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Abstract The Kolmogorov Smirnov test (KS) is a well known test used to asses
how a set of observations is significantly different from the probability model spec-
ified under the null hypothesis. The KS test statistic quantifies the distance between
the empirical distribution function and the hypothetical one. The modification in-
troduced in Monti et al. (2017) consists of computing the mentioned distances as
Aitchison distances. In this contribution, we suggest a further modification of the
latter test and investigate, by simulation, the asymptotic distribution of the proposed
test statistic, checking the appropriateness of a Generalized Extreme Value (GEV)
Distribution. The properties of the asymptotic distribution are studied via Monte
Carlo simulations.
Abstract Il test di Kolmogorov Smirnov (KS) é tra i piú noti test di bontá di adat-
tamento di un modello ai dati. Il test KS é una funzione della distanza tra la dis-
tribuzione empirica dei dati e quella ipotizzata sotto l’ipotesi nulla. La modifica del
test proposta in Monti et al. (2017) consiste nell’impiego della distanza di Aitchison
come misura di tale scostamento. In questo contributo proponiamo una leggera mod-
ifica di quest’ultima statistica test, per la quale, attraverso simulazioni Monte Carlo,
studieremo la distribuzione asintotica valutando l’accuratezza di una distribuzione
generalizzata per valori estremi (GEV).
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1 Modified Kolmogorov-Smirnov Test

Consider a random sample, denoted x = (x1, . . . ,xi, . . . ,xn), coming from a contin-
uous variable X . Let the hypothesized CDF be F(x|θ), where θ is the vector of
parameters of F . We formulate the hypothesis H0 : X ∼ F(·|θ), against the alterna-
tive that the random variable does not follow the claimed distribution.

The Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933) consists of rejecting
H0 when the statistic

DKS = sup
x∈R
|Fn(x)−F(x)| ,

exceeds a critical value — which depends on the sample size n and on the sig-
nificance level α — where, for all x, Fn(x) = 1

n{the number of Xi’s which are ≤ x}
is the empirical distribution function (EDF) of the sample. DKS can be computed
calculating first

D+
KS = max

i=1,...,n

{ i
n
−F(X(i))

}
and D−KS = max

i=1,...,n

{
F(X(i))−

(i−1)
n

}
, (1)

where X(i) is the ith order statistic; then the KS test statistic is DKS =max
{

D+
KS,D

−
KS

}
.

The distribution of this statistic is known, even for finite samples (Darling, 1957),
and tables are available.

Here we consider a slight variation of the modified KS test statistic, denoted Da,
which has been defined and discussed previously (Monti et al., 2017). Da consists
in replacing the absolute difference between the sample and the hypothetical CDF,
with the Aitchison distance (Aitchison, 1983) between two part compositions

Z`(i) =
(

i
n+1

,1− i
n+1

)
=

(
i

n+1
,

n+1− i
n+1

)
,

Zu(i) =
(

i−1
n+1

,1− i−1
n+1

)
=

(
i−1
n+1

,
n+2− i

n+1

)
,

Z0(i) =
(
F(x(i)),1−F(x(i))

)
,

that is Da = max
{

D+
a ,D

−
a
}

, where

D+
a = max

i=1,...,n

{
da

(
Z`(i),Z0(i))

)}
, D−a = max

i=1,...,n

{
da

(
Z0(i),Zu(i)

)}
. (2)

Whereas in the previous version we considered the ratios i
n in formula (2), in this

version we adopt the median rank or the Weibull plotting position which are slightly
more accurate than mean ranks.

Da is motivated by the fact that probabilities, like for instance i/(n + 1) and
F(x(i)) as well as (i/(n+ 1),1− i/(n+ 1)) and (F(x(i)),1−F(x(i))), can be con-
sidered as two part compositions, and then the Aitchison distance (Aitchison, 1983;
Aitchison et al., 2001) can be adopted as a natural similarity measure. We recall
that for 2-part compositions, p1 = (p1,1− p1) and p2 = (p2,1− p2), the Aitchison
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square distance between them is

d2
a(p1,p2) =

(
1√
2

ln
p1

1− p1
− 1√

2
ln

p2

1− p2

)2

.

It has been shown that Da, as a test statistic, is invariant under a reversion of the
orientation of the axis of the data (Monti et al., 2017).

Supported by a large number of Monte Carlo simulations, in Section 2 it will be
shown that Da follows reasonably well a Generalized Extreme Value Distribution
(GEVD) for maxima and its location and scale parameters depend approximately
on the sample size.

Recall that a random variable Z has a GEVD if its probability function can be
written as

FZ(z|µ,σ ,ξ ) = exp

[
−
(

1+ξ

( z−µ

σ

))−1/ξ
]
, 1+

ξ

σ
(z−µ)> 0 , (3)

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, and ξ ∈ R is a
shape parameter. The values of the shape parameter ξ define the three families of
asymptotic distribution: type II for ξ > 0, type III for ξ < 0 and Gumbel in the
limiting case ξ = 0 in this parameterization (Fisher and Tippett, 1928; Embrechts
et al., 1997).

2 Simulation results

In order to assess the accuracy of the GEV model to the Da statistic defined in (2),
we have conducted an intensive Monte Carlo (MC) simulation.

For each reference model – Normal, Uniform, Gamma, Beta, Exponential and
lognormal with random parameters, i.e. we consider only the all-parameters-known
case – and for each sample size – 1,000 different sample size values, ranging from 5
to 50,000 – we have simulated 1,000 random samples. For each simulated sample we
have computed the Da statistic in order to test the goodness of fit of the theoretical
distribution. All the computations were carried out using the R statistical software
program (R Core Team, 2017).

For each reference model and for each fixed sample size we have estimated the
parameters of the Gumbel distribution, a subfamily of the GEV for ξ = 0, and of
the GEV model for the 1,000 Da values by maximum likelihood method.

Two linear regression models and three linear regression models of the 1,000
MC estimates of the Gumbel, µ (location) and σ (scale), and GEV parameters, µ

(location), σ (scale) and ξ (shape), were estimated as a function of the log-size
of the sample. The regression outputs are summarized in Table 1, which reports
estimates, standards errors and p-values.
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Table 1 Regression output for the different linear regression models.

Reference distribution: Normal
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1772 (0.0088; 0.0000) 0.7975 (0.0009; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7206 (0.0054; 0.0000) -0.0009 (0.0006; 0.0911)

GEV
µ = β0 +β1 ln(n)+ ε 1.1817 (0.0092; 0.0000) 0.7973 (0.0009; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7226 (0.0057; 0.0000) -0.0011 (0.0006; 0.0623)
ξ = β0 +β1 ln(n)+ ε -0.0117 (0.0066; 0.076) 0.0008 (0.0007; 0.235)

Reference distribution: Uniform
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1782 (0.0095; 0.0000) 0.7974 (0.001; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7184 (0.0054; 0.0000) -0.0008 (0.0006; 0.165)

GEV
µ = β0 +β1 ln(n)+ ε 1.1851 (0.01; 0.0000) 0.7968 (0.001; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7219 (0.006; 0.0000) -0.0011 (0.0006; 0.058)
ξ = β0 +β1 ln(n)+ ε -0.0174 (0.0066; 0.0089) 0.0015 (0.0007; 0.028)

Reference distribution: Gamma
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1798 (0.0091; 0.0000) 0.7971 (0.001; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7205 (0.0053; 0.0000) -0.001 (0.0005; 0.0656)

GEV
µ = β0 +β1 ln(n)+ ε 1.1858 (0.0094; 0.0000) 0.7966 (0.001; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7233 (0.0055; 0.0000) -0.0012 (0.0006; 0.0275)
ξ = β0 +β1 ln(n)+ ε -0.0155 (0.0067; 0.0206) 0.0013 (0.0007; 0.0639)

Reference distribution: Beta
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1366 (0.0126; 0.0000) 0.8018 (0.0013; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.718 (0.0064; 0.0000) -0.0007 (0.0007; 0.292)

GEV
µ = β0 +β1 ln(n)+ ε 1.1437 (0.0132; 0.0000) 0.8013 (0.0014; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7217 (0.0067; 0.0000) -0.001 (0.0007; 0.148)
ξ = β0 +β1 ln(n)+ ε -0.0183 (0.0082; 0.0262) 0.0014 (0.0009; 0.0982)

Reference distribution: Exponential
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1704 (0.0093; 0.0000) 0.7982 (0.0009; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7112 (0.0055; 0.0000) -0.0001 (0.0006; 0.861)

GEV
µ = β0 +β1 ln(n)+ ε 1.1706 (0.0097; 0.0000) 0.7983 (0.001; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.711 (0.0058; 0.0000) -0.0001 (0.0006; 0.919)
ξ = β0 +β1 ln(n)+ ε -0.0003 (0.0071; 0.964) -0.0003 (0.0007; 0.726)

Reference distribution: lognormal
fitted distribution linear model Intercept (SE, pvalue) Slope (SE, p-value)

Gumbel µ = β0 +β1 ln(n)+ ε 1.1459 (0.0134; 0.0000) 0.8007 (0.0014; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7106 (0.007; 0.0000) -0.00002 (0.0007; 0.975)

GEV
µ = β0 +β1 ln(n)+ ε 1.1507 (0.0141; 0.0000) 0.8003 (0.0014; 0.0000)
σ = β0 +β1 ln(n)+ ε 0.7128 (0.0074; 0.0000) -0.0002 (0.0008; 0.809)
ξ = β0 +β1 ln(n)+ ε -0.0121 (0.0088; 0.169) 0.0008 (0.0009; 0.368)

Likelihood ratio tests have been used to compare the two nested models for all
simulation settings, and the proportions of simulated p-values less than 0.05 are
reported in Table 2.

Looking at the simulations results we can deduce that the Da statistic follows a
Gumbel distribution, whose location parameter µ is related to the logarithm of the
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Reference Model #p-values < 0.05/1000
Normal 0.046
Uniform 0.048
Gamma 0.049
Beta 0.052
Exp 0.067
lognormal 0.048

Table 2 Proportions of simulated p-values less than 0.05 for comparisons of Gumbel and GEV
models via asymptotic likelihood ratio tests for each reference distribution.

sample size by a linear relationship. Furthermore, the estimated parameter values
are stable with rather small variations among models.

To complete the work, a further Monte Carlo investigation was made on the
size (type I error) and on the power of the test. 2,000 samples of fixed size
n = 10, 50, 100, 200, 500, 1000, 1500, 2000, 5000, 10000, were drawn from each
of several distributions. Figure 1 reports six different plots. In the first column
the probability of rejecting the null hypothesis using the Da statistic considering
three underlying distributions are reported. The second column reports the prob-
ability of rejecting hypothesis H0 : X ∼ N(1,4) against H1 : X ∼ T (2) using the
Da statistic (case (a)); H0 : X ∼ Ga(2,3) against H1 : X ∼ Exp(2) (case (b)) and
H0 : X ∼Uni f (0,1) against H1 : X ∼ Exp(2) (case (c)).
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Fig. 1 MC results for probability of type I error (first column) and power of the test (second
column). The blu lines represent a smoothing spline fitted to the data.
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