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Converse flexoelectricity yields large
piezoresponse force microscopy signals
in non-piezoelectric materials
Amir Abdollahi 1, Neus Domingo 2, Irene Arias 1 & Gustau Catalan2,3

Converse flexoelectricity is a mechanical stress induced by an electric polarization gradient.

It can appear in any material, irrespective of symmetry, whenever there is an inhomogeneous

electric field distribution. This situation invariably happens in piezoresponse force microscopy

(PFM), which is a technique whereby a voltage is delivered to the tip of an atomic force

microscope in order to stimulate and probe piezoelectricity at the nanoscale. While PFM is

the premier technique for studying ferroelectricity and piezoelectricity at the nanoscale,

here we show, theoretically and experimentally, that large effective piezoelectric coefficients

can be measured in non-piezoelectric dielectrics due to converse flexoelectricity.
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P iezoresponse force microscopy (PFM) has become the go-to
technique for characterizing piezoelectricity at the nanos-
cale (particularly in ferroelectric thin films) and manip-

ulating ferroelectric polarization1,2. It is also often used as a tool
to aid establishing whether or not materials are ferroelectric or
piezoelectric; however, as has been pointed out3–8, this latter use
is delicate, because there are other physical phenomena that can
yield a piezoelectric-like response in PFM without the material
in question having to be piezoelectric.

PFM operates by delivering a voltage V to the surface of the
material via an electrically conducting tip in an atomic force
microscope (AFM). However, the application of the conductive
tip directly on the sample leads to an effective piezoelectric
coefficient that may not coincide with the intrinsic piezoelectric
coefficient of the material. Even in the ideal case of a homo-
geneous and insulating piezoelectric, the electric field itself is not
evenly distributed across the material, so the measured piezo-
electric coefficient is an average of the field-induced deformation
across the excited volume2. In addition, electric fields and
tip-induced strain gradients can cause changes in the local con-
centration of free ions in ion-conducting solids, thereby
expanding or contracting the local volume and thus giving a
piezoelectric-like deformation caused by voltage. This effect is
at the base of so-called electrochemical strain microscopy5,9,10.

Another relevant electromechanical coupling mechanism in
PFM is flexoelectricity11,12. Direct flexoelectricity is a property
allowed by symmetry in all materials, and it describes the
appearance of polarization in response to a strain gradient.
Converse and inverse flexoelectricity are the reverse phenomena
of strain induced by polarization gradient13 and strain gradient
induced by polarization14. The inverse and converse flexoelectric
effects have been experimentally demonstrated by, respectively,
applying a voltage to a capacitor and measuring its bending14,15

and by applying a voltage across a truncated pyramid so as to
generate an inhomogeneous electric field inside it, thus causing
the sample to deform16–20.

Converse flexoelectricity, like direct flexoelectricity, is allowed
by symmetry in all materials—including non-piezoelectric ones.
Therefore, it should be a necessary ingredient of any PFM mea-
surement because, when a voltage is applied to the tip, it generates
an electric field that decays as we move away from its apex,
resulting in an approximately radial electric field gradient. This
electric field gradient must induce a converse-flexoelectric strain.
Dividing the converse-flexoelectric strain by the voltage applied
to the tip will yield a non-zero effective piezoelectric coefficient
in any dielectric material. Here we demonstrate the existence of
such converse flexoelectric effect in PFM, and show that it is
quantitatively important, yielding significant piezoelectric-like
response even if the material is ionically insulating and non-
piezoelectric.

Results
Self-consistent simulation. Flexoelectricity is a two-way coupling
between polarization and strain gradient and, conversely, between
strain and polarization gradient. Both direct and converse flex-
oelectricity are characterized by the same fourth rank tensor,
and are hence allowed in centrosymmetric materials12,21. The
converse-flexoelectric stress is expressed mathematically as:

σ ¼ μ∇E; ð1Þ

where σ is the mechanical stress, E is the electric field and μ is the
fourth-order flexoelectric tensor. The excited volume below the
PFM tip is subject to the converse flexoelectric effect due to
the inhomogeneous nature of the electric field emanating from
the tip (see Fig. 1). According to the Coulomb’s law, the electric

field would decay as we move away from the tip, in a manner
approximately equal to r−2 (this field profile is modified by the
contrast between the susceptibility in the atmosphere and inside
the sample, but the physical principle still stands). The gradient
of this electric field must induce a strain via the converse flexo-
electric effect, see Eq. (1).

The exact solution of the problem is complicated due to
complex interactions between the tip, the surface and the
electromechanical response of the sample. In addition, the shape
and size of the contact area is itself a complex function of
the amount of force with which the tip is pressing on the surface,
the exact tip shape and the elastic properties of both the tip
and the sample. Moreover, the applied tip pressure induces strain
gradients in the contact region. These also induce polarization by
direct flexoelectricity. This polarization self-consistently modifies
the electric field in the material by direct flexoelectricity and
hence affect the nominal converse flexoelectric response.

In the absence of an analytical solution for this complex
problem, we examine the role of converse flexoelectricity on the
PFM response using a self-consistent computational model22,
based on a linear continuum theory of piezoelectricity23,
augmented with flexoelectricity. In this model, direct and
converse flexoelectricity are intimately intertwined manifestations
of the same coupling. The total electromechanical energy ðHÞ,
resulting fourth-order continuum equations and a mesh-free
discretization method for solving numerically these equations are
described in Supplementary Note 1.

In this work, the AFM tip is approximated as an ideal rigid
sphere in contact with an ideal flat surface, see Fig. 2a. To model a
frictionless contact, we follow the well-known Signorini-Hertz-
Moreau model24,25, which allows us to either control the tip
indentation and measure force, or control force and measure the
displacement of the indenter (cf. Supplementary Note 2). We
consider the strong indentation limit for the electrical boundary
conditions on the contact area26, which implies that the
electroelastic response of the sample dominates over electrostatic
tip-surface interactions. The strong indentation limit assumption
is valid for an applied force of F > 100 nN, commonly used in
PFM, for a typical tip radius of 50–100 nm26. In this limit, the
electrical boundary conditions are:

ϕ ¼ V ; 0 � r � a ð2Þ

Dz ¼ 0; r > a ð3Þ
where a is the contact radius, ϕ is the electric potential, V is
the tip voltage, and Dz is the vertical electric displacement.
The bottom side of the model is connected to the ground, i.e.,
the electric potential is fixed to zero, see Fig. 2b, c. We assume
the charge-free condition Dn= 0 for all other faces of the
computational domain, where Dn is the normal electric displace-
ment. Additional higher-order boundary conditions also arise
from flexoelectricity22,27 (Supplementary Note 1).

An important feature of the response is the size effect, because
flexoelectricity is caused by a gradient: the sharper the contact
is, the stronger the gradient will be, and thus the larger the
flexoelectrically-induced deformation12. Moreover, the contact
area between tip and surface grows as a function of the amount of
force with which the tip is pressed onto the surface. Accordingly,
we can expect that, upon increasing loads, the contact area
increases, and thus the AFM tip-induced electric field gradient in
the sample decreases. Gradient-induced apparent piezoelectricity
will, therefore, be inversely proportional to contact force. This
feature emerges as a useful tool to differentiate the converse
flexoelectric electromechanical response from the regular piezo-
electric response or the electrochemical strain, for which no
dependence on the contact area should be observed5,28.
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These qualitative predictions are quantitatively supported by
numerical calculations. In Fig. 3, we show the simulation results
for the effective piezoelectric coefficient as a function of contact
radius and contact force, calculated for non-piezoelectric SrTiO3.

The simulation protocol is as follows. We first progressively
indent until reaching the desired force F at V= 0, and then
the force is kept constant as the tip is electrically biased and the
induced displacement under the tip Δuz recorded. The effective
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Fig. 2 Contact of a spherical piezoelectric force microscopy tip with a flat surface. a Schematic of the contact of a spherical tip with radius R under an
applied load F which induces an indentation depth of d with contact radius a. b Axisymmetric model of the spherical contact. The rotational symmetry of
the spherical tip-sample contact allows us to employ this two-dimensional axisymmetric model in a cylindrical coordinate system (r, θ, z). c Computational
node set in the deformed configuration. The colour plot presents the distribution of the electric potential ϕ. To capture the sharp changes of the strain and
electric field in the excited volume, the computational nodes are distributed such that the nodal spacing is gradually diminishes as the contact surface is
approached. The electric potential at the nodes in the contact surface (0≤ r≤ a) is fixed to the tip voltage V (voltage source symbol). The ground symbol
indicates that the nodes on the bottom side of the model are connected to the ground, i.e., the electric potential is fixed to zero. The roller supports
represent the mechanical boundary conditions which imply that the vertical and horizontal displacements are fixed on the bottom and left sides of the
model, respectively
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Fig. 1 Schematic of piezoresponse force microscopy measurement. Piezoresponse force microscopy (PFM) operates by delivering a voltage V to the
surface of the material via an electrically conducting tip. In a piezoelectric material, the tip voltage V will cause a local deformation, h, which is assumed to
stem solely from the piezoelectric coupling. The effective piezoelectric coefficient is hence taken as deff33 ¼ h=V. However, the tip voltage induces an
inhomogeneous electric field below the PFM tip, which decays as we move away from the tip. The gradient of this electric field (∇E) must induce a strain
via the converse flexoelectric effect in all dielectrics, including non-piezoelectrics, see Eq. (1), which results in a measured deformation h, and consequently
an apparent piezoelectric coefficient
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piezoelectric coefficient is calculated as deff33 ¼ Δuz=V , where Δuz
is the tip vertical displacement under the tip voltage V, obtained
from the simulation results (material parameters and details are
given in Supplementary Note 2 and Supplementary Table 1).
These calculations are compared against the simulation results
obtained for a piezoelectric material quartz, neglecting flexoelec-
tricity and assuming an effective piezoelectric coefficient
deff33 ¼ 2:5 pmV�1. As expected, the pure piezoelectric response
shows no dependence on the applied force F. Therefore, one
can use either force or contact area dependence as a means
to qualitatively distinguish between flexoelectricity and piezo-
electricity. This flexoelectric size effect will be important in
comparison with the experimental results.

PFM experiment on non-piezoelectric dielectrics. In order to
validate our theoretical predictions, we have examined the pie-
zoresponse of two different non-piezoelectric dielectrics, SrTiO3

(STO) and TiO2. The former is a cubic material with an effective
flexoelectric coefficient of μeff13 ¼ 2:5 nCm�129 while the latter
has a rutile structure and an effective flexoelectric coefficient of
μeff13 ¼ 1:7 nCm�130. The tips used were conductive diamond-
coated Nanosensors CDT NCLR tips (k ≈ 72 Nm−1, Rtip ≈
100 nm). In order to ensure that the applied pressure did not
change the shape of the tip (and thus the validity of the contact
model), we recorded high-resolution scanning electron micro-
scopy images of the tips before and after the image. Using AFM,
we also scanned the surface topography of the crystal before and
after our piezoresponse characterization, to verify that there was
no mechanical damage of the sample (Supplementary Note 5,
Supplementary Figure 5). The effective piezoelectric coefficient
deff33 as a function of tip load is shown in Fig. 4a for the STO
crystal, and compared with the result of the theoretical calcula-
tions. The agreement is remarkable, considering that the calcu-
lation is done without any fitting of parameters. The qualitative
trend of the curve as a function of force is also an important

evidence; if the piezoresponse of the STO sample were due to
piezoelectricity31, the piezoresponse should not depend on the
indentation force (see Fig. 3). We note that Fig. 4b shows that the
decrease in piezoresponse with increasing force is not due to
a blunting of the tip, which remains spherical (with a relatively
big radius due to its diamond coating) after the measurement.
Meanwhile, the electromechanical response of TiO2 is reduced by
a factor of 0.74, as compared to STO, a proportion in agreement
with the reduction of the corresponding flexoelectric coefficients
(Supplementary Note 6, Supplementary Figure 6).

We also show that this response is not associated with
electrochemical strain because the signal is not hysterestic and the
temperature dependence is the opposite (decreases with tempera-
ture) of what one should expect if the origin was ionic conductivity
(Supplementary Note 3–4, Supplementary Figure 2–4). We also
discard a major contribution of the direct flexoelectric effect. The
tip-induced strain gradient makes the material locally polar and
thus piezoelectric, but this contribution has been observed to be
proportional to the applied force: the bigger the tip pressure, the
bigger the flexoelectrically-induced polarization32,33. In contrast, the
experimental results in Fig. 4a show that the converse flexoelectric
contribution is inversely proportional to the applied force,
indicating that the dominant effect is the converse rather than
direct flexoelectricity. The prevalence of converse flexoelectricity at
low contact forces is also relevant because most PFM experiments
are done under modest indentation forces of the order of 100 nN,
which is the regime where our calculations and measurements show
the strongest flexoelectrically-induced piezoelectricity.

Discussion
The theoretical calculations, done without fitting parameters,
show that apparent piezoelectric coefficients as high as 15 pmV−1
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Fig. 4 Study of converse flexoelectricity induced at the tip apex of an atomic
force microscope cantilever as a function of the applied force. a Effective
piezoelectric coefficient as a function of applied force for the SrTiO3 crystal.
Filled squares correspond to the values obtained after the simulation. Empty
circles correspond to the experimental values obtained with a Nanosensors
CDT FM tip with a cantilever of medium stiffness (k≈ 2.8 Nm−1) coated
with doped diamond. The error bars correspond to the error of the linear
fitting of the experimental data, which correlates the measured
electromechanical amplitude of oscillation Δh with the Vac applied voltage.
b The effective contact radius a scales with the force, and is determined
by the tip radius. The experimental tip radius is obtained after the
measurement of the nanoscale electromechanical response from the
scanning electron microscopy image of the used tip. In this case, the tip
radius of the diamond coated tip is 105 nm, and is observed to keep a
spherical shape after the measurements
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Fig. 3 Effective piezoelectric coefficient as a function of contact radius a and
force F. The flexoelectric response is obtained for non-piezoelectric SrTiO3

(STO) considering only flexoelectricity (both direct and converse). For
comparison, we show the hypothetical response of an archetypal
piezoelectric (quartz) assuming an absence of flexoelectricity. The contact
radius is obtained under the applied force, in the absence of the tip voltage.
The flexoelectric response shows a size-dependent behaviour which can
be used as a means to qualitatively distinguish between flexoelectricity
and piezoelectricity
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can be measured in a cubic, non-piezoelectric material such as
SrTiO3. To put this number into context, this effective piezoelectric
coefficient is about 6 times bigger than that of quartz, and similar
to the piezoelectric coefficient of ZnO34,35. High-performance
perovskite ferroelectrics, of course, have considerably larger pie-
zoelectric coefficients (1–2 orders of magnitude bigger), but their
piezoelectric coefficients are smaller in thin film form—which is
the type of sample typically probed by PFM. Perovskite ferro-
electric thin films typically display piezoelectric coefficients of the
order of tens, exceptionally low hundreds, of pmV−1, and thus
converse flexoelectricity can represent a significant fraction of their
total electromechanical response. Here it is important to emphasize
that flexoelectricity can and does coexist with true piezoelectricity
in ferroelectrics. This coexistence can lead to qualitatively distinct
behaviour. In particular, the amplitude of the piezoresponse, which
is independent of polarity when intrinsic piezoelectricity is the
dominant effect, can be polarity dependent when flexoelectricity
and piezoelectricity compete36.

The situation, of course, is more dramatic when the material that
is being studied is not truly piezoelectric, in which case the entire
electromechanical signal arises from other physical phenomena.
We emphasize, however, that the flexoelectrically-induced defor-
mation is not an artefact: the effect is real, reproducible and
inherent to any dielectric material. What is wrong is the inter-
pretation of this voltage-induced deformation as piezoelectricity.
The bottom line is that, since everything will look piezoelectric
under a PFM, we cannot rely on this tool alone to determine
whether a material is truly piezoelectric.

Methods
Self-consistent continuum model of flexoelectricity. The self-consistent elec-
tromechanical field equations of flexoelectricity are a coupled system of fourth-
order partial differential equations (PDEs) which demands at least C1 continuous
basis functions for a direct Galerkin method. To tackle the difficulty of solving
these higher-order PDEs in a complex setup such as PFM, we resort to local
maximum-entropy (LME) meshfree approximants37. The basis functions exhibit
C1 smoothness, and therefore a straight Galerkin approach is possible. The
potential of the resulting computational model to simulate challenging setups, such
as pyramid compression for quantifying flexoelectricity20,22, fracture of ferro-
electrics to reveal the fundamental manifestation of flexoelectricity in fracture
physics38, and piezoelectric bimorphs39 unveiling complex interactions between
piezo- and flexoelectricity, has been demonstrated. The details of this model are
presented in Supplementary Note 1. We extend this model to contact problems
to simulate the PFM experiment by considering the contact energy and its discrete
form (Supplementary Note 2, Supplementary Figure 1).

Experimental measurement of effective piezoelectric coefficient. The
effective electromechanical response was measured using a MFP 3D Asylum
Research AFM. A Vac voltage was applied to the AFM tip at a frequency of 135 kHz
and the obtained mechanical deformation h of the surface was measured by
the AFM cantilever net deflection out of resonance conditions. The deflection
signal of the cantilever was externally analyzed with a SR844 Lock-In Amplifier to
enhance the signal to noise ratio and the amplitude of the oscillation h (pm) was
recorded. To obtain the effective piezoelectric coefficient, the Vac voltage was
applied following a triangular function with a Vac amplitude of ±10 V and a period
of 80 s. The deff33 was then calculated as the slope of the linear fit between the
amplitude of the mechanical oscillation of a tip (deflection) as analyzed by the
external lock-in amplifier and the excitation voltage, following the relationship
Δh ¼ Vacd

eff
33 .

Code availability
The self-consistent computational model is implemented using an in-house C++ library.
The library source code is available from the authors upon reasonable request.

Data availability
All data presented in this work are available from the authors upon reasonable request.
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