

FINAL DEGREE THESIS

Mechanical engineering degree

VIRTUAL MIRROR: KINECT AND UNITY INTEGRATION

Memory and annexes

Author: Albert Ruiz Gracia
Director: Jordi Torner Ribe
Co-Director: Gil Serrancolí Masferrer
Convocatòria: October 2018

VIRTUAL MIRROR

 i

Abstract

Virtual reality (VR) technology is every day becoming a more popular application for physical

rehabilitation and motor control research. The goal of this project is to help with the rehabilitation of

patients with injuries that affect their mobility or people with movement disability, remotely. There

are studies that show that the visualisation of our own movements in an augmented way, nourishes

our brain positively and accelerates the recovery.

This Kinect-based rehabilitation application consists in accessing the Kinect body joints orientations

defined with quaternion and apply them, through a code in Visual Studio (VS), to our avatar in Unity.

Kinect is our input that captures the trajectories of skeleton points. Those data are received in Unity, a

game development engine. We then wrote a code in VS to process those data and, once the joint

orientations were processed, we were able to apply them into an avatar in Unity so that it reproduces

our movements in real-time.

The project opens a door to a wide variety of future medical applications since a full human body is

tracked and can help with any possible avant-garde rehabilitation techniques.

 Memoria

ii

Resumen

La tecnología de realidad virtual (VR) se está convirtiendo cada día en una aplicación más popular para

la rehabilitación física y la investigación de control motor. El objetivo de este proyecto es ayudar a

rehabilitar a distancia a los pacientes con lesiones que afectan su movilidad o personas con

discapacidad motriz. Hay estudios que muestran que la visualización de nuestros propios movimientos

de una manera aumentada, nutre nuestro cerebro positivamente y acelera la recuperación.

Esta aplicación de rehabilitación basada en Kinect consiste en acceder a las orientaciones de las

articulaciones del cuerpo de Kinect definidas con cuaterniones y aplicarlas, a través de un código en

Visual Studio (VS), a nuestro avatar en Unity. Kinect es nuestra entrada que captura las trayectorias de

los puntos del esqueleto. Esos datos se reciben en Unity, un motor de desarrollo de juegos. Luego

escribimos un código en VS para procesar esos datos y, una vez que almacenamos las orientaciones de

las articulaciones, pudimos aplicarlos en un avatar en Unity para que reproduzca nuestros movimientos

en tiempo real.

El proyecto abre la puerta a una amplia variedad de aplicaciones médicas futuras ya que se hace un

seguimiento de todo el cuerpo humano y puede ayudar con cualquier técnica de rehabilitación de

vanguardia.

VIRTUAL MIRROR

 iii

Resum

La tecnologia de realitat virtual (VR) es converteix cada dia en una aplicació més i més popular per a la

investigació de rehabilitació física i control del motor. L'objectiu d'aquest projecte és ajudar a la

rehabilitació de pacients amb lesions que afecten la seva mobilitat o persones amb discapacitat de

moviment, de manera remota. Hi ha estudis que mostren que la visualització dels nostres propis

moviments d'una manera augmentada, nodreix el nostre cervell de forma positiva i accelera la

recuperació.

Aquesta aplicació de rehabilitació basada en Kinect consisteix a accedir a les orientacions de les

articulacions del cos de Kinect definides amb quaternions i aplicar-les, a través d'un codi en Visual

Studio (VS), al nostre avatar en Unity. Kinect és la nostra entrada que captura les trajectòries dels punts

d'esquelet. Aquestes dades es reben a Unity, un motor de desenvolupament de jocs. A continuació,

vam escriure un codi en VS per processar aquestes dades i, un cop emmagatzemades les orientacions

de les articulacions, vam poder aplicar-les a un avatar en Unity perquè reproduís els nostres moviments

en temps real.

El projecte obre una porta a una àmplia varietat de futures aplicacions mèdiques, ja que es fa un

seguiment de tot un cos humà i pot ajudar-se amb qualsevol possible tècnica de rehabilitació

avantguardista.

 Memoria

iv

VIRTUAL MIRROR

 v

Thanks

At first, I didn't know much about Virtual Reality and its possible application on the rehabilitation field.

That is why I would like to thank Jordi Torner and Gil Serrancolí for this offer and for transmitting me

the passion for developing a project with a powerful purpose and with a wide range of improvement.

Also thanks to Gil Serrancolí for giving me access to the SIMMA Lab and for providing me with the

necessary equipment of this project.

Finally I would like to thank family and friends. They gave me a lot of support during the project when

I needed the most and they encouraged me to do my best every single day. I specially want to thank

my partner, Patricia Moyano, for her patience and ability to transmit motivation day by day.

Thank you.

 Memoria

vi

VIRTUAL MIRROR

 vii

Figure list

INTRODUCTION

Figure 1.1. Virtual Reality evolution...2

KINECT

Figure 4.1. Kinect parts (Frontal view/Kinect OFF)...8

Figure 4.2. Kinect parts (3D view/Kinect ON)..9

Figure 4.3. Distance measurement of ToF cameras..10

Figure 4.4. Kinect interaction with an application...11

UNITY

Figure 5.1. Gimbal lock problem..13

Figure 5.2. 3D skeleton joints tracked...14

Figure 5.3. Kinect skeleton joints hierarchy..14

Figure 5.4. Unity 3D display...16

Figure 5.5. Unity avatar scene display...17

Figure 5.6 Configure Avatar mode..18

Figure 5.7. Avatar Mapping...18

EVALUATION

Figure 6.1. Kinect commands for Unity projects...19

Figure 6.2. Body joints dictionary..20

Figure 6.3. Body tracked condition...20

Figure 6.4. Auto mapped Joint GameObjects...20

Figure 6.5a. Access to joint Kinect orientations...23

 Memoria

viii

Figure 6.5b. Access to joint Kinect orientations...24

Figure 6.6a. BodySourceManager script ..26

Figure 6.6b BodySourceManager script..27

Figure 6.7. Joint transforms function...28

Figure 6.8. Avatar joint GameObjects..29

Figure 6.9. Quaternion application code on avatar Neck example...30

Figure 6.10 Kinect skeleton local coordinate system..31

Figure 6.11 SpineMid Unity coordinate system...31

Figure 6.12 Coordinate system rotated...31

Figure 6.13 Coordinate systems adaptation code...32

RESULTS

Figure 7.1 Orientations array...34

Figure 7.2 Txt for loop..34

Figure 7.3 Orientations array txt (One frame)...35

VIRTUAL MIRROR

 ix

Table list

KINECT

Table 4.1. Kinect specifications..10

UNITY

Table 6.1. Unity and Kinect joints...22

ECONOMICAL ANALYSIS

Table 9. Acquisition project costs...44

Table 10. Project realization costs..45

Table 11. Total project costs...45

 Memoria

x

VIRTUAL MIRROR

 xi

Glossary

API Application programming interface

VS Visual Studio

MOCAP Motion capture

RGB Red, Green and Blue

IDE Integrated development environment

AR Augmented reality

VM Virtual Mirror

VR Virtual Reality

SIMMA Lab Simulation and Movement Analysis Laboratory

PC Personal Computer

 Memoria

xii

Index

ABSTRACT ___ I

RESUMEN __ II

RESUM ___ III

THANKS __ V

FIGURE LIST __ VII

TABLE LIST __ IX

GLOSSARY __ XI

1. PREFACE ___ 1

1.1. Motivation ... 3

1.2. Previous requirements .. 3

2. INTRODUCTION ___ 5

2.1. Objectives .. 5

2.2. Scope .. 6

3. STATE-OF-THE-ART___ 7

4. KINECT SENSOR ___ 8

4.1. Sensor characteristics .. 9

4.1.1. Kinect software development kit for Windows (SDK) .. 11

5. APPLICATION PROGRAMMING INTERFACE (API) ______________________ 12

5.1. Kinect ... 13

5.2. Unity 3D ... 15

5.2.1. Avatar set up ... 17

6. EVALUATION __ 19

6.1. Kinect and Unity integration ... 19

6.2. Kinect ... 20

6.2.1. Main script: BodySourceView ... 20

6.2.2. BodySourceManager script... 25

6.3. Avatar movements .. 28

6.3.1. Coordinate systems adaptation .. 30

VIRTUAL MIRROR

 xiii

7. RESULTS __ 34

8. ENVIRONMENT IMPACT ANALYSIS _________________________________ 37

9. IMPROVEMENT PROPOSALS AND FUTURE APPLICATIONS ______________ 39

CONCLUSIONS __ 41

ECONOMIC ANALYSIS __ 44

BIBLIOGRAPHY ___ 46

ANNEX A __ 49

A1. Kinect specifications .. 49

A2. Body Source View script .. 52

A3. Body Source Manager script ... 76

VIRTUAL MIRROR

 1

1. Preface

Technology has changed the way we communicate, listen to music, exercise, do the shopping, play

games and much more. It is not surprising that technology has an impact on the healthcare industry.

Healthcare technology is helping people live longer, reducing wait times and making it easier for

doctors to diagnose diseases.

Here is where a directed telerehabilitation system based on new technologies of virtual reality plays a

role. The first thought about Virtual Reality is to turn to a modern VR headset as well as all of the various

PC applications which are beginning to include virtual-reality support. Virtual-reality actually has an

extensive history with a concept that dates all the way back to the 1930s and developed until what we

nowadays know as Virtual Reality as shown in figure1.1.

 It was in the 1935 when Stanley G. Weinbaum, an American science fiction writer, created a story

called Pygmalion's Spectacles. In the story, the main character, Dan Burke, met an elfin professor,

Albert Ludwig, who invented a pair of goggles which as Stanley said, "enabled a movie that gives one

sight and sound taste, smell, and touch. You are in the story, you speak to the shadows (characters)

and they reply, and instead of being on a screen, the story is all about you, and you are in it" (1).

Later in 1968 Ivann Sutherland, with the help of his student Bob Sproull, created the first VR head

mounted display system. It was simple and primitive, and it was used only for military purposes but it

was the first approach and the starting point to the VR headsets that are used nowadays.

The next milestone was when it was first introduced to the masses. In 1995, Nintendo created "Virtual

Boy", it was the first portable game console capable of displaying "true" 3D graphics. It was reported

by many that prolonged use of the Virtual Boy gave you headaches and some even claimed it to induce

seizures, so less than a year since its launch it was discontinued.

Finally, in April 2012, Luckey announced a virtual reality headset designed for video gaming, and

launched a Kickstarter campaign to make virtual reality headsets available to developers. Then, in 2014,

Facebook CEO Mark Zuckerberg agreed to acquire Oculus VR. Later on, many uses would be given to

Virtual Reality, not only for gaming purposes, but for 3D modelling or even telerehabilitation for

patients with movement disability.

Pág. 2 Memoria

2

In the past years, parallel to VR progress, low-cost depth-sensing cameras used for VR purposes, have

also become commercially available, including the well-known Microsoft Kinect, which have made it

possible to sense the full-body pose for multiple users without the use of markers or handheld devices

(2). As we know, VR also has continued its development until the point of having a wide range of

applications.

When a technology is so developed and studied as VR is nowadays, we must go further on the

technology's applications. We need to focus on applications that can make a real difference in this

world and improving people's life is one way of achieving it. This is how our project was born, by the

necessity of helping people's health through a remote rehabilitation application. A positive input is sent

to our brain by seeing our own movements in an augmented way.

With the only need of a depth-sensing camera, a game development software and VR glasses we can

develop a application to accelerate the rehabilitation of people with physical impairment or just

physical injuries.

Figure 1.1 Virtual Reality evolution

VIRTUAL MIRROR

 3

1.1. Motivation

One of the main objectives is offering patients a remote rehabilitation therapy without the need of

medical assistance. At the same time, it is possible to record these data for a later patient analysis that

will help to a patient progression control. Nowadays is really important to make those technologies

and applications affordable for everyone and we can ensure that this low-cost VR application can

ensure good results as multiple projects have been carried out on this topic as explained on state-of-

the-art.

1.2. Previous requirements

This Kinect-based application for VR, as mentioned before, as a low-cost application, not many

requirements are needed. The Kinect v2 developed by Microsoft was used to capture the body joints

data and the software was written in the C# programming language and developed by the Unity3D

video game engine. The software used list in this project is:

 Software development kit 2.0 (SDK)

 Visual Studio 2017

 Unity 3D

 Windows 8

VIRTUAL MIRROR

 5

2. Introduction

Rehabilitation technology can allow patients with movement disability exercise at home under

supervision of their rehabilitation team. Currently it is unclear how effective this approach is. Patients

who are assisted by new rehabilitation technology at home are expected to have better fitness and

less symptoms. This approach can be extended to people with different diseases related to mobility

impairment and it can be used not only for physical but also for cognitive and occupational

rehabilitation. The tracking of human movement is also implemented on the analysis of sport athletes

performances in order to improve their results or just for clinical purposes (3).

 In this project we present the first step to develop an application to help people's rehabilitation by

interacting with VR. It is proved that it feeds the brain with positive inputs which can accelerate the

person's recovery. The project is divided in three parts: the Kinect integration to its use, coding the

body movements in C# in Visual Studio (VS) and the load all the gestures data from VS into an avatar

in Unity 3D.

2.1. Objectives

This project is a Kinect-based rehabilitation application for patients with mobility impairment or injuries

that affect the person's mobility. It represents the first step into developing a full VR game where

patients could see themselves in a daily life environment through VR headsets.

The main objective of this thesis is to animate an avatar in real time by following our own movements.

In order to do this, Microsoft Kinect V2 will be used as a motion capture (MOCAP) sensor, which allows

you to obtain digitally the position and orientation, in the three-dimensional space, of the different

anatomical points of the subject in each frame, at a speed of 30 fps (frames per second). In each frame,

these data are sent to the avatar model in order to reproduce in real time the subject body position

captured by the sensor. Through Visual Studio (VS) we are able to code, in C#, the functions needed in

order to integrate these data acquired by the sensor and apply them into the avatar joints in Unity so

it reproduces our desired movements. Unity framework is used to implement our system because it

enables us to use virtual reality techniques to see detailed movements of the patient.

The key contribution of our research is a rule-based approach to real-time exercise quality assessment

and feedback.

 Memoria

6

The partial objectives of this project:

 Obtaining the desired body joints orientations from our Kinect sensor

 Establish connection between Kinect and Unity. Connecting those different API is a must when

trying to develop an application in VR. We have to be able to call our Unity GameObjects by

defining some functions

 Real-time avatar movements following the subject gestures, as if it was a mirror, by applying

the quaternions acquired from the Kinect into our avatar

2.2. Scope

This project is the first part into developing a full VR application for rehabilitation purposes. It is based

on acquiring the data from the Kinect sensor, processing these data, integrating Kinect with Unity

thanks to the "Unity Pro Package", applying these data on the avatar and, in real-time, watch your own

movements in your PC displayed through an avatar.

However more improvements and further research has to be made. Future students’ projects will take

this project as a starting point and continue its development by integrating this system into a VR

environment to achieve the user immersion. A HMD will be used through which the VM will be

rendered with the avatar, along with a suitable and modifiable virtual environment that can influence

positively on the evolution of the affected subjects.

VIRTUAL MIRROR

 7

3. State-of-the-art

Because of their attractiveness and potential, several studies have been dedicated to Motion Capture

(MOCAP) cameras and its integration on avatars for VR purposes. Motion capture techniques are used

over a broad field of applications, ranging from gaming animations for entertainment to biomechanics

analysis for clinical and sports applications. Due to some comparisons with other optical motion

capture system, it is known that Kinect offers enough precision for most applications (4) so we can

ensure a better quality control process for example for our patient rehabilitation application.

 In the field of rehabilitation technologies previous projects have been done. Mainly what those show

is that this technology is used to reduce staff and enhance participants' motivation, interest and

perseveration. The participants on those studies significantly increased their motivation for physical

rehabilitation, so they improved their exercise performance (5),(6). However our project is more

focused on working with the patient's brain in terms of seeing each other own movements augmented

so that they receive a positive input and accelerates the rehabilitation. Other studies are focuses on

developing also a rehabilitation application but with emphasis on adults with neurological injuries (7).

Their main goal following spinal cord injury (SCI) and traumatic brain injury (TBI) is to promote a

maximal level of recovery. Full reintegration into the community are the ultimate goals Our project is

related to the neurological injuries applications but we don't acquire that level of detail as we work not

only for those injuries but for people with mobility impairment or simply physical injuries

rehabilitations.

On the other hand, there are applications that also combine a simple motion capture (MOCAP) camera

with Unity or other 3D software but are more focused on the user experience than any health care

connotation. All those projects, although its objectives, have the same background as they collect data

from Kinect, they process those data and send information to a software. Some of them, as mentioned

before, are focused on improving athletes’ performance. They describe a novel system that

automatically evaluates for example dance performances against a gold-standard performance and

provides visual feedback to the performer in a 3D virtual environment. The system acquires the motion

of a performer via Kinect-based human skeleton tracking, making the approach viable for a large range

of users (8).

 Memoria

8

4. Kinect sensor

The Kinect sensor is motion capture devices based on a webcam-style add-on peripheral. It enables

users to control and interact with their console/computer without the need for a game controller,

through a natural user interface using gestures and spoken commands. Kinect is a marker less and low-

cost technology that guaranties enough precision for most applications like rehabilitations treatments.

It is composed of two cameras, a Red-Green-Blue (RGB) camera equipped with a standard

complementary metal–oxide–semiconductor (CMOS) sensor through which the coloured images of

persons and objects are acquired, and an infrared (IR) camera (Figure 4.1). The IR emitters and the IR

camera form the 3D sensor are shown in Figure 4.2.

Figure 4.1 Kinect parts (Frontal view/Kinect OFF)

VIRTUAL MIRROR

 9

Figure 4.2 Kinect parts (3D view/Kinect ON)

4.1. Sensor characteristics

The IR sensor is based on Time of Flight (ToF) principle as shown in Figure 4.3. The basic principle is as

follows: knowing the speed of light, the distance to be measured is proportional to the time needed by

the active illumination source to travel from emitter to target. Thus, matricial ToF cameras enable the

acquisition of a distance-to-object measurement, for each pixel of its output data (9).

The Kinect sensor as shown in table 4.1 has the following properties and functions:

 An RGB Camera that stores three channel data in a 1280x960 pixel resolution at 30Hz. The

camera’s field of view as specified by Microsoft is 43° vertical by 57° horizontal. The system

can measure distances with a 1cm accuracy, at 2 meters distance

 An infrared (IR) emitter and an IR depth sensor used for capturing depth image. The IR sensor

is based on Time of Flight (ToF) principle as shown in Figure 4.3. Thus, matricial ToF cameras

enable the acquisition of a distance-to-object measurement, for each pixel of its output data

(9).

 An array of four microphones to capture positioned sounds

 A tilt motor which allows the camera angle to be changed without physical interaction and a

three-axis accelerometer which can be used to determine the current orientation of the Kinect

 Memoria

10

Table 4.1 Kinect specifications(10)

Figure 4.3 Distance measurement of ToF cameras(9)

VIRTUAL MIRROR

 11

4.1.1. Kinect software development kit for Windows (SDK)

In order to work with Kinect in the computer, it is required to download the Kinect Software

Development Kit (SDK) 2.0 developed by Microsoft for the Kinect sensor.

The Windows SDK provides us with several libraries for creating Windows applications that use native

code and provides us with script samples so it can help us to begin with our programming. Microsoft

states that the SDK 2.0 enables developers to create applications that support gesture and voice

recognition. It is possible to create applications using the device, and the positions of 25 human joints

can be estimated using de body tracking algorithm (11). Using this algorithm, the body joints are

inferred using a machine learning algorithm called randomized decision forest.

Figure 4.4 shows how Kinect communicates with an application. The SDK in conjunction with the

Natural User Interface (NUI) library provides the tools and the Application Programming Interface

(APIs) needed such as high-level access to colour and calibrated depth images, the tilt motor, advanced

audio capabilities, and skeletal tracking (12).

Figure 4.4 Kinect interaction with an application(12)

 Memoria

12

5. Application Programming Interface (API)

The formal definition of API by TechTerms states that “An API is a set of commands, functions,

protocols, and objects that programmers can use to create software or interact with an external

system. It provides developers with standard commands for performing common operations so they

do not have to write the code from scratch ". There are many different types of APIs for operating

systems, applications or websites. Kinect and Unity have each one a different API and one of our goals

is to communicate those API.

Visual Studio (VS) is a programming environment from Microsoft in which a programmer uses a

graphical user interface (GUI) to choose and modify preselected sections of code written in the BASIC

programming language. The programming language used to program in Unity is C# (C Sharp). It's a

language that is derived from C and C ++ and was created by Microsoft as part of the .NET platforms.

 VS user works with scripts. In computer programming, a script is a program or sequence of

instructions that is interpreted or carried out by another program rather than by the computer

processor.

The integrated development environment (IDE) of the project was Visual Studio 2017. This program

allowed the creation of the necessary scripts thanks to automatic construction tools or the easy

detection of errors. C# is a quite elaborate programming language. In addition, this language has

countless predetermined functions that allow performing many different operations easily.

VIRTUAL MIRROR

 13

5.1. Kinect

The Kinect libraries allow us to detect the three-dimensional positions of 25 anatomical points

distributed on the user's body. Each detected point can refer to a real joint (neck, shoulders, hips,

pelvis, elbows, knees, wrists or ankles) or to the centre of a body segment as showed in Figure 5.2. A

Joint is a structure that includes:

 The position in the 3D space

 The type/name of the joint

 The tracking accuracy

The goal of tracking the human body segments is to get their orientations. The accuracy of how the

joint positions is sensitive to the position and orientation of the camera regarding the location of the

body (13). For example, self-occlusion of some body parts by other parts could lead to a poor skeleton's

model estimation by the camera. So a possible move for the future could be using more than one

Kinect to improve this tracking.

The body joints have the following information:

 Position: It represents the absolute position of each body point through a 3D vector.

 Orientation: the body orientations are captured as absolute rotations respect to the (Figure

5.3). The rotations are represented by quaternions (x, y, z, w). A quaternion is an axis in 3D

space with an angle of rotation around the axis. Four values make up a quaternion, namely x,

y, z and w. Three of the values are used to represent the axis in vector format, and the forth

value would be the angle of rotation around the axis. They are, specifically, unit quaternion

and they avoid the Gimbal lock problem.

Gimbal lock (Figure 5.1) is the loss of one degree of freedom on a three-dimensional. That

occurs when the axes of two of the three gimbals are driven into a parallel configuration,

leading into a degenerate two-dimensional space.

Figure 5.1 Gimbal lock problem(14)

 Memoria

14

Figure 5.2 3D skeleton joints tracked

Figure 5.3 Kinect skeleton joints hierarchy

VIRTUAL MIRROR

 15

5.2. Unity 3D

Unity gives users the ability to create games in both 2D and 3D, and the engine offers a primary

scripting API in C#, for both the Unity editor in the form of plug-in, and games themselves, as well as

drag and drop functionality.

Making the Unity work is really simple. A project is created and it consists on different scenes, which

contain different elements known as "GameObjects".This basic element in Unity is the main class in

which the rest of the attributes are added as components, scripts, audio sources, cameras, etc. The

way to organize is through scenes which represent the different levels of the application, from the

menus to the credits (15).

The objects of a scene are created by loading and destroyed when changing to another, so to preserve

any of the objects between scenes must be specified by code. Some of the most important components

of the GameObjects are:

 The renderer, which ensures that the object is visible, giving it a shape and color or texture

 The rigidbody and collider, responsible for managing collisions with other elements and, in

particular, rigidbodys, physical characteristics

 The camera represents the vision that will have each level

 The component to which scripts are added

Some of the attributes of the components can be edited both by code and from the editor as are the

public variables of the added scripts. All components can be enabled or disabled except the transform

that comes by default in all gameobjects and decides the position, rotation and scale of each object.

To facilitate the creation and multiplication of objects, prefabs are used. They act as temaplates from

which you can create new object instances in the scene and can be made to which they are assigned a

previously configured object to then be able to instantiate them by code or from the editing window

of Unity3D.

The life cycle that the gameobjects follow is based on the classic life cycle of the graphic engines. They

are initialized for the first time and then they enter in a loop until it is destroyed. In the loop the code

or animations updates are made and the object is rendered until it is destroyed.

We use the library offered by Unity3D called UnityEngine and the scripts must inherit from the

MonoBehaviour class that helps us access to several methods used in our projects.

 Memoria

16

The Unity display is really intuitive and approachable to any user with little experience on this field of

game development. Below is shown how to easily cope with this sofware as the common display

structure is defined in figure 5.4:

1. These are three selectable tabs:

 Scene is used to select and position scenery, characters, cameras and other types of

Game Object.

 Game shows our final game when all is ready.

 Asset store is a platform where we can find several applications and pruchase some

games.

2. The project window give us a view of oy project folders where we have all of our scripts, assets,

pluggins, etc... Here we can also drag and drop anything to include it in our project.

3. Those are the play mode buttons, while the play button is on yor game will be running until

you press play again.

4. The console give us feedback of anything that occurs while the porgram is running such as

warnings or errors.

5. On the Hierarchy tab we have our GameObjects classified so whenever we want to edit one

we just need to select it and then access the information displayed on the Inspector tab.

6. The inspector give us detailed information of the GameObject currently selected and we can

also attach scripts to our desired GameObject as explained later on.

Figure 5.4 Unity 3D display

1

2

3

4

5 6

VIRTUAL MIRROR

 17

5.2.1. Avatar set up

The first step in Unity is to integrate the avatar into our scene. Scenes contain the environments and

menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your

environments, obstacles, and decorations, essentially designing and building your game in pieces (16).

Figure 5.5 Unity avatar scene display

As we are getting the avatar (17) from outside Unity, it is needed to import it and any related textures

into the assets folder in the project window. After you the model in the assets folder, we must ensure

it has the correct settings set, under the rig tab (Figure 5.6) in the inspector the Animation Type should

be set to Humanoid.

Setting up a humanoid Avatar in Unity involves matching every “human bone” to one of the transforms

in the model. It’s possible to do this manually in Unity by clicking Configure. Selecting the Configure

Avatar mode to check that your Avatar is valid and properly set up as shown in figure 5.6. It is important

that the character’s bone structure matches Unity’s avatar predefined bone structure and that the

model is in T-pose(16) because is the pose predefined in Unity. As the avatar is now humanoid, it allows

to map the avatar body. The Avatar Mapping (figure 5.7) indicates which of the bones are required

(solid circles) and which are optional (dotted circles). Unity can interpolate optional bone movements

automatically.

Once the avatar is correcty defined, it has to be dragged into the hierarchy or directly to the scene.

 Memoria

18

Figure 5.6 Configure Avatar mode

Figure 5.7 Avatar Mapping

VIRTUAL MIRROR

 19

6. Evaluation

In this section, we describe the experimental part of our Kinect-based rehabilitation system and the

design of the avatar movements in Unity 3D.

6.1. Kinect and Unity integration

In 2014, Microsoft released a Unity3D plug-in for the Kinect 2. A package called "Unity Pro packages"

is available to install from the Microsoft Kinect SDK for Windows site (18). It is used for Kinect-based

applications development through Unity. The package is simply imported, and all required assets will

appear in the project.

The package, contains three more packages inside. The first file "Kinect.2.0.xxxx.unitypackage"

contains base functionality of Kinect SDK for Unity. That is our plug in, along with all the scripts needed

to build a Kinect-enabled Unity application it will allow tracking bodies, leans, colours and so on. But if

you want to use functionality, related to face recognition (emotions, face HD tracking etc.), the second

package is required, Kinect.Face.2.0.xxxx.unitypackage. Finally, the last package contains API which will

help to use data from Visual Gesture Builder in order to simplify a way to understand predefined

gestures.

Kinect Sensor command is used in order to have access to Kinect. Kinect Sensor class provides some

properties, which allows us to get sources’ references. Since it is important to know basic body

movements only, as Kinect itself calculate all the body movements by interpolating between those

basic body movements, just the "BodyFrameReader" command will be used. Additionally, an array of

Body class is needed in order to store current information about the body as shown in Figure 6.1. To

"Kinectize" the game, an invisible GameObject called "Body[] _Data", which exchange data from Kinect

and the game, is inserted.

Figure 6.1 Kinect commands for Unity projects

 Memoria

20

6.2. Kinect

On this chapter, the coding part of the project is described. Two scripts will be treated as those are the

scripts in C# used to achieve our objective, apply the orientations into the avatar.

6.2.1. Main script: BodySourceView

First, Kinect body joints dictionary needs to be defined (Figure 6.2) similar to the Kinect Body
Basics sample so we can call any joint and work with them. If we did not have this dictionary, our
script wouldn’t get this information which is crucial.

Figure 6.2 Body joints dictionary

All the processes referring to the body tracking will be called after an "if (body.IsTracked)"
condition (Figure 6.3) so false or contaminated data is not captured. That means that only when
the Kinect detects that there is a body on its field of view, the script will begin to store, frame per
frame and the orientations.

Figure 6.3 Body tracked condition

VIRTUAL MIRROR

 21

The 25 joints that Kinect tracked are analysed and to their properties can be accessed. Before coding

and getting those orientations, a checking if the Unity avatar joints matches the skeleton Kinect joints

must be made. They do not match perfectly as the Unity Automap (Figure 6.4) gives a wide range of

joints and some of them are named and placed different comparing to the Kinect default skeleton. In

order to match both joint skeletons, a matching list was made comparing Figure 5.2 and 5.7 as shown

in Table 6.1. As seen in the table, there are 22 joints that matches both API, Kinect and Unity. SO, the

project will consists on analysing those 22 joints.

Figure 6.4 Auto mapped Joint GameObjects

 Memoria

22

Table 6.1 Unity and Kinect joints

VIRTUAL MIRROR

 23

6.2.1.1. Quaternions (Orientations processing)

Now that it is ensured what joints are going to be processed, we can access now the joint properties,

in particular, the orientations. As mentioned before, the orientations are defined by quaternions. In

Computer Graphics, quaternions are sometimes used in place of matrices to represent rotations in 3-

dimensions (19). Quaternions ensure us a smooth and direct interpolation.

 By default Kinect have all the 25 joints stored as well as their transform which includes the position,

orientation and scale.

It is possible to access the joint information by a series of commands proper to C# as shown in Figure

6.5a-6.5b. The variable orientation[i] (with "i" going from 1 to 22) saves and updates frame per frame

the orientation of each joint. The quaternion variables (x, y, z, w) are given by radians but if an

orientation wants to be changed manually, directly in Unity, the orientations must be written in

degrees as Unity only works with quaternion internally.

Figure 6.5a Access to joint Kinect orientations

 Memoria

24

Figure 6.5b Access to joint Kinect orientations

VIRTUAL MIRROR

 25

6.2.2. BodySourceManager script

This script is a must in every project that involves Kinect and Unity as explained later on.

First of all, all the variables must be declared, if we declare a variable private, it means they are

accessible only within the body of the class or the structure in which they are declared. On the other

hand, if we declare it public, the variable can be accessed from outside the class where is defined.

The function Start is called once when a script is enabled just before any of the Update methods are

called the first time. Start is called exactly once in the lifetime of the script. In the figure 6.6a, what we

will call from the Start function will be getting the Kinect sensor ready and activated once the program

is started.

Continuing with the script, we now focus on the Update function. As mentioned previously, here we

write those functions that we want to be updated every frame. As shown in figure 6.6b, a function is

created which will store every new data frame so it doesn't overlap.

Finally, we need a function that closes our sensor once we end the application session. We set the

"OnApplicationQuit()" function to assure the full closing of the sensors used because as mentioned

before any false data before or after the run of the application is wanted.

 Memoria

26

Figure 6.6a BodySourceManager script

VIRTUAL MIRROR

 27

Figure 6.6b BodySourceManager script

This script must be dragged into our main script, in the inspector window in order to be initialized at

the same time as the main script and the avatar.

 Memoria

28

6.3. Avatar movements

Once the avatar is fully functional and the joints are mapped we can move on by attaching the

BodySourceView script to the humanoid model. We need to drag this script from the project window

to our avatar in the inspector window. We are able to apply every command we want to the avatar

although it will not respond because we did not relate the orientations stored in the script with the

avatar joint GameObjects. In Figure 5.4 (sector 6) we can see that we put the script into our avatar and

it is marked as "okay".

Now we have to return to our main script (BodySourceView) where we calculated all the joints

rotations because we need to call those joints from the avatar. In Figure 6.7, the function called,

"articulacions" consists on an array of joints transforms. As stated before, it is used to store and

manipulate the position, rotation and scale of the object. In our project we only focus on the rotations

transform. This array at first is empty and requires inputs.

Figure 6.7 Joint transforms function

Returning to the hierarchy window in Unity, the script, where we placed the function mentioned

before, is selected. In the inspector, appears a box with the function name "articulacions" and the size

of it is 0. That means the array has no information. It is needed to write the number of joints that are

wanted the transform from. Now, there are joint rotations values of 22 joints.

Now manually every joint GameObject from the avatar hierarchy must be dragged and dropped,

matching the order defined previously on the BodySourceView script, on the blank spaces in

"articulacions" as shown in Figure 6.7. C# arrays are zero indexed, which means that the array indexes

start at zero. The default number of array elements is set to zero and the reference element is set to

null.

VIRTUAL MIRROR

 29

Figure 6.8 Avatar joint GameObjects

Now it is possible to call from our script the joint GameObjects classified in Figure 6.8. The process

would be the same as the one followed from entering to the Kinect orientations. But in this case,

another variable is created to save, frame per frame, the Kinect orientations.

 Memoria

30

As Kinect and Unity have different quaternion definitions on their orientations, the new variables are

defined as “UnityEngine.Quaternion variable_name" so later can be transferred to the Unity joints.

Due to the fact that those quaternions are defined differently, we cannot equal the new variables with

the Kinect orientations. So the process will be equalling value per value accessing to the quaternions

variables as shown in Figure 6.9.

Now the new variables are prepared to take the Kinect orientations values. So the next step is applying

those Unity orientations into our joint avatar GameObjects. This is the most important step since it is

the main objective. Note that all rotations occur in absolute space, both Kinect and Unity orientation.

As it is known, the function "articulacions[]" save all the avatar joints that we defined on the inspector

window in Unity. As shown in Figure 6.9, we access every joint orientation and apply the new

orientations frame per frame, as commented many times. "articulacions[].rotation" allows to work

with the rotation of the transform in world space as a Quaternion.

Figure 6.9 Quaternion application code on avatar Neck example

At this point, all the quaternion were applied to each avatar joint. However, the avatar was not

following our movements correctly because in order to use those rotations it’s necessary to know what

position a given bone is being rotated from. For example, if a person’s arm is to be rotated “up” by

ninety degrees, the final direction the arm is pointing, is different if the arm started off pointing forward

as opposed to pointing straight down. What it means is that every bone has its own coordinate system

so if it does not match the Kinect coordinate system we will have to apply rotations.

6.3.1. Coordinate systems adaptation

In this section we state how to work with different coordinate systems between two API, Kinect and

Unity. In order to use the Kinect data, it is necessary to “remap” the Kinect rotations so that they treat

VIRTUAL MIRROR

 31

bones as being aligned along the desired axis. Then, it is important that each bone is oriented so that

its three vectors are pointing in the same direction as the Kinect data.

The "SpineMid" joint example is showed in Figure 6.10-Figure 6.11. The "SpineMid" has its own

coordinate system and it is not the same as the coordinate system from Kinect. At this point, a rotation

is needed so those coordinate systems match.

Figure 6.10 Kinect skeleton local coordinate system Figure 6.11 SpineMid Unity coordinate system

Note the avatar is being watched from behind. First, the X axis will be rotate to be aligned as the Kinect

X axis (pointing right). An auxiliar quaternion needs to be created to rotate about the Z axis -90 degrees.

Now the X axis is orientated to the desired direction (right) but the Y axis is pointing down and the Z

axis pointing at us. In order to correct the Y and Z axis, a rotation of 180 degrees is applied to the Y axis

so the Kinect coordinate system is achieved as shown in Figure 6.12.

Figure 6.12 Coordinate system rotated

As mentioned before, the code to rotate those quaternion is created. The rotation quaternion are

created as auxiliar quaternion to rotate the bodies. We create as many auxiliar quaternion as axis

 Memoria

32

rotations to be made. Then in order to apply those quaternion we multiply the new orientations from

the kinect to the auxiliar quaternion. As a result, it is obtained a new quaternion ("or3_new") with the

rotations applied.

Finally, the "or3_new" quaternion is applied and the avatar can now follow our movements correctly

as desired.

Figure 6.13 Coordinate systems adaptation code

This process needs to be made through all the joints. However, there are groups of joints that use the

same rotations. For example, all the spine joints have the same coordinate system so the same auxiliary

quaternion are applied to them in order to achieve our objective.

VIRTUAL MIRROR

 33

 Memoria

34

7. Results

In this section, the data obtained, through our code will be showed as a txt file. Before that, we have

all the avatar rotations in an array where all the 22 joints are placed as shown in Figure 7.1. The array

has 22 rows, like the amount of joints studied, and 4 columns, like the 4 quaternion variables (x, y, z,

and w). Once the array is defined, a for loop command (Figure 7.2) can be created in order to evaluate

each array value. The for loop executes a block of statements repeatedly until the specified condition

returns false. Note that the quaternion are rounded to 4 decimals so we can analyse the data easily.

Figure 7.1 Orientations array

Figure 7.2 Txt for loop

VIRTUAL MIRROR

 35

Now the quaternion applied to the avatar are printed on a txt file (Figure 7.3) to make sure, the

orientations of the avatar are correct or at least, no false data is received. In Figure 7.3 show the

quaternion obtained in a upright body posture with no movements.

Figure 7.3 Orientations array txt (One frame)

The Figure 7.3 show that even though the body posture is still, there are initial rotations which come

from the initial coordinate systems adaptation. This txt file show the same joint order followed during

the project. So, it is fast to analyse the desired joint. There are some values from which there is no

information of its orientation or simply they are 0.

 Head: This joint give us 0 values because the parent bone of the joint Head is itself. Unity

defines rotations with quaternion of solids relative to the ground, except solids that do not

have a parent joint, which assigns a zero value.

 FootLeft/FootRight: Those joints give 0 value because leaf joints have no orientation data.

 ThumbLeft/ThumbRight: Those joints have the same problem as the feet. The give 0 value

because leaf joints have no orientation data.

For leaf joints the orientation quaternions returned have all components set to 0.

x y z w

Head

ThumbRight

FootRight

ThumbLeft

FootLeft

 Memoria

36

VIRTUAL MIRROR

 37

8. Environment impact analysis

This project does not have an environmental impact as itself, since during its realization no residue is

created. The only cost to consider is the energy used by the electronic devices during the execution of

the project but the cost associated to this is minimum compared with the electricity consumption of

the facilities of the Barcelona East School of Engineering (EEBE).

What is more, telerehabilitation means environmentally friendly. Emissions are reduced because we

can minimize the number of trips to a physical therapy centre. Each telerehabilitation unit is a small

emissions saving, and this savings can be significant if these services extend widely to the society.

Finally, we must consider the deterioration of the electronic equipment used: the Microsoft Kinect

sensor and the computer. Once they have reached the end of their useful life, they must be withdrawn

as indicated Directive 2012/19/EU of the European Parliament and of the Council on the waste of

electrical equipment and Electronic (waste electrical and electronic equipment - WEEE) (20), which sets

the objectives of its collection, recycling and recovery.

 Memoria

38

VIRTUAL MIRROR

 39

9. Improvement proposals and future applications

In the contemporary world, computer is a source of fun for most people. They spend up to a couple of

hours per day in front of the screen, which points to the fact that interactive games keep the people’s

attention. Besides the motivational aspect, the advantage of computer technology is that the practical

element resembles real life situations and as such allows the user to make mistakes and learn in a safe

environment.

VR offers a unique medium in which rehabilitation treatments can be offered within a functional,

purposeful and motivating context, which can be readily graded and documented.

As it was first said, this project is the first step into developing a full rehabilitation VR application

integrating Kinect v2 and Unity. So, the next step is creating a full environment on Unity to improve the

patient experience. This environment could simulate daily life situations such as supermarkets, parks,

etc.

Another possible functionality to implement in the future would be the management of different users

and the register of their progression. When the user logs in their account, the percentage of the

improvement achieved in each movement will be shown. This feature will allow us to easily manage

and modify the recorded movements. In that case, it would be useful to tell a patient with, for example,

an arm injury, if the movement they are doing in the rehabilitation is being correct or not.

In the midterm, those rehabilitations applications will be thrown out to the next level. The next

progression of VR will be AR (Augmented Reality). In the AR world, you will be able to mix the real

world with the virtual. This takes all of the advantages of VR and puts them at your fingertips and

confuses your brain further. AR supplements the real world with virtual (computer-generated) objects

that appear to coexist in the same space as the real world. AR was recognised by MIT as one of ten

emerging technologies of 2007 (21), and with today’s smart phones and AR browsers we are starting

to embrace this very new and exciting kind of human-computer interaction(22).

VIRTUAL MIRROR

 41

Conclusions

In this project, the first step on creating a telerehabilitation system based on the new VR technologies

was presented with the aim of generating a future virtual mirror (VM). Certain studies have shown that

the union of VR and rehabilitation generate satisfactory results in both the evolution of patients (23)

and their satisfaction (24). Currently, most VR applications in rehabilitation simulate real life activities

such as grasping and manipulating objects or performing everyday tasks. These VR systems help

patients enhance improve functional ability and realise greater participation in community life (25).

In terms of the realization of the project, at first, the Microsoft SDK for Windows had to be download

in order to enable the computer to work with the Kinect v2. Then we had to code in order to get the

Kinect orientations of the skeleton joints in quaternion which give us better results than working with

Euler angles. In certain analytical procedures and in some applications it is found that the quaternion

can offer fundamental computational, operational and/or implementation, and data handling

advantages over the conventional rotation matrix (26). What is more, Euler angles have the

disadvantages of ambiguity and Gimbal Lock.

During this project I saw some limitations in terms of data acquisition as there were some occlusion on

some body parts depending on the subject position, so the data of those parts was not accurate. As

mentioned before, one of my future proposal is the use of two Kinect sensor from two different

viewpoints. The one-Kinect system is more prone to give poor estimation when occlusion occurs, while

the two-Kinect sensor system often gives more depth measurement from the other viewpoint, so that

the pose tracking module infers lees cloud points of the occlusion (27). In future improvements of this

project, two Kinect sensors could be used in order to erase this problem and acquire more precision.

 We also saw that there were some joint orientation data for leaf joints that had their quaternions

values set to 0. In these cases, if the 3D model skeleton has been defined to have vertices attached to

these joints, then the orientations of these joints' parents should be used. For example, when orienting

the right hand tip, then you would use the right wrist orientation instead as the hand tip will be defined

as all zeros.

 Memoria

42

Then, we had to integrate Kinect and Unity by downloading a package from the Microsoft SDK site. In

this package, there are some commands that had to be imported to our project in order to work with

Kinect and Unity, together, from our C# scripts in Visual Studio. At this point our Unity game was

"Kinectized".

Finally, the Kinect orientations had to be applied into the avatar. This part opened a wide range of

possible solutions but it was not formally documented. As previously stated, those orientations could

be given by Euler angles, with a previous mathematical process from the quaternion, or directly, by

applying those quaternion. Some research has been made on this topic. And the conclusions are

decisive, computer-based applications work more efficient and deliver better results with quaternion

than with Euler angles (26).

Once the body joints orientation quaternion were processed and applied to every avatar joint

GameObject, some problems as the Unity skeleton bones were not orientated as the Kinect

orientations. So an adaptation had to be made joint per joint in order to match these orientations.

Simply, we created auxiliary quaternion to rotate the current orientations, and multiply the current to

the auxiliary so a new well oriented quaternion is obtained. Being this problem solved, we transferred

the Kinect-captured user motion to the humanoid avatar model and it worked smoothly and correctly.

The data presented in this project show that the main objective of achieving an effective model that

integrates Kinect and Unity in real time and animates an avatar has been met.

VIRTUAL MIRROR

 43

 Memoria

44

Economic analysis

The economic study of this project can be divided into two parts: on the one hand, acquisition costs of

the devices used and software, and on the other hand, the costs associated with the design process

and generation of the code and the time invested with experimentation.

 Acquisition costs:

In our case, the Barcelona East School of engineering (EEBE) already had from the beginning

of the project, the equipment for its development. Even though, the economic cost that would

involve buying them for carrying out similar projects is contemplated. On the one hand, it is

necessary to assume the purchase costs of the system of MOCAP Microsoft Kinect V2 along

with its adapter for Windows. On the other hand, in regard to the software used, all of them

are free and, therefore, their licenses do not imply a cost additional to the project. Unity

Personal is the free version of Unity, which is available to use if your income or funds (raised

or self-financed) do not exceed $100.000 per year. The result of the acquisition costs is shown

in Table 9.

Table 9 Acquisition project costs

 Realization costs:

Those costs include the work done by the engineer or researcher that gives them the time

dedicated to the implementation and generation of the code and the experimental processes.

It is considered a junior engineer. It is taken into account the hours of research and the writing

and elaboration of the memory.

VIRTUAL MIRROR

 45

It is also taken into account the depreciation associated to the student computer during the

duration of the project. It is supposed a product life of 5 years with an annual depreciation of

16% and a residual coefficient value of 20%. The initial cost of the device is € 1.100 and the

duration of the project is 4 months (0.3333 years). The costs associated with the energy are

minimum. Approximately an average consumption of 0,04kWh due to the computer and the

Kinect 0,03kWh. The result is shown in Table 10.

Table 10 Project realization costs

 Total costs:

The total cost of this project including the acquisition costs of the equipment and software

used, and the realization costs are showed in Table 11.

Table 11 Total project costs

 Memoria

46

Bibliography

1. Norman, J. «Pygmalion’s Spectacles,» Probably the First Comprehensive and Specific Fictional Model
for Virtual Reality. A: [en línia]. 2006. Disponible a:
http://www.historyofinformation.com/expanded.php?id=4543.

2. Lange, B. et al. FAAST: The Flexible Action and Articulated Skeleton Toolkit. A: . 2011,

3. Moeslund,T.B. Hilton,A.,Krüger, V. A survey od advances in vision-based human motion capture and
analysis. A: . 2006,

4. Susín, A. i Lligadas, X. Biomechanical validation of Upper-Body and Lower-Body joint movements of
kinect motion capture data for rehabilitation treatments. 2012.

5. Chan, Y.-J., Chen, S.-F. i Huang, J.-D. A Kinect-based system for physical rehabilitation: A pilot study
for young adults with motor disabilities. A: Research in Developmental Disabilities. 2011, p. 2566-2570.

6. Chang, Y.-J., Han, W.-Y. i Tsai, Y.-C. A Kinect-based upper limb rehabilitation system to assist people
with cerebral palsy. A: Research in Developmental Disabilities. 2011, p. 3654-3659.

7. Bolas, M. et al. Development and evaluation of low cost game-based balance rehabilitation tool using
the microsoft kinect sensor. A: . 2011,

8. Alexiadis, D., Kelly, P. i Daras, P. Evaluating a dancer’s performance using kinect-based skeleton
tracking. A: . 2011,p. 659-662.

9. Sergi Foix, G.A. and C.T. Lock-in Time-of-Flight (ToF) Cameras: A Survey. A: IEEE SENSORS JOURNAL,
VOL. 11, NO. 3. 2011,

10. Remote Sens. Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a
Potential use for Close-Range 3D Modeling. A: . 2015,

11. Shotton,J. ,Fitzgibbon, A., Cook,M.,Sharp, T.,Finocchio,M.,Moore,R.,Kipman,A.,Blake, A. Real time
human pose recognition in parts from single depth images. A: . 2011,

12. Theodore, M. The Kinect Up Close: Modifications for Short-Range Depth Imaging. 2012.

13. Plantard,P.Auvinet, E., Pierres, A.S.L. Pose Estimation with a Kinect for Ergonomic Studies:
Evaluation of the Accuracy Using a Virtual Mannequin. 2015.

14. Van Oostendorp, H., Jan Beun, Ro. i Van Diggelen, J. Human-Media Interaction. 2010.

15. Preciado, J.J. Diseño y programación con Unity3D de un avatar interactivo con sincronización
musical. 2014.

16. Unity documentation. A: [en línia]. 2017. Disponible a: https://docs.unity3d.com/Manual.

17. Torner, J. et al. VR_multipose_v1. 2018.

VIRTUAL MIRROR

 47

18. Kinect for Windows. A: [en línia]. Disponible a: https://developer.microsoft.com/en-
us/windows/kinect.

19. Goldman, R. Understanding quaternions. A: Graphical Models. 2011, p. 21-49.

20. European Parliament. DIRECTIVE 2012/19 / EU OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 4 July of 2012 on waste electrical and electronic equipment (WEEE). 2012. 2012.

21. Jonietz, E. No Title. A: [en línia]. 2007. Disponible a:
http://www.techreview.com/special/emerging/.

22. Poelman, R. A Survey of Augmented Reality Technologies, Applications and Limitations. Delft
University of Technology Jaffalaan, 2010.

23. Piron, L. et al. Virtual Environment Training Therapy for Arm Motor Rehabilitation. A: Presence
Teleoperators Virtual Environ. 2005, p. 732-740.

24. Lewis, G.N. et al. Virtual reality games for rehabilitation of people with stroke: perspectives from
the users. A: Disability Rehabilitation Assistance Technology. 2011, p. 453-463.

25. McGoldrick, M.M.M.C.M.C.O. Adaptive Virtual Reality Games for Rehabilitation of Motor Disorders.
A: Universal Access in Human-Computer Interaction. Ambient Interaction. 2007, p. 681-690.

26. B. Kuipers, J. Quaternions and rotation sequences. Calvin College Grand Rapids, 2000.

27. Du, S. et al. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture. 2015.

VIRTUAL MIRROR

 49

Annex A

A1. Kinect specifications

 Annexos

50

VIRTUAL MIRROR

 51

 Annexos

52

A2. Body Source View script

1. using UnityEngine;

2. using System.Collections.Generic;

3. using Kinect = Windows.Kinect;

4. using Windows.Kinect;

5. using JointsAngles;

6.

7. using System;

8. using System.IO;

9.

10. public class BodySourceView : MonoBehaviour

11. {

12. public Transform[] articulacions;

13.

14. public Material BoneMaterial;

15. public GameObject BodySourceManager;

16.

17. public double[,] orientationsarray;

18.

19. UnityEngine.Quaternion or1_unity;

20. UnityEngine.Quaternion or2_unity;

21. UnityEngine.Quaternion or3_unity;

22. UnityEngine.Quaternion or4_unity;

23. UnityEngine.Quaternion or5_unity;

24. UnityEngine.Quaternion or6_unity;

25. UnityEngine.Quaternion or7_unity;

26. UnityEngine.Quaternion or8_unity;

27. UnityEngine.Quaternion or9_unity;

28. UnityEngine.Quaternion or10_unity;

29. UnityEngine.Quaternion or11_unity;

30. UnityEngine.Quaternion or12_unity;

VIRTUAL MIRROR

 53

31. UnityEngine.Quaternion or13_unity;

32. UnityEngine.Quaternion or14_unity;

33. UnityEngine.Quaternion or15_unity;

34. UnityEngine.Quaternion or16_unity;

35. UnityEngine.Quaternion or17_unity;

36. UnityEngine.Quaternion or18_unity;

37. UnityEngine.Quaternion or19_unity;

38. UnityEngine.Quaternion or20_unity;

39. UnityEngine.Quaternion or21_unity;

40. UnityEngine.Quaternion or22_unity;

41.

42.

43. private Dictionary<ulong, GameObject> _Bodies = new Dictionary<ulong,

GameObject>();

44. private BodySourceManager _BodyManager;

45.

46. private Dictionary<Kinect.JointType, Kinect.JointType> _BoneMap = new

Dictionary<Kinect.JointType, Kinect.JointType>()

47. {

48. { Kinect.JointType.FootLeft, Kinect.JointType.AnkleLeft },

49. { Kinect.JointType.AnkleLeft, Kinect.JointType.KneeLeft },

50. { Kinect.JointType.KneeLeft, Kinect.JointType.HipLeft },

51. { Kinect.JointType.HipLeft, Kinect.JointType.SpineBase },

52.

53. { Kinect.JointType.FootRight, Kinect.JointType.AnkleRight },

54. { Kinect.JointType.AnkleRight, Kinect.JointType.KneeRight },

55. { Kinect.JointType.KneeRight, Kinect.JointType.HipRight },

56. { Kinect.JointType.HipRight, Kinect.JointType.SpineBase },

57.

58. { Kinect.JointType.HandTipLeft, Kinect.JointType.HandLeft },

59. { Kinect.JointType.ThumbLeft, Kinect.JointType.HandLeft },

60. { Kinect.JointType.HandLeft, Kinect.JointType.WristLeft },

61. { Kinect.JointType.WristLeft, Kinect.JointType.ElbowLeft },

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

54

62. { Kinect.JointType.ElbowLeft, Kinect.JointType.ShoulderLeft },

63. { Kinect.JointType.ShoulderLeft, Kinect.JointType.SpineShoulder

},

64.

65. { Kinect.JointType.HandTipRight, Kinect.JointType.HandRight },

66. { Kinect.JointType.ThumbRight, Kinect.JointType.HandRight },

67. { Kinect.JointType.HandRight, Kinect.JointType.WristRight },

68. { Kinect.JointType.WristRight, Kinect.JointType.ElbowRight },

69. { Kinect.JointType.ElbowRight, Kinect.JointType.ShoulderRight },

70. { Kinect.JointType.ShoulderRight, Kinect.JointType.SpineShoulder
},

71.

72. { Kinect.JointType.SpineBase, Kinect.JointType.SpineMid },

73. { Kinect.JointType.SpineMid, Kinect.JointType.SpineShoulder },

74. { Kinect.JointType.SpineShoulder, Kinect.JointType.Neck },

75. { Kinect.JointType.Neck, Kinect.JointType.Head },

76. };

77.

78.

79.

80. public void Update()

81. {

82.

83.

84. if (BodySourceManager == null)

85. {

86. return;

87. }

88.

89. _BodyManager =

BodySourceManager.GetComponent<BodySourceManager>();

90. if (_BodyManager == null)

91. {

VIRTUAL MIRROR

 55

92. return;

93. }

94.

95. Kinect.Body[] data = _BodyManager.GetData();

96. if (data == null)

97. {

98. return;

99. }

100.

101. List<ulong> trackedIds = new List<ulong>();

102. foreach (var body in data)

103. {

104. if (body == null)

105. {

106. continue;

107. }

108.

109. if (body.IsTracked)

110. {

111. trackedIds.Add(body.TrackingId);

112. }

113. }

114.

115. List<ulong> knownIds = new List<ulong>(_Bodies.Keys);

116.

117. // First delete untracked bodies

118. foreach (ulong trackingId in knownIds)

119. {

120. if (!trackedIds.Contains(trackingId))

121. {

122. Destroy(_Bodies[trackingId]);

123. _Bodies.Remove(trackingId);

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

56

124. }

125. }

126.

127. foreach (var Body in data)

128. {

129. if (Body == null)

130. {

131. continue;

132. }

133.

134. if (Body.IsTracked)

135. {

136. if (!_Bodies.ContainsKey(Body.TrackingId))

137. {

138. _Bodies[Body.TrackingId] =

CreateBodyObject(Body.TrackingId);

139. }

140.

141. RefreshBodyObject(Body, _Bodies[Body.TrackingId]);

142.

143. // *************************** KINECT JOINT

ORIENTATIONS**//

144.

145.

146.

147.

148. var orientation1 =

Body.JointOrientations[JointType.Head].Orientation;

149.

150. var orientation2 =

Body.JointOrientations[JointType.Neck].Orientation;

151.

152. var orientation3 =
Body.JointOrientations[JointType.SpineMid].Orientation;

VIRTUAL MIRROR

 57

153.

154. var orientation4 =

Body.JointOrientations[JointType.ShoulderLeft].Orientation;

155.

156. var orientation5 =

Body.JointOrientations[JointType.ShoulderRight].Orientation;

157.

158. var orientation6 =

Body.JointOrientations[JointType.ElbowLeft].Orientation;

159.

160. var orientation7 =

Body.JointOrientations[JointType.ElbowRight].Orientation;

161.

162. var orientation8 =
Body.JointOrientations[JointType.WristLeft].Orientation;

163.

164. var orientation9 =

Body.JointOrientations[JointType.WristRight].Orientation;

165.

166. var orientation10 =

Body.JointOrientations[JointType.HipLeft].Orientation;

167.

168. var orientation11 =

Body.JointOrientations[JointType.HipRight].Orientation;

169.

170. var orientation12 =

Body.JointOrientations[JointType.KneeLeft].Orientation;

171.

172. var orientation13 =
Body.JointOrientations[JointType.KneeRight].Orientation;

173.

174. var orientation14 =

Body.JointOrientations[JointType.SpineBase].Orientation;

175.

176. var orientation15 =

Body.JointOrientations[JointType.AnkleLeft].Orientation;

177.

 Annexos

58

178. var orientation16 =

Body.JointOrientations[JointType.AnkleRight].Orientation;

179.

180. var orientation17 =

Body.JointOrientations[JointType.FootLeft].Orientation;

181.

182. var orientation18 =
Body.JointOrientations[JointType.FootRight].Orientation;

183.

184. var orientation19 =

Body.JointOrientations[JointType.HandLeft].Orientation;

185.

186. var orientation20 =

Body.JointOrientations[JointType.HandRight].Orientation;

187.

188. var orientation21 =

Body.JointOrientations[JointType.ThumbLeft].Orientation;

189.

190. var orientation22 =

Body.JointOrientations[JointType.ThumbRight].Orientation;

191.

192.

193.

194.

195. //*********************************APPLYING

ROTATIONS TO AVATAR***********************************//

196.

197.

198. // HEAD

199. or1_unity.x = orientation1.X;

200. or1_unity.y = orientation1.Y;

201. or1_unity.z = orientation1.Z;

202. or1_unity.w = orientation1.W;

203.

204. Quaternion or1_unity_aux;

VIRTUAL MIRROR

 59

205. Quaternion or1_unity_aux2;

206. Quaternion or1_new;

207.

208. or1_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

209. or1_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

210. or1_new = or1_unity_aux * or1_unity_aux2 *

or1_unity;

211. articulacions[0].rotation = or1_new;

212.

213. //NECK

214. or2_unity.x = orientation2.X;

215. or2_unity.y = orientation2.Y;

216. or2_unity.z = orientation2.Z;

217. or2_unity.w = orientation2.W;

218. Quaternion or2_unity_aux;

219. Quaternion or2_unity_aux2;

220. Quaternion or2_new;

221.

222. or2_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

223. or2_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

224. or2_new = or2_unity_aux * or2_unity_aux2 *

or2_unity;

225. articulacions[1].rotation = or2_new;

226.

227. //SPineMid

228. or3_unity.x = orientation3.X;

229. or3_unity.y = orientation3.Y;

230. or3_unity.z = orientation3.Z;

231. or3_unity.w = orientation3.W;

232.

233. Quaternion or3_unity_aux;

 Annexos

60

234. Quaternion or3_unity_aux2;

235. Quaternion or3_new;

236.

237. or3_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

238. or3_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

239. or3_new = or3_unity_aux * or3_unity_aux2 *

or3_unity;

240. articulacions[2].rotation = or3_new;

241.

242. //ShoulderLeft

243. or4_unity.x = orientation4.X;

244. or4_unity.y = orientation4.Y;

245. or4_unity.z = orientation4.Z;

246. or4_unity.w = orientation4.W;

247.

248. Quaternion or4_unity_aux2;

249. Quaternion or4_unity_aux3;

250. Quaternion or4_new;

251.

252. or4_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

253. or4_unity_aux3 = Quaternion.AngleAxis(90,

Vector3.back);

254. or4_new = or4_unity * or4_unity_aux3;

255. articulacions[3].rotation = or4_new;

256.

257.

258. //ShoulderRight

259. or5_unity.x = orientation5.X;

260. or5_unity.y = orientation5.Y;

261. or5_unity.z = orientation5.Z;

262. or5_unity.w = orientation5.W;

VIRTUAL MIRROR

 61

263.

264. Quaternion or5_unity_aux;

265. Quaternion or5_unity_aux3;

266. Quaternion or5_new;

267.

268. or5_unity_aux = Quaternion.AngleAxis(180,

Vector3.right);

269. or5_unity_aux3 = Quaternion.AngleAxis(90,

Vector3.forward);

270. or5_new = or5_unity_aux * or5_unity *

or5_unity_aux3;

271. articulacions[4].rotation = or5_new;

272.

273. //ElbowLeft

274. or6_unity.x = orientation6.X;

275. or6_unity.y = orientation6.Y;

276. or6_unity.z = orientation6.Z;

277. or6_unity.w = orientation6.W;

278.

279. Quaternion or6_unity_aux;

280. Quaternion or6_unity_aux2;

281. Quaternion or6_unity_aux3;

282. Quaternion or6_new;

283.

284. or6_unity_aux = Quaternion.AngleAxis(180,

Vector3.back);

285. or6_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

286. or6_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

287. or6_new = or6_unity_aux * or6_unity_aux2 *

or6_unity_aux3 * or6_unity;

288. articulacions[5].rotation = or6_new;

289.

290.

 Annexos

62

291. //ElbowRight

292. or7_unity.x = orientation7.X;

293. or7_unity.y = orientation7.Y;

294. or7_unity.z = orientation7.Z;

295. or7_unity.w = orientation7.W;

296.

297. Quaternion or7_unity_aux;

298. Quaternion or7_unity_aux2;

299. Quaternion or7_unity_aux3;

300. Quaternion or7_new;

301.

302. or7_unity_aux = Quaternion.AngleAxis(30,

Vector3.back);

303. or7_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

304. or7_unity_aux3 = Quaternion.AngleAxis(0,

Vector3.right);

305. or7_new = or7_unity_aux * or7_unity_aux2 * or7_unity

* or7_unity_aux3;

306. articulacions[6].rotation = or7_new;

307.

308. //WristLeft

309. or8_unity.x = orientation8.X;

310. or8_unity.y = orientation8.Y;

311. or8_unity.z = orientation8.Z;

312. or8_unity.w = orientation8.W;

313.

314. Quaternion or8_unity_aux;

315. Quaternion or8_unity_aux2;

316. Quaternion or8_new;

317.

318. or8_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

319. or8_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

VIRTUAL MIRROR

 63

320. or8_new = or8_unity_aux * or8_unity_aux2 *

or8_unity;

321. articulacions[7].rotation = or8_new;

322.

323.

324. //WristRight

325. or9_unity.x = orientation9.X;

326. or9_unity.y = orientation9.Y;

327. or9_unity.z = orientation9.Z;

328. or9_unity.w = orientation9.W;

329.

330. Quaternion or9_unity_aux;

331. Quaternion or9_unity_aux2;

332. Quaternion or9_new;

333.

334. or9_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

335. or9_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

336. or9_new = or9_unity_aux * or9_unity_aux2 *

or9_unity;

337. articulacions[8].rotation = or9_new;

338.

339. //HipLeft

340. or10_unity.x = orientation10.X;

341. or10_unity.y = orientation10.Y;

342. or10_unity.z = orientation10.Z;

343. or10_unity.w = orientation10.W;

344.

345. Quaternion or10_unity_aux;

346. Quaternion or10_unity_aux2;

347. Quaternion or10_unity_aux3;

348. Quaternion or10_new;

 Annexos

64

349.

350. or10_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

351. or10_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.right);

352. or10_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.down);

353. or10_new = or10_unity * or10_unity_aux *

or10_unity_aux2;

354. articulacions[9].rotation = or10_new;

355.

356. //HipRight

357. or11_unity.x = orientation11.X;

358. or11_unity.y = orientation11.Y;

359. or11_unity.z = orientation11.Z;

360. or11_unity.w = orientation11.W;

361.

362.

363. Quaternion or11_unity_aux;

364. Quaternion or11_unity_aux2;

365. Quaternion or11_unity_aux3;

366. Quaternion or11_new;

367.

368. or11_unity_aux = Quaternion.AngleAxis(90,

Vector3.up);

369. or11_unity_aux2 = Quaternion.AngleAxis(90,

Vector3.forward);

370. or11_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

371. or11_new = or11_unity * or11_unity_aux *

or11_unity_aux2;

372. articulacions[10].rotation = or11_new;

373.

374. //KneeLeft

375. or12_unity.x = orientation12.X;

VIRTUAL MIRROR

 65

376. or12_unity.y = orientation12.Y;

377. or12_unity.z = orientation12.Z;

378. or12_unity.w = orientation12.W;

379.

380. Quaternion or12_unity_aux;

381. Quaternion or12_unity_aux2;

382. Quaternion or12_unity_aux3;

383. Quaternion or12_new;

384.

385. or12_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

386. or12_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.right);

387. or12_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.down);

388. or12_new = or12_unity * or12_unity_aux *

or12_unity_aux2;

389. articulacions[11].rotation = or12_new;

390.

391. //KneeRight

392. or13_unity.x = orientation13.X;

393. or13_unity.y = orientation13.Y;

394. or13_unity.z = orientation13.Z;

395. or13_unity.w = orientation13.W;

396.

397. Quaternion or13_unity_aux;

398. Quaternion or13_unity_aux2;

399. Quaternion or13_unity_aux3;

400. Quaternion or13_new;

401.

402. or13_unity_aux = Quaternion.AngleAxis(90,

Vector3.up);

403. or13_unity_aux2 = Quaternion.AngleAxis(90,

Vector3.forward);

 Annexos

66

404. or13_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

405. or13_new = or13_unity * or13_unity_aux *

or13_unity_aux2;

406. articulacions[12].rotation = or13_new;

407.

408. //SpineBase

409. or14_unity.x = orientation14.X;

410. or14_unity.y = orientation14.Y;

411. or14_unity.z = orientation14.Z;

412. or14_unity.w = orientation14.W;

413.

414. Quaternion or14_unity_aux;

415. Quaternion or14_unity_aux2;

416. Quaternion or14_new;

417.

418. or14_unity_aux = Quaternion.AngleAxis(90,

Vector3.back);

419. or14_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.up);

420. or14_new = or14_unity_aux * or14_unity_aux2 *

or14_unity;

421. articulacions[13].rotation = or14_new;

422.

423. //AnkleLeft

424. or15_unity.x = orientation15.X;

425. or15_unity.y = orientation15.Y;

426. or15_unity.z = orientation15.Z;

427. or15_unity.w = orientation15.W;

428.

429. Quaternion or15_unity_aux;

430. Quaternion or15_unity_aux2;

431. Quaternion or15_unity_aux3;

432. Quaternion or15_new;

VIRTUAL MIRROR

 67

433.

434. or15_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

435. or15_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.right);

436. or15_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.down);

437. or15_new = or15_unity * or15_unity_aux *

or15_unity_aux2;

438. articulacions[14].rotation = or15_new;

439.

440. //AnkleRight

441. or16_unity.x = orientation16.X;

442. or16_unity.y = orientation16.Y;

443. or16_unity.z = orientation16.Z;

444. or16_unity.w = orientation16.W;

445.

446. Quaternion or16_unity_aux;

447. Quaternion or16_unity_aux2;

448. Quaternion or16_unity_aux3;

449. Quaternion or16_new;

450.

451. or16_unity_aux = Quaternion.AngleAxis(90,

Vector3.up);

452. or16_unity_aux2 = Quaternion.AngleAxis(90,

Vector3.forward);

453. or16_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

454. or16_new = or16_unity * or16_unity_aux *

or16_unity_aux2;

455. articulacions[15].rotation = or16_new;

456.

457. //FootLeft

458. or17_unity.x = orientation17.X;

459. or17_unity.y = orientation17.Y;

 Annexos

68

460. or17_unity.z = orientation17.Z;

461. or17_unity.w = orientation17.W;

462.

463.

464. Quaternion or17_unity_aux;

465. Quaternion or17_unity_aux2;

466. Quaternion or17_unity_aux3;

467. Quaternion or17_new;

468.

469. or17_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

470. or17_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.right);

471. or17_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.down);

472. or17_new = or17_unity * or17_unity_aux *

or17_unity_aux2;

473. articulacions[16].rotation = or17_new;

474.

475. //FootRight

476. or18_unity.x = orientation18.X;

477. or18_unity.y = orientation18.Y;

478. or18_unity.z = orientation18.Z;

479. or18_unity.w = orientation18.W;

480.

481. Quaternion or18_unity_aux;

482. Quaternion or18_unity_aux2;

483. Quaternion or18_unity_aux3;

484. Quaternion or18_new;

485.

486. or18_unity_aux = Quaternion.AngleAxis(90,

Vector3.up);

487. or18_unity_aux2 = Quaternion.AngleAxis(90,

Vector3.forward);

VIRTUAL MIRROR

 69

488. or18_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

489. or18_new = or18_unity * or18_unity_aux *

or18_unity_aux2;

490. articulacions[17].rotation = or18_new;

491.

492. //HandLeft

493. or19_unity.x = orientation19.X;

494. or19_unity.y = orientation19.Y;

495. or19_unity.z = orientation19.Z;

496. or19_unity.w = orientation19.W;

497.

498. Quaternion or19_unity_aux2;

499. Quaternion or19_unity_aux3;

500. Quaternion or19_new;

501.

502. or19_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.down);

503. or19_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

504. or19_new = or19_unity_aux2 * or19_unity_aux3 *

or19_unity;

505. articulacions[18].rotation = or19_new;

506.

507. //HandRight

508. or20_unity.x = orientation20.X;

509. or20_unity.y = orientation20.Y;

510. or20_unity.z = orientation20.Z;

511. or20_unity.w = orientation20.W;

512.

513. Quaternion or20_unity_aux;

514. Quaternion or20_unity_aux3;

515. Quaternion or20_new;

516.

 Annexos

70

517. or20_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

518. or20_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

519. or20_new = or20_unity_aux * or20_unity *

or20_unity_aux3;

520. articulacions[19].rotation = or20_new;

521.

522. //ThumbLeft

523. or21_unity.x = orientation21.X;

524. or21_unity.y = orientation21.Y;

525. or21_unity.z = orientation21.Z;

526. or21_unity.w = orientation21.W;

527.

528. Quaternion or21_unity_aux2;

529. Quaternion or21_unity_aux3;

530. Quaternion or21_new;

531.

532. or21_unity_aux2 = Quaternion.AngleAxis(180,

Vector3.down);

533. or21_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

534. or21_new = or21_unity_aux2 * or21_unity_aux3 *

or21_unity;

535. articulacions[20].rotation = or21_new;

536.

537. //ThumbRight

538. or22_unity.x = orientation22.X;

539. or22_unity.y = orientation22.Y;

540. or22_unity.z = orientation22.Z;

541. or22_unity.w = orientation22.W;

542.

543. Quaternion or22_unity_aux;

544. Quaternion or22_unity_aux3;

545. Quaternion or22_new;

VIRTUAL MIRROR

 71

546.

547. or22_unity_aux = Quaternion.AngleAxis(180,

Vector3.forward);

548. or22_unity_aux3 = Quaternion.AngleAxis(180,

Vector3.right);

549. or22_new = or22_unity_aux * or22_unity *

or22_unity_aux3;

550. articulacions[21].rotation = or22_new;

551.

552. //************************************Orientations

array**********************************//

553.

554. orientationsarray = new double[22, 4]{{

or1_new.x,or1_new.y,or1_new.z,or1_new.w},

555. {

or2_new.x,or2_new.y,or2_new.z,or2_new.w },

556. {

or3_new.x,or3_new.y,or3_new.z,or3_new.w },

557. {

or4_new.x,or4_new.y,or4_new.z,or4_new.w },

558. {

or5_new.x,or5_new.y,or5_new.z,or5_new.w },

559. {

or6_new.x,or6_new.y,or6_new.z,or6_new.w },

560. {

or7_new.x,or7_new.y,or7_new.z,or7_new.w },

561. {

or8_new.x,or8_new.y,or8_new.z,or8_new.w },

562. {

or9_new.x,or9_new.y,or9_new.z,or9_new.w },

563. {

or10_new.x,or10_new.y,or10_new.z,or10_new.w },

564. {

or11_new.x,or11_new.y,or11_new.z,or11_new.w },

565. {

or12_new.x,or12_new.y,or12_new.z,or12_new.w },

566. {

or13_new.x,or13_new.y,or13_new.z,or13_new.w },

567. {

or14_new.x,or14_new.y,or14_new.z,or14_new.w },

http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

72

568. {

or15_new.x,or15_new.y,or15_new.z,or15_new.w },

569. {

or16_new.x,or16_new.y,or16_new.z,or16_new.w },

570. {

or17_new.x,or17_new.y,or17_new.z,or17_new.w },

571. {

or18_new.x,or18_new.y,or18_new.z,or18_new.w },

572. {

or19_new.x,or19_new.y,or19_new.z,or19_new.w },

573. {

or20_new.x,or20_new.y,or20_new.z,or20_new.w },

574. {

or21_new.x,or21_new.y,or21_new.z,or21_new.w },

575. {

or22_new.x,or22_new.y,or22_new.z,or22_new.w }

576. };

577. //************************************* TXT file

creation ***********************************//

578.

579. for (int i = 0; i < 22; i++)

580. {

581. for (int j = 0; j < 4; j++)

582. {

583. double datos1 =

Math.Round(orientationsarray[i, j], 4);

584.

585. string datos = datos1.ToString();

586. File.AppendAllText(@"C:\Users\USUARIO\Docume

nts\TFG\virtualMirror_3108\orientationsarray.txt", datos);

587.

588. }

589. File.AppendAllText(@"C:\Users\USUARIO\Documents\

TFG\virtualMirror_3108\orientationsarray.txt", Environment.NewLine);

590. }

591. File.AppendAllText(@"C:\Users\USUARIO\Documents\TFG\

virtualMirror_3108\orientationsarray.txt", Environment.NewLine);

592.

VIRTUAL MIRROR

 73

593. }

594.

595.

596. }

597.

598.

599. }

600.

601. private GameObject CreateBodyObject(ulong id)

602. {

603. GameObject body = new GameObject("Body:" + id);

604.

605. for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <=

Kinect.JointType.ThumbRight; jt++)

606. {

607. GameObject jointObj =

GameObject.CreatePrimitive(PrimitiveType.Cube);

608.

609. LineRenderer lr = jointObj.AddComponent<LineRenderer>();

610. lr.SetVertexCount(2);

611. lr.material = BoneMaterial;

612. lr.SetWidth(0.05f, 0.05f);

613.

614. jointObj.transform.localScale = new Vector3(0.3f, 0.3f,

0.3f);

615. jointObj.name = jt.ToString();

616. jointObj.transform.parent = body.transform;

617. }

618.

619. return body;

620. }

621.

622.

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

74

623.

624.

625.

626. private void RefreshBodyObject(Kinect.Body body, GameObject

bodyObject)

627. {

628. for (Kinect.JointType jt = Kinect.JointType.SpineBase; jt <=

Kinect.JointType.ThumbRight; jt++)

629. {

630. Kinect.Joint sourceJoint = body.Joints[jt];

631. Kinect.Joint? targetJoint = null;

632.

633. if (_BoneMap.ContainsKey(jt))

634. {

635. targetJoint = body.Joints[_BoneMap[jt]];

636. }

637.

638. Transform jointObj =

bodyObject.transform.Find(jt.ToString());

639. jointObj.localPosition =

GetVector3FromJoint(sourceJoint);

640.

641. LineRenderer lr = jointObj.GetComponent<LineRenderer>();

642. if (targetJoint.HasValue)

643. {

644. lr.SetPosition(0, jointObj.localPosition);

645. lr.SetPosition(1,

GetVector3FromJoint(targetJoint.Value));

646. lr.SetColors(GetColorForState(sourceJoint.TrackingSt

ate), GetColorForState(targetJoint.Value.TrackingState));

647. }

648. else

649. {

650. lr.enabled = false;

VIRTUAL MIRROR

 75

651. }

652. }

653. }

654.

655. private static Color GetColorForState(Kinect.TrackingState

state)

656. {

657. switch (state)

658. {

659. case Kinect.TrackingState.Tracked:

660. return Color.green;

661.

662. case Kinect.TrackingState.Inferred:

663. return Color.red;

664.

665. default:

666. return Color.black;

667. }

668. }

669.

670. private static Vector3 GetVector3FromJoint(Kinect.Joint joint)

671. {

672. return new Vector3(joint.Position.X * 10, joint.Position.Y *
10, joint.Position.Z * 10);

673. }

674.

675.

676.

677.

678.

679.

http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

76

A3. Body Source Manager script

1. using UnityEngine;

2. using System.Collections;

3. using Windows.Kinect;

4.

5. public class BodySourceManager : MonoBehaviour

6. {

7. private KinectSensor _Sensor;

8. private BodyFrameReader _Reader;

9. private Body[] _Data = null;

10.

11. public Body[] GetData()

12. {

13. return _Data;

14. }

15.

16. void Start ()

17. {

18. _Sensor = KinectSensor.GetDefault();

19.

20. if (_Sensor != null)

21. {

22. _Reader = _Sensor.BodyFrameSource.OpenReader();

23.

24. if (!_Sensor.IsOpen)

25. {

26. _Sensor.Open();

27. }

28. }

29. }

30.

31. void Update ()

32. {

VIRTUAL MIRROR

 77

33. if (_Reader != null)

34. {

35. var frame = _Reader.AcquireLatestFrame();

36. if (frame != null)

37. {

38. if (_Data == null)

39. {

40. _Data = new Body[_Sensor.BodyFrameSource.BodyCount];

41. }

42.

43. frame.GetAndRefreshBodyData(_Data);

44.

45. frame.Dispose();

46. frame = null;

47. }

48. }

49. }

50. void OnApplicationQuit()

51. {

52. if (_Reader != null)

53. {

54. _Reader.Dispose();

55. _Reader = null;

56. }

57. if (_Sensor != null)

58. {

59. if (_Sensor.IsOpen)

60. {

61. _Sensor.Close();

62. }

63.

64. _Sensor = null;

65. }

66. }

http://www.google.com/search?q=new+msdn.microsoft.com

 Annexos

78

