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Abstract

Centrality and influence spread are two of the most studied concepts in social network anal-
ysis. Several centrality measures, most of them, based on topological criteria, have been
proposed and studied. In recent years new centrality measures have been defined inspired
by the two main influence spread models, namely, the Independent Cascade Model (IC-
model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is
defined as the total number of influenced nodes when the initial activation set is formed by
a node and its immediate neighbors. It has been shown that LTR allows to rank influen-
tial actors in a more distinguishable way than other measures like the PageRank, the Katz
centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR
measure that explore the sensitivity of the original LTR, with respect to the distance of the
neighbours included in the initial activation set. We appraise the viability of the approach
through different case studies. Our results show that by using neighbours at larger distance,
we obtain rankings that distinguish better the influential actors. However, the best differen-
tiating ranks correspond to medium distances. Our experiments also show that the rankings
obtained for the different levels of neighborhood are not highly correlated, which validates
the measure generalization.
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1. Introduction

Influence spread is one of the most studied concepts in social network analysis. The
way a group of actors adopting a new tendency can influence others to also adopt it, is
an intuitive and well-known phenomenon [1]. Social networks are commonly represented
as graphs, whose nodes are the actors of the network, and the edges are interpersonal ties
among the actors [2]. Moreover, in order to study the influence spread phenomenon, it is
useful to consider influence graphs, i.e., weighted and labeled digraphs, whose edge weights
represent the influence power exerted by one actor over another, and the node labels quantify
the resistance of each actor to be influenced by its active neighbors [3].

An influence spread model describes the ways in which actors influence each other
through their interactions in a social network. The two best known general models for
influence spread are the linear threshold model (LT-model) [4] and the independent cascade
model (IC-model) [4]. The first one is based on some ideas of collective behavior [5, 6], while
the second one was proposed in marketing contexts [7].

Centrality is another key concept in social network analysis. Centrality measures aim
to determine how structurally relevant is an actor within the social network. Identifying
the users relevance is particularly useful for many applications, such as viral marketing [8],
information propagation [9], search strategies [10], expertise recommendation [11], commu-
nity systems [12], social customer relationship management [13], percolation theory [14] and
education [15]. Centrality measures can also be used to identify the most active, popular, or
influential users within a network [16]. Most of the centrality measures used to identify in-
fluential actors are based on network topological criteria [16]. However, it is known that the
influence spread does not only depends on the network structure, but also on the spreading
dynamic process [17].

Recently, the Linear Threshold Rank (LTR), a centrality measure based on the LT-model,
was proposed in [18]. This measure can be interpreted as how much an actor can spread
his influence within a network, investing resources to be able to convince his immediate
neighbors. In this measure, an actor with small degree might have a good ranking due to
his neighbors. In that research was proved that LTR measure differs from other centrality
measures based on influence criteria, such as PageRank [19], Katz centrality [20], and the
Independent Cascade Rank (ICR) [21]. In comparison to these three measures, LTR allows
to rank the actors in a clearer and more distinguishable way, with a high standard deviation,
and a large number of different values [18].

Our aim is to explore the sensitivity of the LTR to the selection of the initial activation
neighborhood. In particular we are interested in analyzing LTR when the initial activation
set contains all neighbors at distance `, i.e., the nodes contained at neighborhood level `. It is
clear that increasing the neighborhood level in the initial activation set may result in a higher
number of nodes being influenced. However, the increase in the influence spread achievable
by a node in terms of its neighborhood level considered in the initial activation has not been
studied in depth so far. To this end, in this paper we generalize the LTR measure, by allowing
more than one level of neighborhood as initial activation for the influence spread process.
In addition, we propose two types of graphics to visualize the behavior of this measure. As
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case studies, we consider two large social networks: a Twitter retweets network (directed)
and an arXiv network (undirected). Our results show that by using higher neighborhood
levels, we obtain rankings that distinguish better the influential actors. However, the best
differentiating ranks correspond to medium distances. Furthermore, our experiments show
that our generalized LTR measure provides different rankings for the different neighborhood
levels considered.

The paper is organized as follows. Section 2 presents a brief literature review about
centrality-based studies. Section 3 briefly describes the related work regarding social net-
works represented as influence graphs. Section 4 is devoted to the LTR measure and its
generalization to consider more than one neighborhood level. Section 5 shows our experi-
mental setting and data analysis. Finally, the paper ends by presenting our main conclusions
and future work.

2. Literature review

Since 1979 [22], researchers have defined several centrality measures, based on different
criteria such as the network structure (e.g., degree, closeness, betweenness, Katz central-
ity [20], PageRank [19], etc.), the information flow that circulates within the network (e.g.,
flow betweenness and flow closeness [23]), the content of such spread information (e.g.,
TRank [24], TS-SRW [25], etc.), the variations in the network actors behavior over time
(e.g., IDM-CTMP [13], parameterless mixture [26], etc.), and even on power indices coming
from cooperative game theory [27, 28, 29] or some physical principles such as velocity [30].
Furthermore, there also exist several centrality measures created for specific social networks
(e.g., retweet impact [31], Acquaintance Score [32], Social Networking Potential [33], etc.).
Each centrality measure aims to detect relevant actors for a particular study context. Only
for Twitter, there are more than fifty influence measures [16], so in practice there are hun-
dreds of centrality measures to choose. To know more about the centrality measures, the
interested reader can see [16, 34].

Although many centrality measures seek to detect the most influential actors in a net-
work, these measures tend not to be related to the influence spread phenomenon. The first
attempts to study centrality measures considering influence spread are quite recent. Most
of them are directly inspired by the IC-model [21, 35, 36, 37, 38]. Recently, some classic
centrality measures have been applied together with the IC-model to minimize the bad effect
of misinformation in social networks [39]. As far as we know, the first centrality measure
considering the LT-model was the Linear Threshold Rank (LTR) [18], which is the starting
point for the present work.

3. Social networks as influence graphs

A social network can be represented as an influence graph [3] (G, f, w), where G = (V,E)
is a graph, with the node set V representing the actors of the network, and the edge set E
the influence relationships among the actors, so that (a, b) ∈ E means that actor a exerts
a direct influence over b. The weight function w : E → N determines the influence power
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Figure 1: Influence spread on an influence graph, starting from the initial activation X = {a}.

w(a, b) exerted by a over b, and the labeled function f : V → N quantifies the resistance of
each actor to be influenced. Let be n = |V |, and m = |E|.

Since the influence exerted by one node over another is represented as a directed edge,
the influence graphs are usually digraphs, i.e., directed graphs. However, any undirected
graph can be seen as a symmetric digraph, so all what follows also applies for undirected
graphs.

Given an influence graph and an initial activation set X ⊆ V , the spread of influence
of X is the set F (X) ⊆ V formed by the nodes activated through an iterative process that
runs in polynomial time. Lets Fk(X) denote the set of nodes activated at step k. Initially,
at step 0, only the nodes in X are activated, so F0(X) = X. The set of nodes activated at
step i > 0 consists of all nodes of Fi−1(X), plus some amount of nodes that depends on the
model considered. For the LT-model, we add all the nodes whose labels are less or equal
than the total weight of the edges connecting them from nodes in Fi−1(X), i.e.,

Fi(X) = Fi−1(X) ∪ {v ∈ V |
∑
{u∈Fi−1(X)|(u,v)∈E}w(u, v) ≥ f(v)} (1)

The process stops when no additional activation occurs. The final set of activated nodes is
denoted by F (X) = Fk(X), where k = min{i ∈ N | Fi(X) = Fi+1(X)} ≤ n.

Figure 1 illustrates an example of influence spread F (X) in an influence graph from the
initial activation X = {a}. In the first step is obtained F1(X) = {a, c} and in the second
step (the last one), F2(X) = {a, c, d}.

4. Linear threshold rank for multiple neighborhood levels

In this section we shall define a generalization of the Linear Threshold Rank, also known
as LTR measure, based on a flexibilization at the level of neighborhood considered for the
initial activation. The LTR measure is a recent centrality measure used to rank influential
actors based on the LT-model. It was originally defined as follows.
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Definition 1 ([18]). Let (G,w, f) be an influence graph, with G = (V,E), and i ∈ V an
actor. The Linear Threshold Rank of i, denoted by ltr(i), is given by

ltr(i) = |F ({i} ∪ neighbors(i))|

where neighbors(i) = {j ∈ V | (i, j) ∈ E ∨ (j, i) ∈ E}.

This measure can be normalized by dividing the result by n = |V |. Note that G can
be either a directed or an undirected graph. However, neighbors(i) contains the actors
connected to i by edges in any direction. This allows to increase the size of the initial
activation set, since the actors with small out-degree would not be able to spread their
influence through the network by themselves. Furthermore, as F (X) can be computed in
polynomial time, ltr(i) is polynomial time computable.

The Linear Threshold Rank measures how much an actor i can spread his influence
within a network, investing resources outside the formal system (e.g. contacts management,
bribe ability, etc.) to be able to convince his immediate neighbors. In this measure, a
high rank does not depend so much on the nodes degree in the initial activation, but on
the influence capacity of the initial activation as a coalition. Now, if the i’s neighbors also
possess sufficient resources, they could also convince their own neighbors not yet influenced,
and so on. This idea leads us to think about a generalization of the LTR measure, for which
we need some previous concepts.

Given a graph, a path is a finite sequence of distinct nodes such that two consecutive nodes
are joined by an edge. An undirected path is a path where the edges direction does not matter.
The length of an undirected path is given by its number of edges. The shortest undirected
path among two nodes is the undirected path between that nodes with the minimum length.
The diameter of a graph is the maximum length among all the shortest undirected paths
between any two nodes of the graph.

Definition 2. Let (G,w, f) be an influence graph, with G = (V,E), i ∈ V an actor, and d
the diameter of G. The Linear Threshold Rank of i at level `, with 0 ≤ ` ≤ d, denoted by
ltr(i, `), is given by

ltr(i, `) = |F ({i} ∪ neighbors(i, `))|

where neighbors(i, `) = {j ∈ V | dist(i, j) ≤ `} and dist(i, j) denotes the length of the
shortest undirected path between nodes i and j, i.e., the undirected distance between nodes
i and j.

Again, this measure can be normalized by dividing the result by n = |V |. Note that
ltr(i, 0) = |F ({i})|, ltr(i, 1) = ltr(i), and ltr(i, d) = n. Furthermore, since ` ≤ d, then
ltr(i, `) is also polynomial time computable. As example, consider the influence graph
illustrated in Figure 2. The Linear Threshold Rank of actor a at all levels is presented in
Table 1.
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Figure 2: Example of influence graph with m = 6, n = 6 and d = 3.

` neighbors(a, `) LTR(a, `) normalized LTR(a, `)

0 {a} 3 3/6 = 0.50

1 {a, b} 3 3/6 = 0.50

2 {a, b, c, d, e} 5 5/6 ≈ 0.83

3 V 6 6/6 = 1.00

Table 1: LTR(a, `) computation for the influence graph of Figure 2.

5. Experiments and results

In this section, we analyze the Linear Threshold Rank for each actor and for all levels in
two different large networks:

• Retweets network: A directed network.

• arXiv network: An undirected network.

The first network dataset was provided by the Network Repository [40],1 and the second
one by the SNAP’s Stanford Large Network Dataset Collection [41].2 The experiments were
programmed with Python 3 programming language. All experiments were run on a machine
HP ProLiant DL380p server with two Xeon R© E5-2650 CPU.

Every network is represented as an influence graph (G,w, f). Let G = (V,E) be the
graph, for each actor i ∈ V we set the following label functions, usually considered in this
kind of experiments [18, 3]:

• Minimum influence: f(i) = 1

• Maximum influence: f(i) = w(i)

• Simple majority: f(i) = bw(i)/2c+ 1

• Random: f(i) is a random number such that w′(i) ≤ f(i) ≤ w(i) + 1,

1http://networkrepository.com/rt-pol.php
2http://snap.stanford.edu/data/ca-GrQc.html
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where w′(i) = min{w(j, i) | (j, i) ∈ E} but taking w′(i) = 1 when the set is empty, and
w(i) =

∑
{w(j, i) | (j, i) ∈ E}. The random labels were obtained through the randint

Python function. For each node i, the label was chosen between w′(i) (i.e., the actor can
be influenced by any active neighbor pointing to it) and w(i) + 1 (i.e., the actor can not be
influenced by anyone).

5.1. Retweets network

The first dataset contains the largest connected component of retweets relationships in a
Twitter network of political communication. The data were collected during the six weeks
prior to the 2010 U.S. midterm elections. It contains n = |V | = 18, 470 actors (Twitter
accounts) and m = |E| = 48, 365 directed edges (retweets relationships) [42]. A directed
edge (i, j) ∈ E represents an actor j retweeting an actor i, so we say that i exerts a certain
influence over j. The weight of the edge, w(i, j), represents how many times actor j retweeted
actor i.

Figure 3 analyzes the simple majority case. This figure illustrates the increase in the
influence spread for each node i depending on the level ` of neighbors that are added to i in
the initial activation. The range of colors going from blue to red denotes the number of nodes
influenced from the initial activation, that is, the LTR measure |F ({i} ∪ neighbors(i, `))|
(vertical axis of Figure 3(a)). Blue represents a lower capacity for influence spread, while
red represents a greater influence capacity. The minimum value is 1 (when ` = 0, and the
initial node can not influence to anyone), and the maximum value is n (when the initial
activation can spread its influence through the whole network). As we mention in Section 4,
this maximum value is always achieved when ` = d, where d is the diameter of the graph
(namely, d = 17 in this case). However, it can also be achieved for lower neighborhood
levels. Figure 3(b) is the top view of the 3D-graphics at Figure 3(a). Hence, the growth
curve shown in Figure 3(a) is shown in Figure 3(b) by the “thermometer” on the right.

In this simple majority case, the temperature increases abruptly between levels 3 and
6. Up to level 2, the effort expended to extend the initial activation seems not to make
a big difference in the increase of the influence spread. Similarly, starting at level 7, for
most actors it no longer makes much sense to continue increasing their initial activation.
Remarkably, level 1, used by the original LTR measure [18], does not seem to distinguish so
much the actors according to their ability to influence, as it does seem to occur for levels 4
and 5. Indeed, note that the average growth corresponds to a sigmoid function, where levels
4 and 5 are the tipping points [43].

Figure 4 shows the top views for the remaining cases: minimum, random, and maximum
influence. From level 11, all the graphics have the same behavior, because the initial acti-
vation size is such that the influence spread process ends immediately, i.e., F0(X) = F1(X),
with X being the initial activation. This does not mean that from level 11 all the initial ac-
tivation sets already contain all the network nodes, but from that level the initial activation
sets are so big that they can influence all the other actors. Table 2 shows, for each level `,
the number of nodes having neighbors at that depth level. Observe that all the nodes have
neighbors until a depth level ` = 9, while there are just two nodes having neighbors until a
depth level ` = 17.
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(a) 3D view

(b) Top view

Figure 3: Data analysis of retweets network for simple majority.
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(a) Minimum influence (b) Random influence (c) Maximum influence

Figure 4: Data analysis of retweets network.

level ` 0...9 10 11 12 13 14 15 16 17
#actors 18470 18459 17506 8786 2113 408 105 13 2

Table 2: Number of actors having neighbors at each level in the retweets network.

By using the Kendall correlation coefficient, we corroborate that the initial activation
sizes and the LTR results obtained for each actor are highly correlated. This is quite clear,
since the larger initial activation size, the greater the influence spread and hence the LTR
value. However, this does not mean that the rankings obtained with LTR for a given
level, are maintained for the next level. Again, using the Kendall correlation coefficient, we
correlate the rankings of actors obtained by the LTR measure for all the levels 0 ≤ ` ≤ 17.
The correlation matrices at Figure 5 summarize these latter results for the different labeling
functions. Each axis represents the different neighborhood levels ` of the LTR measure
(1 ≤ ` ≤ 17). The intensity of each position of the matrix represents the degree of correlation
between the rankings obtained with the measure, considering such levels. It is observed that
although relatively high correlations are obtained, when considering different levels, ltr(i, `)
will produce different rankings. Therefore, the generalization of the measure makes sense.

Finally, as it was expected, for the case of minimal influence, the number of influenced
nodes increases faster than in the rest of the cases. This can be seen at Figure 4(a), where the
lower bars have more “temperature”. For these experiments, the case of random influence
(see Figure 4(b)) presents an average growth more similar to both the majority and maximum

(a) Minimal influence (b) Simple majority (c) Random influence (d) Maximum influence

Figure 5: Kendall correlation matrices for the retweets network.
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level ` 0...9 10 11 12 13 14 15 16 17
#actors 4158 4145 3683 2207 778 207 66 29 8

Table 3: Number of actors having neighbors at each level in the arXiv network.

cases than to the minimum influence case. In addition, the simple majority case is quite
close to the maximum influence case (see Figure 4(c)). The maximum case is the one that
presents the smallest increase in the influence spread between one level and the next one.
Remarkably, for all the cases, the growth is quite abrupt between levels 3 and 5, thus being
levels 4 and 5 the tipping points for all the cases.

5.2. arXiv network

The second dataset contains scientific collaborations between authors papers submitted
to arXiv’s General Relativity and Quantum Cosmology category.3 The collection was ini-
tially used to study graph evolution [44]. It contains 5242 nodes and 14, 496 undirected
edges. We consider the largest connected component, obtaining an influence graph with
n = 4158 actors and m = 13, 428 undirected edges. An edge (i, j) represents that author i
co-authored at least one paper with author j, in such a way that, for each edge (i, j) ∈ E(G),
w(i, j) = 1.

Analogously to Figure 3, Figure 6 illustrates the increase in the influence spread for
each node i based on the level `, for the simple majority case. As the previous network,
here all the actors have neighbors until a depth level ` = 9. Furthermore, the maximum
neighborhood level is also ` = 17, which is fulfilled for eight actors, instead of the two in
the previous network. Analogously to Table 2, Table 3 shows the number of nodes having
neighbors at each depth level. Furthermore, analogously to Figure 5, the correlation matrices
at Figure 7 shows that despite of the relatively high correlations obtained among the different
levels, ltr(i, `) produces different rankings for each level `. Recall that this is an undirected
network. Therefore, it is quite natural that for the case of minimal influence, the spread
of influence increases to the maximum just by starting from the isolated nodes (` = 0).
The latter implies that for the minimal influence case, all the actors share the same place
in the rankings, in such a way that the Kendall correlation coefficient can not distinguish
differences between the actors and thus it returns null values, except for the actors compared
with themselves (see Figure 7(a)).

In this study case the growth is quite abrupt between levels 4 and 6. Up to level 2,
the effort expended to extend the initial activation does not make a big difference in the
influence spread increase. Similarly, starting at level 9, for most actors it no longer makes
much sense to continue increasing their initial activation. Unlike the previous network, in
this case the growth is less abrupt between one level and the next one. Note that level 1,
used by the original LTR measure, here it also does not help to properly hierarchize the
nodes, as it does seem to occur for levels 4, 5, or 6. In this case, these three levels are the
tipping points.

3https://arxiv.org/archive/gr-qc
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(a) 3D view

(b) Top view

Figure 6: Data analysis of arxiv network for simple majority.
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(a) Minimal influence (b) Simple majority (c) Random influence (d) Maximum influence

Figure 7: Kendall correlation matrices for the arXiv network.

(a) Minimum influence (b) Random influence (c) Maximum influence

Figure 8: Data analysis of arxiv network.

Analogously to Figure 4, Figure 8 shows the top views for the remaining cases: minimum,
random, and maximum influence. Here, from level 12, all the graphics have the same
behavior, in the sense that F0(X) = F1(X), with X being the initial activation. Again, for
the case of minimal influence, as the spread of influence increases to the maximum just by
starting from the isolated nodes (` = 0), then all the levels have the maximum “temperature”
(see Figure 8(a)). Here the case of random influence (Figure 8(b)) also presents a relatively
similar growth to the cases of simple majority and maximum influence. Furthermore, the
simple majority case is also quite close to the maximum influence case (see Figure 8(c)).
The case of minimal influence does not have tipping points, because all the levels have the
same temperature.

6. Conclusions and future work

In this paper we have proposed a family of centrality measures based on a extension
of the Linear Threshold Rank (LTR) [18], a novel measure used to rank influential actors
within a social network. Recall that in a social network represented as an influence graph,
the original LTR measure only considers one depth level of neighbors in the initial activation
set. In our generalization of the LTR measure, the depth level of the neighbors in the initial
activation set is as a key parameter. We have been able to compare the impact of the initial
neighborhood in the ability of the LTR to distinguish influential actors, providing an answer
to the future works raised in previous research [18].
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In previous work, it was shown that the LTR measure can allow to obtain more dis-
tinguishable ranking values than other known influential measures like PageRank, Katz
centrality, or Independent Cascade Rank [18]. The proposed generalization of the LTR
measure was analyzed on two different case studies: a directed retweets network, and an
undirected arXiv bibliometric network. For both case studies, we show that we can obtain
even more distinguishable ranking values by using higher levels of neighbors. For the first
case study (retweets network), tipping points was given for levels 4 and 5, regardless of the
labeling function. For the second case study (arXiv network), tipping points were detected
for almost all the cases in levels 4, 5, and 6.

These tipping points correspond to the levels for which a greater differentiation on the in-
fluence spread process is obtained, and therefore in the value of the LTR measure. Moreover,
the average growth of the influence spread in terms of the level of neighbors fits largely to a
sigmoid function. Tipping points have been studied in depth in this family of functions [43].

In addition, the tipping points seem to have to do with the network centralization. It
is left as future work to extract from this behavior a centralization measure. Note that
centralization measures return a unique value for the whole network, instead of the central-
ity measures, which are local measures that return one value for each actor. This would
allow to expand the studies related to centralization in influence graphs, a subject still little
studied. In particular, it would be interesting to analyze how the Linear Threshold Central-
ization (LTC) measure proposed in [18] can be generalized using this approach. In particular
whether extending the main core by additional levels of neighbors, we can provide a more
sensitive centralization measure to quantify the global influence spread.

Finally, it is very interesting to note the similarities between the increase in the general-
ized LTR measure and the Bass diffusion model. The Bass diffusion model [45, 46], coming
from marketing science, is a differential equation defined to describe the process of how
new products get adopted in a population. The increase in “adopters” (influenced actors)
over time corresponds to a sigmoid function, very similar to those we have obtained in this
study. The Bass diffusion model considers two parameters: a coefficient of innovation, that
represents the external influence or advertising effect, and the coefficient of imitation, which
is the internal influence or word-of-mouth effect. The main difference between both models
is that the Bass diffusion model analyzes the increase of adopters over time, while in this
article we have studied the total increase of adopters in terms of the initial number of active
neighbors. Indeed, in the original idea of the LTR measure [18], in order to activate the
initial neighbors, an external effort to the formal network is required. This effort can be
related with the one considered by the Bass diffusion model’s coefficient of innovation. Thus,
the relationship between both models becomes clearer, insofar as we can consider, within
this initial effort, the time necessary to convince the neighbors to support the initial node.
This relationship between both models could be studied in more detail, as another line of
future work.
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