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ABSTRACT
This work states a structural health monitoring strategy for detection and classification of structural changes. The
proposed approach is based on the so-called t-distributed stochastic neighbor embedding (t-SNE), a non-linear
technique that is able to represent the local structure of high-dimensional data that are collected from multi-sensor
signals in a simple scatter plot. All data sets were pre-processed using principal component analysis (PCA) to
reduce their dimensionality before t-SNE was performed. More precisely, when a structure has to be diagnosed,
the collected data from the current structure is projected into the t-SNE scatter plot. Subsequently, a sample of the
projected data is compared with the center of the clusters of the pre-recorded damages. The current structure to
be diagnosed is then associated with a damage based on the distances of the data to the centroids: the structure is
classified based on the smallest point-centroid distance.
The methodology is evaluated using experimental data from an aluminum plate instrumented with piezoelectric
transducers (PZTs). Results are presented in time domain, and they reveal the strong performance of t-SNE, with
a percentage of correct decisions close to 100%.
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1. INTRODUCTION

Structural health monitoring (SHM) is an essential process for engineering structures because it verifies the co-
rrect functioning of the structure and determines whether it needs some kind of maintenance. Therefore, in SHM
systems, detection and classification of structural changes are very important in order to know the current state
of the structure for safety and to reduce maintenance costs. SHM has been applied in countless structures such as
buildings [1], wind turbines [2, 3] and aircraft [4], among others, and a review of the state-of-the-art revealed that
SHM is a very active research area.
In order to obtain information about the health state of the structure, data are collected from multi-sensor signals.
The information extracted from multi-sensor signals creates a high-dimensional dataset that contains a large vo-
lume of data due to continuous measurements of the monitoring system. Several methods have been proposed for
management high-dimensional, big and complex data. Among these methods, visualization techniques stand out
as offer a way to handle this kind of data by means of an intuitive interface that allows people to easily detect
natural clusters, identify hidden patterns, etc. [5]. And among visualization techniques, one of the most used is
dimensionality reduction. Dimensionality reduction is the process of reducing the dimension of the original data,
by keeping basically the same intrinsic information [6].
In the literature, various dimensionality reduction methods are proposed: (i) linear methods, that focus on keeping
dissimilar original data points far apart in the low-dimensional space, such as principal component analysis (PCA)
[7, 8, 9, 10, 11] and linear discriminant analysis (LDA) [10, 11]; and (ii) non-linear methods, that focus on keeping
similar original data points close together in the low-dimensional space, such as isometric mapping (ISOMAP)
[6, 9, 10], kernel PCA [8, 10] and t-distributed stochastic neighbor embedding (t-SNE) [12], among others.
This work proposes a SHM strategy for detection and classification of structural changes based on t-SNE, a tech-
nique developed by Laurens van der Maaten and Geoffrey Hinton [12], which is able to represent the local structure
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of original high-dimensional data, obtained by the different sensors, in a low-dimensional space (for example a sim-
ple scatter plot). In a nutshell, in the low-dimensional space, each original high-dimensional point is represented
by a low-dimensional point in such a way that nearby low-dimensional points correspond to similar original high-
dimensional points, and distant low-dimensional points correspond to dissimilar original high-dimensional points.
That is, this technique finds out patterns by identifying clusters based on similarity of data points. t-SNE has been
applied to many real data (in the research area of stem cells [13], in computational linguistics [14], in astrophysics
[15], in human genetics [16], etc.), but it should be noted that this is the first time that it has been applied in the
field of SHM.
In this study, all data sets are pre-processed using PCA to reduce their dimensionality before t-SNE is performed.
More precisely, when a structure has to be diagnosed, the collected data from the current structure is projected into
the t-SNE scatter plot. Subsequently, a sample of the projected data is compared with the center of the clusters of
the pre-recorded damages. The current structure to be diagnosed is then associated with a damage based on the
distances of the data to the centroids: the structure is classified based on the smallest point-centroid distance.
The proposed methodology is evaluated using experimental data from an aluminum plate instrumented with piezo-
electric transducers (PZTs) attached to its surface. Results are presented in time domain, and they show the high
classification accuracy and the strong performance of t-SNE, with a percentage of correct decisions close to 100%.
We must highlight that the environmental conditions were not considered, leaving it for future researches.
The contribution of this paper is that t-SNE is extended and adapted for the first time to the field of structural health
monitoring, in detection and classification of structural changes, thanks to the developed methodology.
The structure of the paper is as follows: in Section 2, a brief description of the experimental setup is presented.
Section 3 describes the damage classification strategy that is applied to classify the damage in the structure. In
Section 4, the results are shown. Section 5, conclusions, closes the paper.

2. DESCRIPTION OF THE EXPERIMENTAL SETUP

2.1. Structure
In this work, an aluminum plate with an area of 40 cm2 and with four piezoelectric transducers is consider to
demonstrate the reliability of the damage detection and classification methodology introduced in Section 3. The
location of the PZTs and of the three damages that are added in the structure are shown in Figure 1.

Figure 1 – Aluminum plate instrumented with four piezoelectric sensors. Source: Vitola et al. (2017a) [17].

2.2. Scenarios
The experimental setup includes three different scenarios to determine the behavior of the methodology:
• Scenario 1. The signals are acquired using a short cable (0.5 m) from the digitizer to the sensors, and these

signals are filtered with a Golay filter algorithm after adding white Gaussian noise.
• Scenario 2. The signals are acquired using a long cable (2.5 m) to sensors, and signals are filtered with the

Golay algorithm.



• Scenario 3. The signals are acquired using a short cable (0.5 m) from the digitizer to the sensors, and these
signals are filtered without a Golay filter algorithm.

In this way, we can observe the effect of the attenuation with short and long cables, the effect of adding white
Gaussian noise to the measured signals and the effect of the use of a Golay filter in the detection and classification
process.

2.3. Sensors
A piezoelectric sensor network is used to excite the aluminum plate and collect the measured response. This sensor
network works in several actuation phases. In each actuation phase, a PZT is used as actuator, and the rest of the
PZTs are used as sensors. These data are organized in a matrix per actuator.

2.4. Damages
A mass is added to simulate the damage in the aluminum plate. This mass is an attached magnet in both sides of
the plate to change its properties and produce changes in the propagated wave. The location of the mass defines
each damage or structural state: Damage 1 (D1), Damage 2 (D2), Damage 3 (D3) and no damage (D0, healthy
plate). Figure 2 shows these four structural states.

Figure 2 – Aluminum plate with four PZTs and with four different damages. Source: Vitola et al. (2017a) [17].

3. DAMAGE CLASSIFICATION STRATEGY

This work proposes a damage classification strategy that is based on the technique t-distributed stochastic neighbor
embedding. This strategy will be described in the following subsections in more detail.
In a few words, all data sets —the data collected from the pristine structure and the new data coming from the
structure to be diagnosed in an unknown state— are pre-processed using mean-centered group scaling (MCGS)
and principal component analysis. Later, t-SNE is performed. Finally, confusion matrix is obtained from the dis-
tances of the data to the centroids associated with each structural state. More precisely, when a structure has to be
diagnosed, the collected data from the current structure is projected into the t-SNE scatter plot. Subsequently, a
sample of the projected data is compared with the center of the clusters of the pre-recorded damages. The current
structure to be diagnosed is then associated with a damage based on the minimum distance to a cluster.



3.1. Data collection
The strategy uses data from an aluminum plate with four PZTs. Each PZT can operate as actuator —exciting the
plate with a excitation signal— or as sensor —measuring signals. The number of PZTs defines the number of
actuation phases, and each actuation phase defines a particular PZT as actuator and the rest of the PZTs as sensors:

Table 1 – Actuation phases.

Actuation phase Actuator PZT Sensor PZTs
1 1 2−3−4
2 2 1−3−4
3 3 1−2−4
4 4 1−2−3

Four data files are obtained from each scenario, one for each actuation phase. Each file is organized as follows: 25
experiments are performed for each structural state. Consequently, each file consists of 100 rows (25 experiments
× 4 structural states). That is, the first 25 rows are captured without damage, the next 25 with Damage 1, the
next 25 with Damage 2 and, finally, the last 25 with Damage 3. Regarding the columns, 60000 measurements are
performed for each PZT that works as sensor. Therefore, each file contains 180000 columns (60000 measurements
× 3 sensors). In matrix notation, the data are represented as follows:

Z(i) =


z(i)1,1 z(i)1,2 · · · z(i)1,180000

z(i)2,1 z(i)2,2 · · · z(i)2,180000
...

...
. . .

...
z(i)100,1 z(i)100,2 · · · z(i)100,180000

 ∈M100×180000(R), (1)

where i = 1, . . . ,4 is the i−th actuation phase.
Finally, the data from all the actuation phases are stored in a matrix Z:

Z =
(

Z(1), . . . ,Z(4)
)
∈M100×(180000·4)(R) = M100×720000(R), (2)

this allows to analyze the information of all the actuation phases at one time. Figure 3 shows schematically the
organization of the data captured in each scenario.

Figure 3 – Data organization per each scenario. Source: modified from Vitola et al. (2017b) [18].

3.2. Baseline data and test data
To obtain the baseline data and test data of this experimental study, a 5-fold cross validation is performed with
matrix Z, see Equation (2), to estimate the overall accuracy and avoid overfitting. In each iteration, the baseline



data, matrix X, are obtained with 5 consecutive rows of each structural state of Z, and with the rest of the rows of
each state, 20, the test data, matrix Y, is formed. For more details see Table 2.

Table 2 – Baseline data and test data obtained with 5-fold Cross Validation.

Rows of each structural Rows of each structural
Iteration state of Z that state of Z that

form baseline data, X form test data, Y
1 1:5 6:25
2 6:10 1:5 y 11:25
3 11:15 1:10 y 16:25
4 16:20 1:15 y 21:25
5 21:25 1:20

Therefore, from the matrix Z, defined in Equation (2), five matrices X ∈M20×720000(R) and five matrices Y ∈
M80×720000(R) are obtained, whose arrangement of their rows is:

Table 3 – Rows of matrices X and Y.

Rows Structural
X Y state
1 :5 1:20 D0
6:10 21:40 D1

11:15 41:60 D2
16:20 61:80 D3

In matrix notation, the baseline data are represented as follows:

X =



x1,1
1,1 · · · x1,60000

1,1 x2,1
1,1 · · · x2,60000

1,1 · · · x12,1
1,1 · · · x12,60000

1,1
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1,1

5,1 · · · x1,60000
5,1 x2,1

5,1 · · · x2,60000
5,1 · · · x12,1

5,1 · · · x12,60000
5,1

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x1,1
1,4 · · · x1,60000

1,4 x2,1
1,4 · · · x2,60000

1,4 · · · x12,1
1,4 · · · x12,60000

1,4
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1,1

5,4 · · · x1,60000
5,4 x2,1

5,4 · · · x2,60000
5,4 · · · x12,1

5,4 · · · x12,60000
5,4


, (3)

where each element of that matrix

xk, j
i,l , k = 1, . . . ,12, j = 1, . . . ,60000, i = 1, . . . ,5, l = 1, . . . ,4, (4)

comes from the j−th measurement of the k−th sensor of the l−th structural state in the i−th experiment. Summa-
rizing, there are 12 sensors, 60000 measurements per sensor, 4 structural states and 5 rows associated with each
structural state.
In matrix notation, the test data are represented as follows:

Y =



y1,1
1,1 · · · y1,60000

1,1 y2,1
1,1 · · · y2,60000

1,1 · · · y12,1
1,1 · · · y12,60000

1,1
...

. . .
...

...
. . .

...
. . .

...
. . .

...
y1,1

20,1 · · · y1,60000
20,1 y2,1

20,1 · · · y2,60000
20,1 · · · y12,1

20,1 · · · y12,60000
20,1

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y1,1
1,4 · · · y1,60000

1,4 y2,1
1,4 · · · y2,60000

1,4 · · · y12,1
1,4 · · · y12,60000

1,4
...

. . .
...

...
. . .

...
. . .

...
. . .

...
y1,1

20,4 · · · y1,60000
20,4 y2,1

20,4 · · · y2,60000
20,4 · · · y12,1

20,4 · · · y12,60000
20,4


, (5)



where each element of that matrix

yk, j
i,l , k = 1, . . . ,12, j = 1, . . . ,60000, i = 1, . . . ,20, l = 1, . . . ,4, (6)

comes from the j−th measurement of the k−th sensor of the l−th “unknown” structural state to be diagnosed in
the i−th experiment.

3.3. Mean-centered group scaling (MCGS)
The data in matrix X are normalized by mean-centered group scaling method [19]. The main reasons to normalize
the raw data are two: (i) data come from several sensors and could have different scales; and (ii) to simplify the
computations in the PCA decomposition. MCGS is based on the mean of all experiments of the sensor at the same
column and the standard deviation of all experiments of the sensor. More accurately, it is defined:

µ
k, j =

1
n

4

∑
l=1

5

∑
i=1

xk, j
i,l , n = 5 rows×4 structural states = 20, k = 1, . . . ,12, j = 1, . . . ,60000, (7)

σ
k =

√√√√ 1
n ·60000

4

∑
l=1

5

∑
i=1

60000

∑
j=1

(xk, j
i,l −µk)2, k = 1, . . . ,12, (8)

µ
k =

1
n ·60000

4

∑
l=1

5

∑
i=1

60000

∑
j=1

xk, j
i,l , k = 1, . . . ,12, (9)

where µk, j is the arithmetic mean of data that are at the same column, that is the arithmetic mean of the n expe-
riments of k−th sensor in j−th measure; and σ k and µk are the standard deviation and the arithmetic mean of all
experiments of sensor k, respectively. Then, the elements xk, j

i,l of matrix X are normalized to define a new matrix

X̆ = XMCGS = (x̆k, j
i,l ) as:

x̆k, j
i,l :=

xk, j
i,l −µk, j

σ k , k = 1, . . . ,12, j = 1, . . . ,60000, i = 1, . . . ,5, l = 1, . . . ,4, (10)

One of the properties of the normalized matrix X̆ is that each column has an arithmetic mean of zero and that all
experiments of sensor k have a standard deviation of one.
Then, the test data are processed in an identical manner as the baseline data. This means that these data are
normalized by MCGS, but respect to data X:

y̆k, j
i,l :=

yk, j
i,l −µk, j

σ k , k = 1, . . . ,12, j = 1, . . . ,60000, i = 1, . . . ,20, l = 1, . . . ,4, (11)

obtaining the matrix Y̆, and where µk, j and σ k are defined in Equations (7) and (8), respectively.

3.4. Principal component analysis (PCA)
In the next step, the normalized baseline data, X̆, are pre-processed using PCA [20] to reduce its dimensionality
before performing t-SNE. The main objective of PCA is to reduce the calculation time in t-SNE. By using PCA
with X̆, PCA model is obtained, that is, the square matrix P ∈M720000×720000(R) used to project the data stored in
X̆ and Y̆ with the corresponding matrix product:

T1 = X̆ ·P ∈M20×720000(R), (12)

T2 = Y̆ ·P ∈M80×720000(R). (13)

3.5. Projected data fusion
The projected data are assembled, that is:

T =

(
T1
T2

)
∈M(20+80)×720000(R), (14)

so T has 100 points in a space of dimension R720000. In this case, a single row of T2 is added each time, i.e., T has
20+1 = 21 points. This new row introduced represents the new datum from the structure to be diagnosed, which
is in an “unknown” state. This means that we try to classify the structural state of a system one at a time.



3.6. t-Distributed stochastic neighbor embedding (t-SNE)
t-SNE is an improved variation of the technique so-called stochastic neighbor embedding (SNE) [9]: t-SNE is
much easier to optimize and produces better visualizations, since it reduces the tendency to crowd points in the
center of the distribution (the so-called crowding problem1). These improvements are due to the fact that the cost
function used by t-SNE differs from the one used by SNE in two aspects: (i) t-SNE uses a symmetrized version of
the SNE cost function with simpler gradients; and (ii) t-SNE uses a t-Student distribution, instead of a Gaussian,
to compute the similarity between two points in the low-dimensional space.
Following with the proposed strategy, t-SNE is executed with the matrix T, obtaining a succession of 21 points in
the plane R2. The result of t-SNE in the final iteration is such that:

S =

(
s1

1,1 · · · s1
5,1 · · · s4

1,1 · · · s4
5,1 s1,1

s1
1,2 · · · s1

5,2 · · · s4
1,2 · · · s4

5,2 s1,2

)ᵀ

, (15)

where the element sl
i, j corresponds to the j−th measurement of l−th structural state of the i−th experiment. The

last element of each row correspond to the “unknown” structural state to be diagnosed. A brief description of key
mathematical and statistical concepts of t-SNE is introduced below.

3.6.1. t-SNE: brief description
Given a collection of high-dimensional data points X = {x1, ...,xn} ⊂ RD, the objective is to find a collection
of low-dimensional map points Y = {y1, ...,yn} ⊂ Rd (typical values for d are 2 or 3), where d � D, such that
the lower dimension preserves, as much as possible, the local structure of the original data X . That is, if two
data points are neighbors, it wants the two corresponding map points also to be neighbors. To this end, t-SNE
first converts the high-dimensional Euclidean distances between data points xi and x j, ‖xi− x j‖, into conditional
probabilities by centering a Gaussian distribution at xi, computing the density of x j under this Gaussian distribution,
and renormalizing:

p j|i =
exp(−‖xi− x j‖2/2σ2

i )

∑k 6=i exp(−‖xi− xk‖2/2σ2
i )

, ∀i∀ j : i 6= j, (16)

where ‖xi− x j‖2/2σ2
i (scaled squared Euclidean distance or “affinity”) is the dissimilarity between data points xi

and x j. The variance of the Gaussian distribution, σ2
i , is calculated automatically (for more details, see the original

t-SNE paper [12]). Since only pairwise similarities between data points are of interest, t-SNE establishes pi|i = 0.
This conditional probability measures the similarity of x j to xi, i.e., the probability that xi would pick x j as its
neighbor. If two data points are near, p j|i will be high. Whereas if two data points are separated, p j|i will be low.
Then, by symmetrizing two conditional probabilities, t-SNE defines the joint probability, that is a symmetrized
version of the conditional similarity because it has the property that pi j = p ji for ∀i, j:

pi j =
p j|i + pi| j

2n
, pii = 0. (17)

The joint probability also measures the pairwise similarity between data points xi and x j. Thus it is obtained
the similarity matrix P for high-dimensional data points. In practice, the use of conditional or joint probabilities
produces similar results, but it is less computationally expensive the optimization of the joint model [12]. The
objective of t-SNE is to model each data point xi by a map point yi such that the pairwise similarities pi j are
modeled as well as possible in the low-dimensional space.
Once obtained the similarity matrix for the data points X , let’s also define the similarity matrix Q for the map
points Y . It is the same idea as for the data points, but with a renormalized t-Student distribution with one degree
of freedom and σ2

i = 1
2 for all i, instead of a Gaussian distribution:

qi j =
(1+‖yi− y j‖2)−1

∑k ∑l 6=k(1+‖yk− yl‖2)−1 , ∀i∀ j : i 6= j, qii = 0, qi j = q ji ∀i, j, (18)

i.e., qi j is the low-dimensional counterpart of pi j and it represents the local structure of the data points in the
low-dimensional space. The heavy tails of the t-Student distribution allow dissimilar data points xi and x j to be
modeled by map points yi and y j that are separated: the probability of being neighbor falls off more slowly and
therefore there is less need to move some points away and crowd remaining points in the center of the distribution
(crowding problem). In other words, t-SNE allows data points that are only slightly similar to be visualized more

1SNE suffers from a crowding problem that is the result of the exponential volume difference between high and low-dimensional spaces
[12].



separated in the low-dimensional space. But the choice of the t-Student distribution for the map points goes further
since it alleviates both the crowding problem and the optimization problems of SNE [12].
Whereas the similarity matrix P is fixed, the similarity matrix Q depends on the map points, and what is wanted is
that these two similarity matrices are closer as possible. This is achieved by minimizing a cost function which is
the Kullback-Leibler (KL) divergence between both joint distributions [9, 10, 12]:

C = KL(P‖Q) = ∑
i

∑
j 6=i

pi j log
pi j

qi j
. (19)

The KL divergence between the joint probability distributions P and Q measures the distance between the two
similarity matrices, and therefore minimizing the KL divergence reduces the error between these matrices. In other
words, the map points of similar data points need to be close together and the map points of dissimilar data points
need to be far in order to minimize the cost function C. Note that (i) KL divergence is nonnegative and 0 iff the
distributions are equal —the similarity between the data points xi and x j is correctly modeled by the map points yi
and y j—, and (ii) C is generally non-convex and different runs might produce different results. To minimize C, it
is perform a gradient descent2 method:

∂C
∂yi

= 4 ∑
j 6=i

(pi j−qi j)(yi− y j)(1+‖yi− y j‖2)−1. (20)

This gradient expresses the sum of all forces applied to map point yi, i.e., the sum of forces pulling map point
yi toward all other map points y j or pushing it away. And the locations of the map points Y are determined by
minimizing C.
Then yi is updated by the next equation:

y(t)i = y(t−1)
i +η

∂C
∂yi

+α(t)(y(t−1)
i − y(t−2)

i ), (21)

where y(t)i is the solution at iteration t, η is the learning rate, and α(t) is the momentum term at iteration t. The
learning rate determines the jump size between each iteration during the optimization of the cost function C. In
Equation (21), a relatively large momentum term is added to accelerate the optimization and to avoid poor local
minimums.
t-SNE Summary:

1. Calculate the similarity matrix for the data points, pi j.
2. Calculate the similarity matrix for the map points, qi j.
3. Define the cost function, C = KL(P‖Q).
4. Minimize C using gradient descent algorithm.
5. Update yi using Equation (21).

3.7. Confusion matrix
The confusion matrices are calculated as of the distances of the points (s1,1,s1,2)⊂ R2, to the centroids associated
with each structural state. The centroid associated with the l−th structural state, l = 1, . . . ,4, is the point of the
plane such that

(cl
x,c

l
y) =

(
1
5

5

∑
i=1

sl
i,1,

1
5

5

∑
i=1

sl
i,2

)
. (22)

To classify this point of the plane, the smallest point-centroid distance is used: the distance of this point (s1,1,s1,2)⊂
R2 is calculated up to each of the centroids defined in Equation (22) and it is classified as structural state m ∈ N if
m is such that √

(s1,1− cm
x )

2 +(s1,2− cm
y )

2 = min
l=1,...,4

√
(s1,1− cl

x)
2 +(s1,2− cl

y)
2. (23)

4. RESULTS

Tables 4–6 present the classification results per scenario, in the time domain. Remember that of each damage or
structural state there are 100 cases (20 rows of matrix Y× 5 iterations of 5-fold Cross Validation, see Tables 2

2Gradient descent: iterative process to find the minimal of a function



and 3). The results with maximum accuracy in the classification are obtained in scenarios 1 and 3: all cases have
been correctly classified. In scenario 2, the percentage of correct decisions fluctuates between 86% and 91%: it
can be observed that the use of a long cable (2.5 m) from the digitizer to the sensors affects in the detection and
classification method. So that, the results show the high classification accuracy and the solid performance of t-
SNE algorithm. It should be noted that the environmental conditions were not considered, leaving them for future
researches.

Table 4 – Confusion matrix, scenario 1, time domain.

True
Predicted

D0 D1 D2 D3

D0 100 0 0 0
D1 0 100 0 0
D2 0 0 100 0
D3 0 0 0 100

Table 5 – Confusion matrix, scenario 2, time domain.

True
Predicted

D0 D1 D2 D3

D0 86 1 7 6
D1 8 88 4 0
D2 1 8 89 2
D3 3 4 2 91

Table 6 – Confusion matrix, scenario 3, time domain.

True
Predicted

D0 D1 D2 D3

D0 100 0 0 0
D1 0 100 0 0
D2 0 0 100 0
D3 0 0 0 100

5. CONCLUSIONS

In this work, a methodology to detect and classify structural changes has been proposed. Results from an aluminum
plate have shown that this method is very satisfactory, given its high classification accuracy, since the number of
correct decisions fluctuates between 86% and 100%. In addition, it is worth remarking that the t-SNE technique
has been extended and adapted for the first time to the field of structural health monitoring, in the detection and
classification of structural changes, thanks to the developed methodology.
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