the input and output ports of this buffer are 16
instructions wide, which is much higher than the width of the pipeline,
it is expected that the average number of slots occupied in the buffer
per cycle is close to the width of the pipeline which is 2 in this case. But

28



if the Operand Collector is filled for most of the time then instructions
get accumulated in the IS OC Buffer. This is the case when the number
of banks is very low.
It can be observed that the buffer is occupied by around 2 instructions
every cycle for number of banks higher than two. But for the cases
with 1 bank and 2 banks, there is a larger average occupation for this
buffer.

• OC EX Buffer - As in the previous case, the input and output ports of
this buffer are 16 instructions wide. The average slots occupied in this
buffer follow the rate at which the execute takes instructions into the
Execute stage. It can be observed that the buffer behaves as expected.

4.2.5 CU occupancies

The average number of CUs occupied in a cycle (when the shader core is
active) should be somewhere around the average number of cycles spent by
an instruction in the Operand Collector. This occupancy should decrease as
the number of banks increases. The upper bound is the total number of CUs
in the shader core, which in this case is sixteen.

Figure 4.8 shows that the average number of CUs occupied is around
sixteen in the case of one bank and this average occupancy decreases signifi-
cantly as the number of banks increase. With lower number of banks you see
a really high occupancy and as you go higher the reads happen faster and
instructions do not need to sit in the Operand Collector for long.
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 4.7: IS OC and OC EX buffer occupancy of different benchmarks as
the number of banks increases
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 4.8: CU occupancy of different benchmarks as the number of banks
increases

4.2.6 Conflicts

A conflict for the purpose of our test is defined as the number of requests
that could have been served, but were not served, if there were boundless
read ports in each register file. Note that this does not include the read
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requests that are not served simultaneously because they belong to the same
instruction. The metric of the number of conflicts in each cycle is calculated
by dividing the total conflicts by the number of cycles that there was at least
one request in any of the register banks. This average number of conflicts is
expected to decrease as the number of register banks increase. The simple
reasoning to this is that as the number of banks increase, the number of ports
increase and the potential for more reads per cycle increases.

It can be seen that the benchmarks all behave as expected. The conflicts
grow close to zero as the number of register banks increases. This number
does not reach a zero and yet we observed before that the IPC plot plateaus
at four banks. This indicates that the key to better performance now lies
outside the Operand Collector.

4.2.7 Average Time in the Operand Collector

The average number of cycles spent in the Operand Collector by an instruc-
tion must decrease as the number of register banks increase. The reason is
that as each bank serves one request, more banks mean more requests served
in parallel. This can also be seen in the previous section where conflicts de-
crease as the number of banks increase. Decrease in conflicts indicates that
lesser number of requests are waiting. This has a correlation with reduced
waiting times for an instruction itself. The lower limit to the average time
should be:

Avg number of operands per instruction+2(cycles in allocate and dispatch)
(4.1)

Figure 4.10 shows that as the number of banks increase, the average cycles
spent in the Operand Collector decreases. The last bar (in black) is the lower
limit that has been calculated using Equation 4.1. It can be seen that the
values tend to decrease to reach that value.
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 4.9: Average Conflicts per cycle in the Operand Collector, of different
benchmarks, as the number of banks increase
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 4.10: Average number of cycles spent by an instruction in the Operand
Collector, of different benchmarks, as the number of banks increase
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Chapter 5

Microarchitectural Design
Exploration

With all the additions to the simulator, the model is now more accurate
and allows for additional microarchitectural design exploration which was
previously not possible. We conducted three experiments to further use the
implemented model of the shader core to check which design values are suited
for mobile graphics workloads. The first experiment studies the benefits of
the Register Allocation Scheme that has been implemented. The second
experiment is a study of the benefits and costs of increasing the number of
warps in the shader core. The third experiment explores the effects of limiting
the total number of physical registers in a shader core. The parameters for
these experiments are the same as the ones utilized in the Validation Section
(Table 4.1) except for the ones that are an object of study.

5.1 Register Allocation Hash Function

As mentioned in Section 3.2.1, the bank ID of the register is assigned using
a Warp shift scheme, a hash function that uses the physical register index
and the Warp ID. The mechanism has been repeated below in Equation 5.1.

RegisterBankID = (WarpID+RegisterIndex)%(NumberofRegisterBanks)
(5.1)

The registers in a warp are assigned sequential indices starting from zero,
when they enter the shader core. A simple way to have gone about Register
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to Bank Allocation is to have Equation 5.2 as the hash function.

RegisterBankID = (RegisterIndex)%(NumberofRegisterBanks) (5.2)

An experiment has been conducted to analyze the difference in perfor-
mance when using both schemes. All the benchmarks were run with 32 warps,
with changing number of register banks, first without the Warp-shift scheme
as in Equation 5.2 and then with the Warp-shift scheme as in Equation 5.1.
Figure 5.1 shows the IPCs of the simulation with and without the Warp-shift
scheme. We calculated that there is a 23.8% increase in IPC when we use
the Warp-shift scheme. This increase in IPC is because of the fact that when
the registers in a program do not have a uniform rate of read requests or the
number of registers in a program is not a multiple of the number of register
banks, the scheme of assigning the banks as a function of only the register
index, puts a non-uniform pressure on different register banks. This leads to
lower performance as the resources are not being used uniformly. That can
clearly be seen in Figure 5.1. Figure 5.2 also shows that the reads in each
bank are significantly unbalanced when not using the Warp-shift scheme,
whereas the read distribution in the case of the Warp-shift scheme is almost
a 100% balanced. This emphasizes the improvement that this scheme brings
to the overall performance of the core. Thus we see that this is a design
decision that can significantly affect performance, which indicates that there
is room for research on even better mechanisms.
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 5.1: IPC of different benchmarks as the number of banks increase
with the no-warp shift scheme compared with the warp-shift scheme
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(a) CCS without Warp-shift (b) CCS with Warp-Shift

(c) SWa without Warp-shift (d) SWa with Warp-Shift

(e) TRu without Warp-shift (f) TRu with Warp-Shift

Figure 5.2: Comparison of read distribution in banks without and with the
Warp-Shift register assignment
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(g) CRa without Warp-shift (h) CRa with Warp-Shift

(i) RoK without Warp-shift (j) RoK with Warp-Shift

(k) DDS without Warp-shift (l) DDS with Warp-Shift

Figure 5.2: Comparison of read distribution in banks without and with the
Warp-Shift register assignment

5.2 Total number of warps

An experiment has been conducted to analyze the improvement in perfor-
mance when changing the number of warps allowed in a shader core. All the
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benchmarks were run with changing number of warps starting from 1 and
going up to 64. The number of register banks was kept constant at 4. Figure
5.3 shows the increase in IPC of the benchmarks as the number of warps
increase. It can be seen that the plot plateaus at 32 warps. This shows us
that bringing in more warps will not improve the IPC beyond that point.
There have been various studies conducted to find the optimum number of
warps in a GPU for GPGPU workloads [39, 40]. These studies indicate that
while increasing the number of warps in a shader could lead to an increase
in performance, sometimes it could also lead to a decrease in performance
due to cache pollution. Having more warps may lead to untimely evictions
of one warp’s data by the other. This leads to an increase in the number of
misses in the cache. On checking if this was the case for our workloads, we
found that there was no significant change in the number of misses.
We also investigated the cost of increasing the number of warps allowed in
the shader core. Figure 5.4 shows that the average number of registers used
in a cycle increases linearly as the number of warps is increased. This means
that the cost of improvement in performance has to be paid by increasing the
number of registers in the shader core. The slow increase in performance and
a linear increase in the cost associated with it, lead to a trade-off in deciding
the optimum value for the total number of warps. We conclude that for the
given graphics benchmarks used in this project, the number lies somewhere
in between 16 and 32, depending on the cost of adding more registers to the
core.
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 5.3: IPC of different benchmarks as the total number of warps vary
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 5.4: Average number of registers used per cycle as the total number
of warps vary

5.3 Total Number of Registers

An experiment has been conducted to analyze the improvement in perfor-
mance when the total number of registers in the register file is varied. The
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previous experiment with changing ’Number of warps’ was conducted for
different values of ’Total number of registers’. Starting from a hundred reg-
isters to seven hundred registers and an additional plot with eight thousand
registers (an arbitrary large number to set the upper limit for performance).
The number of register banks was kept constant at 4. Since we have seen
in Figure 5.4 that the average number of registers used per cycle vary with
benchmarks and ’Number of warps’, it is expected that the performance will
be affected if the ’Total number of registers’ are lower or very near the av-
erage values found previously. It is expected that for the lower values of the
variable ’Number of warps’, the performance will match that of the best case
(8000 registers), as average in those cases are below a hundred. But for other
cases, it is expected that the IPC will be lower than the best case, depending
on the benchmarks.

We see that for lower values of ’Total number of registers’ the IPC plateaus
after a point. For most benchmarks, this point is at 16 warps. It can be seen
that the IPC matches the upper limit for ’Number of Warps’ 1, 2, 4 and
8, in most cases. We also see that the IPC is significantly lower than the
best case in the case of lower values like 100 registers or 250 registers. CCS
is an exception here as the IPC matches quite close to the best case even
for 250 registers. This can be explained using Figure 5.4a which conveys
that the average number of registers used is less than 250 even in the case
of 64 warps. Analyzing all the values, we conclude that a value of around
550 registers per shader core, is enough to achieve a near-optimum IPC for
all the benchmarks. In our model of vectorised registers, this value would
correspond to a size of around 8.8 KB. This value is almost 60 times smaller
than the 256 KB sized register files that NVIDIA uses in their latest desktop
GPU architecture (Volta)[33].
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(a) CCS (b) SWa

(c) TRu (d) CRa

(e) RoK (f) DDS

Figure 5.5: IPC of different benchmarks as the total number of warps vary,
plotted for different values of Register File size. 8000 registers is used as the
best case.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Graphics Processing Units are an important part of the smartphone indus-
try and yet accurate modelling tools for such systems are not abundant.
TEAPOT, a cycle-accurate simulator for mobile-GPU workloads, is the state
of the art in this area. However, there were certain aspects of the shader core
that were identified to be in need of an update. In order to facilitate this
improvement, during the course of the project we have studied the microar-
chitecture of the shader cores of Graphics Processing Units. Previous work
in this area has been focused on general purpose workloads for the GPU. We
have specifically studied different microarchitectural design choices for the
shader cores of a GPU for graphic workloads and then chosen to implement
some of those in TEAPOT. Some of the changes made, were to make the sim-
ulator’s shader core more practical and detailed as in the case of making a
bounded register file and pipelining the Execute Units. While other changes
like introducing an Operand Collector and using register banks, were done
to imitate contemporary microarchitectures for shader cores in the industry.
Some of the designs introduced had characteristics that were parameterised
in order to study the optimum design point.

We also validated the implementation through various studies. We hypothe-
sized how the behaviour of the core would change while keeping most design
parameters constant and varying one of them. We found all the results to be
coherent with the hypotheses.
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We also conducted three experiments to further use the implemented model
of the shader core to check which design values are suited for graphics work-
loads.

The first Experiment was to see if the hash function used to assign regis-
ters to register banks was a good design choice. We found that the function
that we used (Warp-shift) showed a significant improvement in performance
compared to sequentially assigning the banks. We also checked the load bal-
ance across register banks and found that the distribution is extremely close
to a 100% balanced.

The second experiment was to check the optimum number of warps that
should be allowed in a shader core. We found that the performance of the
core improves but plateaus at around 32 warps. The cost of having more
warps is an increase in the average number of registers used. This slow in-
crease in performance and a linear increase in the cost associated with it leads
to a trade-off in deciding the optimum value for the total number of warps.
We conclude that for the given graphics benchmarks used in this project, the
number lies somewhere in between sixteen and thirty two, depending on the
cost of adding more registers to the core.

The third experiment was to check how the shader core behaved when the
total number of registers were restricted. We found that for low values of
’Total number of registers’, like 100 or 250, the performance plateaus as the
number of warps increases.

6.2 Future Work

In this project, the shader cores in TEAPOT have received a significant up-
date, but there is still room for improvement. The scheduler for the warps
to be issued uses a Loose Round Robin scheme as of now. Other popular
schedulers like the Greedy First Scheduler or the Oldest First Scheduler can
be implemented. This will greatly help in studying which schedulers suit
graphics workloads the best. The more parameterized the simulator is, the
wider the studies you can conduct on it. As an example, the front-end and
the back-end of the shader core, which is fixed at a width of two instructions
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right now, can be parameterised to have different widths so as to study the
effects of widening the pipeline for graphics workloads. The number of input
ports and output ports and the size of all the buffers in the shader core are
parameterised.

Another way is to study the new core and optimize it for graphics work-
loads. The effects that the implemented design has on power can be studied.
The hypothesis is that the buffers and logic that has been introduced might
not have a significant impact but the drastic change in the read and write
accesses into the register file may have an effect on the dynamic power. This
has potential research value. Deterministic allocation of warps to the shader
core for better load balance has the potential to improve the overall GPU per-
formance. Another possibility is to compare the techniques used for GPGPU
workloads with that of graphics workloads. Further studies can be done to
find the optimum values of different parameters in the shader core, depending
on different trade-offs.
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