This is the peer reviewed version of the following article: “Arias, Francisco J., De Las Heras, Salvador (2019) An estimate for thermal osmotic heat storage using precipitation of common salts. International Journal of Energy Research, 43: 8925-8928.” which has been published in final form at [doi: 10.1002/er.4824]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
An Estimate for Thermal Osmotic Heat Storage
Using Precipitation of Common Salts

Francisco J. Arias* and Salvador De Las Heras
Department of Fluid Mechanics, University of Catalonia,
ESEIAAT C/ Colom 11, 08222 Barcelona, Spain

In this brief note, a first assessment on the possibilities for thermal osmotic storage by harnessing
the thermal dependence of the solubility of common salts as an alternative method to sensible heat
storage is discussed. In a recent study it was found that such a dependence could be used to run
a heat powered cycle (Osmotic Heat Engine). The question raised then, is whether that approach
could be suitable for thermal energy storage as well. The attractiveness of such a possibility lies
in the capability to store energy for an indefinite period of time without using expensive isolation
systems if one considers that osmotic energy only is released when both streams with different
salinities are brought together. Utilizing a simplified model, a comparative study with sensible
heat storage was performed. It is shown that thermal osmotic storage via thermal precipitation of
common salts could be an attractive option when long thermal storage (days) and compactness is
desired.

Keywords. Sensible heat storage, Osmotic energy.

1. Introduction

The object of this note was a first scoping study to assess the attractiveness of harnessing the thermal
dependence of the solubility featured for common salts for thermal osmotic storage in comparison with traditional sensible heat storage. Whereas salinity gradient based energy storage has been researched in the past in several aspects, [1], nevertheless, as far as the authors know, engineered osmosis has been proposed to store mostly electrical energy by separating brine and fresh water streams using modified reverse osmosis, and the only osmotic process driven by heat input is related with osmotic heat engines (OHEs) in which heat is applied to the OHE to re-concentrate the draw solution by vaporizing a portion of the water into steam, which would then be condensed to form the deionized working fluid, [2]. Another alternatives involved the chemical precipitation of solutes followed by their re-dissolution or removal of a volatile organic solute Loeb,[4]. More recent, [5], it was proposed that because the thermal dependence of the solubility of aqueous solutions, it could be possible to harness this feature to convert thermal energy into osmotic energy by separating a given solution into two different streams with different salinities using a process which is pictorially sketched in Fig. 1. Nevertheless, in that early work, the technique was intended to run powered heat cycles (osmotic heat engines), and the question of whether the method could be attractive for thermal storage in comparison with traditional approach (namely sensible heat) remained as an open question.

To begin with, let us consider an upper limit in the amount of energy which could be stored by the thermal precipitation of common salts in comparison with sensible heat. This amount of energy will depend, of course, on the specific thermal dependence of the solubility of the given solution which not only may differ greatly between salts but also in the working range of temperatures allowable (see Fig. 2). Thus, for example, the extractable energy from Na₂SO₄ could be perhaps around 1 kWh/m³, [5] and limited to a range of temperature around 300 K when the strong thermal dependence of the solubility disappear. On the other hand, another common salt as KNO₃ features a stronger thermal dependence of the solubility with an extractable energy up to 5 kWh/m³ or thereabouts and with a broad range of temperature.

As regard sensible heat, it is easy to see that sensible heat is able to store much more large amount of energy if one considers that, for example, water with a specific heat capacity \(c_p \approx 1.16 \text{ kWh/(m}^3\text{K)} \) and with a temperature difference \(\Delta T \) of, say, 20 K, will translate into a higher capability to store energy.

Nevertheless, the comparison is not so clear when besides the amount of energy stored it is also taken into consideration the total storing time as well as the compactness of the system as we will see below.

In order to perform a comparative study in which not only the amount of energy but also the storing time and compactness are considered, let us consider a cylindrical canister as depicted in Fig. 3. In this system, water (which is conspicuous by its high specific heat capacity) is stored at an initial temperature,
FIG. 1. Comparison between thermal sensible and thermal osmotic heat storage. Although the stored energy by sensible heat could be higher nevertheless the capability for storage is limited because the unavoidable losses with the environment. Contrariwise, osmotic energy can be stored indefinitely and only released when deliberately the two solutions are mixed.

FIG. 2. Solubility vs. temperature for a variety of salts.

\[T(t) - T_o = T_i - T_o e^{-\frac{t}{\tau}} \]

where \(\tau \) is the so called time constant given by

\[\tau = \frac{\rho V c_p}{A h} \]

where \(\rho \) and \(c_p \) are the density and heat capacity of the material, \(V \) and \(A \) are the volume and the cross-sectional surface area, respectively; and \(h \) the heat transfer coefficient. Assuming that the only mechanism for heat transfer between the water and the environment is by thermal conduction, the heat transfer coefficient may be approximated as

\[\frac{1}{h} \approx \frac{r_2}{\kappa} \ln \frac{r_2}{r_1} \]

where \(\kappa \) is the thermal conductivity of the air, and \(r_1 \) and \(r_2 \) are the inner and outer radius, respectively. Under our conservative assumption of neglecting the axial heat transfer, we have that \(\frac{V}{A} \approx \frac{r_2^2}{2} \) and then by inserting Eq.(3) into Eq.(2) one obtains

\[\tau = \frac{\rho c_p r_1^2}{2 \kappa} \left[r_2 \ln \frac{r_2}{r_1} \right] \]

The sensible energy stored per unit of volume \(E_v(t) \) at a given time \(t \) is calculated from Eq.(1) and yields
FIG. 3. Physical model for the transient thermal conduction between the water and the environment.

\[E_v(t) = (c_p \rho \Delta T) \cdot e^{-t/\tau} \]

(5)

where \(\Delta T = T_i - T_o \) is the initial difference of temperature. Finally, by rearranging terms, we find the storing time as function of the final energy as

\[t = -\tau \ln \left[\frac{E_v \rho c_p \Delta T}{E_v \rho c_p \Delta T} \right] \]

(6)

Therefore, thermal osmotic storage could be an attractive option when the required storable time \(t \) is so large that the sensible heat drops below the magnitude of the energy able to be stored indefinitely by osmosis. If one takes this threshold of osmotic energy \(E_v \approx 5 \text{kWh}/(\text{m}^3) \) for a salt featuring a strong thermal dependence with solubility as is the case for KNO\(_3\), we obtain that for a time larger than

\[t \approx -\tau \ln \left[\frac{5 \text{kWh}/\text{m}^3}{\rho c_p \Delta T} \right] \]

(7)

osmotic thermal storage starts to be an attractive option.

Discussion

In order to obtain some idea of the shape of the curves predicted by Eq. (7), we assume some typical values of the parameters using water as thermal fluid and a air as isolator: for water \(c_p = 1.16 \text{ Wh}/(\text{kg K}) \); and \(\rho = 10^3 \text{ kg/m}^3 \); for the air \(\kappa = 0.025 \text{ W}/(\text{m K}) \). The resulting curves are shown in Fig. 4 and Fig. 5 for a canister with radius \(r_1 = 5 \text{ cm} \) and \(r_1 = 2 \text{ cm} \) as a function of the ratio between the radius of the isolator \(r_2 \) and the canister \(r_1 \) (see Fig. 3), i.e., the compactness of the system and with an initial \(\Delta T = 80 \text{ K} \). In those Figures the curve is given the time for a given compactness where the sensible heat in the canister drops just at the limit given by osmotic storing because the heat losses with the environment. For example, referring to Fig. 4, for a canister with 5 cm and a ratio \(\frac{r_2}{r_1} = 1.15 \), i.e., with

FIG. 4. Thermal storing time as a function of the ratio between the isolation chamber \(r_2 \) and the canister \(r_1 \) as depicted in Fig. 2, and for a canister with radius \(r_1 = 5 \text{ cm} \).

FIG. 5. Thermal storing time as a function of the ratio between the isolation chamber \(r_2 \) and the canister \(r_1 \) as depicted in Fig. 2, and for a canister with radius \(r_1 = 2 \text{ cm} \).
an air-gap $r_2 - r_1 = 6.0 \text{ cm}$, the canister will be only able to store energy higher than osmotic up to $\approx 4 \text{ days}$ or thereabouts, if one wants more time it will necessary using a larger isolator. The compactness can be a limiting factor not only because the availability of space but also in terms of the cost of the overall system.

I. SUMMARY OF RESULTS AND CONCLUSIONS

In this note, a scoping study was performed in order to assess the attractiveness of osmotic thermal storage by harnessing the thermal dependence of common salts in comparison with sensible heat storage. Utilizing a simplified geometrical and transient thermal conductive model it was analyzed under what conditions the approach could be interesting. It is shown that thermal osmotic storage via thermal precipitation of common salts could be an attractive option when long thermal storage (days) and compactness is desired. The interesting conclusions derived from this preliminary work are as follows:

(a) Sensible heat could store a larger amount of thermal energy per volume than that stored by osmosis.

(b) However, if storing time and compactness of the system is considered, osmotic thermal storage could be an attractive option.

(d) Additional R&D is required in order to arrive at a reliable practical and commercial design.

Nomenclature

$E = \text{energy}$

$c_p = \text{heat capacity}$

$h = \text{heat transfer coefficient}$

$t = \text{time}$

$T = \text{temperature}$

$r_1 = \text{inner radius}$

$r_2 = \text{outer radius}$

Greek symbols

$\kappa = \text{thermal conductivity}$

$\rho = \text{density}$

$\tau = \text{time constant}$

Acknowledgements

This research was supported by the Spanish Ministry of Economy and Competitiveness under fellowship grant Ramon y Cajal: RYC-2013-13459.

II. REFERENCES

