
 

 

 

FINAL DEGREE THESIS 

Mechanical engineering degree 

VIRTUAL MIRROR: KINECT AND UNITY INTEGRATION 

 

 

 

Memory and annexes 

 

Author:  Albert Ruiz Gracia 
Director:  Jordi Torner Ribe 
Co-Director:  Gil Serrancolí Masferrer 
Convocatòria: October 2018 
  



 

  



VIRTUAL MIRROR 

  i 

Abstract 

Virtual reality (VR) technology is every day becoming a more popular application for physical 

rehabilitation and motor control research. The goal of this project is to help with the rehabilitation of 

patients with injuries that affect their mobility or people with movement disability,  remotely. There 

are studies that show that the visualisation of our own movements in an augmented way, nourishes 

our brain positively and accelerates the recovery. 

This Kinect-based rehabilitation application consists in accessing the Kinect body joints orientations 

defined with quaternion and apply them, through a code in Visual Studio (VS), to our avatar in Unity. 

Kinect is our input that captures the trajectories of skeleton points. Those data are received in Unity, a 

game development engine. We then wrote a code in VS to process those data and, once the joint 

orientations were processed, we were able to apply them into an avatar in Unity so that it reproduces 

our movements in real-time.  

The project opens a door to a wide variety of future medical applications since a full human body is 

tracked and can help with any possible avant-garde rehabilitation techniques. 
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Resumen 

La tecnología de realidad virtual (VR) se está convirtiendo cada día en una aplicación más popular para 

la rehabilitación física y la investigación de control motor. El objetivo de este proyecto es ayudar a 

rehabilitar a distancia a los pacientes con lesiones que afectan su movilidad o personas con 

discapacidad motriz. Hay estudios que muestran que la visualización de nuestros propios movimientos 

de una manera aumentada, nutre nuestro cerebro positivamente y acelera la recuperación. 

Esta aplicación de rehabilitación basada en Kinect consiste en acceder a las orientaciones de las 

articulaciones del cuerpo de Kinect definidas con cuaterniones y aplicarlas, a través de un código en 

Visual Studio (VS), a nuestro avatar en Unity. Kinect es nuestra entrada que captura las trayectorias de 

los puntos del esqueleto. Esos datos se reciben en Unity, un motor de desarrollo de juegos. Luego 

escribimos un código en VS para procesar esos datos y, una vez que almacenamos las orientaciones de 

las articulaciones, pudimos aplicarlos en un avatar en Unity para que reproduzca nuestros movimientos 

en tiempo real. 

El proyecto abre la puerta a una amplia variedad de aplicaciones médicas futuras ya que se hace un 

seguimiento de todo el cuerpo humano y puede ayudar con cualquier técnica de rehabilitación de 

vanguardia. 
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Resum 

La tecnologia de realitat virtual (VR) es converteix cada dia en una aplicació més i més popular per a la 

investigació de rehabilitació física i control del motor. L'objectiu d'aquest projecte és ajudar a la 

rehabilitació de pacients amb lesions que afecten la seva mobilitat o persones amb discapacitat de 

moviment, de manera remota. Hi ha estudis que mostren que la visualització dels nostres propis 

moviments d'una manera augmentada, nodreix el nostre cervell de forma positiva i accelera la 

recuperació. 

Aquesta aplicació de rehabilitació basada en Kinect consisteix a accedir a les orientacions de les 

articulacions del cos de Kinect definides amb quaternions i aplicar-les, a través d'un codi en Visual 

Studio (VS), al nostre avatar en Unity. Kinect és la nostra entrada que captura les trajectòries dels punts 

d'esquelet. Aquestes dades es reben a Unity, un motor de desenvolupament de jocs. A continuació, 

vam escriure un codi en VS per processar aquestes dades i, un cop emmagatzemades les orientacions 

de les articulacions, vam poder aplicar-les a un avatar en Unity perquè reproduís els nostres moviments 

en temps real. 

El projecte obre una porta a una àmplia varietat de futures aplicacions mèdiques, ja que es fa un 

seguiment de tot un cos humà i pot ajudar-se amb qualsevol possible tècnica de rehabilitació 

avantguardista. 
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1. Preface 

Technology has changed the way we communicate, listen to music, exercise, do the shopping, play 

games and much more. It is not surprising that technology has an impact on the healthcare industry. 

Healthcare technology is helping people live longer, reducing wait times and making it easier for 

doctors to diagnose diseases.  

Here is where a directed telerehabilitation system based on new technologies of virtual reality plays a 

role. The first thought about Virtual Reality is to turn to a modern VR headset as well as all of the various 

PC applications which are beginning to include virtual-reality support. Virtual-reality actually has an 

extensive history with a concept that dates all the way back to the 1930s and developed until what we 

nowadays know as Virtual Reality as shown in figure1.1. 

 It was in the 1935 when Stanley G. Weinbaum, an American science fiction writer, created a story 

called Pygmalion's Spectacles. In the story, the main character, Dan Burke, met an elfin professor, 

Albert Ludwig, who invented a pair of goggles which as Stanley said, "enabled a movie that gives one 

sight and sound taste, smell, and touch. You are in the story, you speak to the shadows (characters) 

and they reply, and instead of being on a screen, the story is all about you, and you are in it" (1). 

Later in 1968 Ivann Sutherland, with the help of his student Bob Sproull, created the first VR head 

mounted display system. It was simple and primitive, and it was used only for military purposes but it 

was the first approach and the starting point to the VR headsets that are used nowadays.   

The next milestone was when it was first introduced to the masses. In 1995, Nintendo created "Virtual 

Boy", it was the first portable game console capable of displaying "true" 3D graphics. It was reported 

by many that prolonged use of the Virtual Boy gave you headaches and some even claimed it to induce 

seizures, so less than a year since its launch it was discontinued. 

Finally, in April 2012, Luckey announced a virtual reality headset designed for video gaming, and 

launched a Kickstarter campaign to make virtual reality headsets available to developers. Then, in 2014, 

Facebook CEO Mark Zuckerberg agreed to acquire Oculus VR. Later on, many uses would be given to 

Virtual Reality, not only for gaming purposes, but for 3D modelling or even telerehabilitation for 

patients with movement disability. 
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In the past years, parallel to VR progress, low-cost depth-sensing cameras used for VR purposes, have 

also become commercially available, including the well-known Microsoft Kinect, which have made it 

possible to sense the full-body pose for multiple users without the use of markers or handheld devices 

(2). As we know, VR also has continued its development until the point of having a wide range of 

applications. 

When a technology is so developed and studied as VR is nowadays, we must go further on the 

technology's applications. We need to focus on applications that can make a real difference in this 

world and improving people's life is one way of achieving it.  This is how our project was born, by the 

necessity of helping people's health through a remote rehabilitation application. A positive input is sent 

to our brain by seeing our own movements in an augmented way. 

With the only need of a depth-sensing camera, a game development software and VR glasses we can 

develop a application to accelerate the rehabilitation of people with physical impairment or just 

physical injuries. 

 

Figure 1.1 Virtual Reality evolution 
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1.1. Motivation 

One of the main objectives is offering patients a remote rehabilitation therapy without the need of 

medical assistance. At the same time, it is possible to record these data for a later patient analysis that 

will help to a patient progression control. Nowadays is really important to make those technologies 

and applications affordable for everyone and we can ensure that this low-cost VR application can 

ensure good results as multiple projects have been carried out on this topic as explained on state-of-

the-art. 

 

1.2. Previous requirements 

This Kinect-based application for VR, as mentioned before, as a low-cost application, not many 

requirements are needed. The Kinect v2 developed by Microsoft was used to capture the body joints 

data and the software was written in the C# programming language and developed by the Unity3D 

video game engine. The software used list in this project is: 

 Software development kit 2.0 (SDK) 

 Visual Studio 2017 

 Unity 3D 

 Windows 8 
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2. Introduction 

Rehabilitation technology can allow patients with movement disability exercise at home under 

supervision of their rehabilitation team. Currently it is unclear how effective this approach is. Patients 

who are assisted by new rehabilitation technology at home are expected to have better fitness and 

less symptoms. This approach can be extended to people with different diseases related to mobility 

impairment and it can be used not only for physical but also for cognitive and occupational 

rehabilitation. The tracking of human movement is also implemented on the analysis of sport athletes 

performances in order to improve their results or just for clinical purposes (3).   

 In this project we present the first step to develop an application to help people's rehabilitation by 

interacting with VR. It is proved that it feeds the brain with positive inputs which can accelerate the 

person's recovery.  The project is divided in three parts: the Kinect integration to its use, coding the 

body movements in C# in Visual Studio (VS) and the load all the gestures data from VS into an avatar 

in Unity 3D. 

 

2.1. Objectives 

This project is a Kinect-based rehabilitation application for patients with mobility impairment or injuries 

that affect the person's mobility. It represents the first step into developing a full VR game where 

patients could see themselves in a daily life environment through VR headsets. 

The main objective of this thesis is to animate an avatar in real time by following our own movements. 

In order to do this, Microsoft Kinect V2 will be used as a motion capture (MOCAP) sensor, which allows 

you to obtain digitally the position and orientation, in the three-dimensional space, of the different 

anatomical points of the subject in each frame, at a speed of 30 fps (frames per second). In each frame, 

these data are sent to the avatar model in order to reproduce in real time the subject body position 

captured by the sensor. Through Visual Studio (VS) we are able to code, in C#, the functions needed in 

order to integrate these data acquired by the sensor and apply them into the avatar joints in Unity so 

it reproduces our desired movements. Unity framework is used to implement our system because it 

enables us to use virtual reality techniques to see detailed movements of the patient. 

The key contribution of our research is a rule-based approach to real-time exercise quality assessment 

and feedback. 
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The partial objectives of this project: 

 Obtaining the desired body joints orientations from our Kinect sensor  

 Establish connection between Kinect and Unity. Connecting those different API is a must when 

trying to develop an application in VR. We have to be able to call our Unity GameObjects by 

defining some functions 

 Real-time avatar movements following the subject gestures, as if it was a mirror, by applying 

the quaternions acquired from the Kinect into our avatar 

 

2.2. Scope 

This project is the first part into developing a full VR application for rehabilitation purposes. It is based 

on acquiring the data from the Kinect sensor, processing these data, integrating Kinect with Unity 

thanks to the "Unity Pro Package", applying these data on the avatar and, in real-time, watch your own 

movements in your PC displayed through an avatar. 

However more improvements and further research has to be made. Future students’ projects will take 

this project as a starting point and continue its development by integrating this system into a VR 

environment to achieve the user immersion. A HMD will be used through which the VM will be 

rendered with the avatar, along with a suitable and modifiable virtual environment that can influence 

positively on the evolution of the affected subjects. 
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3. State-of-the-art 

Because of their attractiveness and potential, several studies have been dedicated to Motion Capture 

(MOCAP) cameras and its integration on avatars for VR purposes. Motion capture techniques are used 

over a broad field of applications, ranging from gaming animations for entertainment to biomechanics 

analysis for clinical and sports applications. Due to some comparisons with other optical motion 

capture system, it is known that Kinect offers enough precision for most applications (4) so we can 

ensure a better quality control process for example for our patient rehabilitation application. 

 In the field of rehabilitation technologies previous projects have been done. Mainly what those show 

is that this technology is used to reduce staff and enhance participants' motivation, interest and 

perseveration. The participants on those studies significantly increased their motivation for physical 

rehabilitation, so they improved their exercise performance (5),(6). However our project is more 

focused on working with the patient's brain in terms of seeing each other own movements augmented 

so that they receive a positive input and accelerates the rehabilitation.  Other studies are focuses on 

developing also a rehabilitation application but with emphasis on adults with neurological injuries (7). 

Their main goal following spinal cord injury (SCI) and traumatic brain injury (TBI) is to promote a 

maximal level of recovery. Full reintegration into the community are the ultimate goals Our project is 

related to the neurological injuries applications but we don't acquire that level of detail as we work not 

only for those injuries but for people with mobility impairment or simply physical injuries 

rehabilitations. 

On the other hand, there are applications that also combine a simple motion capture (MOCAP) camera 

with Unity or other 3D software but are more focused on the user experience than any health care 

connotation. All those projects, although its objectives, have the same background as they collect data 

from Kinect, they process those data and send information to a software. Some of them, as mentioned 

before, are focused on improving athletes’ performance. They describe a novel system that 

automatically evaluates for example dance performances against a gold-standard performance and 

provides visual feedback to the performer in a 3D virtual environment. The system acquires the motion 

of a performer via Kinect-based human skeleton tracking, making the approach viable for a large range 

of users (8).  
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4. Kinect sensor 

The Kinect sensor is motion capture devices based on a webcam-style add-on peripheral. It enables 

users to control and interact with their console/computer without the need for a game controller, 

through a natural user interface using gestures and spoken commands. Kinect is a marker less and low-

cost technology that guaranties enough precision for most applications like rehabilitations treatments. 

It is composed of two cameras, a Red-Green-Blue (RGB) camera equipped with a standard 

complementary metal–oxide–semiconductor (CMOS) sensor through which the coloured images of 

persons and objects are acquired, and an infrared (IR) camera (Figure 4.1). The IR emitters and the IR 

camera form the 3D sensor are shown in Figure 4.2. 

 

 

 

Figure 4.1 Kinect parts (Frontal view/Kinect OFF) 
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Figure 4.2 Kinect parts (3D view/Kinect ON) 

 

4.1. Sensor characteristics  

The IR sensor is based on Time of Flight (ToF) principle as shown in Figure 4.3. The basic principle is as 

follows: knowing the speed of light, the distance to be measured is proportional to the time needed by 

the active illumination source to travel from emitter to target. Thus, matricial ToF cameras enable the 

acquisition of a distance-to-object measurement, for each pixel of its output data (9). 

The Kinect sensor as shown in table 4.1 has the following properties and functions: 

 An RGB Camera that stores three channel data in a 1280x960 pixel resolution at 30Hz. The 

camera’s field of view as specified by Microsoft is 43° vertical by 57° horizontal. The system 

can measure distances with a 1cm accuracy, at 2 meters distance 

 An infrared (IR) emitter and an IR depth sensor used for capturing depth image. The IR sensor 

is based on Time of Flight (ToF) principle as shown in Figure 4.3. Thus, matricial ToF cameras 

enable the acquisition of a distance-to-object measurement, for each pixel of its output data 

(9). 

 An array of four microphones to capture positioned sounds 

 A tilt motor which allows the camera angle to be changed without physical interaction and a 

three-axis accelerometer which can be used to determine the current orientation of the Kinect 
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Table 4.1 Kinect specifications(10) 

 

 

Figure 4.3 Distance measurement of ToF cameras(9) 
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4.1.1. Kinect software development kit for Windows (SDK) 

In order to work with Kinect in the computer, it is required to download the Kinect Software 

Development Kit (SDK) 2.0 developed by Microsoft for the Kinect sensor. 

The Windows SDK provides us with several libraries for creating Windows applications that use native 

code and  provides us with script samples so it can help us to begin with our programming. Microsoft 

states that the SDK 2.0 enables developers to create applications that support gesture and voice 

recognition.  It is possible to create applications using the device, and the positions of 25 human joints 

can be estimated using de body tracking algorithm (11). Using this algorithm, the body joints are 

inferred using a machine learning algorithm called randomized decision forest. 

Figure 4.4 shows how Kinect communicates with an application. The SDK in conjunction with the 

Natural User Interface (NUI) library provides the tools and the Application Programming Interface 

(APIs) needed such as high-level access to colour and calibrated depth images, the tilt motor, advanced 

audio capabilities, and skeletal tracking (12). 

 

 

Figure 4.4 Kinect interaction with an application(12) 
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5. Application Programming Interface (API) 

The formal definition of API by TechTerms states that “An API is a set of commands, functions, 

protocols, and objects that programmers can use to create software or interact with an external 

system. It provides developers with standard commands for performing common operations so they 

do not have to write the code from scratch ". There are many different types of APIs for operating 

systems, applications or websites. Kinect and Unity have each one a different API and one of our goals 

is to communicate those API. 

Visual Studio (VS) is a programming environment from Microsoft in which a programmer uses a 

graphical user interface (GUI) to choose and modify preselected sections of code written in the BASIC 

programming language. The programming language used to program in Unity is C# (C Sharp). It's a 

language that is derived from C and C ++ and was created by Microsoft as part of the .NET platforms. 

  VS user works with scripts. In computer programming, a script is a program or sequence of 

instructions that is interpreted or carried out by another program rather than by the computer 

processor. 

The integrated development environment (IDE) of the project was Visual Studio 2017. This program 

allowed the creation of the necessary scripts thanks to automatic construction tools or the easy 

detection of errors. C# is a quite elaborate programming language. In addition, this language has 

countless predetermined functions that allow performing many different operations easily. 
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5.1. Kinect 

The Kinect libraries allow us to detect the three-dimensional positions of 25 anatomical points 

distributed on the user's body. Each detected point can refer to a real joint (neck, shoulders, hips, 

pelvis, elbows, knees, wrists or ankles) or to the centre of a body segment as showed in Figure 5.2. A 

Joint is a structure that includes: 

 The position in the 3D space 

 The type/name of the joint 

 The tracking accuracy 

The goal of tracking the human body segments is to get their orientations. The accuracy of how the 

joint positions is sensitive to the position and orientation of the camera regarding the location of the 

body (13). For example, self-occlusion of some body parts by other parts could lead to a poor skeleton's 

model estimation by the camera. So a possible move for the future could be using more than one 

Kinect to improve this tracking. 

The body joints have the following information: 

 Position: It represents the absolute position of each body point through a 3D vector. 

 Orientation: the body orientations are captured as absolute rotations respect to the (Figure 

5.3). The rotations are represented by quaternions (x, y, z, w). A quaternion is an axis in 3D 

space with an angle of rotation around the axis. Four values make up a quaternion, namely x, 

y, z and w. Three of the values are used to represent the axis in vector format, and the forth 

value would be the angle of rotation around the axis. They are, specifically, unit quaternion 

and they avoid the Gimbal lock problem. 

Gimbal lock (Figure 5.1) is the loss of one degree of freedom on a three-dimensional. That 

occurs when the axes of two of the three gimbals are driven into a parallel configuration, 

leading into a degenerate two-dimensional space. 

 

Figure 5.1 Gimbal lock problem(14) 
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Figure 5.2 3D skeleton joints tracked 

 

 

Figure 5.3 Kinect skeleton joints hierarchy 
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5.2. Unity 3D 

Unity gives users the ability to create games in both 2D and 3D, and the engine offers a primary 

scripting API in C#, for both the Unity editor in the form of plug-in, and games themselves, as well as 

drag and drop functionality.  

Making the Unity work is really simple. A project is created and it consists on different scenes, which 

contain different elements known as "GameObjects".This basic element in Unity is the main class in 

which the rest of the attributes are added as components, scripts, audio sources, cameras, etc. The 

way to organize is through scenes which represent the different levels of the application, from the 

menus to the credits (15). 

The objects of a scene are created by loading and destroyed when changing to another, so to preserve 

any of the objects between scenes must be specified by code. Some of the most important components 

of the GameObjects are: 

 The renderer, which ensures that the object is visible, giving it a shape and color or texture 

  The rigidbody and collider, responsible for managing collisions with other elements and, in 

particular, rigidbodys, physical characteristics 

  The camera represents the vision that will have each level 

  The component to which scripts are added 

Some of the attributes of the components can be edited both by code and from the editor as are the 

public variables of the added scripts. All components can be enabled or disabled except the transform 

that comes by default in all gameobjects and decides the position, rotation and scale of each object. 

To facilitate the creation and multiplication of objects, prefabs are used. They act as temaplates from 

which you can create new object instances in the scene and can be made to which they are assigned a 

previously configured object to then be able to instantiate them by code or from the editing window 

of Unity3D. 

The life cycle that the gameobjects follow is based on the classic life cycle of the graphic engines. They 

are initialized for the first time and then they enter in a loop until it is destroyed. In the loop the code 

or animations updates are made and the object is rendered until it is destroyed. 

We use the library offered by Unity3D called UnityEngine and the scripts must inherit from the 

MonoBehaviour class that helps us access to several methods used in our projects. 
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The Unity display is really intuitive and approachable to any user with little experience on this field of 

game development. Below is shown how to easily cope with this sofware as the common display 

structure is defined in figure 5.4: 

1. These are three selectable tabs: 

 Scene is used to select and position scenery, characters, cameras and other types of 

Game Object. 

 Game shows our final game when all is ready. 

 Asset store is a platform where we can find several applications and pruchase some 

games. 

2. The project window give us a view of oy project folders where we have all of our scripts, assets, 

pluggins, etc... Here we can also drag and drop anything to include it in our project. 

3. Those are the play mode buttons, while the play button is on yor game will be running until 

you press play again. 

4. The console give us feedback of anything that occurs while the porgram is running such as 

warnings or errors. 

5. On the Hierarchy tab we have our GameObjects classified so whenever we want to edit one 

we just need to select it and then access the information displayed on the Inspector tab. 

6. The inspector give us detailed information of the GameObject currently selected and we can 

also attach scripts to our desired GameObject as explained later on. 

 

Figure 5.4 Unity 3D display 
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5.2.1. Avatar set up 

The first step in Unity is to integrate the avatar into our scene. Scenes contain the environments and 

menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your 

environments, obstacles, and decorations, essentially designing and building your game in pieces (16).  

 

Figure 5.5 Unity avatar scene display 

As we are getting the avatar (17) from outside Unity,  it is needed to import it and any related textures 

into the assets folder in the project window.  After you the model in the assets folder, we must ensure 

it has the correct settings set, under the rig tab (Figure 5.6) in the inspector the Animation Type should 

be set to Humanoid. 

Setting up a humanoid Avatar in Unity involves matching every “human bone” to one of the transforms 

in the model. It’s possible to do this manually in Unity by clicking Configure. Selecting the Configure 

Avatar mode to check that your Avatar is valid and properly set up as shown in figure 5.6. It is important 

that the character’s bone structure matches Unity’s avatar predefined bone structure and that the 

model is in T-pose(16) because is the pose predefined in Unity. As the avatar is now humanoid, it allows 

to map the avatar body. The Avatar Mapping (figure 5.7) indicates which of the bones are required 

(solid circles) and which are optional (dotted circles). Unity can interpolate optional bone movements 

automatically. 

Once the avatar is correcty defined, it has to be dragged into the hierarchy or directly to the scene. 
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Figure 5.6 Configure Avatar mode 

 

 

 

Figure 5.7 Avatar Mapping 
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6. Evaluation 

In this section, we describe the experimental part of our Kinect-based rehabilitation system and the 

design of the avatar movements in Unity 3D. 

6.1. Kinect and Unity integration 

In 2014, Microsoft released a Unity3D plug-in for the Kinect 2. A package called "Unity Pro packages" 

is available to install from the Microsoft Kinect SDK for Windows site (18). It is used for Kinect-based 

applications development through Unity. The package is simply imported, and all required assets will 

appear in the project. 

The package, contains three more packages inside. The first file "Kinect.2.0.xxxx.unitypackage" 

contains base functionality of Kinect SDK for Unity. That is our plug in, along with all the scripts needed 

to build a Kinect-enabled Unity application it will allow tracking bodies, leans, colours and so on. But if 

you want to use functionality, related to face recognition (emotions, face HD tracking etc.), the second 

package is required, Kinect.Face.2.0.xxxx.unitypackage. Finally, the last package contains API which will 

help to use data from Visual Gesture Builder in order to simplify a way to understand predefined 

gestures. 

Kinect Sensor command is used in order to have access to Kinect. Kinect Sensor class provides some 

properties, which allows us to get sources’ references. Since it is important to know basic body 

movements only, as Kinect itself calculate all the body movements by interpolating between those 

basic body movements, just the "BodyFrameReader" command will be used. Additionally, an array of 

Body class is needed in order to store current information about the body as shown in Figure 6.1. To 

"Kinectize" the game, an invisible GameObject called "Body[] _Data", which exchange data from Kinect 

and the game, is inserted. 

 

 

Figure 6.1 Kinect commands for Unity projects 
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6.2. Kinect 

On this chapter, the coding part of the project is described. Two scripts will be treated as those are the 

scripts in C# used to achieve our objective, apply the orientations into the avatar. 

6.2.1. Main script: BodySourceView  

 
First, Kinect body joints dictionary needs to be defined (Figure 6.2) similar to the Kinect Body 
Basics sample so we can call any joint and work with them. If we did not have this dictionary, our 
script wouldn’t get this information which is crucial. 
 

 
Figure 6.2 Body joints dictionary 

 
All the processes referring to the body tracking will be called after an "if (body.IsTracked)" 
condition (Figure 6.3) so false or contaminated data is not captured. That means that only when 
the Kinect detects that there is a body on its field of view, the script will begin to store, frame per 
frame and the orientations. 
 
 

 
Figure 6.3 Body tracked condition 
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The 25 joints that Kinect tracked are analysed and to their properties can be accessed. Before coding 

and getting those orientations, a checking if the Unity avatar joints matches the skeleton Kinect joints 

must be made. They do not match perfectly as the Unity Automap (Figure 6.4) gives a wide range of 

joints and some of them are named and placed different comparing to the Kinect default skeleton.  In 

order to match both joint skeletons, a matching list was made comparing Figure 5.2 and 5.7 as shown 

in Table 6.1. As seen in the table, there are 22 joints that matches both API, Kinect and Unity. SO, the 

project will consists on analysing those 22 joints. 

 

Figure 6.4 Auto mapped Joint GameObjects 
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Table 6.1 Unity and Kinect joints 
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6.2.1.1. Quaternions (Orientations processing) 

Now that it is ensured what joints are going to be processed, we can access now the joint properties, 

in particular, the orientations. As mentioned before, the orientations are defined by quaternions. In 

Computer Graphics, quaternions are sometimes used in place of matrices to represent rotations in 3-

dimensions (19). Quaternions ensure us a smooth and direct interpolation. 

 By default Kinect have all the 25 joints stored as well as their transform which includes the position, 

orientation and scale.   

It is possible to access the joint information by a series of commands proper to C# as shown in Figure 

6.5a-6.5b. The variable orientation[i] (with "i" going from 1 to 22) saves and updates frame per frame 

the orientation of each joint.  The quaternion variables (x, y, z, w) are given by radians but if an 

orientation wants to be changed manually, directly in Unity, the orientations must be written in 

degrees as Unity only works with quaternion internally.  

 

 
Figure 6.5a Access to joint Kinect orientations 
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Figure 6.5b Access to joint Kinect orientations 
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6.2.2. BodySourceManager script 

This script is a must in every project that involves Kinect and Unity as explained later on. 

First of all, all the variables must be declared, if we declare a variable private, it means they are 

accessible only within the body of the class or the structure in which they are declared. On the other 

hand, if we declare it public, the variable can be accessed from outside the class where is defined. 

The function Start is called once when a script is enabled just before any of the Update methods are 

called the first time. Start is called exactly once in the lifetime of the script. In the figure 6.6a, what we 

will call from the Start function will be getting the Kinect sensor ready and activated once the program 

is started.  

Continuing with the script, we now focus on the Update function. As mentioned previously, here we 

write those functions that we want to be updated every frame. As shown in figure 6.6b, a function is 

created which will store every new data frame so it doesn't overlap.  

Finally, we need a function that closes our sensor once we end the application session. We set the 

"OnApplicationQuit()" function to assure the full closing of the sensors used because as mentioned 

before any false data before or after the run of the application is wanted. 
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Figure 6.6a BodySourceManager script  
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Figure 6.6b BodySourceManager script  

 

This script must be dragged into our main script, in the inspector window in order to be initialized at 

the same time as the main script and the avatar. 
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6.3. Avatar movements 

Once the avatar is fully functional and the joints are mapped we can move on by attaching the 

BodySourceView script to the humanoid model. We need to drag this script from the project window 

to our avatar in the inspector window. We are able to apply every command we want to the avatar 

although it will not respond because we did not relate the orientations stored in the script with the 

avatar joint GameObjects. In Figure 5.4 (sector 6) we can see that we put the script into our avatar and 

it is marked as "okay".  

Now we have to return to our main script (BodySourceView) where we calculated all the joints 

rotations because we need to call those joints from the avatar.  In Figure 6.7, the function called, 

"articulacions" consists on an array of joints transforms.  As stated before, it is used to store and 

manipulate the position, rotation and scale of the object. In our project we only focus on the rotations 

transform. This array at first is empty and requires inputs. 

 

Figure 6.7 Joint transforms function 

Returning to the hierarchy window in Unity, the script, where we placed the function  mentioned 

before, is selected. In the inspector, appears a box with the function name "articulacions" and  the size 

of it is 0. That means the array has no information. It is needed to write the number of joints that are 

wanted the transform from. Now, there are joint rotations values of 22 joints.  

Now manually every joint GameObject from the avatar hierarchy must be dragged and dropped, 

matching the order defined previously on the BodySourceView script, on the blank spaces in 

"articulacions"  as shown in Figure 6.7. C# arrays are zero indexed, which means that the array indexes 

start at zero. The default number of array elements is set to zero and the reference element is set to 

null. 
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Figure 6.8 Avatar joint GameObjects 

 

 

Now it is possible to call from our script the joint GameObjects classified in Figure 6.8. The process 

would be the same as the one followed from entering to the Kinect orientations. But in this case, 

another variable is created to save, frame per frame, the Kinect orientations.  
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As Kinect and Unity have different quaternion definitions on their orientations, the new variables are 

defined as “UnityEngine.Quaternion variable_name" so later can be transferred to the Unity joints. 

Due to the fact that those quaternions are defined differently, we cannot equal the new variables with 

the Kinect orientations. So the process will be equalling value per value accessing to the quaternions 

variables as shown in Figure 6.9.  

Now the new variables are prepared to take the Kinect orientations values. So the next step is applying 

those Unity orientations into our joint avatar GameObjects. This is the most important step since it is 

the main objective. Note that all rotations occur in absolute space, both Kinect and Unity orientation. 

As it is known, the function "articulacions[]" save all the avatar joints that we defined on the inspector 

window in Unity. As shown in Figure 6.9, we access every joint orientation and apply the new 

orientations frame per frame, as commented many times. "articulacions[].rotation" allows to work 

with the rotation of the transform in world space as a Quaternion. 

 

Figure 6.9 Quaternion application code on avatar Neck example 

At this point, all the quaternion were applied to each avatar joint. However, the avatar was not 

following our movements correctly because in order to use those rotations it’s necessary to know what 

position a given bone is being rotated from. For example, if a person’s arm is to be rotated “up” by 

ninety degrees, the final direction the arm is pointing, is different if the arm started off pointing forward 

as opposed to pointing straight down. What it means is that every bone has its own coordinate system 

so if it does not match the Kinect coordinate system we will have to apply rotations. 

 

 

 

 

6.3.1. Coordinate systems adaptation 

In this section we state how to work with different coordinate systems between two API, Kinect and 

Unity. In order to use the Kinect data, it is necessary to “remap” the Kinect rotations so that they treat 
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bones as being aligned along the desired axis. Then, it is important that each bone is oriented so that 

its three vectors are pointing in the same direction as the Kinect data. 

The "SpineMid" joint example is showed in Figure 6.10-Figure 6.11. The "SpineMid" has its own 

coordinate system and it is not the same as the coordinate system from Kinect. At this point, a rotation 

is needed so those coordinate systems match.  

 

                                       

Figure 6.10 Kinect skeleton local coordinate system       Figure 6.11 SpineMid Unity coordinate system 

 

Note the avatar is being watched from behind. First, the X axis will be rotate to be aligned as the Kinect 

X axis (pointing right). An auxiliar quaternion needs to be created to rotate about the Z axis -90 degrees. 

Now the X axis is orientated to the desired direction (right) but the Y axis is pointing down and the Z 

axis pointing at us. In order to correct the Y and Z axis, a rotation of 180 degrees is applied to the Y axis 

so the Kinect coordinate system is achieved as shown in Figure 6.12. 

 

Figure 6.12 Coordinate system rotated 

 

As mentioned before, the code to rotate those quaternion is created. The rotation quaternion are 

created as auxiliar quaternion to rotate the bodies.  We create as many auxiliar quaternion as axis 
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rotations to be made. Then in order to apply those quaternion we multiply the new orientations from 

the kinect to the auxiliar quaternion. As a result, it is obtained a new quaternion ("or3_new") with the 

rotations applied. 

Finally, the "or3_new" quaternion is applied and the avatar can now follow our movements correctly 

as desired. 

 

 

Figure 6.13 Coordinate systems adaptation code 

 

This process needs to be made through all the joints. However, there are groups of joints that use the 

same rotations. For example, all the spine joints have the same coordinate system so the same auxiliary 

quaternion are applied to them in order to achieve our objective. 
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7. Results 

In this section, the data obtained, through our code will be showed as a txt file.  Before that, we have 

all the avatar rotations in an array where all the 22 joints are placed as shown in Figure 7.1. The array 

has 22 rows, like the amount of joints studied, and 4 columns, like the 4 quaternion variables (x, y, z, 

and w). Once the array is defined, a for loop command (Figure 7.2) can be created in order to evaluate 

each array value. The for loop executes a block of statements repeatedly until the specified condition 

returns false. Note that the quaternion are rounded to 4 decimals so we can analyse the data easily. 

 

Figure 7.1 Orientations array 

 

Figure 7.2 Txt for loop 
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Now the quaternion applied to the avatar are printed on a txt file (Figure 7.3) to make sure, the 

orientations of the avatar are correct or at least, no false data is received. In Figure 7.3 show the 

quaternion obtained in a upright body posture with no movements.  

 

Figure 7.3 Orientations array txt (One frame) 

The Figure 7.3 show that even though the body posture is still, there are initial rotations which come 

from the initial coordinate systems adaptation. This txt file show the same joint order followed during 

the project. So, it is fast to analyse the desired joint. There are some values from which there is no 

information of its orientation or simply they are 0. 

 Head: This joint give us 0 values because the parent bone of the joint Head is itself. Unity 

defines rotations with quaternion of solids relative to the ground, except solids that do not 

have a parent joint, which assigns a zero value. 

 FootLeft/FootRight: Those joints give 0 value because leaf joints have no orientation data. 

 ThumbLeft/ThumbRight: Those joints have the same problem as the feet. The give 0 value 

because leaf joints have no orientation data.  

For leaf joints the orientation quaternions returned have all components set to 0.  

 

x y z w 

 

Head 

ThumbRight 

FootRight 

ThumbLeft 

FootLeft 
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8. Environment impact analysis 

This project does not have an environmental impact as itself, since during its realization no residue is 

created. The only cost to consider is the energy used by the electronic devices during the execution of 

the project but the cost associated to this is minimum compared with the electricity consumption of 

the facilities of the Barcelona East School of Engineering (EEBE). 

What is more, telerehabilitation means environmentally friendly. Emissions are reduced because we 

can minimize the number of trips to a physical therapy centre. Each telerehabilitation unit is a small 

emissions saving, and this savings can be significant if these services extend widely to the society. 

Finally, we must consider the deterioration of the electronic equipment used: the Microsoft Kinect 

sensor and the computer. Once they have reached the end of their useful life, they must be withdrawn 

as indicated Directive 2012/19/EU of the European Parliament and of the Council on the waste of 

electrical equipment and Electronic (waste electrical and electronic equipment - WEEE) (20), which sets 

the objectives of its collection, recycling and recovery. 
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9. Improvement proposals and future applications 

In the contemporary world, computer is a source of fun for most people. They spend up to a couple of 

hours per day in front of the screen, which points to the fact that interactive games keep the people’s 

attention. Besides the motivational aspect, the advantage of computer technology is that the practical 

element resembles real life situations and as such allows the user to make mistakes and learn in a safe 

environment.  

VR offers a unique medium in which rehabilitation treatments can be offered within a functional, 

purposeful and motivating context, which can be readily graded and documented. 

As it was first said, this project is the first step into developing a full rehabilitation VR application 

integrating Kinect v2 and Unity. So, the next step is creating a full environment on Unity to improve the 

patient experience. This environment could simulate daily life situations such as supermarkets, parks, 

etc.  

Another possible functionality to implement in the future would be the management of different users 

and the register of their progression. When the user logs in their account, the percentage of the 

improvement achieved in each movement will be shown. This feature will allow us to easily manage 

and modify the recorded movements. In that case, it would be useful to tell a patient with, for example, 

an arm injury, if the movement they are doing in the rehabilitation is being correct or not.  

In the midterm, those rehabilitations applications will be thrown out to the next level. The next 

progression of VR will be AR (Augmented Reality).  In the AR world, you will be able to mix the real 

world with the virtual.  This takes all of the advantages of VR and puts them at your fingertips and 

confuses your brain further.  AR supplements the real world with virtual (computer-generated) objects 

that appear to coexist in the same space as the real world. AR was recognised by MIT as one of ten 

emerging technologies of 2007 (21), and with today’s smart phones and AR browsers we are starting 

to embrace this very new and exciting kind of human-computer interaction(22).
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Conclusions 

In this project, the first step on creating a telerehabilitation system based on the new VR technologies 

was presented with the aim of generating a future virtual mirror (VM). Certain studies have shown that 

the union of VR and rehabilitation generate satisfactory results in both the evolution of patients (23) 

and their satisfaction (24). Currently, most VR applications in rehabilitation simulate real life activities 

such as grasping and manipulating objects or performing everyday tasks. These VR systems help 

patients enhance improve functional ability and realise greater participation in community life (25). 

In terms of the realization of the project, at first, the Microsoft SDK for Windows had to be download 

in order to enable the computer to work with the Kinect v2. Then we had to code in order to get the 

Kinect orientations of the skeleton joints in quaternion which give us better results than working with 

Euler angles. In certain analytical procedures and in some applications it is found that the quaternion 

can offer fundamental computational, operational and/or implementation, and data handling 

advantages over the conventional rotation matrix (26). What is more, Euler angles have the 

disadvantages of ambiguity and Gimbal Lock.  

During this project I saw some limitations in terms of data acquisition as there were some occlusion on 

some body parts depending on the subject position, so the data of those parts was not accurate. As 

mentioned before, one of my future proposal is the use of two Kinect sensor from two different 

viewpoints. The one-Kinect system is more prone to give poor estimation when occlusion occurs, while 

the two-Kinect sensor system often gives more depth measurement from the other viewpoint, so that 

the pose tracking module infers lees cloud points of the occlusion (27). In future improvements of this 

project, two Kinect sensors could be used in order to erase this problem and acquire more precision. 

 We also saw that there were some joint orientation data for leaf joints that had their quaternions 

values set to 0. In these cases, if the 3D model skeleton has been defined to have vertices attached to 

these joints, then the orientations of these joints' parents should be used. For example, when orienting 

the right hand tip, then you would use the right wrist orientation instead as the hand tip will be defined 

as all zeros. 
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Then, we had to integrate Kinect and Unity by downloading a package from the Microsoft SDK site. In 

this package, there are some commands that had to be imported to our project in order to work with 

Kinect and Unity, together, from our C# scripts in Visual Studio. At this point our Unity game was 

"Kinectized". 

Finally, the Kinect orientations had to be applied into the avatar. This part opened a wide range of 

possible solutions but it was not formally documented. As previously stated, those orientations could 

be given by Euler angles, with a previous mathematical process from the quaternion, or directly, by 

applying those quaternion. Some research has been made on this topic. And the conclusions are 

decisive, computer-based applications work more efficient and deliver better results with quaternion 

than with Euler angles (26). 

Once the body joints orientation quaternion were processed and applied to every avatar joint 

GameObject, some problems as the Unity skeleton bones were not orientated as the Kinect 

orientations. So an adaptation had to be made joint per joint in order to match these orientations. 

Simply, we created auxiliary quaternion to rotate the current orientations, and multiply the current to 

the auxiliary so a new well oriented quaternion is obtained. Being this problem solved, we transferred 

the Kinect-captured user motion to the humanoid avatar model and it worked smoothly and correctly. 

The data presented in this project show that the main objective of achieving an effective model that 

integrates Kinect and Unity in real time and animates an avatar has been met. 
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Economic analysis 

The economic study of this project can be divided into two parts: on the one hand, acquisition costs of 

the devices used and software, and on the other hand, the costs associated with the design process 

and generation of the code and the time invested with experimentation. 

 Acquisition costs: 

 

In our case, the Barcelona East School of engineering (EEBE) already had from the beginning 

of the project, the equipment for its development. Even though, the economic cost that would 

involve buying them for carrying out similar projects is contemplated. On the one hand, it is 

necessary to assume the purchase costs of the system of MOCAP Microsoft Kinect V2 along 

with its adapter for Windows. On the other hand, in regard to the software used, all of them 

are free and, therefore, their licenses do not imply a cost additional to the project. Unity 

Personal is the free version of Unity, which is available to use if your income or funds (raised 

or self-financed) do not exceed $100.000 per year. The result of the acquisition costs is shown 

in Table 9. 

 

 

Table 9 Acquisition project costs  

 

 

 Realization costs: 

 

Those costs include the work done by the engineer or researcher that gives them the time 

dedicated to the implementation and generation of the code and the experimental processes. 

It is considered a junior engineer. It is taken into account the hours of research and the writing 

and elaboration of the memory. 
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It is also taken into account the depreciation associated to the student computer during the 

duration of the project. It is supposed a product life of 5 years with an annual depreciation of 

16% and a residual coefficient value of 20%. The initial cost of the device is € 1.100 and the 

duration of the project is 4 months (0.3333 years). The costs associated with the energy are 

minimum. Approximately an average consumption of 0,04kWh due to the computer and the 

Kinect 0,03kWh. The result is shown in Table 10. 

 

 

 

Table 10 Project realization costs 

 

 Total costs: 

 

The total cost of this project including the acquisition costs of the equipment and software 

used, and the realization costs are showed in Table 11. 

 

 

Table 11 Total project costs 
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Annex A 

A1. Kinect specifications 
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A2. Body Source View script 

1. using UnityEngine; 

2. using System.Collections.Generic; 

3. using Kinect = Windows.Kinect; 

4. using Windows.Kinect; 

5. using JointsAngles; 

6.   

7. using System; 

8. using System.IO; 

9.   

10. public class BodySourceView : MonoBehaviour 

11. { 

12.     public Transform[] articulacions; 

13.   

14.     public Material BoneMaterial; 

15.     public GameObject BodySourceManager; 

16.   

17.     public double[,] orientationsarray; 

18.   

19.     UnityEngine.Quaternion or1_unity; 

20.     UnityEngine.Quaternion or2_unity; 

21.     UnityEngine.Quaternion or3_unity; 

22.     UnityEngine.Quaternion or4_unity; 

23.     UnityEngine.Quaternion or5_unity; 

24.     UnityEngine.Quaternion or6_unity; 

25.     UnityEngine.Quaternion or7_unity; 

26.     UnityEngine.Quaternion or8_unity; 

27.     UnityEngine.Quaternion or9_unity; 

28.     UnityEngine.Quaternion or10_unity; 

29.     UnityEngine.Quaternion or11_unity; 

30.     UnityEngine.Quaternion or12_unity; 
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31.     UnityEngine.Quaternion or13_unity; 

32.     UnityEngine.Quaternion or14_unity; 

33.     UnityEngine.Quaternion or15_unity; 

34.     UnityEngine.Quaternion or16_unity; 

35.     UnityEngine.Quaternion or17_unity; 

36.     UnityEngine.Quaternion or18_unity; 

37.     UnityEngine.Quaternion or19_unity; 

38.     UnityEngine.Quaternion or20_unity; 

39.     UnityEngine.Quaternion or21_unity; 

40.     UnityEngine.Quaternion or22_unity; 

41.   

42.   

43.     private Dictionary<ulong, GameObject> _Bodies = new Dictionary<ulong, 

GameObject>(); 

44.     private BodySourceManager _BodyManager; 

45.   

46.     private Dictionary<Kinect.JointType, Kinect.JointType> _BoneMap = new 

Dictionary<Kinect.JointType, Kinect.JointType>() 

47.     { 

48.         { Kinect.JointType.FootLeft, Kinect.JointType.AnkleLeft }, 

49.         { Kinect.JointType.AnkleLeft, Kinect.JointType.KneeLeft }, 

50.         { Kinect.JointType.KneeLeft, Kinect.JointType.HipLeft }, 

51.         { Kinect.JointType.HipLeft, Kinect.JointType.SpineBase }, 

52.   

53.         { Kinect.JointType.FootRight, Kinect.JointType.AnkleRight }, 

54.         { Kinect.JointType.AnkleRight, Kinect.JointType.KneeRight }, 

55.         { Kinect.JointType.KneeRight, Kinect.JointType.HipRight }, 

56.         { Kinect.JointType.HipRight, Kinect.JointType.SpineBase }, 

57.   

58.         { Kinect.JointType.HandTipLeft, Kinect.JointType.HandLeft }, 

59.         { Kinect.JointType.ThumbLeft, Kinect.JointType.HandLeft }, 

60.         { Kinect.JointType.HandLeft, Kinect.JointType.WristLeft }, 

61.         { Kinect.JointType.WristLeft, Kinect.JointType.ElbowLeft }, 

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
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62.         { Kinect.JointType.ElbowLeft, Kinect.JointType.ShoulderLeft }, 

63.         { Kinect.JointType.ShoulderLeft, Kinect.JointType.SpineShoulder 

}, 

64.   

65.         { Kinect.JointType.HandTipRight, Kinect.JointType.HandRight }, 

66.         { Kinect.JointType.ThumbRight, Kinect.JointType.HandRight }, 

67.         { Kinect.JointType.HandRight, Kinect.JointType.WristRight }, 

68.         { Kinect.JointType.WristRight, Kinect.JointType.ElbowRight }, 

69.         { Kinect.JointType.ElbowRight, Kinect.JointType.ShoulderRight }, 

70.         { Kinect.JointType.ShoulderRight, Kinect.JointType.SpineShoulder 
}, 

71.   

72.         { Kinect.JointType.SpineBase, Kinect.JointType.SpineMid }, 

73.         { Kinect.JointType.SpineMid, Kinect.JointType.SpineShoulder }, 

74.         { Kinect.JointType.SpineShoulder, Kinect.JointType.Neck }, 

75.         { Kinect.JointType.Neck, Kinect.JointType.Head }, 

76.     }; 

77.   

78.   

79.   

80.     public void Update() 

81.     {         

82.   

83.   

84.         if (BodySourceManager == null) 

85.         { 

86.             return; 

87.         } 

88.   

89.         _BodyManager = 

BodySourceManager.GetComponent<BodySourceManager>(); 

90.         if (_BodyManager == null) 

91.         { 
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92.             return; 

93.         } 

94.   

95.         Kinect.Body[] data = _BodyManager.GetData(); 

96.         if (data == null) 

97.         { 

98.             return; 

99.         } 

100.   

101.         List<ulong> trackedIds = new List<ulong>(); 

102.         foreach (var body in data) 

103.         { 

104.             if (body == null) 

105.             { 

106.                 continue; 

107.             } 

108.   

109.             if (body.IsTracked) 

110.             { 

111.                 trackedIds.Add(body.TrackingId); 

112.             } 

113.         } 

114.   

115.         List<ulong> knownIds = new List<ulong>(_Bodies.Keys); 

116.   

117.         // First delete untracked bodies 

118.         foreach (ulong trackingId in knownIds) 

119.         { 

120.             if (!trackedIds.Contains(trackingId)) 

121.             { 

122.                 Destroy(_Bodies[trackingId]); 

123.                 _Bodies.Remove(trackingId); 

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
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124.             } 

125.         } 

126.   

127.         foreach (var Body in data) 

128.         { 

129.             if (Body == null) 

130.             { 

131.                 continue; 

132.             } 

133.   

134.             if (Body.IsTracked) 

135.             { 

136.                 if (!_Bodies.ContainsKey(Body.TrackingId)) 

137.                 { 

138.                     _Bodies[Body.TrackingId] = 

CreateBodyObject(Body.TrackingId); 

139.                 } 

140.   

141.                 RefreshBodyObject(Body, _Bodies[Body.TrackingId]); 

142.  

143.     // *************************** KINECT JOINT 

ORIENTATIONS****************************************// 

144.   

145.   

146.   

147.   

148.                 var orientation1 = 

Body.JointOrientations[JointType.Head].Orientation; 

149.   

150.                 var orientation2 = 

Body.JointOrientations[JointType.Neck].Orientation; 

151.   

152.                 var orientation3 = 
Body.JointOrientations[JointType.SpineMid].Orientation; 
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153.   

154.                 var orientation4 = 

Body.JointOrientations[JointType.ShoulderLeft].Orientation; 

155.   

156.                 var orientation5 = 

Body.JointOrientations[JointType.ShoulderRight].Orientation; 

157.   

158.                 var orientation6 = 

Body.JointOrientations[JointType.ElbowLeft].Orientation; 

159.   

160.                 var orientation7 = 

Body.JointOrientations[JointType.ElbowRight].Orientation; 

161.   

162.                 var orientation8 = 
Body.JointOrientations[JointType.WristLeft].Orientation; 

163.   

164.                 var orientation9 = 

Body.JointOrientations[JointType.WristRight].Orientation; 

165.   

166.                 var orientation10 = 

Body.JointOrientations[JointType.HipLeft].Orientation; 

167.   

168.                 var orientation11 = 

Body.JointOrientations[JointType.HipRight].Orientation; 

169.   

170.                 var orientation12 = 

Body.JointOrientations[JointType.KneeLeft].Orientation; 

171.   

172.                 var orientation13 = 
Body.JointOrientations[JointType.KneeRight].Orientation; 

173.   

174.                 var orientation14 = 

Body.JointOrientations[JointType.SpineBase].Orientation; 

175.   

176.                 var orientation15 = 

Body.JointOrientations[JointType.AnkleLeft].Orientation; 

177.   
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178.                 var orientation16 = 

Body.JointOrientations[JointType.AnkleRight].Orientation; 

179.   

180.                 var orientation17 = 

Body.JointOrientations[JointType.FootLeft].Orientation; 

181.   

182.                 var orientation18 = 
Body.JointOrientations[JointType.FootRight].Orientation; 

183.   

184.                 var orientation19 = 

Body.JointOrientations[JointType.HandLeft].Orientation; 

185.   

186.                 var orientation20 = 

Body.JointOrientations[JointType.HandRight].Orientation; 

187.   

188.                 var orientation21 = 

Body.JointOrientations[JointType.ThumbLeft].Orientation; 

189.   

190.                 var orientation22 = 

Body.JointOrientations[JointType.ThumbRight].Orientation; 

191.   

192.   

193.   

194.   

195.                 //*********************************APPLYING 

ROTATIONS TO AVATAR***********************************// 

196.   

197.   

198.                 // HEAD 

199.                 or1_unity.x = orientation1.X; 

200.                 or1_unity.y = orientation1.Y; 

201.                 or1_unity.z = orientation1.Z; 

202.                 or1_unity.w = orientation1.W; 

203.   

204.                 Quaternion or1_unity_aux; 
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205.                 Quaternion or1_unity_aux2; 

206.                 Quaternion or1_new; 

207.   

208.                 or1_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

209.                 or1_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

210.                 or1_new = or1_unity_aux * or1_unity_aux2 * 

or1_unity; 

211.                 articulacions[0].rotation = or1_new; 

212.   

213.                 //NECK 

214.                 or2_unity.x = orientation2.X; 

215.                 or2_unity.y = orientation2.Y; 

216.                 or2_unity.z = orientation2.Z; 

217.                 or2_unity.w = orientation2.W; 

218.                 Quaternion or2_unity_aux; 

219.                 Quaternion or2_unity_aux2; 

220.                 Quaternion or2_new; 

221.   

222.                 or2_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

223.                 or2_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

224.                 or2_new = or2_unity_aux * or2_unity_aux2 * 

or2_unity; 

225.                 articulacions[1].rotation = or2_new; 

226.   

227.                 //SPineMid 

228.                 or3_unity.x = orientation3.X; 

229.                 or3_unity.y = orientation3.Y; 

230.                 or3_unity.z = orientation3.Z; 

231.                 or3_unity.w = orientation3.W; 

232.   

233.                 Quaternion or3_unity_aux; 
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234.                 Quaternion or3_unity_aux2; 

235.                 Quaternion or3_new; 

236.   

237.                 or3_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

238.                 or3_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

239.                 or3_new = or3_unity_aux * or3_unity_aux2 * 

or3_unity; 

240.                 articulacions[2].rotation = or3_new; 

241.   

242.                 //ShoulderLeft 

243.                 or4_unity.x = orientation4.X; 

244.                 or4_unity.y = orientation4.Y; 

245.                 or4_unity.z = orientation4.Z; 

246.                 or4_unity.w = orientation4.W; 

247.   

248.                 Quaternion or4_unity_aux2; 

249.                 Quaternion or4_unity_aux3; 

250.                 Quaternion or4_new; 

251.   

252.                 or4_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

253.                 or4_unity_aux3 = Quaternion.AngleAxis(90, 

Vector3.back); 

254.                 or4_new = or4_unity * or4_unity_aux3; 

255.                 articulacions[3].rotation = or4_new; 

256.   

257.   

258.                 //ShoulderRight 

259.                 or5_unity.x = orientation5.X; 

260.                 or5_unity.y = orientation5.Y; 

261.                 or5_unity.z = orientation5.Z; 

262.                 or5_unity.w = orientation5.W; 
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263.   

264.                 Quaternion or5_unity_aux; 

265.                 Quaternion or5_unity_aux3; 

266.                 Quaternion or5_new; 

267.   

268.                 or5_unity_aux = Quaternion.AngleAxis(180, 

Vector3.right); 

269.                 or5_unity_aux3 = Quaternion.AngleAxis(90, 

Vector3.forward); 

270.                 or5_new = or5_unity_aux * or5_unity * 

or5_unity_aux3; 

271.                 articulacions[4].rotation = or5_new; 

272.   

273.                 //ElbowLeft 

274.                 or6_unity.x = orientation6.X; 

275.                 or6_unity.y = orientation6.Y; 

276.                 or6_unity.z = orientation6.Z; 

277.                 or6_unity.w = orientation6.W; 

278.   

279.                 Quaternion or6_unity_aux; 

280.                 Quaternion or6_unity_aux2; 

281.                 Quaternion or6_unity_aux3; 

282.                 Quaternion or6_new; 

283.   

284.                 or6_unity_aux = Quaternion.AngleAxis(180, 

Vector3.back); 

285.                 or6_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

286.                 or6_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

287.                 or6_new = or6_unity_aux * or6_unity_aux2 * 

or6_unity_aux3 * or6_unity; 

288.                 articulacions[5].rotation = or6_new; 

289.   

290.   
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291.                 //ElbowRight 

292.                 or7_unity.x = orientation7.X; 

293.                 or7_unity.y = orientation7.Y; 

294.                 or7_unity.z = orientation7.Z; 

295.                 or7_unity.w = orientation7.W; 

296.   

297.                 Quaternion or7_unity_aux; 

298.                 Quaternion or7_unity_aux2; 

299.                 Quaternion or7_unity_aux3; 

300.                 Quaternion or7_new; 

301.   

302.                 or7_unity_aux = Quaternion.AngleAxis(30, 

Vector3.back); 

303.                 or7_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

304.                 or7_unity_aux3 = Quaternion.AngleAxis(0, 

Vector3.right); 

305.                 or7_new = or7_unity_aux * or7_unity_aux2 * or7_unity 

* or7_unity_aux3; 

306.                 articulacions[6].rotation = or7_new; 

307.   

308.                 //WristLeft 

309.                 or8_unity.x = orientation8.X; 

310.                 or8_unity.y = orientation8.Y; 

311.                 or8_unity.z = orientation8.Z; 

312.                 or8_unity.w = orientation8.W; 

313.   

314.                 Quaternion or8_unity_aux; 

315.                 Quaternion or8_unity_aux2; 

316.                 Quaternion or8_new; 

317.   

318.                 or8_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

319.                 or8_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 
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320.                 or8_new = or8_unity_aux * or8_unity_aux2 * 

or8_unity; 

321.                 articulacions[7].rotation = or8_new; 

322.   

323.   

324.                 //WristRight 

325.                 or9_unity.x = orientation9.X; 

326.                 or9_unity.y = orientation9.Y; 

327.                 or9_unity.z = orientation9.Z; 

328.                 or9_unity.w = orientation9.W; 

329.   

330.                 Quaternion or9_unity_aux; 

331.                 Quaternion or9_unity_aux2; 

332.                 Quaternion or9_new; 

333.   

334.                 or9_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

335.                 or9_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

336.                 or9_new = or9_unity_aux * or9_unity_aux2 * 

or9_unity; 

337.                 articulacions[8].rotation = or9_new; 

338.   

339.                 //HipLeft 

340.                 or10_unity.x = orientation10.X; 

341.                 or10_unity.y = orientation10.Y; 

342.                 or10_unity.z = orientation10.Z; 

343.                 or10_unity.w = orientation10.W; 

344.   

345.                 Quaternion or10_unity_aux; 

346.                 Quaternion or10_unity_aux2; 

347.                 Quaternion or10_unity_aux3; 

348.                 Quaternion or10_new; 
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349.   

350.                 or10_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

351.                 or10_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.right); 

352.                 or10_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.down); 

353.                 or10_new = or10_unity * or10_unity_aux * 

or10_unity_aux2; 

354.                 articulacions[9].rotation = or10_new; 

355.   

356.                 //HipRight 

357.                 or11_unity.x = orientation11.X; 

358.                 or11_unity.y = orientation11.Y; 

359.                 or11_unity.z = orientation11.Z; 

360.                 or11_unity.w = orientation11.W; 

361.   

362.   

363.                 Quaternion or11_unity_aux; 

364.                 Quaternion or11_unity_aux2; 

365.                 Quaternion or11_unity_aux3; 

366.                 Quaternion or11_new; 

367.   

368.                 or11_unity_aux = Quaternion.AngleAxis(90, 

Vector3.up); 

369.                 or11_unity_aux2 = Quaternion.AngleAxis(90, 

Vector3.forward); 

370.                 or11_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

371.                 or11_new = or11_unity * or11_unity_aux * 

or11_unity_aux2; 

372.                 articulacions[10].rotation = or11_new; 

373.   

374.                 //KneeLeft 

375.                 or12_unity.x = orientation12.X; 
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376.                 or12_unity.y = orientation12.Y; 

377.                 or12_unity.z = orientation12.Z; 

378.                 or12_unity.w = orientation12.W; 

379.   

380.                 Quaternion or12_unity_aux; 

381.                 Quaternion or12_unity_aux2; 

382.                 Quaternion or12_unity_aux3; 

383.                 Quaternion or12_new; 

384.   

385.                 or12_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

386.                 or12_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.right); 

387.                 or12_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.down); 

388.                 or12_new = or12_unity * or12_unity_aux * 

or12_unity_aux2; 

389.                 articulacions[11].rotation = or12_new; 

390.   

391.                 //KneeRight 

392.                 or13_unity.x = orientation13.X; 

393.                 or13_unity.y = orientation13.Y; 

394.                 or13_unity.z = orientation13.Z; 

395.                 or13_unity.w = orientation13.W; 

396.   

397.                 Quaternion or13_unity_aux; 

398.                 Quaternion or13_unity_aux2; 

399.                 Quaternion or13_unity_aux3; 

400.                 Quaternion or13_new; 

401.   

402.                 or13_unity_aux = Quaternion.AngleAxis(90, 

Vector3.up); 

403.                 or13_unity_aux2 = Quaternion.AngleAxis(90, 

Vector3.forward); 
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404.                 or13_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

405.                 or13_new = or13_unity * or13_unity_aux * 

or13_unity_aux2; 

406.                 articulacions[12].rotation = or13_new; 

407.   

408.                 //SpineBase 

409.                 or14_unity.x = orientation14.X; 

410.                 or14_unity.y = orientation14.Y; 

411.                 or14_unity.z = orientation14.Z; 

412.                 or14_unity.w = orientation14.W; 

413.   

414.                 Quaternion or14_unity_aux; 

415.                 Quaternion or14_unity_aux2; 

416.                 Quaternion or14_new; 

417.   

418.                 or14_unity_aux = Quaternion.AngleAxis(90, 

Vector3.back); 

419.                 or14_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.up); 

420.                 or14_new = or14_unity_aux * or14_unity_aux2 * 

or14_unity; 

421.                 articulacions[13].rotation = or14_new; 

422.   

423.                 //AnkleLeft 

424.                 or15_unity.x = orientation15.X; 

425.                 or15_unity.y = orientation15.Y; 

426.                 or15_unity.z = orientation15.Z; 

427.                 or15_unity.w = orientation15.W; 

428.   

429.                 Quaternion or15_unity_aux; 

430.                 Quaternion or15_unity_aux2; 

431.                 Quaternion or15_unity_aux3; 

432.                 Quaternion or15_new; 
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433.   

434.                 or15_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

435.                 or15_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.right); 

436.                 or15_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.down); 

437.                 or15_new = or15_unity * or15_unity_aux * 

or15_unity_aux2; 

438.                 articulacions[14].rotation = or15_new; 

439.   

440.                 //AnkleRight 

441.                 or16_unity.x = orientation16.X; 

442.                 or16_unity.y = orientation16.Y; 

443.                 or16_unity.z = orientation16.Z; 

444.                 or16_unity.w = orientation16.W; 

445.   

446.                 Quaternion or16_unity_aux; 

447.                 Quaternion or16_unity_aux2; 

448.                 Quaternion or16_unity_aux3; 

449.                 Quaternion or16_new; 

450.   

451.                 or16_unity_aux = Quaternion.AngleAxis(90, 

Vector3.up); 

452.                 or16_unity_aux2 = Quaternion.AngleAxis(90, 

Vector3.forward); 

453.                 or16_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

454.                 or16_new = or16_unity * or16_unity_aux * 

or16_unity_aux2; 

455.                 articulacions[15].rotation = or16_new; 

456.   

457.                 //FootLeft 

458.                 or17_unity.x = orientation17.X; 

459.                 or17_unity.y = orientation17.Y; 
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460.                 or17_unity.z = orientation17.Z; 

461.                 or17_unity.w = orientation17.W; 

462.   

463.   

464.                 Quaternion or17_unity_aux; 

465.                 Quaternion or17_unity_aux2; 

466.                 Quaternion or17_unity_aux3; 

467.                 Quaternion or17_new; 

468.   

469.                 or17_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

470.                 or17_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.right); 

471.                 or17_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.down); 

472.                 or17_new = or17_unity * or17_unity_aux * 

or17_unity_aux2; 

473.                 articulacions[16].rotation = or17_new; 

474.   

475.                 //FootRight 

476.                 or18_unity.x = orientation18.X; 

477.                 or18_unity.y = orientation18.Y; 

478.                 or18_unity.z = orientation18.Z; 

479.                 or18_unity.w = orientation18.W; 

480.   

481.                 Quaternion or18_unity_aux; 

482.                 Quaternion or18_unity_aux2; 

483.                 Quaternion or18_unity_aux3; 

484.                 Quaternion or18_new; 

485.   

486.                 or18_unity_aux = Quaternion.AngleAxis(90, 

Vector3.up); 

487.                 or18_unity_aux2 = Quaternion.AngleAxis(90, 

Vector3.forward); 
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488.                 or18_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

489.                 or18_new = or18_unity * or18_unity_aux * 

or18_unity_aux2; 

490.                 articulacions[17].rotation = or18_new; 

491.   

492.                 //HandLeft 

493.                 or19_unity.x = orientation19.X; 

494.                 or19_unity.y = orientation19.Y; 

495.                 or19_unity.z = orientation19.Z; 

496.                 or19_unity.w = orientation19.W; 

497.   

498.                 Quaternion or19_unity_aux2; 

499.                 Quaternion or19_unity_aux3; 

500.                 Quaternion or19_new; 

501.   

502.                 or19_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.down); 

503.                 or19_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

504.                 or19_new = or19_unity_aux2 * or19_unity_aux3 * 

or19_unity; 

505.                 articulacions[18].rotation = or19_new; 

506.   

507.                 //HandRight 

508.                 or20_unity.x = orientation20.X; 

509.                 or20_unity.y = orientation20.Y; 

510.                 or20_unity.z = orientation20.Z; 

511.                 or20_unity.w = orientation20.W; 

512.   

513.                 Quaternion or20_unity_aux; 

514.                 Quaternion or20_unity_aux3; 

515.                 Quaternion or20_new; 

516.   
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517.                 or20_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

518.                 or20_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

519.                 or20_new = or20_unity_aux * or20_unity * 

or20_unity_aux3; 

520.                 articulacions[19].rotation = or20_new; 

521.   

522.                 //ThumbLeft 

523.                 or21_unity.x = orientation21.X; 

524.                 or21_unity.y = orientation21.Y; 

525.                 or21_unity.z = orientation21.Z; 

526.                 or21_unity.w = orientation21.W; 

527.   

528.                 Quaternion or21_unity_aux2; 

529.                 Quaternion or21_unity_aux3; 

530.                 Quaternion or21_new; 

531.   

532.                 or21_unity_aux2 = Quaternion.AngleAxis(180, 

Vector3.down); 

533.                 or21_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

534.                 or21_new = or21_unity_aux2 * or21_unity_aux3 * 

or21_unity; 

535.                 articulacions[20].rotation = or21_new; 

536.   

537.                 //ThumbRight 

538.                 or22_unity.x = orientation22.X; 

539.                 or22_unity.y = orientation22.Y; 

540.                 or22_unity.z = orientation22.Z; 

541.                 or22_unity.w = orientation22.W; 

542.   

543.                 Quaternion or22_unity_aux; 

544.                 Quaternion or22_unity_aux3; 

545.                 Quaternion or22_new; 
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546.   

547.                 or22_unity_aux = Quaternion.AngleAxis(180, 

Vector3.forward); 

548.                 or22_unity_aux3 = Quaternion.AngleAxis(180, 

Vector3.right); 

549.                 or22_new = or22_unity_aux * or22_unity * 

or22_unity_aux3; 

550.                 articulacions[21].rotation = or22_new; 

551.   

552.                 //************************************Orientations 

array**********************************// 

553.   

554.                 orientationsarray = new double[22, 4]{{ 

or1_new.x,or1_new.y,or1_new.z,or1_new.w}, 

555.                                                { 

or2_new.x,or2_new.y,or2_new.z,or2_new.w }, 

556.                                                { 

or3_new.x,or3_new.y,or3_new.z,or3_new.w }, 

557.                                                { 

or4_new.x,or4_new.y,or4_new.z,or4_new.w }, 

558.                                                { 

or5_new.x,or5_new.y,or5_new.z,or5_new.w }, 

559.                                                { 

or6_new.x,or6_new.y,or6_new.z,or6_new.w }, 

560.                                                { 

or7_new.x,or7_new.y,or7_new.z,or7_new.w }, 

561.                                                { 

or8_new.x,or8_new.y,or8_new.z,or8_new.w }, 

562.                                                { 

or9_new.x,or9_new.y,or9_new.z,or9_new.w }, 

563.                                                { 

or10_new.x,or10_new.y,or10_new.z,or10_new.w }, 

564.                                                { 

or11_new.x,or11_new.y,or11_new.z,or11_new.w }, 

565.                                                { 

or12_new.x,or12_new.y,or12_new.z,or12_new.w }, 

566.                                                { 

or13_new.x,or13_new.y,or13_new.z,or13_new.w }, 

567.                                                { 

or14_new.x,or14_new.y,or14_new.z,or14_new.w }, 

http://www.google.com/search?q=new+msdn.microsoft.com
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568.                                                { 

or15_new.x,or15_new.y,or15_new.z,or15_new.w }, 

569.                                                { 

or16_new.x,or16_new.y,or16_new.z,or16_new.w }, 

570.                                                { 

or17_new.x,or17_new.y,or17_new.z,or17_new.w }, 

571.                                                { 

or18_new.x,or18_new.y,or18_new.z,or18_new.w }, 

572.                                                { 

or19_new.x,or19_new.y,or19_new.z,or19_new.w }, 

573.                                                { 

or20_new.x,or20_new.y,or20_new.z,or20_new.w }, 

574.                                                { 

or21_new.x,or21_new.y,or21_new.z,or21_new.w }, 

575.                                                { 

or22_new.x,or22_new.y,or22_new.z,or22_new.w } 

576.                 }; 

577.                 //************************************* TXT file 

creation ***********************************// 

578.   

579.                 for (int i = 0; i < 22; i++) 

580.                 { 

581.                     for (int j = 0; j < 4; j++) 

582.                     { 

583.                         double datos1 = 

Math.Round(orientationsarray[i, j], 4); 

584.   

585.                         string datos = datos1.ToString(); 

586.                         File.AppendAllText(@"C:\Users\USUARIO\Docume

nts\TFG\virtualMirror_3108\orientationsarray.txt", datos); 

587.   

588.                     } 

589.                     File.AppendAllText(@"C:\Users\USUARIO\Documents\

TFG\virtualMirror_3108\orientationsarray.txt", Environment.NewLine); 

590.                 } 

591.                 File.AppendAllText(@"C:\Users\USUARIO\Documents\TFG\

virtualMirror_3108\orientationsarray.txt", Environment.NewLine); 

592.   
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593.             } 

594.   

595.   

596.         } 

597.   

598.         

599.     } 

600.   

601.     private GameObject CreateBodyObject(ulong id) 

602.     { 

603.         GameObject body = new GameObject("Body:" + id); 

604.   

605.         for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <= 

Kinect.JointType.ThumbRight; jt++) 

606.         { 

607.             GameObject jointObj = 

GameObject.CreatePrimitive(PrimitiveType.Cube); 

608.   

609.             LineRenderer lr = jointObj.AddComponent<LineRenderer>(); 

610.             lr.SetVertexCount(2); 

611.             lr.material = BoneMaterial; 

612.             lr.SetWidth(0.05f, 0.05f); 

613.   

614.             jointObj.transform.localScale = new Vector3(0.3f, 0.3f, 

0.3f); 

615.             jointObj.name = jt.ToString(); 

616.             jointObj.transform.parent = body.transform; 

617.         } 

618.   

619.         return body; 

620.     } 

621.   

622.      

http://www.google.com/search?q=new+msdn.microsoft.com
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623.   

624.   

625.   

626.     private void RefreshBodyObject(Kinect.Body body, GameObject 

bodyObject) 

627.     { 

628.         for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <= 

Kinect.JointType.ThumbRight; jt++) 

629.         { 

630.             Kinect.Joint sourceJoint = body.Joints[jt]; 

631.             Kinect.Joint? targetJoint = null; 

632.   

633.             if (_BoneMap.ContainsKey(jt)) 

634.             { 

635.                 targetJoint = body.Joints[_BoneMap[jt]]; 

636.             } 

637.   

638.             Transform jointObj = 

bodyObject.transform.Find(jt.ToString()); 

639.             jointObj.localPosition = 

GetVector3FromJoint(sourceJoint); 

640.   

641.             LineRenderer lr = jointObj.GetComponent<LineRenderer>(); 

642.             if (targetJoint.HasValue) 

643.             { 

644.                 lr.SetPosition(0, jointObj.localPosition); 

645.                 lr.SetPosition(1, 

GetVector3FromJoint(targetJoint.Value)); 

646.                 lr.SetColors(GetColorForState(sourceJoint.TrackingSt

ate), GetColorForState(targetJoint.Value.TrackingState)); 

647.             } 

648.             else 

649.             { 

650.                 lr.enabled = false; 
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651.             } 

652.         } 

653.     } 

654.   

655.     private static Color GetColorForState(Kinect.TrackingState 

state) 

656.     { 

657.         switch (state) 

658.         { 

659.             case Kinect.TrackingState.Tracked: 

660.                 return Color.green; 

661.   

662.             case Kinect.TrackingState.Inferred: 

663.                 return Color.red; 

664.   

665.             default: 

666.                 return Color.black; 

667.         } 

668.     } 

669.   

670.     private static Vector3 GetVector3FromJoint(Kinect.Joint joint) 

671.     { 

672.         return new Vector3(joint.Position.X * 10, joint.Position.Y * 
10, joint.Position.Z * 10); 

673.     } 

674.   

675.   

676.   

677.   

678.   

679.   
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A3. Body Source Manager script 

1. using UnityEngine; 

2. using System.Collections; 

3. using Windows.Kinect; 

4.   

5. public class BodySourceManager : MonoBehaviour  

6. { 

7.     private KinectSensor _Sensor; 

8.     private BodyFrameReader _Reader; 

9.     private Body[] _Data = null; 

10.      

11.     public Body[] GetData() 

12.     { 

13.         return _Data; 

14.     } 

15.     

16.     void Start ()  

17.     { 

18.         _Sensor = KinectSensor.GetDefault(); 

19.   

20.         if (_Sensor != null) 

21.         { 

22.             _Reader = _Sensor.BodyFrameSource.OpenReader(); 

23.              

24.             if (!_Sensor.IsOpen) 

25.             { 

26.                 _Sensor.Open(); 

27.             } 

28.         }    

29.     } 

30.      

31.     void Update ()  

32.     { 
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33.         if (_Reader != null) 

34.         { 

35.             var frame = _Reader.AcquireLatestFrame(); 

36.             if (frame != null) 

37.             { 

38.                 if (_Data == null) 

39.                 { 

40.                     _Data = new Body[_Sensor.BodyFrameSource.BodyCount]; 

41.                 } 

42.                  

43.                 frame.GetAndRefreshBodyData(_Data); 

44.                  

45.                 frame.Dispose(); 

46.                 frame = null; 

47.             } 

48.         }     

49.     }   

50.     void OnApplicationQuit() 

51.     { 

52.         if (_Reader != null) 

53.         { 

54.             _Reader.Dispose(); 

55.             _Reader = null; 

56.         }         

57.         if (_Sensor != null) 

58.         { 

59.             if (_Sensor.IsOpen) 

60.             { 

61.                 _Sensor.Close(); 

62.             } 

63.              

64.             _Sensor = null; 

65.         } 

66.     } 

http://www.google.com/search?q=new+msdn.microsoft.com
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