
Bachelor’s Thesis

Space Mission Scheduling Toolkit for Long-Term

Deep Space Network Loading Analyses

and Strategic Planning

by

Guillem Rueda Oller
July 2019

Degrees
Bachelor’s Degree in Aerospace Technology Engineering
Bachelor’s Degree in Informatics Engineering

Supervisors
Kar-Ming Cheung
Marc Sánchez Net

Tutor
Antoni Grau Saldes

c○ Guillem Rueda Oller, 2019. All rights reserved.
This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.

Space Mission Scheduling Toolkit for Long-Term
Deep Space Network Loading Analyses and Strategic Planning

by
Guillem Rueda Oller

Abstract

The Jet Propulsion Laboratory (JPL) owns and operates the Deep Space Network
(DSN), a set of antennas placed around Earth to communicate with spacecraft flying
anywhere in the Solar System. While the DSN is a critical asset to JPL and NASA’s
success, it is also expensive to build, maintain and operate. Therefore, additional
system capabilities are planned strategically, years in advance, by forecasting which
missions will utilize the system in the coming decades (and their driving data require-
ments). Then, loading analyses are conducted assuming different scenarios, each one
simulating DSN operations for several years.

Within this context, this thesis focuses on developing an automated long-term schedul-
ing mechanism that can mimic real DSN operations. Several factors are modeled and
accounted for in this process: Spacecraft visibility constraints, evolution of the DSN
architecture, characteristics of each antenna, as well as link and other operational
constraints.

To implement the scheduling mechanisms, several options are first identified and
downselected. Then, it is explained in detail how the automated long-term schedul-
ing toolkit –LTST– formulates the problem as a mixed integer linear programming
(MILP) problem. The procedure to obtain the constraints of the optimization prob-
lem is presented and the objective function is defined.

Finally, results of several case inputs are presented, including very oversubscribed
scenarios. Computational performance of the toolkit is evaluated using real inputs
from the DSN system engineering team and we show that the thousands of tracks
for tens of missions can be successfully scheduled within reasonable computational
complexity.

Keywords: Deep Space Network, space communications, scheduling, mixed integer
linear programming, loading analysis

Thesis Supervisor: Kar-Ming Cheung
Title: Technical Group Supervisor at NASA Jet Propulsion Laboratory

Thesis Supervisor: Marc Sánchez Net
Title: Telecommunications Engineer at NASA Jet Propulsion Laboratory

Acknowledgments

First, I would like to truly thank Dr. Kar-Ming Cheung and Dr. Marc
Sánchez Net for their invaluable guidance and support provided during
my stay at JPL. With your excellent advice and supervision I managed
to carry out this project. It has been a pleasure to work with you.

Many thanks to all the people in section 332, specially the ones on
floor 4 in building 238. You made my day for six months. Also, I am
very grateful for all the wonderful hours spent with other interns I met
throughout my stay in Pasadena.

I would like to specially thank the CFIS program. First, I am very
grateful to them for coordinating my double-degree program. Second,
this extraordinary opportunity, half year doing research at NASA
Jet Propulsion Laboratory, would not have been possible without the
intervention of the CFIS. Third, thank you for providing financial help
throughout my whole studies at UPC. Special thanks to Fundació
Privada Cellex for funding my stay at JPL.

After five unforgettable years at UPC, this thesis marks the end of
my undergraduates studies in Spain. I am extremely grateful to all
the amazing people I have met these years. We have had uncountable
memorable moments. Thank you.

Last but not least, I want to thank the tremendous support received from
my family and friends during this time. Big thanks to my parents and
my brother for always encouraging me to follow my dreams.

Contents

Page

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2

1.2.1 State-of-the-art in DSN scheduling 2
Service Scheduling Software 2
Loading Analysis and Planning Software 3
Link-Capability Driven Network Planning and Operation . . . 3
Architecture Loading Analysis Tool 4
Other DSN scheduling toolkits 5

1.3 Background . 5
1.3.1 The Deep Space Network . 5

DSN Architecture . 5
DSN Operations . 7
Antenna Arraying . 8
Delta-Differential One-Way Ranging 8
Multiple Spacecraft Per Antenna 8
Multiple Uplink Per Antenna 9

1.3.2 “The DSN Scheduling Problem” 9
Assigning resources to tracks 9
Covering missions by sharing resources 10
Scheduling tracks in the DSN 11

1.4 General Problem Statement . 12
1.5 Literature Review . 13

1.5.1 Methods for “The DSN Scheduling Problem” 13
Methods for the scheduling problem 13
Methods for the assignment problem 15
Merged vs. separate assignment and scheduling problems . . . 17

1.6 Thesis Statement . 18
1.7 Thesis Structure . 19

2 Problem Formulation 21
2.1 Definitions . 21
2.2 Objective Function . 22

2.2.1 Weight of a “track option” . 23
Weights of “track options” of different tracks 23
Weights of “track options” of the same track 24

i

2.3 Problem Formulation Process Flow 25
2.3.1 Global generation algorithm 25
2.3.2 “DSN options” . 27

Uplink options . 28
Downlink options . 28
Uplink&downlink options . 29
Delta-DOR options . 29
Options with hot backup requirement 30

2.3.3 “Track options” . 31
Created variables . 32

2.3.4 Compatibility between tracks 33
Fully compatible “track options” 33
Partially compatible “track options” 33
Incompatible “track options” 34

2.4 The MILP Problem . 34
2.4.1 Optimization problem . 35
2.4.2 Constraints for partially compatible “track options” 35

Double constraints . 36
Single constraints . 36

2.4.3 Constraints for incompatible “track options” 37
2.4.4 Performance optimizations . 37

3 Results 39
3.1 Case 1: Single mission replicated N times 39

3.1.1 Analysis of the results . 39
3.1.2 Computational performance 41

3.2 Case 2: 2-month full DSN scenario 41
3.2.1 Analysis of the results . 42
3.2.2 Computational performance 43

4 Conclusions 45
4.1 Thesis Summary . 45
4.2 Thesis Contributions . 45
4.3 Future Work . 46

Bibliography 49

ii

List of Figures

1-1 Field of view of the Deep Space Network [1] 6
1-2 DSS-43 (70-meter antenna) in the foreground with 34-meter antennas

in the background in Canberra [2] . 7
1-3 Two possible options of resources to assign to a track 10
1-4 One antenna covering three missions at the same time 11
1-5 142 tracks from 27 missions (each mission is represented by a different

color) scheduled for one week . 12

2-1 Division of track windows in an operational segment 31
2-2 Creation of “track options” for a Delta-DOR track, using one “DSN

option”, visibility information and track window 32
2-3 Two fully compatible “track options” 33
2-4 Two partially compatible “track options” 34
2-5 Two incompatible “track options” . 34

3-1 Tracks/hours scheduled vs. number of missions (Case 1) 40
3-2 Time performance (Case 1) . 41
3-3 Usage time of DSN resources for 2 months (Case 2) 42

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

List of Tables

1.1 Pros and cons of different methods for the assignment problem 17
1.2 Merged vs. separate assignment and scheduling problems 18

3.1 General results (Case 1) . 40

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

1. Introduction

1.1 Context

All space missions need to send scientific data to Earth. In fact, data produced by a
spacecraft is only useful if it is processed and analyzed by the scientific community on
Earth. Most deep space missions never return to Earth, so a communication system is
essential to send data to Earth and receive commands and data from Earth. Indeed,
the spacecraft’s tracking and communications system is the only way to communicate
and interact with the mission.

NASA uses the Deep Space Network (DSN) to support interplanetary spacecraft mis-
sions, selected Earth-orbiting missions, and to perform radio and radar astronomy
observations for space exploration [3]. The DSN is the ground segment of NASA’s
communications system for deep space missions. It currently consists of three an-
tenna complexes at different locations situated approximately 120 longitude degrees
apart on Earth [4]. This architecture ensures continuous coverage and tracking for
deep space missions. Today, each complex has one 70-meter antenna and a few 34-
meter antennas [4]. They can be used individually or in combination to satisfy the
communications requirements of each mission [4].

The demands placed on the DSN are continuously increasing. For example, the
Mars Reconnaissance Orbiter (MRO) sent to Earth more than 298 terabits of data
by March 2016 [4]. However, NASA estimates that the deep space communications
capability will need to grow by nearly a factor of 10 each of the next three decades [4].
Moreover, the ability to answer an increasing number of detailed scientific questions
requires more sophisticated instruments that generate even more data that later will
be transmitted to Earth.

Unlike the Internet, where protocols require millisecond-level latencies, deep space
communications have latencies or disruptions of up to several hours because of the
enormous distances to which spacecrafts travel [4]. For example, the roundtrip light
time to the Voyager spacecraft and back is more than 24 hours [4]. Because of this, and
adding the fact that missions need to send a huge amount of data (hours), scheduling
is necessary in the DSN.

While the DSN is a critical asset to JPL and NASA’s success, it is also expensive to
build, maintain and operate. Therefore, additional system capabilities are planned
strategically, years in advance, by forecasting which missions will utilize the system
in the coming decades (and their driving data requirements). Then, loading analyses
are conducted assuming different scenarios, each one simulating DSN operations for
several years. Within this context, this thesis focuses on developing an automated
long-term scheduling mechanism that can mimic real DSN operations.

1

1.2 Motivation

NASA spends significant resources in the Deep Space Network (e.g., approximately
$23 was spent for the construction of the 34-meter antenna DSS-35, in Canberra [5]).
For example, resources are spent building new antennas, maintaining current stations
or upgrading obsolete equipment of the network. Although all these procedures are
extremely expensive, they are necessary to support NASA’s current and future mis-
sions. Therefore, it is necessary to forecast communication needs of future missions
and plan for DSN upgrades strategically, years in advance.

Moreover, the DSN is and will be a highly utilized asset. Indeed, nowadays not all
requested communications in the DSN are finally executed. That happens when the
network is oversubscribed, such as in special events. In order to correctly decide which
new DSN capabilities should be implemented, loading analyses of different long-term
scenarios of the DSN are necessary. This motivates the development of a long-term
DSN scheduling toolkit, which is the main goal of this thesis.

1.2.1 State-of-the-art in DSN scheduling

Scheduling the Deep Space Network has been addressed since the very beginning of
the network. It can be classified in short-term, mid-term and long-term scheduling.
Several DSN scheduling toolkits, each with its strengths and weaknesses, have already
been implemented. This thesis addresses the long-term case. However, since long-
term scheduling has several common features with short-term and mid-term DSN
scheduling, the state-of-the-art of all time ranges is presented. In particular, this
section presents three projects where a DSN scheduling toolkit was successfully im-
plemented. Furthermore, for each project we justify why the new scheduling toolkit
developed in this thesis is needed.

Service Scheduling Software

The foremost work in DSN scheduling is led by Mark D. Johnston at Jet Propulsion
Laboratory (JPL). The creation of the Service Scheduling Software (S3) was culmi-
nated in 2011. It only focused on the mid-term process – from 2 weeks to about 6
months before execution. The team implemented S3 as a web application with a user
interface [6]. According to Johnston, due to the collaborative peer-to-peer negotiation
nature of the mid-term DSN scheduling [7, 8], S3 was heavily driven by the need for
users from multiple time zones to participate in distributed conflict resolution and
change negotiation [6]. In 2016, S3 was extended to support real-time DSN schedul-
ing, which enabled consistent data model to be used for mid-term, short-term and
real-time scheduling [6].

S3 uses the DSN Scheduling Engine (DSE). The DSE expands scheduling requests into
individual communications tracks, identifies potential conflicts in the schedule and
conflict-free allocations, and then attempts to find a suitable solution for each. The
DSE is based on running multiple instances of ASPEN (Automated Scheduling and
Planning ENvironment), the planning and scheduling framework previously developed

2

at JPL [9]. The DSE is based on three algorithms: First, an initial layout algorithm
is executed to initially generate tracks that satisfy a request’s specifications. This
first algorithm goes request per request systematically searching for legal intervals
to satisfy it. Second, a basic repair algorithm is executed to reduce conflicts and
violations. It tries to solve each conflict or violation in the schedule until all are
solved or a timeout expires. Finally, an algorithm that tries to extend the scheduled
tracks to the their minimum preferred length is applied [9].

The drawbacks of S3 that justify the new scheduling toolkit developed in this thesis
are explained below along with Johnston’s Loading Analysis and Planning Software.

Loading Analysis and Planning Software

In 2018, Johnston added support for long-term planning and forecasting. This led to a
newly completed component called LAPS – Loading Analysis and Planning Software,
which extends the S3 framework, so that they both share the same data model [6]. A
forecast run in LAPS goes through the following four computational steps: First, for
each mission planning request, constraining time range, potential assets or asset sets,
and visibility intervals are determined. Second, the distributed request track duration
is accumulated over all the potential asset options. Third, weights are adjusted to
lower oversubscription on each asset. Fourth, oversubscription is tabulated by asset
group and by mission, for aggregation and reporting [6]. In conclusion, the main idea
of the algorithm is the same as in S3 – initial layout and then repair.

The main drawback of S3 and LAPS is in the scheduling algorithm. The algorithm in
both software is clearly based on a track-by-track sequence. This means that for each
new track request, the algorithms looks for a legal interval for that track, ending this
stage with an initial schedule. Then, it tries to repair each conflict or violation until a
timeout is reached. Therefore, there is no guarantee that these tools can provide the
optimal schedule, especially in the case of an oversubscribed resource like the DSN
(a very common situation in real-life operations1). Actually, the fact that it tries
to schedule each track when creating the initial layout and then repair the schedule,
does not always give an optimal schedule, because the result is very dependent of
the order of the input data. In contrast, the main research goal of this thesis is to
implement a DSN scheduling toolkit that achieves the best possible solution (or a very
good one) in long-term oversubscribed scenarios, globally optimizing the schedule.
Instead, Johnston’s work focuses more on providing a unified user-friendly toolkit,
even letting the user choose how to solve some conflicts in S3 [6], rather than focusing
on the quality of the solutions, specially in highly oversubscribed intervals.

Link-Capability Driven Network Planning and Operation

Research by Cheung, Lee, Gearhart, Vo and Sindi (2002) presents a network planning
and scheduling concept that takes into account communication link capabilities and
telecom performances to improve network communications efficiency. The key idea of
the work is that the resulting schedule will be operating at favorable telecom config-

1 Learned at Jet Propulsion Laboratory (2019)

3

urations, which means higher data rates and therefore time allocated to each mission
can be shortened, increasing the number of missions that the network resources can
support [10]. Cheung et al. (2002) present a mathematical framework consisting of a
nonlinear constrained optimization problem, where the sum of the time allowed for
all tracks is minimized.

The formulation as a optimization problem is of great interest for this thesis, as the
problem is globally optimized leading to the best solution. However, there are three
disadvantages in its formulation: (1) All tracks in the present in the optimization
problem must be scheduled; (2) It seems that each track has predefined which ground
station it will use when formulating the mathematical problem; and (3) it does not
take into account prioritization between tracks or other characteristics, thus just
focusing on increasing the total data volume [10]. Disadvantages (1) and (2) arise from
the fact that no if-then conditions are defined in the mathematical problem presented.
Also, (3) happens because all tracks are finally scheduled, so no prioritization is
needed. Moreover, the problem has a nonlinear constraint. A sample communications
network consisting of three tracking ground stations and six orbiting satellites is
simulated and optimized. In the test run they assume that each track must constitute
at least 20 minutes in length, so there are exactly 31 passes [10].

The work presented is clearly not for long-term scheduling, but short-term scheduling,
where the schedule is never oversubscribed. Moreover, assignments between ground
stations and spacecrafts are not included in the optimization problem. Still, Cheung
et al.’s (2002) concept of global optimization may be useful in some section of this
thesis.

Architecture Loading Analysis Tool

In Reference [11], MacNeal et al. (2016) discuss the results of preliminary loading
simulations for hybrid RF-optical network architectures and highlights key mission
and ground infrastructure considerations that emerge. They introduce the Architec-
ture Loading Analysis Tool (ALAT). ALAT enables the DSN to analyze how well the
projected future mission set loads up on alternative architectures consisting of both
RF and Optical apertures for 20-30 years of operations [11]. Therefore, ALAT is a
long-term DSN scheduling tool which also incorporates optical antennas, despite the
fact that the DSN currently has no optical communication capabilities yet.

The scheduling algorithm used in ALAT is a greedy in nature – it makes the optimal
choice at each step. When the algorithm has a new track to schedule, it attempts to
schedule it at the complex with the longest available visible time segment. It then
tries to schedule it using antennas at that complex that still have enough available
time and can support the spacecraft. If that is not possible, it then attempts to
schedule a partial track at the complex, or reject it [11].

The main point to highlight here is that once a track is scheduled, it cannot be
rescheduled to allow new tracks to be successfully scheduled. This work, similar to
S3 and LAPS presented before, is based in a greedy algorithm. Consequently, ALAT
does not find a global optimal solution to the DSN scheduling problem. Moreover,

4

the greedy algorithm in ALAT can result in largely sub-optimal schedules in oversub-
scribed scenarios, because at a certain execution point, it will reject all new tracks.
Therefore, the result is highly dependent on the order of the input data. However,
this tool will probably influence the toolkit developed in this thesis, as the new toolkit
is intended to replace ALAT.

Other DSN scheduling toolkits

Prior to the tools already described, several authors had addressed the problem of
scheduling DSN resources. For instance, LR-26 was a customizable heuristic schedul-
ing system for the 26-meter antennas subnetwork that has now been decommissioned.
It used Lagrangian relaxation and constraint satisfaction search techniques [12]. The
Operation Mission Planner (OMP-26) used heuristic search to allocate 26-meter an-
tennas to missions, and linear programming to adjust track durations [13]. DANS,
which stands for Demand Access Network Scheduler, included all antennas and used
a heuristic iterative repair approach [14]. These and some other investigations are
now obsolete because they were focused on past DSN configurations. Moreover, these
software were replaced by the toolkits detailed above.

Finally, in Reference [15], Johnston (2006) presents a multi-objective approach to
the scheduling problem of the Deep Space Array-Based Network (DSAN). The paper
uses evolutionary algorithms to solve the problem. This approach may be good for
this thesis, but this will be discussed in a further section. In any case, the software
presented is implemented exclusively for DSAN, a network architecture that is now
not considered feasible for future DSN enhancements.

1.3 Background

1.3.1 The Deep Space Network

The NASA Deep Space Network (DSN) is a worldwide network of spacecraft
communication facilities managed and operated by NASA Jet Propulsion Laboratory
(JPL). The DSN supports interplanetary spacecraft missions, radio and radar astron-
omy observations to explore the Solar System, and support selected Earth-orbiting
missions [3]. The DSN is operated at all times during the year [16]. This section
provides a brief summary of the key concepts and characteristics of the DSN and
deep space communications necessary to understand the rest of the work.

DSN Architecture

The DSN is the largest and most sensitive scientific telecommunications system in
the world today. It consists of three Deep Space Communications Complexes
(DSCCs), placed approximately 120 degrees apart around the world: at Goldstone,
near Barstow, in California’s Mojave Desert; at Robledo near Madrid, Spain; and at
Tidbinbilla near Canberra, Australia. The Network Operations Control Center
(NOCC) is in building 230 at JPL. The strategic placement of the DSCCs allows
uninterrupted tracking of any interplanetary spacecraft as the Earth rotates [3].

5

The International Telecommunications Union, which sets aside various frequency
bands for deep space and near Earth use, defines that an spacecraft is in “deep space”
when it is further than 2 million kilometers from the Earth’s surface [17]. The DSN
was designed to communicate with spacecraft traveling approximately 16,000 km
(10,000 miles) from Earth to the farthest planets of the Solar System [18]. Figure 1-1
shows that spacecrafts at an altitude of 30,000 kilometers or more are always in the
field of view of a DSCC [1].

Figure 1-1: Field of view of the Deep Space Network [1]

All three DSCCs have generally the same makeup, although Goldstone (GDSCC), be-
ing closest to JPL, has some additional antennas, as well as research and development
facilities not found at Madrid (MDSCC) or Canberra (CDSCC). Each DSCC has a
number of Deep Space Stations (DSSs). Each DSS comprises a high-gain steerable
parabolic-reflector (or antenna dish), and its associated front-end equipment such as
low-noise amplifiers and transmitters. Throughout this thesis, the term antenna will
refer to the whole DSS. Also, each DSCC has one Signal Processing Center (SPC),
which connects with all the DSSs at the DSCC, and houses the operations personnel
along with the computers and other equipment [3].

Today, each complex has one 70-meter antenna and a few 34-meter antennas [4]. Each
antenna supports frequencies in S-band, X-band, K-band and/or Ka-band [17]. The
Deep Space Network also provides back up to other two networks: the Near Earth
Network (NEN) and the Space Network (SN) [16].

6

Figure 1-2: DSS-43 (70-meter antenna) in the foreground with 34-meter antennas in
the background in Canberra [2]

DSN Now [19] is a web application that presents information on NASA’s Deep Space
Network. The application provides, in a highly visual format, data on spacecraft that
the DSN stations are communicating with at any given time.

DSN Operations

Consider a space mission as any spacecraft, satellite, missile, rover or space station
outside Earth. Within this thesis, the term deep space mission will be used to
refer to any mission in deep space as well as any mission in selected Earth orbits (i.e.,
any mission supported by the DSN).

Each deep space mission is typically broken down in multiple operational segments.
An operational segment is a period of time where the communication needs of a
mission (and thus the DSN support) are approximately constant (e.g., same contact
time, link budget, contact periodicity). An operational segment has a start date and
an end date as well as a type (e.g., DDOR, telemetry, science, etc.). Usually only one
operational segment per mission is active at a time. However, two or more operational
segments of a mission may be occasionally active at the same time, specially when
each operational segment is of different type.

A track or pass is a communication opportunity between a space mission and the
DSN. Each track has a specific length, technical requirements (link budget) and a time
window to be scheduled. A track may establish more than one link simultaneously.

A link is physical communication channel established between a spacecraft and a
DSN antenna for the purpose of communicating data and/or acquiring tracking in-
formation. Three types of links are considered in this thesis:

7

∙ Uplink: Only information from Earth is sent to the mission. The Equivalent
Isotropically Radiated Power (EIRP) of the DSN antennas used is the main
mission requirement.

∙ Downlink: Only information from the mission is sent to Earth. The Antenna
Gain-to-System Noise Temperature Ratio (G/T) of the DSN antennas used is
the main mission requirement.

∙ Uplink&Downlink: Information is exchanged between DSN facilities on Earth
and the mission. Both EIRP and G/T of the DSN antennas used are the main
mission requirements.

The uplink is used to send commands to a mission and the downlink is used to receive
telemetry and science data from a mission. Additionally, these links can provide
tracking of the mission too. Finally, the DSN hardware usually needs a setup and a
tear-down time before and after each track respectively.

The DSN has four special track types that merit further explanation: Antenna Ar-
raying, Delta-Differential One-Way Ranging, Multiple Spacecraft Per Antenna, and
Multiple Uplink Per Antenna. These four features characteristic of the DSN are
briefly explained below.

Antenna Arraying

Antenna arraying is a communication technique that combines several antennas to
receive a signal. Arraying of antennas increases the G/T of the system, so signals
with lower signal-to-noise ratio (SNR) can be detected. Antenna arraying typically
applies to downlinks. When antenna arraying is active, an array processor is used
to synchronize the signal received by each antenna forming the array. In case of an
uplink&downlink, one of the antennas in the array will establish the uplink simulta-
neously. Currently, arraying can only be done using up to four antennas of the same
ground station. Also, there is currently only one array processor in each DSN ground
station, so no more than one antenna array per ground station can be active at a
time.

Delta-Differential One-Way Ranging

Delta-Differential One-Way Ranging, abbreviated Delta-DOR, is a high precision
tracking method for deep space missions. With regard to DSN scheduling, Delta-
DOR requires establishing two downlinks simultaneously, each with a 34-meter an-
tenna from different ground stations. Therefore, there must be full visibility from
both antennas during the whole Delta-DOR track.

Multiple Spacecraft Per Antenna

Multiple Spacecraft Per Antenna or per Aperture (MSPA) allows the DSN to estab-
lish several downlinks simultaneously from different missions with the same antenna.
MSPA is possible when missions are on the same region in space, such as Mars, so

8

that all of them are visible from the antenna’s main beam. Currently, an antenna of
the DSN can have up to four MSPA downlinks simultaneously.

Multiple Uplink Per Antenna

Similar to MSPA, Multiple Uplink Per Antenna or per Aperture (MUPA) allows the
DSN to establish several uplinks simultaneously to different missions with the same
antenna. MUPA is possible when missions are on the same region in space, such as
Mars, so that all of them are visible within the antenna’s main beam.

1.3.2 “The DSN Scheduling Problem”

The goal of “The DSN Scheduling Problem” (the DSN SP) is to schedule as many
tracks as possible in a given time horizon, satisfying mission requirements and prior-
ities. Although it is sometimes referred as “DSN scheduling” –as if it was only one
problem–, the three following combinatorial problems need to be solved:

∙ Assignment Problem: Assign resources to each scheduled track. Resources
assigned to each scheduled track can be either one antenna or a set of antennas,
and one array processor if arraying is required.

∙ Covering Problem: When doing MSPA or MUPA, identify which resources
to use for covering tracks from multiple missions at the same time.

∙ Scheduling Problem: Try to schedule each track of each mission into a DSN
timeline, according to requirements and priorities.

Having to solve three different but interrelated problems largely increases the overall
problem complexity. Below, each combinatorial problem applicable to DSN schedul-
ing is discussed.

Assigning resources to tracks

In terms of DSN scheduling, the assignment problem individually assigns DSN
resources to each scheduled track. The assigned resources are all hardware used to
establish all communication links required by said track. The resources may not be
shared during the same period of time with other tracks, unless in specific circum-
stances explained in the covering problem. The resources must satisfy the operational
and technical requirements. The common requirement is that all antennas assigned
to one track must be visible to the mission during all the duration of the track. The
other requirement is that the link or links necessary for the track must satisfy the link
budget. The link budget can be particularized depending on the type of the track, as
will be explained in Chapter 2.

9

Track option #2:
• Use one 70m antenna

Track option #1:
• Use 3 x 34m antennas

Figure 1-3: Two possible options of resources to assign to a track

The assignment problem chooses resources that optimize the problem. In other words,
there can be more than one set of antennas that satisfy the link budget and visibility
requirements for a track. In Figure 1-3 there is an example of assignment problem
applied to DSN scheduling. The mission has two possible options that satisfy its
requirements for an uplink&downlink track: (1) Use an array of three 34-meter an-
tennas; or (2) use one 70-meter antenna. The criteria to choose the final option will
depend in several factors that will be discussed in Chapter 2. In the example, a pos-
sible reasoning for choosing option 2 could be that using only the 70-meter antenna
keeps the three 34-meter antennas available for up to three other missions which
require only one 34-meter antenna each.

Covering missions by sharing resources

The covering problem –or partitioning problem– in terms of DSN scheduling con-
sists in partitioning the set of tracks of different missions in a given moment, in subsets
where each subset of tracks will use the same antenna or set of antennas at the same
time. Sometimes a single antenna or set of antennas can process tracks from several
missions at the same time. This can happen whenever it is possible to do Multiple
Spacecraft Per Antenna (MSPA) and/or Multiple Uplink Per Antenna (MUPA), as
previously explained in Section 1.3.1.

10

Figure 1-4: One antenna covering three missions at the same time

Figure 1-4 shows an example of the DSN covering problem. There are 5 missions that
want to do a track with the DSN at the same time: one mission is orbiting Saturn,
another mission is orbiting Jupiter, and three other missions are orbiting Mars. In
this example, all mission tracks are grouped in three subsets, according to the planet
that they are orbiting. Therefore, there is one antenna covering the three missions
orbiting Mars at the same time and simultaneous links are supported using either
MSPA or MUPA.

There are hypothetical cases of the DSN covering problem that do not exactly match
the definition presented above. These are tracks sharing some, but not all resources
with another track, or a track that shares some resources with another one and other
resources with a different track, all at the same time. However, this hypothetical cases
will not be considered in this research, and nor will the covering problem be solved
on its own. Indeed, the input provided to the toolkit developed in this research will
be the same input of the Architecture Loading Analysis Tool (ALAT). The Microsoft
EXCEL R○-based inputs of the DSN scheduling toolkit group each MSPA or MUPA
operation as if it was one unique track [20]. Consequently, as the MSPA and MUPA
operations are already specified in the input data, the DSN scheduling toolkit does
not have to handle the covering problem.

Scheduling tracks in the DSN

The scheduling problem applied to DSN operations consists in allocating time for
tracks given a finite time horizon. Subject to requirements and priorities, the schedul-
ing algorithm schedules the requested tracks maximizing the number of scheduled
tracks, the total time of DSN usage, or another metric. Is it possible that the DSN
schedule is oversubscribed during some period of time, which means that there are
more tracks requested than the number of tracks that the DSN can support, so not
all tracks are scheduled.

11

Time [days]

A
n

te
n

n
a

Figure 1-5: 142 tracks from 27 missions (each mission is represented by a different
color) scheduled for one week

In Figure 1-5 the timeline for tracks from 27 different missions for one week is pre-
sented. It plots part of the output of a simulation using the DSN scheduling toolkit
developed in this thesis. There are a total of 142 tracks with lengths of 2, 6, 8 and
10 hours. In the example, all request tracks have been scheduled in one of the 12
antennas of the DSN. Then, the schedule is not oversubscribed. How to schedule
tracks in the DSN will be detailed in Chapter 2.

1.4 General Problem Statement

Section 1.3.2 provided a clear definition of track scheduling in the context of deep
space communications. Furthermore, it described the problem of assigning resources
of the DSN to tracks as well as covering missions by sharing resources at the same
time. Combining the three problems that constitute “The DSN Scheduling Problem”,
leads to the formulation of the following thesis’ general problem statement:

The goal of this thesis is to develop an automated long-term scheduling toolkit to
(1) conduct long term loading analyses of DSN resources under different (partially
predicted) mission scenarios, and (2) inform strategic planning of future DSN
investments and capabilities. This will be achieved by mapping current and future
DSN resources to predicted missions tracks.

It should be clarified that, at this point of the work, the specific type of automated
long-term scheduling toolkit to be developed is still not concisely defined. This will
be addressed during the literature review once different options to solve the problem
are analyzed. Also, the proposed general problem statement does not specify how the
requested tracks are satisfied. This will be specified in the specific problem statement.

12

1.5 Literature Review

In order to choose how to address the DSN SP, it is necessary to do some research
on the available options. In this section, several options to mathematically formulate
the problem are presented. These options are evaluated and compared among them
to select the one that best fulfills the needs of the thesis problem.2

1.5.1 Methods for “The DSN Scheduling Problem”

As explained in Section 1.3.2, the DSN SP is actually composed of three combinatorial
problems: assignment problem, covering problem and scheduling problem. However,
as mentioned before, there is no need to tackle the covering problem in this work
because the input to the toolkit already has determined MSPA and MUPA opera-
tions. Therefore, only methods to formulate and solve the scheduling problem and
the assignment problem applied to DSN operations are evaluated.

Methods for the scheduling problem

First, the scheduling problem is addressed. Pinedo (2016) presents in his book [21]
how to formulate and solve different types of scheduling problems. Pinedo states that
a scheduling problem is described by a triplet 𝛼 | 𝛽 | 𝛾. The 𝛼 field describes the
machine environment and contains just one entry. The 𝛽 field provides details of
processing characteristics and constraints, and may contain no entry at all, a single
entry, or multiple entries. The 𝛾 field describes the objective to be minimized and
often contains a single entry [21].

Based on the DSN architecture (antennas in parallel), identical machines in par-
allel (𝑃𝑚) is the machine environment that must be specified in the 𝛼 field. In this
environment there are 𝑚 identical antennas in parallel which represent 𝑚 different
antennas in parallel. If track 𝑗 cannot be processed on just any machine, but only
on any one belonging to a specific subset 𝑀𝑗, then the entry 𝑀𝑗 appears in the 𝛽
field [21].

The processing restrictions and constraints specified in the 𝛽 field may include mul-
tiple entries [21]. For the DSN architecture, possible entries in the 𝛽 field are:

∙ Release dates (𝑟𝑗): Instant in time before with track 𝑗 cannot be scheduled.

∙ Sequence dependent setup times (𝑠𝑗𝑘): Sequence dependent setup time
incurred between processing of tracks 𝑗 and 𝑘. If the setup time between tracks
𝑗 and 𝑘 depends on the antenna, then the subscript 𝑖 is included (i.e., 𝑠𝑖𝑗𝑘).
However, as in the DSN these setup times do not heavily depend on the tracks or
antennas, sequence dependent setup times in the 𝛽 field will not be considered.
Instead, the setup and tear-down times of each track can be added to the track’s
original length.

2 This section only presents the literature review of methods to solve the DSN SP. Literature review
of the state-of-the-art in DSN scheduling was presented in Section 1.2.1.

13

∙ Breakdowns (𝑏𝑟𝑘𝑑𝑤𝑛): Period when an antenna is not available. The periods
that a antenna is not available are assumed to be fixed in the input data – e.g.,
due to shifts or scheduled maintenance.

∙ Machine eligibility restrictions (𝑀𝑗): Set of antennas that can process track
𝑗. When 𝑀𝑗 is not present, all 𝑚 antennas are capable of processing track 𝑗.
This entry is the result of the assignment problem.

In contrast to release dates, due dates are not specified in the 𝛽 field. The type of
objective function gives sufficient indication whether or not there are due dates. The
due date 𝑑𝑗 of track 𝑗 represents the committed completion date. Completion of a
track after its due date is allowed, but then a penalty is incurred. When a due date
must be met it is referred to as a deadline and denoted by 𝑑𝑗, and does go to the 𝛽
field.

According to Pinedo, the objective to be minimized is always a function of the com-
pletion times of the tracks, which depend on the schedule. The completion time of
track 𝑗 is denoted by 𝐶𝑗. The objective may also be a function of the due dates [21].
The lateness of track 𝑗 is defined as

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 (1.1)

which is positive when track 𝑗 is completed late and negative when it is completed
early. The tardiness of track 𝑗 is defined as

𝑇𝑗 = max (𝐶𝑗 − 𝑑𝑗, 0) = max (𝐿𝑗, 0) (1.2)

The difference between the tardiness and the lateness lies in the fact that the tardiness
never is negative. The unit penalty of track 𝑗 is defined as

𝑈𝑗 =

{︃
1, if 𝐶𝑗 > 𝑑𝑗

0, otherwise
(1.3)

The lateness, the tardiness, and the unit penalty are the three basic due date related
penalty functions considered by Pinedo.

Some possible objective functions that can be minimized while solving a scheduling
problem are [21]:

∙ Makespan: 𝐶max = max (𝐶1, ..., 𝐶𝑛)

∙ Maximum Lateness: 𝐿max = max (𝐿1, ..., 𝐿𝑛)

∙ Total weighted completion time:
∑︀

𝑤𝑗𝐶𝑗

∙ Total weighted tardiness:
∑︀

𝑤𝑗𝑇𝑗

∙ Weighted number of tardy jobs:
∑︀

𝑤𝑗𝑈𝑗

where 𝑤𝑗 is the weight (importance) of track 𝑗.

14

At this point, it is possible to formulate the 𝛼 and 𝛽 fields of the DSN scheduling
problem triplet 𝛼 | 𝛽 | 𝛾 as

𝑃𝑚 | 𝑟𝑗, 𝑑𝑗, 𝑏𝑟𝑘𝑑𝑤𝑛,𝑀𝑗 | 𝛾 (1.4)

Now the difficulty resides in defining the objective function 𝛾. The objective functions
presented by Pinedo are always a function of the completion times of the tracks.
However, a good DSN schedule does not depend on when the tracks start or end,
but how many of the tracks requested are finally scheduled. That means that it is
necessary to consider that not all the tracks requests can always be scheduled. That
is an oversubscribed scenario.

Pinedo’s work about scheduling does not consider the possibility that a job (“track”
in this thesis) is not scheduled. For that, binary variables to indicate whether a track
has been scheduled or not would be necessary. However, all the algorithms developed
in his book cannot be easily modified to introduce these binary variables. Therefore,
it is necessary to look for a more general method to formulate and solve the scheduling
problem for the DSN.

A more general approach of Pinedo’s idea would be directly using mixed integer
linear programming (MILP). MILP involves optimization problems in which some
variables are constrained to be integers while other variables are allowed to be non-
integers. The term “linear” refers to both the objective function and the constraints
of the problem being linear functions with respect to the problem variables. Using
these definitions, the scheduling problem triplet 𝛼 | 𝛽 | 𝛾 can be specialized to the
DSN scheduling problem as follows:

𝑃𝑚 | 𝑟𝑗, 𝑑𝑗, 𝑏𝑟𝑘𝑑𝑤𝑛,𝑀𝑗 |
∑︁

𝑤𝑗𝑧𝑗 (1.5)

where 𝑧𝑗 is a binary variable indicating whether track 𝑗 has been scheduled (1) or
not (0). Note that now the objective function have to be maximized.

Although the triplets in (1.4) and (1.5) are very similar, the latter optimization prob-
lem cannot be solved with the algorithms specific to solve scheduling problems pre-
sented in Reference [21]. Instead, the optimization problem represented by triplet
(1.5) will be solved using any general method to solve MILP problems (e.g., branch-
and-bound, branch-and-cut, heuristic methods, ...). For instance, the MILP solver
IBM’s CPLEX R○ uses dynamic search, branch-and-cut and heuristics.

Methods for the assignment problem

The assignment problem for the DSN consists in assigning tracks to antennas. The
output of the assignment problem will be one of the inputs for the scheduling problem.
For each track, is it necessary to define which antennas or sets of antennas are not
eligible for that track. Sets of antennas are necessary for Delta-DOR tracks and
tracks using antenna arraying. Also, it is necessary to define a weight 𝑤𝑖𝑗 between an
antenna or set of antennas 𝑖 and track 𝑗 which tells how desirable is that assignment.
The objective is to assign one antenna or set of antennas to each track in the same

15

period of time (note that in the assignment problem, an antenna cannot be assigned
to different tracks), while maximizing

∑︀
𝑤𝑖𝑗 for one option 𝑖 for each track 𝑗.

The assignment problem is a special case of the transportation problem, which is a
special case of the minimum cost flow problem, which in turn is a special case of
a linear program problem. While it is possible to solve any of these problems us-
ing the simplex algorithm, each specialization has more efficient algorithms designed
to take advantage of its special structure. Therefore, pros and cons of several meth-
ods to formulate and solve the DSN assignment problem are summarized in Table 1.1.

Algorithm Pros Cons

Hungarian
method [22]

– Specialized on solving
assignment problems

– Solves the problem in
polynomial time 𝑂(𝑛3)

– Handles incompatibilities
between antennas and
tracks

– Easy to implement
– The total benefit strictly

increases with each
iteration

– Difficult to parallelize
– Only gives one optimal

solution
– Does not allow to assign

one track to more than one
antenna

– Maybe too specific to use it
in variations of the
assignment problem

– The problem must be
balanced by adding
fictitious antennas or tracks

Auction
algorithm [23]

– Sometimes faster than
Hungarian method for very
small problems

– Well suited for
parallelization. Performs
better for problems where
data to perform a
centralized computation
cannot be obtained

– Easy to implement
– Also solves transportation

problems

– The total benefit does not
always increase with each
iteration

– Only gives one optimal
solution

– Slower for medium and
large problems

– Requires more memory
than Hungarian method

16

Integer Linear
Programming
(e.g., branch-
and-cut) [24]

– Easy to formulate
– Allows variations of the

assignment problem
– An Integer LP solver can

be used
– Parallelizable

– Slower than Hungarian
method

– Not easy to implement
– Only gives one optimal

solution

Linear
Programming
(Simplex) [24]

– Easy to formulate
– Allows variations of the

assignment problem
– An LP solver can be used
– Parallelizable
– Faster than branch-and-cut
– While removing the integer

constraints, result gives
integer values

– Slower than Hungarian
method

– Not easy to implement
– Only gives one optimal

solution

Table 1.1: Pros and cons of different methods for the assignment problem

Applying only heuristic algorithms, genetic algorithms or particle swarm optimiza-
tions is too slow for the proposed assignment problem, when compared with the
algorithms presented in the table above. However, integer linear programming algo-
rithms may be complemented with some heuristics. Also, machine learning is not
appropriate for the assignment problem because there is no training data. Finally,
checking all possible assignments (i.e., full factorial exploration) in the problem is in
most cases impossible due to combinatorial explosion.

The assignment problem could be speedily solved using a specific method such as the
Hungarian method or the Auction algorithm. However, the integer linear program-
ming option for the assignment problem could be merged with the mixed integer linear
programming option for the scheduling problem, forming a unique MILP problem for
the DSN SP, as discussed below.

Merged vs. separate assignment and scheduling problems

At this point, there are the following two possibilities on how to formulate and solve
the assignment and scheduling problems:

∙ Merged problem: The assignment and the scheduling problems are combined
into a single optimization problem.

∙ Separate problems: The assignment problem is executed before the schedul-
ing problem. The output of the assignment problem is part of the input of the
scheduling problem.

17

The advantages and disadvantages of both options are enumerated in Table 1.2.

Option Pros Cons

Merged
Problem

– Assignment
incompatibilities are
avoided as much as possible

– Global treatment of “The
DSN Scheduling problem”

– Total execution time
increases

– Complexity of the problem
increases

– Difficult to implement

Separate
Problems

– The assignment problem
can be solved with fast
algorithms (i.e., Hungarian
method)

– Both problems are easier to
implement when they are
separate

– Fast algorithms work only
for very specific assignment
problems

– The output of the
assignment problem can
generate incompatibilities
in the scheduling problem
that could have been
avoided

Table 1.2: Merged vs. separate assignment and scheduling problems

With this information and after some fast testing, the option of merging both prob-
lems in one MILP problem is preferred. This will allow us to implement characteristics
of the DSN that would be difficult to incorporate otherwise.

1.6 Thesis Statement

Once MILP has been introduced, it is possible to provide a set of solution-specific
research goals that are consistent with the research needs previously identified. These
goals are summarized in the following specific problem statement:

To develop an automated long-term scheduling toolkit that satisfies requested
DSN tracks both in time and type of resources used by:

1. Identifying, characterizing and modeling each requested track

2. Applying the visibility constraints between DSN stations and missions

3. Considering the evolution of the DSN architecture in the following years

18

4. Developing an algorithm that combines mission needs and DSN resources
into a mathematically-formulated problem to solve

5. Solving the mathematical problem that schedules the maximum number of
tracks possible given the DSN available resources

using mixed integer linear programming.

1.7 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 explains in detail how the automated long-term scheduling toolkit formu-
lates the MILP problem. It first presents some definitions necessary for the following
sections. Then it defines the objective function of the optimization problem. Next,
the section details the steps involved in formulating the MILP problem. The last
section of this chapter mathematically presents the MILP problem.

Chapter 3 presents and analyzes the results of several case inputs, using real NASA
missions and DSN inputs. Case 1 replicates a 22.5-year mission several times, impos-
ing hard conditions to the problem. Case 2 simulates a 2-month full DSN scenario.
It also discusses computational performance of the toolkit.

Finally, Chapter 4 summarizes the work conducted in this thesis, identifies its main
findings and contributions, and highlights opportunities for future work.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

2. Problem Formulation

In order to obtain a schedule of DSN operations for tens of years, there are three
important steps: (1) Generating the problem; (2) Solving the problem; and (3) Ob-
taining the results. In the scope of this thesis, solving the problem is done by an al-
ready implemented dynamic search and branch-and-cut provided by IBM’s CPLEX R○

solver. Therefore, generating the problem is the main step to be considered in this
chapter, which is divided into the following parts: First, some necessary definitions
are presented. Then, the objective function of the problem is defined. Next, the steps
involved in formulating the MILP problem are addressed. Finally, the MILP problem
is mathematically presented. The software developed in this thesis is named LTST,
which stands for Long-Term Scheduling Toolkit.

2.1 Definitions

This section provides some definitions necessary for the rest of the chapter. These
definitions complement the concepts presented in Chapter 1.

∙ Evolution of the DSN architecture: Information on the incorporation,
upgrade, maintenance and decommission of the antennas of the DSN.

∙ Mission: A mission is a spacecraft, satellite, missile, rover or space station
outside Earth. A mission has one or more visibility files associated to it. A
mission has several operational segments.

∙ Operational segment: Sequence of tracks of a mission with equal require-
ments. An operational segment has a start date and an end date. It also defines
the desired separation between tracks, the track length, the link requirements
and the visibility files to use.

∙ Track: Communication opportunity between a mission and the DSN. A track
requested is not always scheduled. Scheduled tracks cannot overlap same re-
sources with other tracks at the same time. A track has technical requirements,
a fixed length (usually between 1 and 14 hours) and can move within a fixed
window. The window will be reduced by a factor. Each track has a priority
associated to it. A track needs one or more links, depending on the type of
track.

∙ “DSN option”: A “DSN option” is an antenna or combination of antennas (in-
cluding ground station’s array processor if the option uses arraying for down-
link), that satisfy the requirements of all links in a given track. Each “DSN
option” has an start and an end time depending on the evolution of the DSN
architecture.

∙ “track option”: A “track option” is a “DSN option” of the track, shortened to
a smaller continuous time region that satisfy the visibility requirements and the

21

time window of the track. A “track option” is active if its track is scheduled in
it. It has a MILP binary variable indicating if the option is active. Only zero
or one “track option” can be active per track. A “track option” has a MILP
continuous variable indicating the start time of the track inside that option. It
also has a weight indicating the preference of the option over the rest of the
options both from the same track or from different tracks.

∙ Visibility: The visibility of a mission with a ground station is the time intervals
when the mission is visible to that ground station. Each time interval starts
with a rise time and ends with a set time. A visibility file can be associated to
a mission (e.g., a spacecraft) or to a waypoint (e.g., Mars). Visibility constrains
the time at which a link can be established.

∙ Link: Connection between a mission and a specific antenna of the DSN (or
a specific set of antennas for arraying). Links utilize a given frequency band
and typically support a predefined data rate. They can be classified as uplink,
a downlink, or both at the same time. Arraying can be used when there is
a downlink. In the scope of this thesis, an uplink is mainly constrained by
the required Equivalent Isotropically Radiated Power (EIRP), and a downlink
by the required gain-to-system noise temperature ratio (G/T) of the antenna
(DSS).

∙ Equivalent isotropically radiated power (EIRP): “Product of transmitter
power and antenna gain in a given direction relative to an isotropic antenna of
a radio transmitter” [25]. This is the minimum power that a DSN antenna must
radiate in order for the mission to receive the uplink signal.

∙ Gain-to-system noise temperature ratio (G/T): “Figure of merit in the
characterization of antenna performance, where G is the antenna gain in deci-
bels at the receive frequency, and T is the equivalent noise temperature of the
receiving system in kelvins. The receiving system noise temperature is the sum-
mation of the antenna noise temperature and the RF chain noise temperature
from the antenna terminals to the receiver output” [26]. To receive a downlink
signal, a DSN antenna must provide a minimum G/T so that the link budget
closes.

Some concepts presented above are broadened throughout the rest of the chapter.

2.2 Objective Function

To solve the DSN SP, the following objective function is considered:

𝑁∑︁
𝑖=1

𝑀𝑖∑︁
𝑗=1

(𝑤𝑖𝑗 × 𝑎𝑖𝑗) (2.1)

where 𝑤𝑖𝑗 is the weight of “track option” 𝑗 of track 𝑖, 𝑎𝑖𝑗 is a binary variable that
indicates whether that option is active or not, 𝑁 is the number of tracks in the
problem, and 𝑀𝑖 is the number of “track options” for track 𝑖. Note that constraints

22

explained later will guarantee that no more than one “track option” per track is active.

Since all weights are greater than zero, the MILP algorithm tries to set to 1 as many
𝑎𝑖𝑗 variables as possible, thus trying to maximize the number of tracks scheduled.
However, each “track option” has its own weight which indicates the preference of
choosing that option over all others. The way in which these weights are computed
is addressed below.

2.2.1 Weight of a “track option”

Weights in objective function (2.1) act in several ways. On the one hand, weights
guide the MILP algorithm during the optimization process. Particularly, the MILP
algorithm will generally try to start setting to 1 the 𝑎𝑖𝑗 variables with higher weights.
On the other hand, weights, together with constraints, specify the optimal solution
of the MILP problem.

It is worth explaining how weights are assigned to “track options”, how they influence
in the evolution of the MILP algorithm and how they impact the solution of the
problem by distinguishing two cases: Weights of “track options” of different tracks
and weights of “track options” of the same track. These are separately discussed in
the following two sections.

Weights of “track options” of different tracks

The difference between weights of “track options” of different tracks determine which
tracks are finally scheduled in oversubscribed intervals. Those weights also influence
in the order in which the MILP algorithm handles each track.

Four different values for 𝑤𝑖𝑗 –weight of “track option” 𝑗 of track 𝑖– are initially tested:

𝑤𝑖𝑗 = 1 (2.2a)
𝑤𝑖𝑗 = 𝑙𝑖 (2.2b)
𝑤𝑖𝑗 = log (1 + 𝑙𝑖) (2.2c)
𝑤𝑖𝑗 = 1 + log (1 + 𝑙𝑖) (2.2d)

where 𝑙𝑖 is the length of track 𝑖 in hours. The tests were run using a test input
data set that resulted in a dense but not oversubscribed schedule. Therefore, the
solutions obtained with the different 𝑤𝑖𝑗 alternatives were equally good. Then, the
study focused on how fast was each form of 𝑤𝑖𝑗. Assigning the same weight (e.g., 1)
to all tracks was somewhat slow, because the MILP algorithm did not differentiate
between any tracks. Therefore, we moved to more heuristic-based weight, where its
value was positively correlated with track length. Indeed, it is probably easier to
first schedule longer tracks and then fill the gaps with shorter tracks (instead of the
opposite or random direction).

Using this idea, we first tried to assign a weight equal to the track length. However,
that eliminated most shorter tracks because the difference in lengths of different
tracks could be an order of magnitude or higher. Therefore, applying the logarithm

23

as shown in Equation (2.2c) put the weights on a similar level but with different
values. This resulted in a total solver execution time that was faster than the other
two previous options. A 1 added to the track length is to avoid negative weights
when the logarithm is applied. Finally, Equation (2.2d) ended up being the fastest
by far. Adding a constant value to the logarithm made the MILP algorithm tend to
consider that not only the lengths of the scheduled tracks were important, but the
total number of scheduled tracks.

On the other hand, oversubscribed scenarios are considered as more common in DSN
operations. Consequently, the weight of any given track should mainly depend on
its relative importance with respect to all other tracks, rather than just focusing on
MILP speed. Therefore, in the latest version of the scheduling toolkit the weight of
a “track option” is initially defined as

𝑤𝑖𝑗 =

(︂
1 +

𝑠𝑖
𝑙𝑖

)︂(︂
1 +

log (1 + 𝑙𝑖)

2

)︂
(2.3)

where 𝑙𝑖 is the length of track 𝑖 and 𝑠𝑖 is the desired separation between tracks 𝑖 and
𝑖+1, both values in hours. The idea behind Equation (2.3) is that tracks that cover less
proportional time within their operational segment have preference over the others.
For example, if there is an operational segment with 6-hour tracks and a separation
of about 6 hours between tracks, and another operational segment also has 6-hour
tracks and a separation of about 1 month, tracks of the later operational segment will
have higher preference (higher weight) than tracks of the former operational segment.
This is due to the fact that not scheduling a track that occurs once per month is much
worse than not scheduling a track that normally occurs twice a day. On the other
hand, the logarithmic dependency with the length of the track still slightly increases
the preference for longer tracks.

Additionally, some tracks require a hot backup. This feature will be detailed later in
this thesis. However, a track with a hot backup requirement is a track with maximum
priority, such as human missions. Therefore, weights of “track options” of this type of
tracks are heavily increased. These weights are finally 10,000 times the value obtained
from Equation (2.3), which ensures that tracks with hot backup are always scheduled.

Weights of “track options” of the same track

Different weights are assigned to “track options” of the same track. Since up to one
“track option” per track can be active, the MILP algorithm gives preference to choose
an option with higher weight for each track. The key is that the “track option” chosen
for a track disturbs as less as possible other tracks. To achieve this, higher weights
are assigned to “track options” that:

∙ Use less amount of resources: A “track option” that uses less resources
compared to the rest of options of the same track disturbs less to other tracks.
This is because it keeps available more resources for other tracks. For example,
an option using only one 70-meter antenna has a higher preference (higher
weight) than an option for the same track arraying three 34-meter antennas
(and the array processor) in the same ground station. Therefore, using only one

24

the 70-meter antenna keeps available antennas for up to three other missions
in that ground station. Not only the number of resources is important, but the
maximum capacity and importance of each resource. For instance, an option
using one 34-meter antenna has a higher preference (higher weight) than an
option for the same track using one 70-meter antenna because then, the 70-meter
antenna still is available for another track that cannot happen in a 34-meter
antenna. Another example is when an option does arraying, it uses the array
processor of the ground station. Since there is currently one array processor
per ground station, that option does not allow other tracks to do arraying in
the same ground station simultaneously, even when the antennas required for
the arraying are available. Therefore, an option using the array processor of a
ground station is generally assigned a lower weight.

∙ Have a larger window: Options with a large window compared to the length
of the track allow the track to be easily rescheduled without changing “track
option”. This fact does the option less disturbing to other tracks, as its track
is more flexible in time. This option has a higher weight than the others of the
same track. Opposite, a “track option” where the window is slightly larger than
the length of the track makes that track difficult to move, so it disturbs other
tracks more.

A combination of the two previous concepts defines the final weight assigned to a
“track option” in comparison to the rest of “track options” of the same track. Weights
of “track options”, initially defined as in Equation (2.3), are slightly modified applying
these concepts. Note that the differences between weights of “track options” of the
same track are kept small. Particularly, those differences are orders of magnitude less
than the differences between “track options” of different tracks. This is because the
concepts presented in this section are secondary objectives of the problem. Priority
is given to scheduling as much tracks (the ones with higher preference) as possible.

2.3 Problem Formulation Process Flow

The software, programmed in Python, starts reading several input files: The DSN
architecture evolution file, the missions scheduler file, and the visibility files. The
scheduler files contains the operational segments for all the missions. The user can
specify a start and end dates, so only tracks within the specified region will be sim-
ulated. Operational segments of the missions in the scheduler input file are added
to the simulation. The data from the input file for an operational segment read is
its id and name, the start and end dates and times of the operational segment, the
link type, the frequency band, the days between tracks, the track length, whether hot
backup is required or not, the associated visibility information, the link direction(a),
and the G/T and/or EIRP values. With this information it is possible to generate
the tracks of the operational segment.

2.3.1 Global generation algorithm

The following pseudo-code summarizes the process flow of the DSN scheduling toolkit:

25

Algorithm 1: Generation algorithm of the LTST
1 input : s chedu l e r S , v i s i b i l i t y V, DSN evo lu t i on E
2 output : MILP problem
3 begin
4 problem ← ∅
5 foreach op_segment in S
6 Compute ‘DSN opt ions ’ using op_segment and E
7

8 foreach t rack in op_segment
9 Compute t rack l im i t s

10 Compute ‘ t rack opt ions ’ using ‘DSN opt ions ’ and V
and t rack l im i t s

11 t rack ← t rack + ‘ t rack opt ions ’
12 foreach ‘ t rack option ’ in t rack
13 problem ← var a c t i v e
14 problem ← var t_start
15 Compute c ompa t i b i l i t i e s of ‘ t rack option ’
16 foreach c ompa t i b i l i t y in c ompa t i b i l i t i e s
17 i f c ompa t i b i l i t y i s f u l l y compatible
18 continue
19

20 problem ← var both_active
21 problem ← constraint both_active
22

23 i f c ompa t i b i l i t y i s p a r t i a l l y compatible
24 i f c ompa t i b i l i t y i s double−cons t ra ined
25 problem ← var be f o r e
26 problem ← var a f t e r
27 problem ← constraint be f o r e and a f t e r
28 problem ← constraint avoid over lap #1
29 problem ← constraint avoid over lap #2
30 e l s e i f c ompa t i b i l i t y i s s i n g l e −cons t ra ined
31 problem ← constraint avoid over lap
32 end
33 e l s e i f c ompa t i b i l i t y i s incompat ib le
34 problem ← constraint l im i t ‘ t rack opt ions ’
35 end
36 end
37 end
38 problem ← constraint l im i t ‘ t rack opt ions ’
39 end
40

41 end
42

43 return problem
44 end

26

Each of the steps are explained in detail throughout this chapter. The first step is
computing the “DSN options” for the operational segment as explained below.

2.3.2 “DSN options”

The “DSN options” associated to an operational segment are all the possible combi-
nations of resources (antennas) that satisfy the given link requirements. As all tracks
in an operational segment have the same properties (e.g., frequency band, EIRP...)
the “DSN options” only needs to be computed once per operational segment. “DSN
options” also take into account the evolution of the DSN, by indicating start and end
dates of the option.

Three types of link can be established: uplink, downlink and uplink&downlink. Also,
Delta-DOR tracks, which do two simultaneous downlinks to two antennas in differ-
ent ground stations, must be treated separately. Explanations about computing the
“DSN options” for uplink, downlink, uplink&downlink and Delta-DOR are separately
addressed below. After, the special case of links requiring hot backup is explained.

Each individual link is defined by a link equation or link budget which relates all of
the parameters needed to compute the signal-to-noise ratio of the communications
system. The basic equation used in sizing a wireless communication link is

𝐸𝑏

𝑁0

=
𝑃𝐿𝑙𝐺𝑡𝐿𝑠𝐿𝑎𝐺𝑟

𝑘𝑇𝑠𝑅
(2.4)

where 𝐸𝑏/𝑁0 is the ratio of received energy-per-bit to noise-density, 𝑃 is the trans-
mitter power, 𝐿𝑙 is the transmitter-to-antenna line loss, 𝐺𝑡 is the transmit antenna
gain, 𝐿𝑠 is the space loss, 𝐿𝑎 is the transmission path loss, 𝐺𝑟 is the receive antenna
gain, 𝑘 is the Boltzmann’s constant, 𝑇𝑠 is the system noise temperature, and 𝑅 is the
data rate. The propagation path length between transmitter and receiver determines
𝐿𝑠, while 𝐿𝑎 is a function of factors such as rainfall density. For deep space missions,
𝐸𝑏/𝑁0 is in range -0.10 dB to 5 dB [27].

The term 𝑃𝐿𝑙𝐺𝑡 can be replaced by the 𝐸𝐼𝑅𝑃 , in watts. Also, Equation (2.4) can
be rewritten in decibels as

𝐸𝑏/𝑁0 = 𝐸𝐼𝑅𝑃 + 𝐿𝑠 + 𝐿𝑎 + 𝐺𝑟 + 228.6− 10 log 𝑇𝑠 − 10 log𝑅 (2.5)

where the 𝐸𝐼𝑅𝑃 is in dBW, 𝐸𝑏/𝑁0, 𝐿𝑠, 𝐿𝑎 and 𝐺𝑟 are in dB, 𝑇𝑠 is in K, 𝑅 is in
bps and 10 log 𝑘 = −228.60 dBW/(Hz·K). The sensitivity of the receiving station is
defined as 𝐺𝑟/𝑇𝑠 = 𝐺𝑟 − 10 log 𝑇𝑠 and is expressed in dB/K. In each link, 𝐿𝑠, 𝐿𝑎,
𝑅, and the minimum value of 𝐸𝑏/𝑁0 are considered fixed and known information.
Therefore, the 𝐸𝐼𝑅𝑃 of the transmitter and the 𝐺𝑟/𝑇𝑠 of the receiver determines if
the 𝐸𝑏/𝑁0 obtained using Equation (2.5) satisfies a minimum acceptable value.

For the purposes of this thesis, the input file indicates the minimum 𝐸𝐼𝑅𝑃 of the
transmitter DSN antenna required for uplinks and the minimum 𝐺𝑟/𝑇𝑠 of the receiver
DSN antenna(s) required for downlinks.

27

Uplink options

Computing all the “DSN options” for an uplink is simple since uplinks only require
one antenna. For each antenna, the intervals –within the limits of the operational
segment– when the antenna is capable of supporting the requested uplink are com-
puted. A link is supportable by a given antenna if it is in view with spacecraft for
a long enough period of time, it supports the desired frequency band and meets the
EIRP requirement specified in the input file.

Example 1. Some of the “DSN options” for an operational segment (year 2005)
requiring Ka32-band uplink tracks are:

∙ “DSN option 1.1” uses DSS-34 in Canberra

∙ “DSN option 1.2” uses DSS-24 in Goldstone

∙ “DSN option 1.3” uses DSS-65 in Madrid (from 2005-1-1 to 2005-7-14)*

∙ “DSN option 1.4” uses DSS-65 in Madrid (from 2005-7-30 to 2005-12-31)*

* DSS-65 in maintenance from 2005-7-15 to 2005-7-29.

Downlink options

In order to compute the “DSN options” for a downlink track that uses only one
antenna, a very similar procedure to the one explained for the uplink options is
followed. The difference is that in this case the antenna must support a downlink
connection in the specified frequency band during the interval. Now, to establish
and maintain a downlink connection it is necessary that the antenna provides a G/T
greater or equal to the requirement set by the operational segment.

On the other hand, in order to obtain the downlink “DSN options” for a track that
requires antenna arraying, almost all combinations of antennas that support downlink
in the specified frequency band are generated. Each combination must have between
two and four antennas from the same ground station. Also, the array processor of
the ground station is added to the resources used by the combination. Finally, the
G/T required by the track must be lower or equal to the one provided by the array,
which is calculated as

G/Tarray(dB) = 10× log

(︃
𝜂array ·

∑︁
𝑖∈array

10
G/T𝑖(dB)

10

)︃
(2.6)

where G/T𝑖 (dB) is the G/T in decibels of antenna 𝑖 in the array, and 𝜂array is an
efficiency factor of the arraying system. In the current version of the LTST, 𝜂array

is always 70%. If the G/T of the array satisfies the minimum G/T required by the
mission, then that array becomes a valid “DSN option” for the downlink connection.
However, the combinations where a subset of its resources is already a valid “DSN
option” for the downlink connection, are discarded. For example, if an array of two
antennas already satisfy the minimum G/T requested in the specified frequency band,
any array of more antennas containing these two antennas is discarded.

28

Example 2. Some of the “DSN options” for an operational segment (year 2007)
requiring X-band downlink tracks are:

∙ “DSN option 2.1” uses DSS-34, DSS-35 and the array processor of Canberra

∙ “DSN option 2.2” uses DSS-54, DSS-55 and the array processor of Madrid

∙ “DSN option 2.3” uses DSS-54, DSS-65 and the array processor of Madrid

∙ “DSN option 2.4” uses DSS-43 (70-meter antenna) in Canberra

∙ “DSN option 2.5” uses DSS-24, DSS-25 and the array processor of Goldstone
(from 2007-1-1 to 2007-2-19)*

∙ “DSN option 2.6” uses DSS-24, DSS-25 and the array processor of Goldstone
(from 2007-3-11 to 2007-12-31)*

* DSS-24 in maintenance from 2007-2-20 to 2007-3-10.

Uplink&downlink options

To obtain uplink&downlink options, the downlink options using the same link require-
ments are computed first. Now, for each downlink option it is necessary to compute
the intervals when one or more of its antennas support the requested uplink (minimum
EIRP in the specified frequency band) to the mission. Those uplink “DSN options”
must be within the time frame of the downlink option and use an antenna used by
the downlink option. Furthermore, the union of the intervals of the specific uplink
“DSN options” associated to the same downlink option is computed. The resulting
time intervals, using the resources of its associated downlink option, are the “DSN
options” for the uplink&downlink connection.

Example 3. Some of the “DSN options” for an operational segment (year 2007)
requiring X-band uplink&downlink tracks are exactly the same options as the
example presented for downlink tracks (Example 2). This applies because each of
those options has at least one antenna that support the X-band uplink requested.

Delta-DOR options

A Delta-DOR track requires establishing and maintaining two downlinks to different
ground stations simultaneously. Each of these downlinks can only use one 34-meter
antenna. Therefore, all combinations of two 34-meter antennas of different ground
stations are first generated. Then, for each combination, time intervals when both
antennas can continuously support a downlink (minimum G/T in the specified fre-
quency band) to the mission are the “DSN options” for the Delta-DOR track.

29

Example 4. Some of the “DSN options” for an operational segment (year 2008)
requiring X-band Delta-DOR tracks are:

∙ “DSN option 4.1” uses DSS-54 (Madrid) and DSS-35 (Canberra)

∙ “DSN option 4.2” uses DSS-34 (Canberra) and DSS-55 (Madrid)

∙ “DSN option 4.3” uses DSS-24 (Goldstone) and DSS-54 (Madrid)

∙ “DSN option 4.4” uses DSS-25 (Goldstone) and DSS-54 (Madrid)

∙ “DSN option 4.5” uses DSS-35 (Canberra) and DSS-25 (Goldstone)

Options with hot backup requirement

The hot backup requirement is set to all tracks of human missions, which have maxi-
mum priority with respect to the scheduling problem. This requirement implies that,
throughout the duration of the track, it is necessary to have extra resources available
(e.g., antennas) to reestablish and maintain the track in case one resource fails.

In order to compute “DSN options” with the hot backup requirement, the options
without considering the requirement should be obtained first. With the original “DSN
options”, all combinations of two options are generated. Then, the combinations
where any resource (antenna or array processor) is used by the two original options
are discarded. For each of the remaining combinations, the intersection (if any) of the
intervals of the two original options is a “DSN option” with hot backup requirement.
Therefore, the resources assigned to this option are the combination of resources used
by the two original options.

Example 5. Consider only the six “DSN options” listed in the example for down-
link tracks (Example 2). When the hot backup requirement is added, thirteen
possible “DSN options” with hot backup requirement are obtained. These are all
the possible combination (fifteen) of two of the six original options, except for two
combinations: options 2.5 and 2.6 –because they do not overlap in time–, and
options 2.2 and 2.3 –because some resources are used by both options–. Some of
the “DSN options” with hot backup requirement are:

∙ “DSN option 2.1+2.2” uses DSS-34, DSS-35, DSS-54, DSS-55 and the array
processors of Madrid and Canberra

∙ “DSN option 2.1+2.4” uses DSS-43, DSS-34, DSS-35 and the array processor
of Canberra

∙ “DSN option 2.3+2.5” uses DSS-54, DSS-65, DSS-24, DSS-25 and the array
processors of Goldstone and Madrid (from 2007-1-1 to 2007-2-19)

30

2.3.3 “Track options”

Once the "DSN options" for a given operational segment have been computed, the
software creates each track one by one. The first step for each track is to determine
its time window. The number of tracks in an operational segment is approximately
obtained by dividing the length of the operational segment by the sum of the track
length and the separation between consecutive tracks. Then, the time window of
the operational segment is divided by the number of tracks it has, and this division
is finally reduced by a certain margin to obtain the time window of a given track.
Figure 2-1 illustrates this process.

Track length +
Separation between tracks

Track Window

Operational Segment

…

Figure 2-1: Division of track windows in an operational segment

The reduction margin applied to a track is the same for all tracks in the same oper-
ational segment. The margin is currently calculated as the factor

𝑚𝑖 = 0.95

(︂
𝑠𝑖

𝑠𝑖 + 𝑙𝑖

)︂8

(2.7)

The length of a division in the operational segment (𝑠𝑖 + 𝑙𝑖) is reduced by 𝑚𝑖 (is
multiplied by 1−𝑚𝑖) and then centered, to obtain the time window of the track. In
case that the time window was shorter than the track length, it is enlarged to the track
length. The goal of Equation (2.7) is to apply a bigger reduction margin when there
is a lot of separation between tracks, and less reduction margin when the separation is
less. By doing this, tracks that would initially have a time window of months, end up
having a time window of a week, which greatly reduces the computational complexity
of the MILP solver.

At this point, all “track options” for a given track are created. Each operational
segment has visibility information associated. Each “DSN option” of the operational
segment uses resources from one or more ground stations. The “track options” of
a track are calculated by intersecting (in time) each “DSN option” of the track’s
operational segment with the correspondent visibility information and with the time
window of the track. Note that each “DSN option” must be intersected with the
visibility information of each ground station it uses. “track options” with a length
less than the track length are discarded. This process is illustrated in Figure 2-2.

31

“DSN option #1” uses DSS-54 (Madrid) and DSS-35 (Canberra)

Track Window
Track

Length

Visibility Madrid Visibility Madrid Visibility Madrid Visibility Madrid

Visibility Canberra Visibility Canberra Visibility Canberra Visibility Canberra

“track
option

#1”

“track
option

#2”

“track
option

#3”

Figure 2-2: Creation of “track options” for a Delta-DOR track, using one “DSN op-
tion”, visibility information and track window

To sum up, “track options” are computed from “DSN options” + visibility input +
track limits. See the following example.

Example 6. Consider only the first two “DSN options” listed in the example
for uplink tracks (Example 1). When the track window is February 22-23, 2005,
“track options” are:

∙ “track option 6.1” uses “DSN option 1.1” from 2005-2-22 10:04 to 14:27
(visibility in Canberra)

∙ “track option 6.2” uses “DSN option 1.1” from 2005-2-23 16:59 to 20:27
(visibility in Canberra)

∙ “track option 6.3” uses “DSN option 1.2” from 2005-2-22 11:04 to 15:27
(visibility in Goldstone)

∙ “track option 6.4” uses “DSN option 1.2” from 2005-2-22 19:01 to 22:34
(visibility in Goldstone)

Created variables

For each “track option”, the following two variables are added to the MILP problem:

∙ One binary variable: It indicates whether the “track option” is active (1) or
not (0). Its initial value is set to 0 (not active).

∙ One continuous variable: It indicates the start time of the track within the
“track option” if scheduled in that option. Its lower bound is the start time of
the “track option” and its upper bound is the end time minus the length of the
track. Its initial value is set to a random number between its upper and lower
bounds.

32

Finally, one constraint for the binary variables associated to the same track is added
to the MILP problem. This constraint ensures that no more than one “track option”
is active per track.

2.3.4 Compatibility between tracks

Scheduled tracks must not overlap. In order to guarantee this, we add one or multiple
constraints to the MILP problem depending on their compatibility. Three types of
track compatibility are defined: fully compatible, partially compatible, and incom-
patible. The algorithm currently implemented is optimized to compare only some
specific “track options”, as most are fully compatible. Each type of compatibility is
individually explained below.

Fully compatible “track options”

Two “track options” are fully compatible if an option does not interfere with the
other. This happens if any of these three conditions apply:

∙ Both “track options” do not overlap in time.

∙ There is no resource used by both “track options”.

∙ Both “track options” correspond to the same track, because there is already the
constraint that only one “track option” can be active per scheduled track.

Figure 2-3 shows two fully compatible tracks. They are fully compatible because
whenever both tracks are scheduled within these “track options”, they never overlap.

Mission 1:

Mission 2:

Track length

“track option” length

Figure 2-3: Two fully compatible “track options”

Partially compatible “track options”

Two “track options” are partially compatible if an option partially interferes with
the other. This happens for all non-fully compatible pairs that can schedule both
tracks without overlapping. Figure 2-4 shows two partially compatible tracks. They
are partially compatible because, depending on when both tracks are scheduled within
these “track options”, they overlap or not.

33

Mission 1:

Mission 2:

Track length

“track option” length

Figure 2-4: Two partially compatible “track options”

When the software finds a partially compatible pair of “track options”, the necessary
constraints are added to the MILP problem to ensure that both tracks do not overlap
(if both “track options” are active).

Incompatible “track options”

Two “track options” are incompatible if an option fully interferes with the other.
This happens for all non-fully compatible pairs that cannot schedule both tracks with-
out overlapping. Figure 2-5 shows two incompatible tracks. They are incompatible
because whenever both tracks are scheduled within these “track options”, they always
overlap.

Mission 1:

Mission 2:

Track length

“track option” length

Figure 2-5: Two incompatible “track options”

When the software finds an incompatible pair of “track options”, one constraint is
added to the MILP problem to ensure that no more than one of the two “track
options” is active.

2.4 The MILP Problem

Throughout this chapter, the process flow to formulate the MILP problem has been
explained in detail. This section mathematically presents the whole MILP problem.
Afterwards, constraints created due to compatibility issues between “track options”
are separately explained.

34

2.4.1 Optimization problem

The mathematical formulation of the optimization problem –MILP problem– of the
scheduling toolkit of this research is

maximize
𝑎, 𝑡𝑠𝑡𝑎𝑟𝑡

𝑁∑︁
𝑖=1

𝑀𝑖∑︁
𝑗=1

(𝑤𝑖𝑗 × 𝑎𝑖𝑗) (2.8a)

subject to

|
|
|
|

𝑀𝑖∑︁
𝑗=1

𝑎𝑖𝑗 ≤ 1,
𝑖 = {1, . . . , 𝑁},

.
𝑗 = {1, . . . ,𝑀𝑖}

(2.8b)

Constraints for partial compatibility. (2.8c)

Constraints for incompatibility
.
𝑖
| (2.8d)

𝑎𝑖𝑗 ∈ {0, 1},
𝑖

𝑖 = {1, . . . , 𝑁},
.

𝑗 = {1, . . . ,𝑀𝑖}
𝑖

(2.8e)

𝑡𝑚𝑖𝑛𝑖𝑗
≤ 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 < 𝑡𝑚𝑎𝑥𝑖𝑗

− 𝑙𝑖,
𝑖 = {1, . . . , 𝑁},

.
𝑗 = {1, . . . ,𝑀𝑖}

(2.8f)

where 𝑎𝑖𝑗 and 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 are the variables of the problem. Formula (2.8a) is the same
objective function as in (2.1). 𝑁 is the number of tracks in the problem, and 𝑀𝑖

is the number of “track options” of track 𝑖. 𝑤𝑖𝑗 (real numbers greater than zero)
are the weight of “track option” 𝑗 of track 𝑖 computed as explained in Section 2.2.1.
Binary variables 𝑎𝑖𝑗 represent whether “track option” 𝑗 of track 𝑖 is active (value
1) or not (value 0). Continuous variables 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 indicate the start time of track
𝑖 if it is scheduled in “track option” 𝑗 of track 𝑖. 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 is lower bounded by the
start time (𝑡𝑚𝑖𝑛𝑖𝑗

) of “track option” 𝑗 of track 𝑖. Similarly, it is upper bounded by
the end time (𝑡𝑚𝑎𝑥𝑖𝑗

) of “track option” 𝑗 of track 𝑖 minus the length of track 𝑖 (𝑙𝑖).
Constraint (2.8b) ensures that no more than one “track option” per track is active.
Finally, Constraints (2.8e) and (2.8f) are created when two “track options” are non-
fully compatible. These constraints are explained below.

2.4.2 Constraints for partially compatible “track options”

Consider that “track option” 𝑗1 of track 𝑖1 and “track option” 𝑗2 of track 𝑖2 are partially
compatible. The following set of variables and constraints need to be added in order
to guarantee that both tracks do not overlap if both “track options” are active. First,
a new binary auxiliary variable 𝑎(𝑖𝑗)1(𝑖𝑗)2 is added to the MILP problem. This binary
variable is defined using an indicator constraint, an efficient implementation of the
Big M method in IBM’s CPLEX R○ for “activating” or “deactivating” constraints. This
variable is defined as the following if-only-if indicator constraint

𝑎(𝑖𝑗)1(𝑖𝑗)2 =

{︃
1, if 𝑎(𝑖𝑗)1 + 𝑎(𝑖𝑗)2 = 2

0, otherwise
(2.9)

35

It indicates whether both “track options” are active (value 1) or not (value 0).

Constraints to ensure that track 𝑖1 and track 𝑖2 do not overlap when 𝑎(𝑖𝑗)1(𝑖𝑗)2 is set
to 1 must also be added. Two separate cases are considered below.

Double constraints

In this case, two tracks could be scheduled one before the other. Two new binary
auxiliary variables, 𝑏𝑒(𝑖𝑗)1(𝑖𝑗)2 and 𝑎𝑓(𝑖𝑗)1(𝑖𝑗)2 , are added to the MILP problem. When
𝑏𝑒(𝑖𝑗)1(𝑖𝑗)2 is set to 1, it indicates that track 𝑖1 is done before track 𝑖2. On the other
hand, when 𝑎𝑓(𝑖𝑗)1(𝑖𝑗)2 is set to 1, then track 𝑖1 is done after track 𝑖2. These binary
variables are restricted using the following if indicator constraint

𝑎(𝑖𝑗)1(𝑖𝑗)2 = 1 =⇒ 𝑏𝑒(𝑖𝑗)1(𝑖𝑗)2 + 𝑎𝑓(𝑖𝑗)1(𝑖𝑗)2 = 1 (2.10)

This ensures that when 𝑎(𝑖𝑗)1(𝑖𝑗)2 is set to 1, one and only one of variables 𝑏𝑒(𝑖𝑗)1(𝑖𝑗)2
and 𝑎𝑓(𝑖𝑗)1(𝑖𝑗)2 is set to 1.

Finally, the following ‘double’ if indicator constraints are added to the problem

𝑏𝑒(𝑖𝑗)1(𝑖𝑗)2 = 1 =⇒ 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)2 − 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)1 ≥ 𝑙𝑖1 (2.11a)

𝑎𝑓(𝑖𝑗)1(𝑖𝑗)2 = 1 =⇒ 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)1 − 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)2 ≥ 𝑙𝑖2 (2.11b)

Constraints (2.11a) and (2.11b) ensure that track 𝑖1 and track 𝑖2 do not overlap.

Single constraints

‘Single’ constraints are added instead of ‘double’ for two partially compatible tracks
when it is known that only one of the tracks could execute before the other. This can
happen depending on the time window of the two “track options” and the length of
both tracks, a situation that is detected when generating the MILP problem. In this
case, no 𝑏𝑒𝑓𝑜𝑟𝑒 or 𝑎𝑓𝑡𝑒𝑟 variables are created. Instead, one of the following ‘single’
if indicator constraints is added to the problem

𝑎(𝑖𝑗)1(𝑖𝑗)2 = 1 =⇒ 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)2 − 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)1 ≥ 𝑙𝑖1 (2.12a)

OR

𝑎(𝑖𝑗)1(𝑖𝑗)2 = 1 =⇒ 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)1 − 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖𝑗)2 ≥ 𝑙𝑖2 (2.12b)

Constraint (2.12a) is added to the problem if track 𝑖1 can only be done before track
𝑖2. Similarly, Constraint (2.12b) is added to the problem if track 𝑖1 can only be done
after track 𝑖2.

36

2.4.3 Constraints for incompatible “track options”

Consider that “track option” 𝑗1 of track 𝑖1 and “track option” 𝑗2 of track 𝑖2 are incom-
patible. Then, the following constraint is added to the MILP problem

𝑎(𝑖𝑗)1 + 𝑎(𝑖𝑗)2 ≤ 1 (2.13)

Since tracks in these “track options” would always overlap, Constraint (2.13) implies
that not both “track options” are active. This ensures no overlapping of the tracks.

2.4.4 Performance optimizations

The toolkit is implemented in Python and uses IBM’s CPLEX R○ to solve the MILP
problem. The solver uses dynamic search, branch-and-cut, and sometimes applies
heuristic algorithms during the branch-and-cut. It also provides indicator constraints,
which are used instead of Big M method constraints. Finally, it also allow to define
a time limit and an optimality level, that when reached the execution stops, and the
best result achieved is provided.

The performance of the solver depends on its configuration, and heavily on the prob-
lem to solve. Therefore, some changes are done to the original algorithm presented
in Section 2.3.1, in order to improve computational performance. The two relevant
changes are explained below:

∙ After some testing of the toolkit, it was found that there were tracks with
more than 100 “track options”, which was unnecessary and slowed down the
performance. In fact, with just a few “track options” per tracks is enough to get
a good solution. Therefore, now “track options” are limited to a maximum of 8
per track, which are randomly chosen from the 18 “track options” with highest
weight in the track. Other “track options” are discarded. These values were
chosen after some testing. However, they are customizable.

∙ When the MILP problem becomes very big, the toolkit executes the solver pe-
riodically as new batches of variables and constraints are added to the problem.
This strategy is analogous to a greedy algorithm: After the solver is executed,
constraints fixing all the integer (binary) variables to the solution are added
to the problem. Therefore, the solver only optimizes the new tracks added be-
tween the previous and the current execution of the solver. However, when the
problem is fully formulated, all constraints fixing variables are removed. Then,
the solver is executed starting with the advanced feasible solution previously
obtained.

Additionally, some minor tuning of the solver’s configuration parameters is done.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

3. Results

In this chapter, two cases run with the developed DSN schedule toolkit are presented.
The first case deals with the whole input of one mission. This mission lasts 22 and
a half years approximately. This mission is replicated up to 10 times to have a
set of several missions for the full 22.5 years. The second case corresponds to a 2-
month full real DSN scenario with 34 different missions. Each case is explained in a
section below.3

3.1 Case 1: Single mission replicated N times

The base input data for this case corresponds to a real NASA mission lasting 22.5
years. There are also two visibility input files: one pointing to the mission and
the other to a waypoint. The DSN architecture evolution file provided as input is
the current DSN architecture without any change during all period of interest. The
mission has 100 operational segments that generate 12,556 tracks. The mission is
then replicated up to 10 times in order to see how the software schedules missions
asking for the same resources at the same moment. First, results are analyzed, and
then, memory and time performance of the simulations are commented.

3.1.1 Analysis of the results

Table 3.1 shows some general results of this problem. Multiples simulations using 1
to 10 missions (same mission replicated) are executed. The first item to highlight
from the table is that not all tracks are scheduled when there is only one mission.
About 10% of the tracks are not scheduled in this test. With one mission it is possible
to expect that all tracks are scheduled, but there are two reasons of why this is not
true in our test. First, there are tracks that do not have any “track option”. This is
typically due to visibility restrictions rather than link requirements. The input can
request some tracks that are slightly larger than the visibility window for that period
of the year. Therefore, it is completely impossible to schedule that track even if there
were no more tracks in the system. And second, the input of a mission can have
overlapping operational segments, specially when they are of different type.

Another point to highlight from the information on the table is that the percentage
of tracks scheduled considerably decreases as the number of missions increases. Since
all missions are identical, their “track options” are also identical. Therefore, they are
requesting the same set of resources in the same period of time. The time window
of the options allows some flexibility to schedule tracks in the same period of time.

3 Author’s Note: Simulations on this chapter have been executed using past, present and future
NASA missions and DSN information. In order to obtain the clearance for unlimited release of this
thesis, several information and details of these simulations have been intentionally excluded from
this chapter.

39

However, the amount of resources of the DSN is limited. Therefore, the more tracks
requested, the more tracks not scheduled.

#missions #operational
segments #tracks #hours

tracks
#scheduled

tracks

#hours
scheduled

tracks

1 100 12,556 99,432 11,598 91,602

2 200 25,112 198,865 20,027 157,753

3 300 37,668 298,297 28,359 223,085

4 400 50,224 397,730 36,664 288,212

5 500 62,780 497,162 44,499 349,533

6 600 75,336 596,594 52,345 410,918

7 700 87,892 696,027 60,178 472,171

8 800 100,448 795,459 68,005 533,404

9 900 113,004 894,892 75,652 593,192

10 1000 125,560 994,324 83,306 653,052

Table 3.1: General results (Case 1)

Figure 3-1 plots the percentage of tracks and percentage of hours scheduled when run
with 1 to 10 missions. As expected, it shows a decreasing trend in the percentages. For
instance, simulations with 6 or more missions schedule less than 70% of the tracks
requested. Percentages of hours scheduled are almost equal to its corresponding
percentage of scheduled tracks, because tracks generally have similar lengths.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Tr
ac

ks
/H

o
u

rs
 S

ch
ed

u
le

d

#missions

hours scheduled

tracks scheduled

Figure 3-1: Tracks/hours scheduled vs. number of missions (Case 1)

40

3.1.2 Computational performance

Computational performance is kept to acceptable levels (i.e., a few minutes) thanks
to the performance optimizations presented in Section 2.4.4. Figure 3-2 plots the
execution time of each run, which shows that the execution time tens to increase
non-linearly with the number of input missions.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

#missions

Figure 3-2: Time performance (Case 1)

The computer memory used by the simulations has a similar behavior as time per-
formance. The more missions, the more memory used. For example, the complete
MILP problem when simulating 10 missions replicated has more than 1.3 million
variables and more than 4.1 million constraints. Generally, the more variables and
constraints has the problem, the more memory will be used by the toolkit and the
solver. Similarly, the more time IBM’s CPLEX R○ is running, the more memory is
used. That being said, in some cases the solver creates a file in the hard drive to par-
tially store tree nodes of the branch-and-cut when it is too big to fit in the memory
of the machine. However, this did not happen for simulations in Case 1 because of
the performance optimizations. Actually, IBM’s CPLEX R○ solver was executed at the
middle of adding tracks for mission 6, mission 8 and mission 10, and at the end of
each simulation. This made each execution of the solver to use less memory than if
this optimization was not implemented.

3.2 Case 2: 2-month full DSN scenario

The input data for this case corresponds to a real full DSN scenario for two months.
There are 34 different missions requesting DSN usage within that period. There are
many more visibility input files than Case 1 because now each mission has at least

41

one unique visibility file. The DSN architecture evolution file provided as input is the
current DSN architecture without any change during all period of interest. The input
has 211 operational segments that generate 3,620 tracks. As in the previous sections,
we first analyze the schedule results and then report memory and time performance
metrics.

3.2.1 Analysis of the results

From the 3,620 tracks requested, 2,457 tracks are scheduled. This corresponds to the
68% of the tracks requested. On the other hand, 7,203 of 12,928 hours requested
are finally scheduled. This corresponds to the 58% of the hours requested. There
is a notable difference between both percentages because the MILP problem gener-
ally prioritizes scheduling as many tracks as possible, regardless of their duration.
Furthermore, scheduling several short tracks can use the same amount and time of
resources as scheduling one large track. Therefore, we conclude from these results
that the average length of scheduled tracks is smaller than the average length of the
tracks requested.

0

200

400

600

800

1000

1200

D
SS

-6
3

 (
7

0
m

)

D
SS

-6
5

 (
3

4
m

)

D
SS

-5
4

 (
3

4
m

)

D
SS

-5
5

 (
3

4
m

)

A
rr

ay
 p

ro
ce

ss
o

r

D
SS

-1
4

 (
7

0
m

)

D
SS

-2
4

 (
3

4
m

)

D
SS

-2
5

 (
3

4
m

)

D
SS

-2
6

 (
3

4
m

)

A
rr

ay
 p

ro
ce

ss
o

r

D
SS

-4
3

 (
7

0
m

)

D
SS

-3
4

 (
3

4
m

)

D
SS

-3
5

 (
3

4
m

)

D
SS

-3
6

 (
3

4
m

)

A
rr

ay
 p

ro
ce

ss
o

r

Madrid Goldstone Canberra

U
sa

ge
 T

im
e

(h
)

Figure 3-3: Usage time of DSN resources for 2 months (Case 2)

Figure 3-3 plots the total amount of hours that each DSN resource is used for the
2 months. DSN resources considered are the Deep Space Stations (antennas) and
the array processor of each ground station. The figure indicates that resources in
GDSCC –Goldstone Deep Space Communication Complex– generally receive more
workload than resources in other sites. Since the characteristics of the antennas are

42

very similar from site to site, probably this happens because Goldstone complex have
longer visibility periods with space missions than other complexes because of their
location.

Finally, Figure 3-3 represents a real example of how the toolkit developed in this
research will be used. Indeed, loading analysis shown in these types figures could be
used to strategically plan future additional capabilities of the Deep Space Network.

3.2.2 Computational performance

The overall computational performance of this case using the current status of the
LTST is not as good as expected. The parameters of the software have been con-
figured to do 33 intermediate executions of the IBM’s CPLEX R○ solver following the
optimization explained in Section 2.4.4. These executions last between 1 and 11
seconds, in increasing order as more executions are performed.

The final solver execution incurs in significantly more time than all others. In fact,
the solver did not finish completely and it was instead terminated after one hour of
runtime. That being said, note at at this point the optimality level was already at
86% and therefore it becomes increasingly difficult to find better solutions in a very
large space of possibilities. It is coherent to think this because, given the input data
of this case, with a batch of tracks from different missions overlapping within a period
of only 2 months under consideration, the result that 68% of tracks are scheduled was
expected and is considered correct.

Memory management followed a similar tendency as time performance. Intermediate
executions of the solver do not use to much computer memory, because they finish
soon. In contrast, the last execution of the whole problem uses more memory as time
passes. For instance after 8 minutes the solver created a file to store tree nodes in
the hard drive. After an hour of execution, the compressed size of the file was more
than 6 gigabytes. Improvement of the computational performance –both in time and
memory– for this case should be conducted in the future, as explained in Section 4.3.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

4. Conclusions

4.1 Thesis Summary

The Deep Space Network is very expensive to build, maintain and operate. To address
this issue, additional system capabilities are planned strategically, years in advance,
by forecasting which missions will utilize the system in the coming decades. Therefore,
loading analyses are conducted assuming different scenarios, each one simulating DSN
operations for several years.

This thesis provides an automated long-term scheduling toolkit that can mimic real
DSN operations. Several factors are modeled and accounted for in this process: space-
craft visibility constraints, evolution of the DSN architecture, characteristics of each
antenna, as well as link and other operational constraints.

Chapter 1 introduced the main concepts of this research. First, the context and moti-
vation for this research were presented. Then, the state-of-the-art in DSN scheduling
was reviewed. Next, some background on DSN and DSN scheduling was provided.
Afterwards, the general problem statement was defined. Methods to solve “The DSN
Scheduling Problem” were analyzed in the literature review, and determined that the
best option was to formulate an optimization problem using Mixed Integer Linear
Programming. Finally, the thesis statement was presented.

Chapter 2 explained in detail how the LTST formulates the MILP problem. It first
presented some definitions necessary for the following sections. Then, it defined the
objective function of the optimization problem. The next section detailed the steps
involved in formulating the MILP problem and the last section in this chapter math-
ematically presented the MILP problem.

Chapter 3 presented and analyzed the results of several case inputs, using real NASA
missions and DSN inputs. Case 1 replicated a 22.5-year mission several times, impos-
ing hard conditions to the problem. Case 2 simulated a 2-month full DSN scenario.
It also discussed computational performance of the toolkit.

Finally, this chapter summarizes the work conducted in this thesis, identifies its main
findings and contributions, and highlights opportunities for future work.

4.2 Thesis Contributions

The main contributions of this research are summarized in the following list:

1. Review the state-of-the-art in DSN scheduling software. Section 1.2.1 reviewed
the state-of-the art in DSN scheduling. It specially focused on the algorithms
and techniques formulated before this research. Then, each software or work

45

presented in that section was discussed as to why it was not enough for the pur-
pose of this thesis, and why the research conducted in this thesis was necessary.

2. Identify the elements and factors involved in long-term DSN scheduling, di-
vided into two parts. The first part presented the main elements of the Deep
Space Network. The second part identified the elements and factors involved in
DSN scheduling.

3. Characterize the elements and factors involved in long-term DSN scheduling.
In the same background Section 1.3, as well as throughout Chapter 2, everything
involved in long-term DSN scheduling was characterized. The characteristics of
the elements were enumerated and considered whether they should be taken
into account for this research or not. The basic elements considered were: deep
space missions, operational segments, tracks, links and visibility.

4. Analyze and compare methods for solving the problem. Section 1.5 presented
several methods and algorithms to solve the assignment problem and the cover-
ing problem involved in “The DSN Scheduling Problem”. These were analyzed
and compared, and Mixed Integer Linear Programming (MILP) was the option
finally selected.

5. Formulate the mixed integer linear programming problem. Chapter 2 exten-
sively explains the algorithm to formulate the MILP problem. Decisions on this
generation algorithm are justified. This and the following contributions listed
here are the most important in this research.

6. Develop an automated long-term scheduling toolkit for the DSN (LTST). A
complete software has been developed using Python programming language
and the Python API of the IBM’s CPLEX R○ solver is used to solve the MILP
problem. The implementation of this toolkit is modular, splitting the source
code in several files.

7. Optimize the resolution of the MILP problem. Due to the complexity of the
problem at hand, some simulations were very slow to execute. Thus, some im-
portant optimizations were implemented in the software. Section 2.4.4 explained
the performance optimizations implemented.

8. Present the results and performance of two test cases including time perfor-
mance and memory management.

The present research conducted by the author at Jet Propulsion Laboratory concludes
with the implementation of an automated long-term scheduling toolkit for the Deep
Space Network, and the writing, submission and defense of this thesis.

4.3 Future Work

There exists several areas for future work within this research. These areas can be
grouped in two categories: (1) Future work to add or improve features of the schedul-
ing toolkit; and (2) future work for improving time performance, memory managing,
and scalability of the resolution of the MILP problem. Within the first category, one

46

feature to be implemented is considering the Sun-Earth-Probe (SEP) angle as a factor
to take into account while scheduling passes.4 When this angle (in absolute value) is
small, a connection between Earth and the spacecraft cannot be established because
of the noise added by the Sun’s radiation. Note that this value is already provided
in the visibility input files. Therefore, the visibility should be shortened so that does
not include small SEP angles. However, the availability of the connection depends
on the frequency band. For instance, while Ka-band communication is assumed to
be unavailable for SEP angles of less than 1∘, X-band communication is assumed
unavailable for SEP angles of less than 3∘ [28]. Therefore, the visibility due to the
SEP angle will depend on the frequency band of the track.

Another feature to improve would be to take into account the duration of the oper-
ational segment when creating the “track options” weights. For example, if there is
an operational segment with just one track, and the length of the track is almost the
same as the length of the operational segment, Equation (2.3) should give the track
a very high weight. This is due to the fact that not scheduling that track would be
very bad as it is the only track of an entire operational segment.

An advanced feature to be added would be the formulation of complex “track options”.
For example, instead of a track having a fixed length and data rate, a “track option”
could have a specific data rate according to the antennas used and the characteristics
of the spacecraft. Therefore, if different “track options” for the same track have
different data rates, the length of the track would depend on which option is finally
chosen. Another advanced “track option” would be allowing split tracks. In other
words, when a track is too long, the LTST could automatically split the track into
two close tracks with equal characteristics, that end up transmitting the same total
amount of data as the original requested track.

The second category defined for future work –improving time performance, memory
managing, and scalability of the resolution of the MILP problem– is the major chal-
lenge. This thesis mainly focused on the generation process of the problem, although
it included some performance optimizations in Section 2.4.4. However, these opti-
mizations were added at the end of this research because they were necessary to run
all the tests and obtain results. Therefore, more tuning of the problem parameters and
the solver’s configuration parameters should be carried out. For example, improving
the time instances when the partial problem is solved would be key for performance
improvement. Now, the solver is defined to run when certain amount of MILP vari-
ables and constraints are achieved. However, small problems should still need to have
intermediate executions of the solver, even if they have less variables and constraints
than bigger problems that do not need intermediate executions of the solver. This
can happen because some constraints can restrict the MILP problem more than other
constraints. Big amounts of tracks of different missions within the same time region
generate a MILP problem difficult to solve. Therefore, while these tracks are added,
some execution of the solver will be helpful for the overall performance of the toolkit.

4 Angle between the straight lines from Earth to the Sun and from Earth to the probe (mission).

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

Bibliography

[1] Leslie Deutsch. NASA’s Deep Space Network: big antennas with a big
job, 2012. URL https://trs.jpl.nasa.gov/bitstream/handle/2014/42668/
12-1936_A1b.pdf.

[2] Glen Nagle and Korinne McDonnell. Canberra Deep Space Communication Com-
plex - NASA’s Deep Space Network, 2017. URL https://www.cdscc.nasa.gov/
Pages/antennas.html. Accessed on 2019-06-10.

[3] David Doody. Basics of Space Flight. Chapter 18: Deep Space Network, 2017.
URL https://solarsystem.nasa.gov/basics/chapter18-1/. Accessed on
2019-05-31.

[4] James Zumberge, Leslie Deutsch, and Steve Townes. Deep Space Com-
munications, 2017. URL https://scienceandtechnology.jpl.nasa.gov/
research/research-topics-list/communications-computing-software/
deep-space-communications. Accessed on 2019-05-31.

[5] Marc Sanchez Net. Support of Latency-sensitive Space Exploration Applications
in Future Space Communication Systems. PhD thesis, Massachusetts Institute
of Technology Department of Aeronautics and Astronautics, Cambridge, Mas-
sachusetts, jun 2017.

[6] Mark Johnston and Jigna Lad. Integrated Planning and Scheduling for NASA’s
Deep Space Network – from Forecasting to Real-time. In 15th International
Conference on Space Operations, Reston, Virginia, may 2018. American Insti-
tute of Aeronautics and Astronautics. ISBN 978-1-62410-562-3. doi: 10.2514/6.
2018-2728.

[7] Butch Carruth, Mark Johnston, Adam Coffman, Mike Wallace, Belinda Arroyo,
and Shan Malhotra. A Collaborative Scheduling Environment for NASA’s Deep
Space Network. 2012. doi: 10.2514/6.2010-2284.

[8] Mark Johnston. Automating Mid- and Long-Range Scheduling for NASA’s Deep
Space Network. In SpaceOps 2012 Conference, Reston, Virigina, jun 2012. Amer-
ican Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-1296235.

[9] Mark D. Johnston, Daniel Tran, Belinda Arroyo, and Chris Page. Request-Driven
Scheduling for NASA’s Deep Space Network. In 6th International Workshop on
Planning and Scheduling for Space (IWPSS-09), 2009.

[10] Kar-Ming Cheung, C.H. Lee, W.B. Gearhart, T. Vo, and S. Sindi. Link-capability
driven network planning and operation. In Proceedings, IEEE Aerospace Con-
ference, volume 7, pages 7–3281–7–3285. IEEE. ISBN 0-7803-7231-X. doi:
10.1109/AERO.2002.1035304.

49

https://trs.jpl.nasa.gov/bitstream/handle/2014/42668/12-1936_A1b.pdf
https://trs.jpl.nasa.gov/bitstream/handle/2014/42668/12-1936_A1b.pdf
https://www.cdscc.nasa.gov/Pages/antennas.html
https://www.cdscc.nasa.gov/Pages/antennas.html
https://solarsystem.nasa.gov/basics/chapter18-1/
https://scienceandtechnology.jpl.nasa.gov/research/research-topics-list/communications-computing-software/deep-space-communications
https://scienceandtechnology.jpl.nasa.gov/research/research-topics-list/communications-computing-software/deep-space-communications
https://scienceandtechnology.jpl.nasa.gov/research/research-topics-list/communications-computing-software/deep-space-communications

[11] Yijiang Chen, Douglas S. Abraham, David P. Heckman, Andrew Kwok, Bruce E.
MacNeal, Kristy Tran, and Janet P. Wu. Architectural and operational con-
siderations emerging from hybrid RF-optical network loading simulations. In
Hamid Hemmati and Don M. Boroson, editors, Free-Space Laser Communica-
tion and Atmospheric Propagation XXVIII, volume 9739, page 97390P, 2016.
doi: 10.1117/12.2213594.

[12] Colin E. Bell. Scheduling deep-space network data transmissions: a Lagrangian
relaxation approach. volume 1963, pages 330–340. International Society for Op-
tics and Photonics, mar 1993. doi: 10.1117/12.141750.

[13] E. Kan, J. Rosas, and Q. Vu. Operations mission planner - 26m user guide
modified 1.0. Technical report, Jet Propulsion Laboratory, 1996.

[14] S.A. Chien, R.W. Hill, A. Govindjee, X. Wang, T. Estlin, M.A. Griesel,
R. Lam, and K.V. Fayyad. A hierarchical architecture for resource alloca-
tion, plan execution, and revision for operation of a network of communica-
tions antennas. In Proceedings of International Conference on Robotics and Au-
tomation, volume 4, pages 3340–3347. IEEE, 1997. ISBN 0-7803-3612-7. doi:
10.1109/ROBOT.1997.606798.

[15] Mark D. Johnston. Multi-Objective Scheduling for NASA’s Future Deep Space
Network Array. In 5th International Workshop on Planning and Scheduling for
Space (IWPSS-06), 2006.

[16] Thuy Mai. Deep Space Network, 2018. URL https://www.nasa.gov/
directorates/heo/scan/services/networks/dsn. Accessed on 2019-06-09.

[17] Andrew Kwok. 201, Rev. B: Frequency and Channel Assignments. Technical
report, Jet Propulsion Laboratory, 2009. URL https://deepspace.jpl.nasa.
gov/dsndocs/810-005/201/201B.pdf.

[18] N. Renzetti. DSN Functions and Facilities. Technical report, Jet Propulsion Lab-
oratory, 1975. URL https://ipnpr.jpl.nasa.gov/progress_report2/42-28/
28A.PDF.

[19] Kevin Hussey, Michael Rodrigues, Shannon McConnell, Michael Levesque, Doug
Ellison, Stephen Hurley, Erik Boettcher, Davit Stepanyan, Kristine Nguyen,
Daren Lee, Bach Bui, Jim McClure, Dan Goods, Brian Kumanchik, Chris-
tian Lopez, Justin Moore, and Andrea Boeck. DSN Now, 2019. URL https:
//eyes.nasa.gov/dsn/dsn.html. Accessed on 2019-06-09.

[20] Bruce E. MacNeal, Douglas S. Abraham, Rolf C. Hastrup, Janet P. Wu,
Richard J. Machuzak, David P. Heckman, Robert J. Cesarone, Raffi P. Tikid-
jian, and Kristy Tran. Mission set analysis tool for assessing future demands on
NASA’s Deep Space Network. In 2009 IEEE Aerospace conference, pages 1–11.
IEEE, mar 2009. ISBN 978-1-4244-2621-8. doi: 10.1109/AERO.2009.4839377.

50

https://www.nasa.gov/directorates/heo/scan/services/networks/dsn
https://www.nasa.gov/directorates/heo/scan/services/networks/dsn
https://deepspace.jpl.nasa.gov/dsndocs/810-005/201/201B.pdf
https://deepspace.jpl.nasa.gov/dsndocs/810-005/201/201B.pdf
https://ipnpr.jpl.nasa.gov/progress_report2/42-28/28A.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-28/28A.PDF
https://eyes.nasa.gov/dsn/dsn.html
https://eyes.nasa.gov/dsn/dsn.html

[21] Michael L. Pinedo. Deterministic Models: Preliminaries. In Scheduling,
pages 13–32. Springer International Publishing, Cham, 2016. doi: 10.1007/
978-3-319-26580-3_2.

[22] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In 50
Years of Integer Programming 1958-2008, pages 29–47. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-540-68279-0_2.

[23] Dimitri P. Bertsekas and David A. Castanon. The auction algorithm for the
transportation problem. Annals of Operations Research, 20(1):67–96, dec 1989.
ISSN 0254-5330. doi: 10.1007/BF02216923.

[24] Gerard Sierksma and Yori Zwols. Linear and integer optimization : theory and
practice. CRC Press, 2015. ISBN 9781498710169.

[25] Telecom ABC. Equivalent Isotropically Radiated Power, 2008. URL http:
//www.telecomabc.com/e/eirp.html. Accessed on 2019-06-12.

[26] Wikipedia. Antenna gain-to-noise-temperature, 2017. URL https://en.
wikipedia.org/w/index.php?title=Antenna_gain-to-noise-temperature&
oldid=759398933. Accessed on 2019-06-12.

[27] Consultative Committee for Space Data Systems. TM Synchronization and
Channel Coding - Summary of Concept and Rationale. Technical report, 2012.
URL https://public.ccsds.org/Pubs/130x1g2.pdf.

[28] Yanping Guo, James Mcadams, Martin Ozimek, and Wen-Jong Shyong. So-
lar Probe Plus Mission Design Overview and Mission Profile. In International
Symposium on Space Flight Dynamics, 2014.

51

http://www.telecomabc.com/e/eirp.html
http://www.telecomabc.com/e/eirp.html
https://en.wikipedia.org/w/index.php?title=Antenna_gain-to-noise-temperature&oldid=759398933
https://en.wikipedia.org/w/index.php?title=Antenna_gain-to-noise-temperature&oldid=759398933
https://en.wikipedia.org/w/index.php?title=Antenna_gain-to-noise-temperature&oldid=759398933
https://public.ccsds.org/Pubs/130x1g2.pdf

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	State-of-the-art in DSN scheduling
	Service Scheduling Software
	Loading Analysis and Planning Software
	Link-Capability Driven Network Planning and Operation
	Architecture Loading Analysis Tool
	Other DSN scheduling toolkits

	Background
	The Deep Space Network
	DSN Architecture
	DSN Operations
	Antenna Arraying
	Delta-Differential One-Way Ranging
	Multiple Spacecraft Per Antenna
	Multiple Uplink Per Antenna

	``The DSN Scheduling Problem''
	Assigning resources to tracks
	Covering missions by sharing resources
	Scheduling tracks in the DSN

	General Problem Statement
	Literature Review
	Methods for ``The DSN Scheduling Problem''
	Methods for the scheduling problem
	Methods for the assignment problem
	Merged vs. separate assignment and scheduling problems

	Thesis Statement
	Thesis Structure

	Problem Formulation
	Definitions
	Objective Function
	Weight of a ``track option''
	Weights of ``track options'' of different tracks
	Weights of ``track options'' of the same track

	Problem Formulation Process Flow
	Global generation algorithm
	``DSN options''
	Uplink options
	Downlink options
	Uplink&downlink options
	Delta-DOR options
	Options with hot backup requirement

	``Track options''
	Created variables

	Compatibility between tracks
	Fully compatible ``track options''
	Partially compatible ``track options''
	Incompatible ``track options''

	The MILP Problem
	Optimization problem
	Constraints for partially compatible ``track options''
	Double constraints
	Single constraints

	Constraints for incompatible ``track options''
	Performance optimizations

	Results
	Case 1: Single mission replicated N times
	Analysis of the results
	Computational performance

	Case 2: 2-month full DSN scenario
	Analysis of the results
	Computational performance

	Conclusions
	Thesis Summary
	Thesis Contributions
	Future Work

	Bibliography

