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Abstract: A two-phase strategy to facilitate ML algorithm deployment in real networks is 
demonstrated: out-of-field training uses data from simulation and testbed experiments with 
generic equipment whereas in-field adaptation is applied to support heterogeneous equipment. 
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1. Introduction 
The use of cost-effective Optical Spectrum Analyzers (OSA) as a tool for the detection and identification of 

soft-failures degrading the Quality of Transmission of optical signals has been recently proposed in [1]. 
Machine Learning (ML) applied to the spectra acquired by OSAs installed in intermediate nodes has been 
successfully demonstrated for laser drift and/or filter-related failures, e.g., filter shift (FS), and tight filtering 
(FT), which deform the shape of the optical spectrum in a noticeable way. As filter cascading effects produce 
effects similar to FT, ML approaches were improved in [2] where the residual-based approach was proposed; it 
is based on analyzing the residual signal obtained by subtracting the signal acquired by OSAs from an expected 
signal synthetically generated at every intermediate node. 

Notwithstanding the noticeable results, one single filter type was considered in [1], [2], which limits the 
deployment of ML approaches to real operator networks that usually consist of equipment from different 
vendors. The most straightforward solution to overcome this limitation is to have different models being trained 
upon various types of filters that might be available in the network. Nonetheless, it makes the training phase 
very complex and data-hungry. Yet, it will not be easy to comprehend the sequence of filters a priori and the 
responses of a slightly non-identical filter in the network might not be very well detected, necessitating even 
more combination of models to have an appropriate generic model. 

In this paper, we propose a two-phase strategy to facilitate ML algorithm deployment in real networks; it 
consists in: i) training accurate models for a reference filter type based on simulations and/or experiments 
carried out in laboratory or test-bed facilities and ii) devising a proper adaptation mechanism that makes 
adjustments on the data for the specific signal being analyzed, which might have traversed different filter types 
along its route from the transmitter. Note that this strategy also facilitates the introduction of new filter types, as 
current vendors deploy new equipment releases in the network. The residual-based approach, due to its 
dependency on the synthetic behavior of the filter responses, has potential characteristics to get adapted to 
different types of filter. We present an enhanced version of such approach with the particular capability of 
getting adapted to new filter types in the network. This allows out-of-field model training and in-field 
adaptation, which makes it a robust feasible solution for networks with heterogeneous filtering. 
2. Residual-based training and adaptation for filter soft-failure detection and identification 

Fig. 1 overviews the proposed out-of-field ML training and in-field model adaptation strategy. Scenarios with 
one single type of filters (labeled F1 in Fig. 1a) are considered in simulation and/or lab experiments to produce a 
large dataset that is used for ML training purposes. When the ML model is deployed in the field, an adaptation 
procedure takes into account the specific types of filter that a given signal has passed through (Fig. 1b). 

The residual-based approach lies in pre-processing the acquired optical spectrum by comparing it to the one 
that would be expected after passing the same number of filters than the signal. This comparison produces a  
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Fig. 1. Out-of-field ML training and in-field model adaptation Fig. 2. Soft-failure detection based on residuals analysis 
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residual signal representing the differential deformation that it is used as an input for a classifier that detects 
soft-failures (Fig. 2). Two modules are required to compute the residual signal: i) the Expected Signal 
Calculator (ESC) and ii) the Residual Computation and Adaptation module [2]. The ESC module generates a 
theoretically-calculated optical spectrum emulating a properly operating lightpath. The aim of ESC module is to 
synthetically reproduce an averaged noise-free version of the measured optical signal. Then, the residual signal 
is easily obtained by subtracting the acquired signal by the OSA from the signal generated by the ESC module. 
However, further elaboration on the residual signal is required to make it suitable for decision-making and 
training the classifiers. Ultimately, the elaborated residual signals can be used to train Support Vector Machine 
based classifiers [3] to detect and identify filter failure cases. 

The in-field adaptation is performed in i) the ESC module by considering the specific filters that the signal 
has passed through; see three filter transfer functions in Fig. 2, and ii) the residual computation module that 
normalizes and adapts the residuals for the signal under analysis. Next section describes residuals adaptation. 
3. Residual adaptation 

Following the procedure presented in [2], the calculated residual is normalized with respect to the mean value 
of the central part of the residual, so the mean becomes 0. This normalization approach is operational when the 
same type of filter exists in both out-of-field training and in-the-field operation of the ML algorithm. However, 
when applied to other filter types it does not work well (see the results below). In view of this, we propose an 
adaptation procedure (Fig. 3a) that consists in dividing the residual signal in three segments (Fig. 3b) and apply 
different normalization methods to every segment, reflecting the filter characteristics; the normalization 
reference of every segment is obtained by applying linear regression to the un-normalized version of the residual 
signal obtained for that segment. Then, the residual computation and adaptation module receives the signal, as 
well as the linear regression coefficients modeling three different normalization references that consider the 
filter characteristics. For this stage, the number of adaptation mechanism loop equals to the number of filter 
types that the lightpath has passed through. By subtracting every segment of the un-normalized residuals from 
the corresponding normalization reference, a filter type-agnostic residual signal is obtained. Note that, as the 
amount of filter cascading effect depends on the transfer function of the filter, there might be an undesirable 
deviation in the residual signals when the lightpath traverses different filter types; this deviation is compensated 
in the fine tuning step. The amount of deviation can be computed locally assuming that the mean value of the 
residual remains zero when the signal is in proper operation mode. Ultimately, a single classifier trained with the 
measurements collected in the lab based on a reference filter type, can be used for optical spectra experiencing 
filtering effects from different types of filter. 

The efficiency of this adaptation method is illustrated in Fig. 4. The residual signals of a lightpath passing 
through three different types of filters with Gaussian transfer function of order 2, 3, and 4 are illustrated in Fig. 
4a. Normalization shifts the residuals so its mean to be 0 (Fig. 4b). Note that the differences among residuals are 
clearly seen at the edges, whereas they are virtually identical in the central part before and after normalization. 
Adaptation focus on compensating the effects of the different filters and the results are clearly visible at the 
edges (Fig. 4c); note that the most relevant parts of the residuals to detect filter-related soft-failures are that of 
the edges. As shown, even though the signals pass through different types of filters, they result in an identical 
residual signal, removing the filter-dependent characteristics of the residual signal. 
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Fig. 3. a) Residual computation and adaptation mechanism and b) normalization references for 4th order Gaussian. 
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Fig. 4. a) Un-normalized residual, b) normalized w/o adaptation, and c) normalized with adaptation. 
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Fig. 5. Average node accuracy w.r.t failure magnitudes for a) FS and b) FT. c) accuracy per node w.r.t the sequence of cascaded nodes. 

4. Results 
In this section, we discuss the obtained results and demonstrate how the proposed adaptation mechanism 

enables the residual-based approach to be applied to optical spectrum of a signal after passing through different 
types of filters in the network. For the experiments, we configured a VPIPhotonics scenario where a 100 Gb/s 
DP-QPSK modulated signal was emulated. After the transmitter, the optical signal passes through eight optical 
nodes (from N1 to N8); after every span, an optical amplifier compensates for the accumulated attenuation of 
the fiber. Every optical node consists of two Wavelength Selective Switches (WSS), each one modeled as a 
single optical filter with a 2nd order Gaussian transfer function for the training phase; filters bandwidth is set to 
37.5 GHz, leaving 7.5 GHz as a guard band for the lightpath. Finally, the optical signal ends in a coherent 
receiver that compensates for the impairments introduced throughout the transmission. In addition, OSAs with 
312.5 MHz resolution are placed after every optical node to acquire the optical spectrum of every optical link. 

Aiming at emulating failure scenarios, we modified the characteristics of the 2nd WSS of every node in the 
setup; its bandwidth and central frequency were modified to model FT and FS failures, respectively. A large 
dataset of failures was collected by inducing failures of magnitude in the range [1-8] GHz for FS and in the 
range [1-15] GHz for FT. We configured optical filters to be 2nd order Gaussian for training and re-configured 
them to become 3rd and 4th order Gaussian for testing, where the same failure scenarios were simulated. 

We looked firstly at the benefits of applying the adaptation mechanism for identifying the normal cases. We 
found that accuracy (number of correctly detected cases over the total number of cases) is very poor (< 20%) 
when no adaptation is applied and becomes perfect with residual adaptation. Next, we looked at the benefits of 
applying residual adaptation for detecting failures. Three cases were studied: i) 2nd order for both out-of-field 
training and in-field testing; note that no adaptation is needed (the case in [2]), ii) 3rd order and ii) 4th order, in 
which 2nd order filters were used for training and 3rd and 4th order, respectively w/ adaptation were used for 
testing. The results are reported in Fig. 5, where Fig. 5(a-b) show the average node accuracy of identifying FS 
and FT, respectively, for failures in all 8 nodes and varying levels of failure magnitudes. The accuracy is 
promising for all the cases under study, even though it degrades for very small magnitudes in which the 
spectrum looks like normal cases; in fact, failure detection is 100% in all cases being the failure identification 
step the cause of the reduced accuracy (Table I). To highlight the impact of cascaded nodes, Fig. 5c presents the 
average accuracy for FS and FT with respect to the node where the failure occurs; failure magnitudes of range 
[1-4] GHz for FS and [4-7] GHz for FT were considered. As shown, the accuracy drops at the very last nodes as 
a result of accumulated filter cascading effects makes very challenging to distinguish between different cases. 

Ultimately, the efficiency of the algorithm for transmission system with two different filter types was 
evaluated. To this end, we modified the abovedescribed setup to have 2nd order Gaussian filters in the first 4 
nodes and 4th order Gaussian filters in the last 4 ones. As reported in Table I, failure detection accuracy is 100% 
while performance degradation happens when failure identification is executed. As a result, the minimum failure 
magnitude to be detected with 100% accuracy is 5 and 7 GHz, for FS and FT, respectively, just a bit higher than 
in the case of one single filter type, which validates the performance of the proposed residual adaptation method. 

Table I. Result Comparisons 

Scenario 
Failure 

Detection 
Failure Type Identification  

Min FS Magnitude Min FT Magnitude 
only 2nd or 4th order 100 % 2 GHz 6 GHz 

only 3rd order 100 % 2 GHz 7 GHz 
mix of 2nd and 4th order 100 % 5 GHz 7 GHz 

5. Conclusions 
ML algorithm can be trained out-of-field with measurements from testbeds and/or simulations using one 

single reference filtering solution (possibly belonging to a single vendor). A reliable in-field adaptation 
mechanism is demonstrated to enable heterogeneous filtering solutions (belonging to different vendors). 
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