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Abstract

A stop-loss rule is a risk management tool whereby the investor predefines some
condition that, upon being triggered by market dynamics, implies the liquidation
of her outstanding position. Such a tool is widely used by practitioners in finan-
cial markets with the hope of improving their investment performance by cutting
losses and consolidating gains. We analyse in this work the performance of four
popular implementations of stop-loss rules applied to asset prices whose returns
are modelled with consideration of overnight gaps, that is, jumps from the closing
price of one day to the open price of the next trading day. In addition, our models
include acute momentary price drops (flash crashes), which are often believed to
erode the performance gains that might be derived from stop-loss rules. For this
analysis we consider different models of asset returns: random walk, autoregres-
sive and regime-switching models. In addition, we test the performance of the
considered stop-loss rules in a non-parametric, data-driven framework based on
the stationary bootstrap. As a general conclusion we find that, even when includ-
ing overnight gaps and flash crashes in our price models, in rising markets stop-loss
rules improve the expected risk-adjusted return according to most metrics, while
improving absolute expected return in falling markets. Furthermore, we find that
in general the simple fixed percentage stop-loss rule may be, in risk-adjusted terms,
the most powerful among the popular rules that this work considers.

Keywords: Stop-loss; Risk Management; Financial modeling; overnight gap;
flash crash; bootstrap.

1 Introduction

A stop-loss order is an order an investor may place so that her position is liquidated
the moment a certain pre-specified condition (set according to a stop-loss rule) is met
by market dynamics. Whether the position the investor holds is short or long, the
purpose of setting a stop-loss is to cut losses and consolidate gains, being this a most
basic yet popular tool for risk management.
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The importance of placing stop-loss orders cannot be overestimated. The fall of
Banco Popular in Spain (June 2017) is a very recent example of the dangers of not
incorporating stop-loss orders into one’s investing strategy: investors that bought-
and-held hoping for an eventual trend reversal lost 100% of their investment, as Banco
Santander bought Banco Popular’s four billion shares for EUR 1, driving the individual
share price to zero. Additionally it has been argued that the setting of stop-loss orders
guards investors from the disposition effect [Silva and Da Silva, 2015], which refers to
the observed tendency of investors to hold on to losing positions much longer than they
hold to winning positions.

Several researchers have looked at the problem of discerning the effectiveness of
stop-loss orders in various contexts. We mention a few that are of particular interest
to our work. The paper by Acar and Toffel [2001] studies how a stop-loss rule affects
the returns distribution, by assuming the asset follows a Brownian Random Walk with
drift, and then evaluating the financial profitability of a simple stop-loss strategy under
the previous assumption. Kaminski and Lo [2014] follow a similar approach: they
developed a rigorous analytical framework for measuring the impact of simple 0/1
stop-loss-re-entry rules on the expected return and volatility of an arbitrary portfolio
strategy (again assuming that assets follow a Random Walk) and provide an empirical
analysis of performance of a stop-loss strategy against buy-and-hold in U.S. equities. Lo
and Remorov [2017] extends the previous work of Kaminski and Lo [2014] by analysing
the efficacy of stop-loss trading strategies on serially correlated asset returns that follow
a Markov regime-switching process, and subject to transaction costs. They conclude
that the stop-loss strategy may outperform buy-and-hold, provided there is sufficient
serial correlation in returns with some impact on downside risk, although this can be
overturned due to the high trading costs that a stop-loss-re-entry strategy (unlike ours)
entails. James and Yang [2010] on the other hand, do not assume that financial assets
obey a particular model, but instead base their analysis on the use of the stationary
bootstrap as a tool to replicate financial time series adequately.

None of the previously mentioned works, and others that we surveyed related to the
assessment of the value of stop-loss rules, considers the oftentimes observed large vari-
ation in the price across non trading hours. This clearly affects the correct triggering
of a stop-loss rule due to the by-passing of the established stopping-time.

The early works of French [1980], Gibbons and Hess [1981] and Keim and Stam-
baugh [1984], showed that returns on non trading days present different distribution
than returns on trading days. In particular, they showed that in the U.S. market the
expected returns of stocks are significantly lower or even negative on Mondays com-
pared to returns on preceding Fridays, a phenomenon that has been coined the weekend
effect.

Cooper et al. [2008] found that in the more recent price history in U.S. markets
overnight returns (including weekends) are consistently positive while daytime returns
are close to zero or negative; thus, concluding that the U.S. equity premium on the first
decade of the 21st century is solely due to overnight returns. Wiener and Tompkins
[2008] extended the study of return differences between trading and non-trading hours
to higher moments of the returns distribution and for European and Japanese markets,
and found that in general the distribution of non-trading periods (or overnight) returns
displayed a higher degree of non-normality compared to that of the trading periods
returns. This lead these researchers to conclude that while trading periods returns may



follow some diffusion process, the non-trading periods returns follow a jump process.
This fact was also argued by Geman et al. [2001] who studied asset prices arising from
market clearing conditions.

The present work contributes to the analysis of the value of stop-loss rules in
various novel aspects, considering previous studies on the subject and on the different
distribution displayed by non-trading periods returns as opposed to trading periods
returns. First, and most important, given that an accurate assessment of the value of
stop-loss rules requires full consideration of the real behavior of asset returns, we take
into consideration two important anomalies. On the one hand, we consider overnight
gaps in prices (jumps from the Closing price of one day to the Open price of next
trading day) as an additional feature that we include in the implementation of various
well-accepted models for the behavior of asset prices. On the other hand, we also
consider flash crashes, an extreme market event that consists in a sharp price drop
caused by a variety of non-fundamental reasons (in the financial sense of the word
“fundamental”) that is offset (in part or, usually, in full) in the next minutes or hours.
These rare but possible events could potentially have a significant impact on the value of
stop-loss rules, and hence we decided to also duly analyze them in this work. Second,
as a complement to our asset model-based analysis, we consider a non-parametric
approach based on the stationary bootstrap, thus providing an alternative point of view
for assessing the advantages of stop-loss rules. Additionally we contribute with two
new performance measures, the Return-VaR (RVaR) and the Return-ES (RES) ratios,
based on the VaR and Expected Shortfall risk measures. For all our experiments we use
high-frequency financial data (hourly prices). It should be noted that implementing
the overnight gap or the flash crash in any price model requires in both cases the use
of financial data with a higher frequency than daily, for example hourly, as we do in
this paper.

Our ultimate goal is to provide solid evidence for the conjecture that good stop-loss
strategies may provide higher risk-adjusted returns, with respect to a passive buy-and-
hold strategy, and for this reason we take the necessary steps to ensure our models have
a sufficiently high degree of realism, bringing theoretical innovations on several fronts
along the way, namely, in financial modeling and risk-adjusted performance measures.

The rest of this paper is structured as follows: Section 2 presents the general frame-
work for the analysis of stop-loss rules, and the four specific stop-loss rules that we deal
with in our simulations. Section 2.1 contains our two new performance metrics, RVaR
and RES ratios, plus three other popular measures to assess the impact of applying to
a simulated trading period each of the four stop-loss policies considered in our study.
Section 3 presents three financial price models, somewhat more sophisticated than (but
representative of) the traditional random walk, the ARMA and Regime-Switching mod-
els, but without including yet overnight gaps. The intention of this intermediate step,
between the traditional models and our proposed models that include overnight gaps,
is to provide a comparative analysis of the impact on the performance measures of
including some quantification of overnight gaps in the modeling of stock’s time series.
We make the comparisons by running the same trading simulations on the models
with and without consideration of overnight gaps. Section 4 presents the three finan-
cial price models that consider overnight gaps, and subsequently include flash crashes.
Section 5 contains our experiments and out-of-sample results based on our models for
simulating return behavior, using high-frequency financial data. Section 6 briefly de-



scribes the stationary bootstrap resampling, and the complementary experiments with
this data-driven method for evaluating performance of the four different stop-loss rules
considered here. Section 7 concludes.

2 Stop-loss rule and stop-loss policy

In this section we set up the general framework for the analysis of stop-loss rules. We
will focus on long-only strategies, and will not take into consideration two major types
of market impact costs, namely slippage (difference between order price and execution
price) and transaction costs. Regarding slippage, although it is true that in practice
there might be a significant negative correlation between equity performance and its
bid-ask spread, in our study this is not an issue because we have deliberately selected
30 highly transacted stocks in 2017, which makes them some of the most liquid too,
and so it is safe to assume that the bid-ask spread at the time when the stop-loss is
triggered will be similar to the bid-ask spread that the investor would encounter at the
end of the investment horizon when the position is liquidated under a buy-and-hold
passive strategy. Furthermore, in any case, slippage is a complex function of the chosen
transaction volume and stochastic market conditions. As for transaction costs, these
are irrelevant to our study, because the transaction costs associated with the stop-loss
strategies that we consider are exactly the same as those associated with a buy-and-
hold strategy, for two reasons: first, because we only consider pure stop-loss policies,
i.e. we disregard re-entry rules and therefore both under buy-and-hold and under the
stop-loss policy the trading position is opened and closed exactly once; second, because
placing a stop-loss order is free, regardless of which broker the investor operates with.

Our formal definition of a stop-loss policy is a simplified version of the stop-loss-re-
entry trading scheme of Kaminski and Lo [2014] because we are interested in analyzing
how different rules for exiting the market can better prevent us from losing money
than just staying in for a period of time irrespective of market movements. However,
our definition allows for different criteria for stopping losses, as opposed to Kaminski
and Lo [2014] where the only criterion considered by the authors is that cumulative
returns reach a threshold, a form of the fized percentage barrier criterion as considered
below.

Given an asset A, we consider a stop-loss rule as a decision criterion SL; on the
price history of A such that at every time ¢ it takes the value 0 if the criterion is not
satisfied or 1 otherwise. We denote by v(SL;) the value (0 or 1) of SL;. We can
formalize SL; as a boolean formula on the real numbers, arithmetic symbols, order
and other relations as needed. However, we prefer to skip this formality and show
instead what is meant with an example. Consider the criterion of cumulative returns
of a certain asset reaching a given barrier. Let R; be the cumulative returns at time
t, and (8 the value of the barrier at any time. Then the stop-loss rule in this case is
described by the boolean formula:

SL; =Ry > 8

This expression takes value v(SL;) = 1 if SL; holds (i.e. at time ¢, R; has reached or
surpassed the barrier ), or value v(SL;) = 0 if SL; does not hold.

Then, given a time horizon T' and an initial time instant ¢, < T' at which we buy a
risky asset A, a stop-loss policy is a risk management measure that depending on the



value of a stop-loss rule it signals to exit the investment at a certain time ¢, t, <t < T,
where then we shall sell all of our holdings in A and use the proceeds to go long on a
risk-free asset F' up until time 7. We formalize this idea as follows.

Definition 2.1 Given a stop-loss rule SL;, a stop-loss policy s(i;,7) for a risky
asset A with returns {ri} is a binary wealth-allocation scheme {s;} between A and a
risk-free asset F' with return {ry}, in such a way that either we are fully invested in A
(st = 1) or totally withdrawn from A (s; = 0) and invested in F. Formally, at initial
time to, St, =1, and fort:t, <t < T,

1, ifv(SLy) =0 and s—1 =1 (stay in)
st = s(x,7) =<0, ifv(SLy) =1 and s;—1 =1 (exit) (1)
0, ifsi—1 =0 (stay out)

where T3 is a vector of known information about A up until time t, and ¥ is a vector
of parameters that guide the stop-loss rule SLy.

In our experiments the risk-free asset F'is a AAA government bond, for example, a
1-year U.S. government bond. As in [Kaminski and Lo, 2014], in our parametric models
we assume that the returns {r;} of the risky asset A under consideration satisfy the
following property:

The expected return p of A is greater than the risk-free rate ry, and let 7 :=
p— ¢ > 0 denote the risk premium of A.

This property simply excludes the perverse case where the stop-loss policy adds
value just because the risk-free asset that the investor transfers the capital to has a
higher expected return than A. In our parametric models we ensure this property
holds by setting the abovementioned rates to appropriate values. The risk-free rate
is set to the historical mean return of a 1-year U.S. government bond, which, during
the period 1990-2017 has been 3.171%. On the other hand, the expected return of our
hypothetical asset is set to the average return of the NYSE during the same period
(1990-2017), which is 6.14%. Assuming compounding, this implies an hourly return of
3.942924 % 1075.

In our study we implement and analyze the performance of the following four stop-
loss rules (SL:):

Fixed percentage barrier (%): SL; := P, < P["{*(1 — a), where P/"{" is the high-
est price achieved until time ¢ — 1 and the positive quantity a - 100% is the
maximum percentage of that price P/”{* that the investor is willing to lose in its
position. Note that this corresponds to a mobile support barrier common among
practitioners. The value of a can be adjusted from historical data or be given a
constant value based on a certain risk profile. We tune a according to each of
the five performance metrics to be considered (see Section 2.1).

Average True Range (ATR): SL; :== P, < P,_; — aATR;, where usually a €
[1.5,3],d <t and AT Ry is a crude estimation of daily historical volatility in the



recent past
1 N
ATRy = z; TRy_; (2)
i

with TRy := max{Highg — Lowg, Highq — Closeq_1, Closeg—1 — Lowg}, Highg,
Lowg and Closey are the maximum, minimum and closing price at time d, and
a typical value for N is 14 days. Note that whilst AT R, is measured on a daily
basis, SL; can be hourly or follow other higher time frequency.

Relative Strength Index (RSI): The RSI is a momentum indicator that compares
the magnitude of an asset’s recent gains and losses over a specified time period.
It is defined as

100

0, 100] (3)
where RS(w); is the average gain of up periods divided by the average loss of
down periods, during the specified time window of w (usually in between 7 to 14
trading sessions); so if w contains u up (U) and w — u down (D) periods,

% Zz‘eU(Pi - Pifl)
ﬁ Zz‘eD(Pi—l - Pi)

RST values of 70 or above indicate that a security is becoming overbought or over-
valued, and therefore may be primed for a trend reversal or corrective pullback in
price. The rationale for this strategy may lie in the belief that too much eupho-
ria can in fact anticipate a change of regime. This behavior is in fact what one
observes in major market corrections [Sornette, 2004]. In this case the stop-loss
rule is: SL; := RST;(w) > 70.

RS(w); :=

Triple Moving Average crossover (MA): A popular exit signal is the triple cross-
ing of short, medium and long-term moving averages (MA). Practitioners use
many different MA periods, and one that is common and seems reasonable based
on popular experience would be the triplet 5-20-70. Assuming the starting sce-
nario is that the shorter-period MAs are above the longer-period ones, the exit
signal is given by the cumulative event of the 5-period MA crossing the 20 and
the 70-period MAs, together with the 20-period MA crossing the 70-period MA.
If those three events happen, there is a high probability of a continued fall in
price. This method’s rationale is that longer-term MAs show more of an asset’s
historical price trend, whereas shorter-term MAs show more the asset’s recent
price trend, and so if the recent trend crosses the historical trend, we may be
witnessing a change of regime. A MA of p periods is defined as

15
MA(p) = - Z Ci—i
p =0

where C} is the asset’s closing price at session ¢t. The stop-loss rule in this case
reads, for a = 5, b = 20 and ¢ = 70 days,

SLy := MA(a) < MA(b) A MA(b) < MA(c)



That is, the stop-loss rule at any time ¢ is given by two events that must take
place simultaneously: the 5-day MA is below the 20-day MA, and the 20-day
MA is in turn below the 70-day MA.

2.1 Performance metrics

We will assess the impact of a stop-loss policy (based on each of the four stop-loss rules
presented) on investment performance with five metrics. The first one is simply the
expected return, and therefore there is no penalty for the risk the investment strategy
involves. The remaining four metrics do penalize for higher risk. The first two are
well-known risk-adjusted performance measures, and the last two are new proposals
we are contributing:

Expected return: The expected return of a risky asset A with returns {rs, } or {r:},
depending whether a stop-loss policy is in place or not respectively, is given as
usual by E[rs,], E[r] respectively. Note that,

E[rs,] = Elrs|st =0]-P(st =0) + E[rs,|st = 1] - P(sy = 1)
= rp Plsy =0) +E[rg,[s; = 1] - P(s; = 1)

Because s is a dynamic binary wealth-allocation rule, the probabilities above are
best understood as the fraction of time in which the investor is either stopped
out or invested in the risky asset. When the former occurs, the investor switches
to the risk-free asset until the end of the investment horizon.

Sharpe Ratio (SR): The Sharpe Ratio of a stop-loss policy [Sharpe, 1994], is the
expected return of the risky asset in excess of the risk-free rate divided by the
standard deviation of that risky return, for a given time horizon (usually one
year):

Elr] —ry

Shi= sd(ry)

(4)

The Sharpe ratio is a popular metric in finance to compare asset performance, but
it is far from being ideal. Due to the fact that it uses the standard deviation as a
measure of risk, this metric treats downside risk the same as upside risk, which in
general is not desirable. The following three alternative measures address the issue of
penalizing only for downside risk.

Sortino Ratio (SOR): The Sortino Ratio of a stop-loss policy [Sortino, 1994], is the
expected return in excess of the minimum return rate acceptable (e.g. the risk-
free rate) T' divided by the so-called Downside Deviation (DD), for a given time
horizon (usually 1 year).

E[’I“t] -T

—_— 5
DD (5)

The Downside Deviation is a measure that is conceptually similar to the standard

deviation of the returns (as a random variable), although it is not exactly the

SOR :=



same because the reference value is not an expected return, but a target return,
and its support is restricted to values below target. Mathematically,

T
DD := \// (re = T)2f(r)dry

where f(r;) is the density function of the returns in the buy-and-hold strategy.

Return-VaR ratio (RVaR): The RVaR of a stop-loss policy is the median return
(in excess of the risk-free rate) divided by the median return minus the 1-year
5% VaR:

median(ry) —ry

RVaR :=

median(r:) — VaRsy, (6)

where VaRsy, = CDF;;'(5%), CDF being the cumulative distribution function
of the returns generated by the stop-loss strategy.

Return-ES ratio (RES): The RES of a stop-loss policy is the median return, in
excess of the risk-free rate, divided by the median return minus the 1-year 5%

Expected Shortfall:
median(ry) — ¢

RES = (7)

median(ry) — ESsy,

where ESso := E%% 05% VaR, dvy, which effectively computes the average VaR,

with v ranging from 0 to 5%.

Naturally, under the stop-loss policy s, rs, replaces r; in the above definitions.

In both the two new performance metrics that we propose (RVaR and RES), we
choose the median return instead of the expected return for two reasons: first, because
the median is a metric that is more robust to outliers than the mean; second, because
a denominator involving percentiles (VaR or ES) clearly favors the use of the median
instead of the mean; then, the fact that the ratio as a whole becomes easier to inter-
pret if both the numerator and denominator have the same metric justifies the use of
the median in the numerator too. The ratio can then be interpreted as follows: the
numerator informs about how larger is the median return of the risky investment or
strategy compared to the return of a risk-free asset, while the denominator takes some
of those merits off by penalizing for downside risk.

One may argue that this numerator is harder to interpret, as the expected return
is a concept that most investors are perfectly acquainted with and may be easier to
interpret from a utility-theoretic perspective. However, by using the median return
we provide a different perspective, which has a powerful interpretation: by using the
median return, the numerator of our ratio is informing about the minimum amount
by which the return of the risky investment surpasses that of the risk-free asset 50%
of the time.

Similarly to the Sortino ratio, our RVaR and RES ratios exclusively penalize for
downside risk, which is an important advantage over the Sharpe ratio. Finally, our
RVaR and RES ratios have at least two advantages over the Sortino ratio. On the one
hand, there is less arbitrariness involved in the choice of the value of the parameter
involved: in the case of the RVaR and RES ratios, the parameter involved is the per-
centile of the distribution of returns to be chosen, and reasonable values are essentially



just three (5, 2.5, 1), which contrasts with the much higher discretion involved in the
choice of the target return in the case of the Sortino ratio. On the other hand, the
denominator of the RVaR and RES ratios is nonzero with probability one, which is
something not guaranteed in the Sortino ratio, as this heavily depends on the choice
of the target return, among other factors.

3 Models of asset prices without overnight gap

Traditional models for equity prices or returns, especially in the literature about stop-
loss rules, are of the form of a random walk, a pure ARMA model or a regime-switching
model (see, for example Acar and Toffel [2001], Kaminski and Lo [2014] and Lo and
Remorov [2017]). Therefore, we will base our models on these three. The modeling
process consists of two parts conceptually: (1) modeling the standard deviation of
returns, including white noise; (2) modeling the actual return.

Our analysis is based on 30 NYSE stocks among the most liquid in 2017. The selec-
tion of these stocks has been somewhat arbitrary, subjected mostly to the availability
of data in a common period, presenting the highest liquidity possible, and representing
different industries The list of tickers of our selected set of stocks is {BAC, GE, PFE,
S, F, C, T, JPM, WFC, HPQ, KO, AMD, MRK, XOM, JCP, ABX, RAD, GLW, VZ,
JNJ, AIG, PG, DIS, HAL, XRX, KEY, BMY, SCHW, ABT, MO}.

On the one hand, we find that 30 stocks provides enough diversity so that the results
of the analysis are reliable. On the other hand, extending the analysis to considerably
more stocks, e.g. 200 stocks, might require stronger assumptions about how narrow
the bid-ask spread can be expected to be at the moment the stop-loss is triggered,
because those 200 stocks would necessarily include some stocks that are not as liquid
as the 30 stocks considered in this paper. For these simulations, we consider hourly
quotes from March 13 to March 24 2017 (both included), for each of the 30 stocks,
which equates to 2070 hourly returns. Although a longer period might a priori be
desirable, we still believe the quantity of data (2070 returns) is sufficient given that
the frequency of the observations is hourly. Last but not least, the length of the period
has also been influenced by the availability of high-frequency data that are both reliable
and affordable to obtain.

3.1 Modeling standard deviation and white noise

We modeled the standard deviation of the hourly returns with a GARCH(1,1) model.
This requires that we model the white noise component as well. The GARCH(1, 1)
model for the standard deviation oy, at each time ¢, is defined by the following equation

2 _ 2 2 2
of =w+ae 07+ foi

where ¢; is the random shock or innovation, occurring at time ¢, and which itself follows
a certain conditional distribution that we must specify and calibrate with the observed
data.

In order to fit the best GARCH(1,1) possible, we try each of the implemented
conditional distributions in the package fGarch [Wuertz et al., 2016] in R, fit the model,
record its corrected Akaike Information Criterion (AIC), and eventually choose the
conditional distribution (for the white noise) that provides the best (i.e. lowest) AIC



on average over our 30 selected stocks. We find that the best conditional distribution
is the Generalized Error Distribution with or without skewness parameter (SGED
or GED, respectively), depending on whether we consider a model with generalized
normally distributed returns or a model that considers ARMA returns instead (see
next subsections).

A point worth advancing is that in both models the shape coefficient of the above
conditional distribution is around 1.45, which is almost exactly half way between that
of a Laplace distribution (shape=1) and a Gaussian distribution (shape=2), the former
having a much larger kurtosis than the latter.

3.2 Generalized Normally Distributed returns (GED)

Our first model for the hourly price of a hypothetical NYSE stock considers that the
corresponding returns follow a Generalized Normal distribution. Recall that the PDF
of the Generalized Normal (or Error) distribution is given by

GED(,0,8) = —D—_¢=(la=ul/o)”

20T(1/5)
where u, o, B are the location, scale, and shape parameters respectively, and I" denotes
the Gamma function. As Nadarajah [2005] showed, the PDF of a Generalized Normal
distribution is just the same as the PDF of a Normal distribution but with a general
B coefficient that is not necessarily equal to 2 (and hence the absolute value function
is needed), as well as a different regularization term premultiplying the exponential
function, so that the PDF integrates to unity.

After a model selection procedure to fit the parameters of the distributions involved,
we obtain the following model to simulate the hourly price of our hypothetical NYSE
stock.

Py (141

where

re ~ GED(3.943 x 107°,0.0042, 1.326), (8)
0? ~ GARCH(1,1) with ¢, ~ SGED(u = 0,0 = 1,1.4,0.928)

3.3 ARMA returns

Our second model for the price of a hypothetical stock that trades in the NYSE con-
siders that the returns follow an ARMA(p, q) process, with GARCH volatility. After
the model selection procedure we obtain the following model for the hourly price of
our stock:

P (141

where

re ~ ARMA(3,0), 02 ~ GARCH(1,1) with ¢ ~ GED(u= 0,0 = 1,1.47)  (9)

10



3.4 Regime-Switching

The relevance of a Regime-Switching model for analysing stop-loss rules has been dis-
cussed extensively in Kaminski and Lo [2014], and we refer the reader to that paper,
from which we borrow the essential characteristics of this model. In brief, the impor-
tance of this model to the problem we have at hand is its capability to capture changes
in regime, which is a common underlying motivation for setting up stop-loss rules. A
regime-switching model for return {r;} has the form:

re = L+ (1 —IL)ray, i~ N(ui,o?), i=1,2 (10)
Iiy1=1 L1411 =0
A = L=1 P11 P12
I; =0 D21 D22

where
I { 1 if state 1 prevails,
t =

0 if state 2 prevails

and A is the transition probability matrix that governs the transitions between the two
states. The model has six parameters: the means and variances plus transition proba-
bilities (p1, p2, 01,02, p11,P22), and we fit it to data using the Baum-Welch algorithm
to fit Hidden Markov Models [Welch, 2003].

4 Models of asset prices with overnight gap and flash
crash

Because we are introducing overnight gaps, the modeling process consists now of three
parts: (1) modeling the overnight gap; (2) modeling the standard deviation of returns,
including white noise; (3) modeling the actual return.

Part (2) of the modeling process will be the same as for the models without
overnight gaps, since we want to consider the same modeling for the noise, and as-
sess the impact of considering overnight gaps. Thus, we only describe the modeling of
overnight gaps and their inclusion in the model for the returns.

4.1 Modeling overnight gaps

An overnight gap is defined as the difference between the Open price at day t, and
the Close price at day t — 1. Using our empirical data on 204,120 gaps (27 years
worth of data on 30 NYSE stocks), we find that the average gap is about 1.000463 (i.e.
+0.0463%). Furthermore, on average, gaps of any size above a minimum threshold of
0.1% happen around 77.93% of the days, and this is the frequency we will use in our
simulations.

Including overnight gaps into the analysis of stop-loss rules is of critical importance,
for two main reasons. First, overnight gaps can severely affect the profitability of an
investing strategy that uses stop-loss orders, because they render the stop-loss barrier
completely unable to protect the investor from a loss that is substantially larger than
expected. In particular, this implies that by disregarding the phenomenon of overnight
gaps one might inflate the usefulness of a stop-loss rule, and this is something we wish
to avoid. Second, overnight gaps are a very frequent phenomenon in the financial
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markets, and their magnitude can be non-negligible. For example, Figure 1 shows
several overnight gaps in the candlestick plot of the price history of the American
International Group (AIG:NYSE) from 28th of August to 22nd of September, 2017. In
this plot on 28th August the Close price is 60.66 and next session Open price (on 29th
August) is 60.20, a fall of 0.7%; on 8th Sept. (a Friday) the Close is 59.78 and next
session on 11th Sept. the Open is 60.77, a jump of 1.6%. All in all, by considering

63.00

62.00

Tty BTy e
S P S

59.00

I m 58.00
28 30 Sep 6 3 12 14 18 20 22 |

Figure 1: AIG candlestick plot of price from 28/08 to 22/09 showing overnight gaps
(source: yahoo finance).

overnight gaps we obtain a more reliable assessment of stop-loss performance.

We modeled overnight gaps as a Weibull random variable for the following reasons.
We think of overnight gaps as extreme price movements, and the Weibull is one of the
three families of extreme value distributions. Moreover, a convenient way to reproduce
the impact of overnight gaps in the price of a stock is to see the gap as a scaling factor
of the price, and so we need a distribution with non-negative support, as it is the
Weibull, because the scaled stock price must naturally remain non-negative. Finally,
the Weibull distribution is very flexible, capable of showing a completely different
density plot depending on the value of its two parameters: scale (\) and shape (k).

Recall that the probability density function (PDF) of a Weibull random variable is

s (2L o—(z/A)" >0

Weibull(z; \, k) = Z(3)7 e » T 11
cibull(@; A, k) {0, otherwise (11)
where A > 0 is the scale parameter and x > 0 is the shape parameter of the distribution.
When the random variable is clear from context it is customary to write Weibull(\, k).

We follow a 3-step procedure to optimize the Weibull parameters:

1. Explore seven estimation methods to find a first approximation: Method of Mo-
ments (MoM), Maximum Likelihood Estimation (MLE), Median and Quartiles
(MQ), Mean and Standard Deviation (MSD), Mean Rank (MR), Median Rank
(MDR), and Symmetric CDF (SCDF).
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2. Select the best estimation method and do a grid search around the estimated
parameters to improve Stress. Stress is a measure of goodness of fit that we
define as a convex combination of the D statistic from the Kolmogorov-Smirnov
test and the Mean Squared Error, in proportion 3:7 as the latter metric is more
robust.

3. Correction for Survivorship Bias: the 30 stocks we have picked are the ones that
have “survived” from 1990 to 2017, and so it is advisable to be more conservative
in asserting the efficacy of stop-loss rules. This is achieved by increasing the
downside risk of the overnight gap, which in the case of a Weibull random variable
this may be achieved by reducing the shape parameter of this distribution. We
perform this step with care: we require that the new calibration delivers an
average gap that is more negative than the average gap observed empirically, but
with the least increase in Stress possible with respect to Step 2.

Table 1: Weibull parameter calibration

Method Step 1 Step 2 Step 3
A, K, Stress A, K, Stress A, K, Stress

MoM 1.0063, 98.56, 0.0677 - -

MLE 1.1743, 20.16, 0.4790 - -

MQ 1.0018, 203.62, 0.0385 | 1.0028, 189.32, 0.0244 1.0033, 170.72, 0.0363
MSD 1.0055, 112.53, 0.0586 - -

MR 1.0075, 81.35, 0.0812 - -

MDR 1.0075, 81.47, 0.0811 - -

SCDF 1.0075, 81.49, 0.0811 - -

As it can be observed in Table 1, the value of the optimized parameters according
to the three steps above are A = 1.0033, and « = 170.7193, delivering a Stress level of
0.0363.

4.2 Generalized Normally Distributed returns with gap (GEDgap)

In this subsection we introduce overnight gaps into the first parametric model pre-
sented earlier. Again, after a model selection procedure to fit the parameters of the
distributions involved, we obtain the following model to simulate the hourly price of
our hypothetical NYSE stock.

P - {Pt—1 * Gapy, for t mod 7 =1 (12)

Pi_1 (141, otherwise
where the Gap; occurs daily (t mod 7 = 1) with a certain probability (again, in our
case, 77.93%)

1 if no gap occurs

Gapy = {Weibull(1.0033, 170.7193), if a gap occurs (13)
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and

1~ GED(3.943%107°,0.0042,1.326), (14)
02 ~ GARCH(1,1) with ¢ ~ SGED(p = 0,0 = 1,1.4,0.928)

As it can be seen, the value of the parameters is the same compared to the model
without gap. This is consistent for two reasons. First, because the Weibull distribution
is approximately centered at unity. Second, because the impact of overnight gaps on
return volatility is carefully taken into account at a later stage (see Section 4.5).

4.3 ARMA returns with gap (ARMAgap)

In this case we are introducing the overnight gap into our second parametric model.
After the model selection procedure we obtain the following model for the hourly
price of our stock:
P11 % Gapy, for t mod 7 =1
Py = {Ptl * (1 + 1), otherwise (15)

where Gap; is defined as in Equation 13, and

ry ~ ARMA(3,0), 02 ~ GARCH(1,1) with ¢ ~ GED(u = 0,0 = 1,1.47)  (16)

4.4 Regime-Switching returns with gap (RSgap)

Similar to the previous two cases, we model prices also by the process defined in (15)
to account for the overnight gaps, while the market hours returns r; are modelled by
the regime-switching model (Equation 11).

4.5 Incorporating post-gap effect on volatility

In addition, we consider that a stock’s volatility at time ¢ is a function of the magnitude
of the most recent gap, and so we attempt to model this relationship in order to obtain
an even more realistic model.

With this in mind, we fit a polynomial in the gap magnitude to the relative range (a
proxy for volatility to be made precise below). We observed that terms of order higher
than three of the variable “gap magnitude”, although significantly different from 0 in
a statistical sense were practically insignificant in magnitude (in the order of 107°).
For this reason, we propose the following model for the impact of the gap magnitude
on the relative range:

RelRange = By + Bigm + Bagm® + Bsgm® + u (17)

where gm is the gap magnitude, and the relative range of the stock on a given day,

R High — L
and the relative range, referred to as RelRange, is defined as ange _ 119 ow

Next, we compute the average relative range for our stocks and (:Z(U)mpute the Orelatlve
betas, which are the original betas divided by the average relative range. Then, the
relative betas are averaged across stocks. From here, we obtain two standard deviation
multipliers:

NGM = rel.betag
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and

GM = rel.betag + rel.beta; * gm + rel.betay * gm? + rel.betas * gm®

where the horizontal bars signal that the average relative beta has been considered,
while NGM and GM are the standard deviation multipliers when there is no gap
and when there is, respectively. Those quantities squared multiply the GARCH-based
variance that the models produce at a given time ¢, displayed in Equation 14 and
Equation 16 respectively. In particular, we find that, in expectation

NGM = 0.80 (18)

and
GM = 0.80 + 0.25gm + 0.06gm?> — 0.01gm> (19)

Considering that the price gap is a real number generally close to unity, we find
that a higher price gap in magnitude is associated with higher volatility, as measured
by the relative range.

4.6 An additional layer of realism: introducing flash crashes

A flash crash is a rapid, deep, and volatile fall in the price of a security, followed by a
rebound, occurring within an extremely short period of time.
Notable examples include:

e Procter & Gamble, May 6, 2010. A large mutual fund sold an unusually large
number of E-Mini S&P futures, which first exhausted available buyers, and then
high-frequency traders started aggressively selling those futures, accelerating the
effect of the mutual fund’s selling and contributing to the sharp price declines
that day. After a significant decline in the E-Mini S&P 500 futures, Procter &
Gamble’s price declined by 37%.

e The Dow Jones Industrial Average, April 23, 2013. The Dow Jones momentarily
dropped 1.5% due to a tweet about fictional attacks in the White House that left
President Barack Obama injured.

e EUR/CHF, January 15, 2015. The Swiss National Bank announced without
prior notice that it would suddenly remove the 1.2000 self-imposed floor on the
EUR/CHF exchange rate, causing a flash crash that lead to a historic dysfunction
never seen before in the global Forex market.

e EUR/USD, March 18, 2015. The EUR/USD futures plunged 3% in less than
four minutes for no clear reason, and most of the loss was recovered shortly after.

e S&P 500, August 24, 2015. A (non flash) crash of the Chinese Shanghai Com-
posite Index (-8.5%) undermined the already weak confidence in the US markets,
and led to a rapid 5% decline in the S&P 500, that was recovered almost in full
shortly after.

e HSBC, September 18, 2015. A “fat-finger” trade, exacerbated by automatic
trading systems, caused HSBC share price to suddenly drop 4.8%, rebounding
moments later.
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e GBP/USD, October 6, 2016. The GBP/USD suddenly dropped by 6% due to a
combination of complex trading positions, inexperienced traders, and algorithmic
trading.

Flash crashes are included in the price models with gap based on the few (but
important) historical examples witnessed in the last decades. As in the case of the
overnight gap, one must distinguish two related random variables. On the one hand, the
occurrence of a flash crash is modeled as a Bernoulli random variable with probability
0.05% per hour (recall we simulate high-frequency quotes), which yields an expected
number of such crashes of about one per year - enough to see a clear impact on the
models, but still in touch with reality. On the other hand, we have the magnitude of
the flash crash (conditional on its occurrence), which we model as a uniform random
variable in the interval 5% - 35%, signifying the price drop percentage caused by
the flash crash. Given the few historical examples and the lack of a well-accepted
theoretical work on the figure of flash crashes, we opted for a simple, flat prior with
bounds given, approximately, by the second smallest and largest flash crashes witnessed
(respectively: HSBC, September 2015, -4.8%, and Procter & Gamble, May 2010, -37%).

Then, based on the above parameters, flash crashes randomly appear in our high-
frequency simulations, and then the price is completely recovered in the next hour,
embodying the very definition of a flash crash. This inclusion, therefore, has no im-
pact on the expected return (under buy-and-hold) but volatility is naturally bound to
increase.

5 Model-based simulation

We present in this section our experimental results for the different model-based sim-
ulations of the four stop-loss rules considered: the fixed percentage, ATR, RSI and
triple MA crossover rules. First we specify the choice of parameters for each of the
stop-loss rules.

5.1 Parameter choice for the fixed percentage rule

As seen in Section 2, we implement the following stop-loss:
SL, = P"{*(1 —a)

where a > 0 is the maximum percentage of the highest price achieved until time ¢ — 1
that the investor is willing to lose in that operation.

There seems not to be a consensus among practitioners regarding the most suitable
choice of value for the parameter of this stop-loss rule. Hence, instead of arbitrarily
choosing the parameter’s value that determines how tight the exit barrier is placed
around a reference price, we decided to tune the parameter to a value that delivers
a good out-of-sample stop-loss performance. In order to accomplish this, we have a
range in the interval [0.03,0.1] and select the value that improves the performance of
the rule the most on average, in terms of expected return, Sharpe Ratio, Sortino Ratio,
Return-VaR ratio, and Return-ES ratio.
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5.2 Parameter choice for the ATR, RSI and triple M A crossover rules

On the other hand, there seems to be a consensus among practitioners regarding suit-
able parameter values for these three other stop-loss rules, and for that reason we have
chosen not to tune those parameters and instead use some of the standard values used
in practice. We then consider:
- ATR
SLy=P,_1 —2.5ATRy

where AT Ry, for d < t, is the estimation of daily volatility given in Equation 2, with
a time frame of 14 days, as is standard practice.
- RSI
SL;:= RSL(7) > 70

where RSI;(7) is given by Equation 3. As shown above, we decided to use the standard
value of 70 as a threshold signalling that the stock has become overbought and a price
reversal may follow soon. The chosen time frame of 7 sessions is also common among
practitioners.

- Triple MA crossover

SLy = MA(5) < MA(20) A MA(20) < MA(70)

We use standard time frames of 5, 20, and 70 trading days. These figures are, however,
modified in our non-parametric model to accommodate for the shorter period consid-
ered (due to constraints on high-frequency data availability), and they become instead
3, 12, and 30 trading days.

5.3 Simulation results

Next we present the results of our Monte Carlo simulations, based on 5,000 repetitions
for each stop-loss rule. Because we repeat each set of simulations 50 times, we are
able to use the Welch’s t-test to assess the statistical significance of the difference in
mean values that the stop-loss rules provide compared to Buy-and-Hold. We use the
following notation to denote statistical significance:

ns: p-value > 0.05, *.0.01 < p-value < 0.05, **.0.001 < p-value < 0.01,
**%: povalue < 0.001

Tables 2, 3, 5, and 6 show the out-of-sample results for two of the four stop-loss
rules, comparing stop-loss performance both without and with overnight gaps. Results
for the other two rules are presented in the Appendix (Tables 11, 12, 14 and 15).

As a general conclusion, both in the models without and with gap, we observe
that all stop-loss rules provide a higher risk-adjusted return than Buy-and-Hold (B&
H). The results are particularly remarkable for the fixed percentage rule with returns
following a Regime-Switching (RS) model with gap, but no flash crash (Table 3):
Sharpe Ratio is approximately multiplied by a factor of three, Sortino is multiplied by
eight, while RVaR and RES are roughly multiplied by seven.

Note that in a market with a positive risk premium (with expected annual return of
around 5% in our models including overnight gaps), in the case without flash crashes,
stop-loss rules seem to provide a slightly lower expected return in absolute terms, but
this difference is not statistically significant and, in any case, it is on average small
(usually less than 100 bps). Once flash crashes are included in the models, expected
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Table 2: Fixed percentage SL, without gap: Simulation results

Strategy-Model E[r] Sharpe Sortino RVaR RES
SL - GED 4.57% 0.81 2.02 0.85 0.75
B&H - GED 7.09% 0.32 0.16 0.16 0.14
Difference -2.52% ns | +0.49%** | £1.86%** | +0.69*** | 4-0.61***
SL - ARMA 4.51% 0.82 2.09 0.86 0.76
B&H - ARMA 6.82% 0.34 0.17 0.18 0.15
Difference -2.31% ns | +0.48%** | £1.92%** | 10.68*** | 4-0.61***
SL - RS 3.66% 0.82 3.20 0.88 0.80
B&H - RS 6.26% 0.29 0.18 0.14 0.12
Difference -2.6% ns | +0.53%*F*F | £3.02%** | 4-0.74%** | 40.68%**

Table 3: Fixed percentage SL, with gap: Simulation results

Strategy-Model E[r] Sharpe Sortino RVaR RES
ST - GEDgap 4.04% 0.81 1.23 0.84 0.69
B&H - GEDgap 5.01% 0.29 0.13 0.15 0.12
Difference -0.97% ns | +0.52%FF | £1.1%%* | 40.69%FF | 4-0.57HFF
SL - ARMAgap 4.06% 0.81 1.21 0.83 0.69
B&H - ARMAgap 4.93% 0.30 0.13 0.16 0.13
Difference -0.87% ns | +0.51%** | £1.08%** | 40.67*** | +0.56***
ST - RSgap 3.99% 0.80 1.02 0.84 0.72
B&H - RSgap 5.93% 0.26 0.13 0.11 0.09
Difference -1.94% ns | +0.54%** | 40.89%** | 40.73*** | 40.63***

Table 4: Fixed percentage SL, with gap and flash crash: Simulation results

Strategy-Model E[r] Sharpe | Sortino RVaR RES
SL - GEDcrash 2.34% 0.41 0.07 0.57 0.12
B&H - GEDcrash 5.03% 0.29 0.12 0.15 0.12
Difference -2.69% * +0.12* | -0.05 ns | +0.42*** | +0.00 ns
SL - ARMAcrash 2.27% 0.39 0.07 0.55 0.11
B&H - ARMAcrash 4.90% 0.29 0.13 0.16 0.12
Difference -2.63% ns | +0.1ns | -0.06 ns | +0.39*** | -0.01 ns
SL - RScrash 2.70% 0.52 0.07 0.74 0.18
B&H - RScrash 5.54% 0.24 0.11 0.10 0.09
Difference -2.84% * | 4-0.28**%* | .0.04 ns | +0.64*** | +0.09*
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Table 5: RSI-based SL, without gap: Simulation results
Strategy-Model E[r] Sharpe | Sortino RVaR RES
SL - GED 6.27% 0.33 0.14 0.22 0.19
B&H - GED 7.04% 0.32 0.15 0.16 0.13
Difference -0.77% ns | 40.01 ns | -0.01 ns | +0.06*** | 4+0.06***
SL - ARMA 6.47% 0.35 0.14 0.22 0.18
B&H - ARMA 6.87% 0.34 0.15 0.18 0.15
Difference -0.40% ns | +0.01** | -0.01* +0.04%* | 40.03%**
SL - RS 5.78% 0.30 0.15 0.19 0.17
B&H - RS 6.27% 0.29 0.16 0.14 0.12
Difference -0.49% ns | +0.01 ns | -0.01* | 4+0.05%** | 40.05%***
Table 6: RSI-based SL, with gap: Simulation results
Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GEDgap 4.55% 0.31 0.12 0.24 0.20
B&H - GEDgap 5.03% 0.29 0.13 0.15 0.12
Difference -0.48% ns | +0.02*** | -0.01* | 40.09%** | 40.08***
SL - ARMAgap 157% 0.32 0.11 0.23 0.19
B&H - ARMAgap 4.94% 0.30 0.12 0.16 0.13
Difference -0.37% ns | +0.02***F | -0.01* | +0.07*** | 40.06%***
ST - RSgap 5.71% 0.28 0.10 0.19 0.16
B&H - RSgap 6.25% 0.27 0.11 0.12 0.10
Difference -0.54% ns | +0.01*** | -0.01* | 40.07*** | 40.06***

Table 7: RSI-based SL, with gap and flash crash: Simulation results

Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GEDcrash 4.50% 0.31 0.11 0.23 0.19
B&H - GEDcrash 4.95% 0.29 0.12 0.14 0.12
Difference -0.45% ns | +0.02 ns | -0.01 ns | +0.09 ns | +0.07 ns
SL - ARMAcrash 4.63% 0.32 0.12 0.23 0.19
B&H - ARMAcrash 4.99% 0.30 0.12 0.16 0.13
Difference -0.36% ns | +0.02 ns | -0.00 ns | +0.07 ns | +0.06 ns
SL - RScrash 5.19% 0.25 0.10 0.17 0.14
B&H - RScrash 5.55% 0.24 0.11 0.11 0.09
Difference -0.36% ns | +0.01 ns | -0.01 ns | +0.06 ns | +0.05 ns
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return under most {stop-loss rules, price model} pairs drops significantly as the flash
crash triggers the stop. Important exceptions to this general behaviour are observed in
the case of the MA crossover (Table 16) and RSI (Table 7) - based stop-loss rules, under
all price models. In other words, these two stop-loss rules have shown to be robust to
flash crashes, which is an intuitive result, perhaps especially so for the MA crossover
stop-loss, as a momentary sharp (yet realistic) price drop is unlikely to trigger the
crossing of the short, medium and long-term moving averages, provided a sufficiently
large time window, as it seems to be our case (5, 20 and 70 days). Further note that
the usefulness of each stop-loss rule is apparent in all the considered models for returns,
being the fixed percentage stop-loss the generally most useful strategy in risk-adjusted
terms, even in the presence of flash crashes.

Nonetheless, it is worth pointing out that stop-loss performance — with perhaps the
exception of the fixed percentage rule — is in general somewhat worse under the no-gap
models. This fact may seem counterintuitive at first because one may reasonably think
that since large negative overnight gaps are able to bypass stop-loss rules, rendering the
investor unable to liquidate his/her position at the desired price level, a model that does
not include this kind of phenomena should inflate stop-loss performance. However, this
reasoning relies on the inaccurate assumption that large negative overnight gaps are
sufficiently frequent. In fact, large negative overnight gaps are much less common than
what it might appear; it is just that because when they occur they attract considerable
attention, individuals tend to overestimate their frequency or probability (availability
heuristic). On the other hand, overnight gaps small in magnitude (negative or positive)
are relatively frequent, and it seems that some of the stop-loss rules considered are
able to avoid the negative ones while benefiting from the positive ones, improving
risk-adjusted performance.

By not including overnight gaps when modeling stock returns, it seems that one
is not getting the most out of stop-loss rules. This, together with our use of high-
frequency data, more complex price models and alternative risk-adjusted performance
metrics, might explain why the literature on stop-loss rules, which at present does not
consider overnight gaps, has not found a significant performance improvement in the
use of stop-loss rules, despite the fact that in practice they are considered an extremely
effective tool for loss protection, in particular, and risk management, in general.

Therefore, since real financial markets quite frequently exhibit overnight gaps, and
assuming that our overnight gap specification is sufficiently accurate, we believe that
the results we obtained with the models that do include gaps are closer to the true
stop-loss performance than those obtained under the no-gap models.

For the ATR and MA based stop-loss rules, we obtained again statistically signif-
icant risk-adjusted performance improvements, albeit more moderate. See Tables 11,
12, 14, and 15 in the Appendix.

6 Non parametric approach: the stationary bootstrap.

There is no one universally accepted model for asset returns, and whatever this model
might be the danger of overfitting is always present. In light of those reasons, we com-
plement our analysis with a non parametric approach to add robustness: the stationary
bootstrap. The stationary bootstrap [Politis and Romano, 1994] is one of the existing
block bootstrap methods, which is characterized by using random block lengths that
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are distributed according to the geometric distribution. Provided that the original
data is stationary, the use of geometrically distributed block lengths ensures that the
resampled series remain stationary. By using an appropriate scenario generator for
financial time series such as the stationary bootstrap, our backtesting is more reliable
than if we just used the observed prices, as these are just one possible realization of
an underlying stochastic process.

The stationary bootstrap algorithm goes as follows (cf. [Davison and Hinkley, 1997,
Ch. 8]): Given Xy, ..., X,, observations of a time series, wrap this data around a circle;
that is, define Y; = X1 (;_1 mod n) and Yo = X,. Let I1, Iy, ... € {1,...,n} be drawn
iid with uniform distribution (these are the starting points of blocks). Construct a
bootstrap sample as follows:

o set Y" =Y7,.

e For i = 2,...,n, let Y;* = Yj,, with probability p, and let ¥;* = Y;;; with
probability 1 — p, where Y;* | = Y;.

The output is a series Y{*, ..., Y;¥, composed of blocks with mean length 1/p, since
the lengths L1, Lo, ...of attached blocks through the iteration follows a geometric
distribution: P(L = k) =p(1 —p)k¥~ 1 k=1,2,....

In our stationary bootstrap sampling of time series data we make use of the au-
tomatic block-length selection heuristic laid out in [Politis and White, 2004]. In par-
ticular, since E[L] = % = b we immediately have that p = %, and b is obtained using
the heuristic in question. Therefore, p is determined by the automatic block-length
selection heuristic mentioned before.

Also, to be rigorous with the application of the stationary bootstrap, we checked
for weakly stationarity in the observed data, applying traditional tests for unit root
(Augmented Dickey Fuller, KPSS, Phillips-Perron) and a more advanced test, namely,
the Priestley-Subba Rao (PSR) test for nonstationarity [Priestley and Rao, 1969],
which is based upon examining how homogeneous a set of spectral density function
(SDF) estimates are across time, across frequency, or both. Thus, we determine that
at the 1% significance level, only 11 stocks (BAC, PFE, F, C, JPM, MRK, XOM, AIG,
HAL, KEY, and BMY) out of our original universe of 30 present weakly stationary
hourly returns in the period considered: March 13 to May 26, 2017. To be noted that
this period is longer than the one considered in our parametric approach. This fact
is due to two reasons. On the one hand, we believe that a data-based model — as
opposed to a purely parametric model in which having longer periods of data might
actually be counter-productive when calibrating the parameters of the model — should
include as many observations as possible, which justifies a larger resource expenditure
to obtain data until the end of May 2017. On the other hand, since we only consider
11 stocks in this case (as the other 19 are not weakly stationary and thus not suitable
for the stationary bootstrap), we would wish to compensate for that potential loss of
information by extending the period under study.

Finally, we note that under this nonparametric approach, our price model is

Pt = Pt,1(1 + r;‘)

for all t > 1, where 7} is the bootstrapped return at time ¢. Figure 2 shows real price
time series (dashed, black line) and bootstrapped versions (continuous, red line) for
Citigroup and American Int. Group.
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Figure 2: Citigroup (C) and AIG bootstrapped price and real price time series.

Table 8: Bootstrap simulation results under Buy-and-Hold

Stock E[r] Sharpe Sortino RVaR  RES
BAC  —7.1794 -

PFE —5.6818 - - - -
F —12.8653 - - - -
C 1.5171 0.1578  0.0594 0.0741 0.0603

JPM —6.1557 - - - -
MRK  —0.3745 - -
XOM 0.1034 0.0182  0.0074 - -
AIG 3.3076  0.4296  0.1821 0.2527 0.2053
HAL —9.5564 - - - -
KEY —2.8110 - - - -
BMY  -7.1723 - - - -
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Table 9: Bootstrap simulation results under fixed % SL

Stock E[r] Sharpe Sortino RVaR  RES
BAC —-0.6170 - - - -
PFE —1.9672 - - - -

F —1.6234 - - - -
C 1.26563 0.1405  0.1205 - -
JPM  —-0.9784 - - - -
MRK —0.0666 - -

XOM 0.1272  0.0373  0.0408 - -
AlG 3.1447  0.4063 0.3044 0.2378 0.2248
HAL —0.7096 - - - -
KEY —0.1206 - - - -
BMY —1.3588 - - - -

Table 10: Bootstrap simulation results under RSI SL

Stock E[r] Sharpe Sortino RVAR RES

BAC —6.9053 - - - -

PFE —5.6759 - - - -
F —12.6731

C 1.4081 0.1656  0.0560 0.0899 0.0735
JPM —5.9739 - - - -
MRK  —0.3390 - - - -
XOM 0.1185 0.0226  0.0064 0.0082 0.0066
AIG 3.0064 0.4306 0.1616 0.2746 0.2244
HAL —9.2652 - - - -
KEY —2.6207 - - - -
BMY  -7.1070 - - - -
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Importantly, it must be stressed that in the period March 13 to May 26, all the
stocks under consideration, except Citigroup (C) and American International Group
(AIG), experienced a negative return, which explains why most of the expected returns
are negative, especially under Buy-and-Hold. Because the metrics besides expected re-
turn that we have considered are meaningless when below zero, we restrict our attention
to expected return for those stocks and leave blank those entries below zero. In such
a situation in which 9 out of the 11 stocks have experienced a negative return in the
period considered, the stop-loss rules have provided a higher expected return, in some
cases extremely higher than if no stop-loss had been used, as in the case of the fixed
percentage strategy, which has achieved a positive expected return in 5 out of 11 stocks,
and near positive in two more stocks. In fact, on average, the fixed percentage rule has
increased the expected return in over 4 percentage points compared to Buy-and-Hold,
and in some cases (Ford), as much as 11.3 percentage points higher than Buy-and-
Hold, on average (in 200,000 repetitions), in just two and a half months. In a full year,
the improvement might be even more spectacular. This is the opposite case as in our
model-based simulation: in the present case, using real (bootstrapped) prices, because
mid March to late May has been a bad period for most of the stocks under considera-
tion, it seems indeed natural that a strategy that at some point switches to a risk-free
asset will perform better than merely Buy-and-Hold. However, three aspects must be
stressed: first, the risk-free rate used in the bootstrap simulations is the 3-month U.S.
Treasury bill rate that was in place in March 2017, just 0.74%; second, the fact that
the remarkable results shown in Table 9 for the falling stocks are, again, obtained out
of sample; lastly, in the case of the fixed percentage rule, note that the expected return
premium over Buy-and-Hold in a Bear market is much higher than the expected return
premium of Buy-and-Hold over this stop-loss rule in a Bull market, in general.

On the other hand, for C and AIG, since most of the metrics are above 0, we can
conduct a similar analysis as in Section 5. In this case the results are favorable too,
albeit less spectacular: certain stop-loss rules seem to provide a modest improvement
in risk-adjusted returns, at the expense of a very slight drop in absolute expected
return. For example, as shown in Table 10 we may highlight the improvement in all
risk-adjusted metrics that the RSI-based stop-loss provides for the two rising stocks
(C and AIG).

The simulation results for the other two stop-loss rules (ATR and MA) can be
found in the Appendix at the end of this work (Tables 17 and 18).

7 Conclusions

Combining three different parametric price models, together with a nonparametric
approach based on the stationary bootstrap as a scenario generating method, our out-
of-sample research shows that irrespective of the market situation (a rising or falling
market), stop-loss rules are able to provide a higher expected return than buy-and-
hold, at least when adjusting for risk, and this difference is statistically significant at
the 0.1% level in most of the cases. On the one hand, in the case of a market with
a positive risk premium, certain stop-loss rules provide a better risk-adjusted return
than Buy-and-Hold under most risk-adjusted metrics. On the other hand, in the case
of a market with a negative risk premium, all stop-loss rules provide a better expected
return than Buy-and-Hold. In the case of the fixed percentage rule, the improvement
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in expected return in a market with a negative risk premium is outstanding in many
cases, and the improvement in risk-adjusted return in a market with a positive risk
premium is often remarkable as well.

These results show that by incorporating a relatively simple risk management
mechanism such as stop-loss rules it is possible sometimes to significantly enhance
risk-adjusted investment performance, introducing very few changes to an existing
buy-and-hold passive strategy.

We also showed that by not including overnight gaps, stop-loss performance might
in fact be reported to be lower than it truly is, which might be one of the factors that
explains the general skepticism towards this risk management mechanism present in
the academic literature, despite its undisputed popularity among practitioners.

Finally, the inclusion of flash crashes in our parametric price models reveals that the
percentage-based and the ATR-based stop-loss rules are triggered by the the flash crash
but in the first case risk-adjusted performance is still improved under most metrics.
On the other hand, the moving average crossover and RSI-based stop-loss rules are
robust to flash crashes and their performance (a slight improvement in risk-adjusted
terms) is roughly the same under the three layers of realism considered: no gap, gap
and gap plus flash crash.
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Appendix

Below are the model-based simulation results for stop-loss rules ATR (Tables 11, 12
and 13) and MA (Tables 14, 15 and 16), followed by the data-based (i.e. bootstrapped)
simulation results for stop-loss rules ATR (Table 17) and MA (Table 18).
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Table 11: ATR-based SL, without gap: Simulation results

Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GED 6.49% 0.32 0.13 0.15 0.13
B&H - GED 7.23% 0.32 0.14 0.16 0.14
Difference -0.74% ns | 0.00 ns | -0.01** | -0.01*% | -0.01**
SL - ARMA 5.59% 0.33 0.13 0.16 0.13
B&H - ARMA 6.84% 0.33 0.14 0.17 0.14
Difference -1.25% ns | 0.00 ns | -0.01** | -0.01** | -0.01%**
SL - RS 6.12% 0.29 0.15 0.14 0.11
B&H - RS 6.28% 0.29 0.16 0.14 0.12
Difference -0.16 ns% ns | 0.00 ns | -0.01 ns | -0.01 ns | -0.01 ns
Table 12: ATR-based SL, with gap: Simulation results
Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GEDgap £.03% 0.33 0.12 0.16 0.13
B&H - GEDgap 4.99% 0.29 0.12 0.15 0.12
Difference -0.96% ns | +0.04*** | 0.00 ns | +0.01*** | 40.01*
ST, - ARMAgap 3.98% 0.35 0.12 0.18 0.14
B&H - ARMAgap 4.96% 0.30 0.12 0.16 0.13
Difference -0.98% ns | +0.05%** | 0.00 ns | +0.02*** | +0.01***
SL - RSgap 5.53% 0.28 0.10 0.11 0.09
B&H - RSgap 6.32% 0.27 0.11 0.13 0.11
Difference -0.79% ns | +0.01 ns | -0.01 ns | -0.02%** | -0.02***

Table 13: ATR-based SL, with gap and flash crash: Simulation results

Strategy-Model E[r] Sharpe | Sortino | RVaR | RES
SL - GEDcrash -2.18% - - - -
B&H - GEDcrash 4.95% 0.29 0.12 0.15 | 0.12
Difference -7.13% ** - - - -
SL - ARMAcrash -1.82% - - - -
B&H - ARMAcrash 4.98% 0.30 0.13 0.16 | 0.13
Difference -6.80% * - - - -
SL - RScrash -4.27% - - - -
B&H - RScrash 5.71% 0.25 0.11 0.11 0.09
Difference -9.98% * - - - -

27




Table 14: MA crossover-based SL, without gap: Simulation results

Strategy-Model E[r] Sharpe | Sortino RVaR RES
SL - GED 5.73% 0.32 0.13 0.16 0.12
B&H - GED 7.12% 0.32 0.15 0.16 0.13
Difference -1.39% ns | +0.00 ns | -0.02*** | +0.00 ns | -0.01**
SL - ARMA 5.49% 0.34 0.12 0.18 0.14
B&H - ARMA 6.79% 0.33 0.15 0.18 0.15
Difference -1.30% ns | +0.01 ns | -0.03*** | +0.00 ns | -0.01%**
SL - RS 5.12% 0.30 0.13 0.15 0.11
B&H - RS 6.19% 0.29 0.16 0.14 0.11
Difference -1.07% ns | +0.01** | -0.03*** | +0.01*** | +0.00 ns

Table 15: MA crossover-based SL, with gap: Simulation results

Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GEDgap 4.28% 0.31 0.11 0.16 0.13
B&H - GEDgap 4.91% 0.28 0.12 0.15 0.12
Difference -0.63% ns | +0.03*** | -0.01%* | 4-0.01%** | 40.01***
SL - ARMAgap 4.30% 0.32 0.11 0.17 0.13
B&H - ARMAgap 4.95% 0.30 0.12 0.16 0.12
Difference -0.65% ns | +0.02*** | -0.01** | 40.01%** | +0.01*
ST - RSgap 5.11% 0.28 0.10 0.13 0.10
B&H - RSgap 6.22% 0.27 0.11 0.12 0.10
Difference -1.11% ns | 4+0.01%* | -0.01*%* | 40.01*** | 4+0.00 ns

Table 16: MA crossover-based SL, with gap and flash crash: Simulation results

Strategy-Model E[r] Sharpe | Sortino | RVaR RES
SL - GEDcrash 4.27% 0.31 0.11 0.16 0.13
B&H - GEDcrash 4.95% 0.29 0.12 0.15 0.12
Difference -0.68% ns | +0.02 ns | -0.01 ns | +0.01 ns | +0.01 ns
SL - ARMAcrash 4.24% 0.32 0.10 0.17 0.13
B&H - ARMAcrash 4.96% 0.30 0.12 0.16 0.13
Difference -0.72% ns | +0.02 ns | -0.02 ns | +0.01 ns | +0.00 ns
SL - RScrash 4.74% 0.26 0.10 0.12 0.09
B&H - RScrash 5.62% 0.25 0.11 0.11 0.09
Difference -0.88% ns | +0.01 ns | -0.01 ns | +0.01 ns | +0.00 ns
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Table 17: Bootstrap simulation results under ATR SL

Stocks E[r] Sharpe Sortino RVAR RES

BAC —6.5103 - - - -
PFE —4.9619 - - - -
F —10.6830 - - - -
C 1.4632 0.1553 0.0606 0.0682 0.0554
JPM —5.7171 - - - -
MRK —0.3448 - - - -
XOM 0.1091  0.0206  0.0068 - -
AlG 3.1674 0.4244  0.1767 0.2512 0.2036
HAL —9.2054 - - - -
KEY —2.5792 - - - -
BMY —6.8442 - - - -

Table 18: Bootstrap simulation results under MA SL

Stocks E[r] Sharpe Sortino RVAR  RES

BAC —6.8231 - - - -
PFE —5.4746 - - - -
F —12.4149 - - - -
C 1.4312  0.1535 0.0530 0.0652 0.0526
JPM —5.8740 - - - -
MRK —0.3471 - - - -
XOM 0.1154 0.0220  0.0080 - -
AIG 3.1591  0.4191 0.1743 0.2377 0.1904
HAL —9.1302 - - - -
KEY —2.6658 - - - -
BMY —6.8560 - - - -
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