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Abstract

This thesis proposes the application of residue checking techniques on cryptographic
accelerators to protect these circuits against malicious attacks. The focus is set in two
different types of attacks. On one hand, the detection of hardware Trojans inserted
during the design phase of a chip. On the other hand, finding errors injected during the
execution of the system to avoid differential fault analysis attacks.

Hardware Trojans are malicious modifications of electronic circuits that can be
introduced in any of their production phases and can affect the circuit in different ways.
From all the different types of Trojans, we are addressing hardware Trojans introduced
on the design or the fabrication phase of a chip focusing on the attacks where the
variations affect the functionality of the circuit. For that reason, the evaluated systems
are described in RTL using an HDL language. In this case, the proposed solution must
be able to detect any change on the signals that the Trojan produces on the circuit and
indicate somehow the system has been manipulated so it is not trustworthy.

Differential Fault Analysis (DFA) attacks try to obtain secret information from the
execution of a cryptographic algorithm like other side channel attacks. The information
is obtained by doing multiple executions for the same inputs where errors are injected
during this execution. These executions generate a set of incorrect outputs through
which sensitive information can be acquired. In this case, the proposal has to be able
to perceive the alteration on the signals calculating the encrypted/decrypted value to
repel the DFA attack by changing the output to a random value leaking no information
to the attacker.

The technique used to detect these errors is called residue checking. Residue checking
is a procedure initially defined to detect soft-errors in functional units. In this thesis, we
propose to extend the usage of residue checking to security purposes and, specifically,
to detect hardware Trojans and DFA attacks. To the best of our knowledge, this is the
first time this combination is proposed.

In order to evaluate the proposal, three different cryptographic algorithms have been
selected to apply residue checking (RSA, SHA and AES). These algorithms use distinct
encryption schemes. We demonstrate how residue checking can be successfully applied
in all of them with the aim of detecting hardware Trojans and repel DFA attacks.

First, we implemented the residue checker on the selected cryptographic circuits.
Then, the protected circuit has been simulated to measure the error detection rate of
the system with different configurations. Additionally, we have measured the overhead
of the protection circuit in terms of operating frequency, power consumption and area.
The goal of this assessment is to calculate how effective and costly is to apply the residue
checking technique as a protection mechanism in cryptographic circuits.
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1. Introduction, motivation and goals
Nowadays, the number of computing devices is increasing and along with cyber-attacks
are also rising [33]. These attacks can be set at different layers like in the application
or operating system level, on the software layer, but also at the hardware level (Figure
1.1). One example of these attacks is the failure of a Syrian radar which microprocessors
had a hidden backdoor inside that temporarily blocked the radar[1]. Another example
of a hidden backdoor is the one in the chips used by Boeing 787 planes that could
allow cyber-criminals to override and control the computer systems[4]. There are also
examples of attacks on the field of security as the one on the random generator used for
cryptography in Intel Ivy Bridge processors [36].

Figure 1.1: Estimated number of systems affected given a vulnerability per system level

Hardware has been always the target of reverse engineering for competitiveness
between companies in the sector. However, in the last years, it has also become the target
of malicious attacks in order to gain access to a computer or to extract information.
Apart from the previous examples, there are much more critical vulnerabilities that
have been discovered in modern processors like Spectre[29], Meltdown[32], RIDL[51]
or Zombie Load[49]. These attacks can be prevented, once they had been discovered,
through software patches. But, these patches are only a fix, not a solution. Using a patch
can only be applied once the attack has been discovered implying that numerous system
has been already compromised. Additionally, patches can degrade the performance of
the system because to prevent the attack they have to change the initial behaviour of the
system that it has been planned during the design phase. Therefore, new systems must
tend to a secure by design approach where the security policies are embedded therein.

Hardware is the base of systems and all the layers built on top depends on it. For
that reason, if the hardware is vulnerable, then the whole system is compromised that
is why it should be protected.

Historically hardware has been a trusted source as all design and manufacturing were
done by the same reliable company. Nevertheless, these days the high manufacturing
costs have split the semiconductor industry into three kinds of companies: i) “Pure-play
semiconductor foundries” which business is focus on the manufacturing process producing
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integrated circuits (ICs) for other companies (e.g TSMC, GlobalFoundries), ii) “fabless”
companies that do the design but do not produce the chip (e.g. Qualcomm, ARM) and
iii) “integrated device manufacturers” that both design and manufacture (e.g. Intel,
Samsung). This fragmentation implies multiple companies into the ICs production
cycle(Figure 1.2) breaking the trust chain from the design to the product manufacturing.
Consequently, security principles need to be put in place at the design time to anticipate
vulnerabilities in order to guarantee a trustful product.

Figure 1.2: ICs production cycle

In the vulnerable process of chip production, many modifications can be inserted
like hardware Trojans during the design or fabrication phase. After fabrication, fault
injection can be used to obtain information from non-protected chips as in DFA attacks.

Two complementary approaches can be used to make this process more trustworthy:
i) white box approach when the design is completely made by the trusted company
and ii) black box approach applied when the product contains multiple modules (IPs)
designed by others. The white box approach is based on inserting the corresponding
security functionalities during the design phase to guarantee the service once manufactured
elsewhere. The black box approach extends the design based on third-party IPs with
extra functionalities to ensure the trust in the non-trusted parts.

1.1 Hardware Trojans
Hardware Trojans are malicious circuits place on a trusted chip that can cause unexpected
behaviours on the regular operation of the system.

(a) Trigger[30] (b) Payload

Figure 1.3: Classification of hardware Trojans

2



Hardware Trojans can be classified based on how they are triggered and their payload[10]
(Figure 1.3). This malicious circuits can be triggered after i) a combination of conditions
what is also called logical condition triggered or ii) a sequence of events during execution(Figure
1.3a). In case the Trojan is activated after a sequence of events, these occurrences can
be based on i) a physical condition like the input of the user or a change on the activity
of the circuit like rising the temperature of the system; or ii) time-based .

Based on how Trojans affect the execution of the system (Figure 1.3b), they can
perform two different actions: i) change the intended functionality or ii) steal information
. Changing the functionality of the circuit includes: i) returning a non-desire output,
ii) including a delay on the system, iii) a bridging fault that connects two signals of
a system to output the dominant signal, iv) changing the operational activity like
consuming more power what could drain the battery of the device or v) denying the
service (DoS) where the chip will stop running . Information-stealing attacks can
be applied using a side channel attack to get through this external circuit relevant
information without notifying the user or by reading sensitive content from memory.

Figure 1.4 shows an example of a hardware Trojan characterise as a combinational
triggered - after a combination on the inputs A and B that change the original output C.

Figure 1.4: Example of a functional hardware Trojan[9]

Hardware Trojans are usually difficult to detect as they hide in the circuit, they
trigger on a specific unknown condition and they can affect the circuit in different ways.
Moreover, as devices are becoming smaller and more complex, it is difficult to detect
them. Additionally, millions of chips are fabricated and it is not possible to test all these
chips one by one to ensure they do not include any hardware Trojan.

1.2 Differential Fault Analysis (DFA)
DFA attacks are applied to cryptography circuits as a type of side channel attacks to
steal sensitive information such as the encryption key [27]. DFA is based on injecting
maliciously erroneous values into a cryptographic circuit while it is in execution multiple
times and then collecting all these incorrect outputs to analyse them and infer secret
information like the internal state of the system or cryptographic keys. This attack is
denoted as a white-box attack because the attacker has access to the target code and it
can manipulate it to interfere on the execution using developer tools such as debuggers
or emulators[56].
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An example of how DFA works on the Advanced Encryption System (AES) algorithm
is shown in figure 1.5. The attacker injects a fault in a certain bit and knowing
which operations are done to calculate the output of the cryptographic algorithm it
can determine which bits will change from the original output as it shows subfigure
1.5a. Additionally, from the output with faults, the correct output and knowing where
the errors were injected, along with an analysis of the algorithm behaviour it can be
determined some certain subkeys of the algorithm that will lead to discovering the cipher
key (Subfigure 1.5b).

(a) Analysis of how the output changes based on the input in AES[15]

(b) Erroneous output based on a fault injection [13]

Figure 1.5: Example of a Differential Fault Analysis attack on AES

DFA has been demonstrated to be a very effective attack technique as it allows the
attacker to choose which faults to inject and at which place in the circuit to insert them.
Also, because it can attack several cryptographic algorithms like the symmetric key
algorithms AES[15] or RSA[11]. The attacker just needs to know how the cryptography
algorithm behaves to calculate the amount of insertion to do and the analysis to be done
from the collected data to get the secret key. But, even if the cryptography algorithm
is not known by the attacker doing multiple executions with different injections can
help the attacker by analysing the output of how the algorithm behaves and steal secret
information based on that[11].

1.3 Objectives of this thesis
The main objective of this thesis is to implement a method at the HDL level to detect
hardware Trojans changing the system functionality and DFA attacks on cryptographic
algorithms. The implemented residue checker should be able to detect security attacks
extending the application of this technique to security from the original soft-error detection
[37]. This method should be as general as possible to be applied to multiple types of
cryptographic algorithms such as symmetric-key algorithm and hash functions.

Another goal of this project is to measure the coverage, cost, and impact of the
method proposed. Consequently, it will be evaluated the overhead in area, energy
consumption and performance impact on an FPGA substrate.
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2. State of the art
This chapter shows an overview of the recent research done to detect hardware attacks.
In concrete, it focuses on the two attacks this thesis faces that are hardware Trojans and
DFA. There is also a synopsis about the work done related to residue checking and the
fields in which residue checking was already applied.

This chapter concludes with the progress beyond the state of the art of this thesis.

2.1 Techniques to detect hardware Trojans
Over the last years, several kinds of techniques have been presented that detect a certain
type of hardware Trojans. These proposals can be classified in four different techniques
to detect Trojans: i) side channel analysis, ii) logic testing iii) machine learning and
iv) formal methods . However, there are other proposals on the literature such as
runtime methods, reverse engineering and Trojan activation methods[7].

Side channel analysis techniques measure non-functional properties of the manufactured
chip in operation such as power consumption, leakage, temperature, delay or electromagnetic
radiation and compare these values with the ones from the trusted design or manufactured
chip. This technique is not good for small circuits as it is susceptible to experimental
and process variation noise.

Logic testing is based on triggering a rare event on various internal nodes and
propagate it to an output node to observe its effect. This method is not affected by
process variation and noise effects but it has the difficulty to define correctly the test
vector for that reason is a good option for small circuits.

Machine learning techniques study elements on the circuit such as netlists in order
to detect Trojan features and then perform the detection task effectively based on the
learned patterns during the circuit analysis phase.

Formal methods verify the design of a circuit to fulfil all the requirements specified.
These methods are applied to the pre-synthesised hardware designs.

2.1.1 Side channel analysis techniques

Atieh Amelian and Shahram Etemadi Borujeni[3] present a method based on side-channel
analysis to detect hardware Trojans measuring path delay. The method does not modify
the target circuit and it can be applied to test the IC after its manufacturing. The
method calculates the delay on a set of selected paths of the circuit and then comparing
the expected delay of the Trojan-free design with the delay on the same paths of
the manufactured IC it can decide if any hardware Trojan has been inserted during
fabrication. This method detects more than 80% of Trojans using a configuration of 20
paths with an accuracy of 0.01 ns.
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Nguyen, Luong N., et al.[38] propose to use backscattering (i.e. the reflection of
signals back to their original direction) for hardware Trojan detection as this signal can
provide information about the ongoing state of a system. The goal of the paper is to
can detect dormant Trojans (i.e not active Trojans) on circuits to determine possible
malicious modifications on ICs without needing to identify the activation condition from
the many possible triggers. The proposal is evaluated along with cross-training using
the Trojan-free design three different Trojans from TrustHub[41] that leak information
or do a DoS attack. Evaluation results show that all three cases have been correctly
detected the Trojan.

Hossain, Fakir Sharif, et al. [22] specify three detection methods based on a side-channel
analysing power consumption. One of the methods is a modification of scan segmentation
methodology[23], previously proposed by the authors. Another method is Equal-Power
Self-referencing (EP) that obtains gating points with EP from the design and then it
applies the detected EP patterns and measures the generated currents individually. The
third method proposed is Equal-Power Neighbouring self-referencing (EPN) and it tries
to improve detection sensitivity on circuits with many process variations. The system
is evaluated by inserting two different Trojans from TrustHub[41] into an AES without
altering the original layout of the circuit. The results obtained differ from one circuit
and another giving better results the EPN algorithm in all the tested cases.

2.1.2 Logic testing techniques

Amin Bazzazi et al.[7] define a way to localise hardware Trojans based on the logical
values of nodes at runtime combining logic testing and runtime techniques for hardware
Trojan detection. The method analyses the circuit and obtains a set of nodes with the
greatest similarity on their logical values. Then, it compares the values of these nodes
with the ones from the known non-manipulate circuit to detect if the evaluated circuit
includes hardware Trojans. The proposal detects more than 80% of the Trojans on the
evaluated circuits increasing the power consumption a 13% and the area a 15% from the
initial value.

Huang, Yuanwen, Swarup Bhunia, and Prabhat Mishra[24] propose a method to
generate efficient test vectors to detect hardware Trojans using side-channel analysis.
The generated test vectors maximise the switching activity of the inserted Trojans while
it minimises the switching activity in the rest of the circuit to make easy hardware Trojan
detection applying side-channel analysis. Their proposals improve the Trojans detection
with side channel analysis by more than 96%.

Salmani, Hassan, Mohammad Tehranipoor, and Jim Plusquellic[48] present a technique
to raise the hardware Trojan activity inserted on a circuit and, consequently, decrease
the activation time of these Trojans facilitating its detection. Hardware Trojan detection
is improved based on an analysis of the circuit modelling the transitions on the system
and the number of clock cycles with a geometric distribution. Additionally, they prove
that the insertion of dummy flip-flops on the circuit can help on increasing transitions
what also grows Trojan activation.
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2.1.3 Detection applying machine learning techniques

Hasegawa, Kento, Masao Yanagisawa, and Nozomu Togawa[20] describe a machine
learning based hardware Trojan classifier detecting Trojans nets inserted at gate-level
during in ICs design. The system is tested on hardware Trojans from TrustHub[41]. All
the Trojans evaluated produced a denial of service attack and are triggered based on
timing or physical conditions. The evaluation shows that they are able to determine
Trojan nets with 92.2% of precision and 74.6% of F-measure.

Yoon, Junghwan, et al.[58] introduce a technique to detect hardware Trojans in
FPGAs doing a statistical analysis by applying machine learning. The analysis is done
in a forward and backward direction. Forward analysis directly analyses the netlists at
a synthesis phase while backward analysis checks the circuit reversely from bit streams.
Multiple aspects are proposed to be considered in the synthesised design to detect
hardware Trojans such as vectorized boolean equation of the LookUp Tables (LUTs),
number of LUT’s input pins, type of LUT’s output pins, number of LUTs and nets from
input and output pin to the Input/Output Blocks (IOB), number of LUT that affect
the output. This technique is described to be promising based on other results applying
their detection tool but there are no results given regarding hardware Trojan detection.

2.1.4 Detection applying formal verification methods

J. Rajendran, A. Dhandayuthapany, V. Vedula and R. Karri[45] proposes a formal
verification method to detect hardware Trojans inserted on third-party IPs and its trigger
condition. This technique can detect hardware Trojans leaking sensitive information
from the circuit by applying model checking techniques. In order to apply its proposal
needs to have a temporal logic description of the design. This mechanism detects Trojans
as long as the leakage of information is inside the number of clock cycles analysed.

Xiaolong Guo, Huifeng Zhu, Yier Jin and Xuan Zhang[18] describe a technique that
it formally verifies a circuit to expose leakage paths at the circuit level. This technique
uses information flow tracking methods to understand how the information in the circuit
flows and allowing to successfully detect Trojans or other vulnerabilities in the system.

Jonathan Cruz, Farimah Farahmandi, Alif Ahmed and Prabhat Mishra[12] explains
a technique that detects hardware Trojans by analysing the design based on combining
automatic test pattern generation method and model checking.

2.2 Techniques to protect against DFA attacks
DFA attacks seem to be a very effective attack against ciphers. In the literature, several
countermeasures have been proposed based on redundancy. These proposals can be
categorised based on the where they are implemented that it can be i) a dedicated
device detecting or blocking the attack, ii) modifications on the circuit computation,
and iii) protocol level solutions that defining new algorithms in which there is a low
probability of fault .

This section focuses on the last proposals shown in academia to protect circuits
against DFA attacks.
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2.2.1 Protection based on external devices

He, Wei, Jakub Breier, and Shivam Bhasin describe a detection logic to protect systems
against fault injection attacks using a laser to inject the faults. The proposal uses a
high-frequency digital Ring-Oscillator watchdog and a disturbance sensor. Their results
indicate that 94.20% of fault attacks tested on ciphers can be detected[21].

2.2.2 Protection based on code modifications

Indrani Roy et al. define a framework to detect sensitive points of a block cipher design
and fix these points based on the cipher specification and a set of security requirements.
The implementation is based on the fact that cryptographic algorithms have different
vulnerability depending on the point the faults are inserted and trying to protect these
more critical locations. The evaluations is done on three cryptographic algorithms
i) AES, ii) CAMELLIA and iii) CLEFIA giving a fault coverage between 50% and
100% depending on the online security margin chosen[47].

2.2.3 Protection based on new protocols

Christof Beierle et al. present a new lightweight cryptography algorithm secured against
DFA attacks. Lightweight ciphers pretend to provide efficient cryptography algorithms
with some of these algorithms are based on well-known symmetric algorithms. In
concrete, this proposal follows the structure of AES to define its encryption and decryption
scheme[8].

Baksi, Anubhab, et al. propose a protocol strategy that ensures faults are inserted
into some part of the block cipher plain text instead of an intermedium cipher value
increasing the difficulty to obtain information from a DFA attack. Additionally, this
technique can be easily applied to standard ciphers such as AES[6].

2.3 Residue checking
Residue checking is based on the mathematical properties of integer modular arithmetic.
Addition, subtraction and multiplication operations with integers follow this property
(2.1).

((a+ b) mod N) ≡ (a mod N) + (b mod N) (2.1)

This concept was originally applied to adder circuits[43] by W. W. Peterson in 1957
with the objective of detecting failures on components. Residue checker components
allow to protect arithmetic circuits using a smaller quantity of additional hardware as
the operations can be replicated with a smaller amount of bits than the original operation
but getting the same protection results thanks to this property.

Since then, many other papers have been written following the original idea of
protecting arithmetic modules such as adders or ALUs[39] but there are also other
proposals focusing on other areas like soft-error detection[40].
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2.3.1 Application of residue checker in the last years

Daniel Lipetz and Eric Schwarz propose the use of residue checker for decimal floating-point
units protecting the two values representing the float one in base 10 and the other in
base 2. They also give a discussion on the coverage obtain depending on the modules
selected to protect the circuit[31].

Shugang Wei presents an improve version of residue checker for Multiply–accumulate
operations with signed-digits. The calculation of the correction with residue checker is
used using a tree structure. No concrete values on the coverage are given but they analyse
a set of configurations indicate the best one based on coverage and area utilisation [53].

Stanisław J. Piestrak and Piotr Patronik explain their proposal to protect against
faults digital finite input response (FIR) filters. FIRs are a kind of filters use for Digital
Signal Processing. Their implementations show a 100% coverage of errors with only a
3% increase on area[44].

2.4 Novelty of this thesis
This thesis proposes a novel method to detect attacks on cryptographic systems. As far
as we know, residue checking has never been used in the area of security to detect any
kind of attack including the two attacks this thesis focus on that are hardware Trojan
and DFA attacks.

Hardware Trojans are still an issue on real circuits as subsection 2.1 has detailed.
Most of these articles based on the detection of any kind of hardware Trojans such
as information stealing which is an objective of this thesis. The proposed detection
technique varies from invasive and non-invasive methods so our proposal based on an
invasive method is a valid approach at the moment. Even though the main objective in
security area is protected, most of this methods not only centre its attention on giving a
good detection result but also to minimise the area overhead. For that reason, our goal is
to implement an attacks detection mechanism which overhead is as minimum as possible.

DFA attacks are one of the main threats to cryptographic circuits these days. Section
2.2 presents various techniques to detect them and protect the circuits against them, but
there are recent papers describing new effective and efficient DFA attacks. Consequently,
it is of utmost importance to contribute with new detection mechanism to this type of
attack. Most of the papers reviewed in section 2.2 focus on AES unpatent cryptographic
algorithm and other proprietary ciphers such as CAMELLIA from Mitsubishi electrics
and NTT; or CLEFIA from Sony. However, there are many other standard cryptographic
algorithms such as RSA and SHA mostly used nowadays[16] but which protection has
not been investigated as much in the last years.

In conclusion, hardware Trojans and DFA attacks are still a threat to ICs so new
techniques must be proposed to protect these systems against them. For that reason,
the proposal of a novel method to detect them as this thesis can contribute to reduce
the impact of hardware attacks on the security area.
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3. Methodology
This chapter defines the method used to implement and evaluate the proposal of this
thesis including how the target attacks were chosen, the tools used and the steps followed
on the implementation and evaluation. It also includes theoretical values of the level of
protection that the approach should give based on the attack and why.

3.1 Implementation
3.1.1 Initial decisions and stages of implementation

The first step on the implementation was to decide the attacks to target. We defined
the initial target of this thesis was to detect hardware Trojans which payload changes
somehow the functionality of the system. And, after that, it was extended to also detect
other attacks affecting the values on the signals of the circuit, in concrete, DFA attacks.

Along with the attacks to detect, the cryptographic algorithm to protect were also
selected. This decision was made based on the benchmarks provided by TrustHub[41]
that had already some algorithms with Trojans. TrustHub provides benchmarks for two
cryptographic algorithms AES and RSA. So, these two algorithms were chosen to protect
them and also the hash function SHA-1 as we had already a design of a cryptographic
accelerator implementing this algorithm and even though this algorithm is not secure
anymore[5] it was chosen as it was still supported for digital signatures[2, 35] and also
as its operation are quite similar to other versions of SHA so it can be used to probe the
concept.

Once the target attacks and cryptographic algorithm were chosen, the residue checker
mechanism and other modules needed were implemented and tested for the algorithms.
Residue checker was not done straight forward as not all the algorithms use arithmetic
operations supporting modular arithmetic but bitwise operations that do not follow these
properties so some modifications to our residue checker were applied. More details on
how the residue checker mechanism has been adapted to the algorithms, the defined
modules and its insertion in the ciphers original design are described in the following
section 4.

3.1.2 Development tools

The only tool used for the implementation was an Integrated Development Environment
(IDE) from Xilinx called Vivado Design Suite[57]. This decision was taken from the many
possible IDEs supporting HDL because we already know how to use it from previous
projects and work. Another point why it was chosen is because it is a very complete
tool that allows coding through the interface checking the syntax errors and simulation
to can corroborate that the design is correct.
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3.2 Evaluation
3.2.1 Initial decisions and stages of evaluation

The first step on the evaluation once the implementation was finished was to verify the
system under hardware Trojans and DFA attacks.

Hardware Trojans to detect were taken from a set of TrustHub’s benchmarks previously
modified to include our residue checker. Our residue checker was not applied to all the
available benchmarks as it has a limitation that it can only detect hardware Trojans
that change the functionality. So, side channel attack Trojans could not be detected.

The detection of DFA attacks was done by simulating the detection of changes on
the registers of the design. This was done by defining a testbench for each one of the
evaluated systems and performing the simulations of them.

Then, other metrics were measure, in concrete, area, energy consumption, and the
maximum frequency of operation. All these metrics were measured after performing the
synthesis of the design on a certain FPGA model. Another measure done was to check
if the integration of residue checker on the circuit affects the critical path of the original
system to see if the performance, in terms of time, is degraded.

Evaluation details about how the simulations and the metrics have been executed are
described on section 5 along with the results obtained for each one of the assess metrics.

3.2.2 Evaluation tools

The tool used for the evaluation was the same one as for the implementation, Vivado
Design Suite [57]. This tool includes a simulator, and it also allows to synthesise and
implements a design on a certain FPGA. Additionally, it provides automatic metric’s
calculation of the design after its synthesis or implementation such as power consumption,
area utilisation and timing constraints. One disadvantage of this tool is that the software
is proprietary so some FPGAs and options are only available using the correspondent
unlimited license or using a free trial license that gives you 30 days of free use.
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4. Development of the proposal
This chapter explains in detail all the steps involved in the implementation of the
proposal that was summarised on the previous section 3.1. These steps include how
the modules for detection and insertion of faults has been implemented, the constraints
and limitations that the proposal has, how these limitations affect the system, and how
the proposal has been specifically applied to each of the cryptographic algorithms.

4.1 Analysis and re-organisation of the cryptographic cores
Once the cryptographic algorithms were selected, they had to be analysed to learn how
each one of the algorithms behaves and which is the purpose of the different signals in
the design to define which ones can be protected and how to apply the residue checker
mechanism to them.

For each one of the algorithm, all the signals were classified between control signals
and operational registers. Control signals indicate to the system how to perform and are
usually composed of a small number of bits, mainly only one bit. For that reason, control
signals were not our focus of protection as they had to be completely replicated and also
because there are usually not a focus of attacks as they are commonly implemented as
wires, not on storage element where faults can be captured. Operational registers are
used to keep the partial calculation of the cipher algorithm. The value of registers is
usually a set of bits, in the cases of the algorithms selected, most of the registers have a
size of 32-bits or more. Additionally, faults can be visible and propagated through them
over the calculations. Consequently, all the registers from the algorithm are a possible
candidate for protection. Ideally, all registers of the systems should be protected but
there were some issues, that is explained in subsection 4.1.1, forbidding.

After the analysis, we inserted the extra modules needed to implement and evaluate
the fault-detection mechanism. The two modules inserted are the proposed version
of the residue checker mechanism to protect the circuit, and a fault-injector module
to can verify the correct operation of the fault-detection mechanism that it is our
implementation of the residue checker (Figure 4.1). Both modules are explained in
detail on the following subsections 4.1.1 and 4.1.2.

Figure 4.1: Modules inserted within the cryptographic module design
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4.1.1 Residue Checking and Rotary Residue Checking

Residue checking is applied to each one of the operations with registers that can be
protected. This technique is applied in two phases: i) protection and ii) check . The
protection part is base on defining additional registers with the modulo value of each one
of the registers, calculating in parallel the value of the original register and the modulo
registers through the algorithm. The check part is based on checking the equality of
modules (2.1). If there is an inequality detected this means that there could be a fault
injected on that operation (Figure 4.2).

Figure 4.2: Explanation of the residue checker mechanism

The explained residue checker is based on a property that can only be applied to
certain arithmetic operations. For that reason, the operation types used in each one
of the algorithms have to be taken into account because depending on the kind of
operation residue checker cannot be directly applied as not all operations follow the
same properties.

Two of the chosen algorithms, SHA-1 and AES, use bitwise operations and permutations
while RSA is mostly based on additions and subtractions. Bitwise operations and
permutations change the output in a way that the modular arithmetic property use in
residue checker is not fulfilled. For that reason, it is not possible to apply straightforward
the residue checker concept to those two algorithms. Therefore, residue checker for these
SHA-1 and AES can only be applied to bitwise operations (4.1), not to permutations,
with the limitation of only using power-of-two values for the module depicted as N in
(4.1).

(a AND b) mod N ≡ (c mod N) ≡ (a mod N) AND (b mod N) forall N in 2n (4.1)
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This limitation on residue checker reduces its performance as the use of power-of-two
values for the module is like just protecting the N last bits of each register leaving the
other most significant bits unprotected. This does not happen using odd values for the
module as the remainder is calculated based on all the bits of the register. As a result
of this limitation, an alternative version of residue checker has been proposed for these
cases that we have called the rotary residue checker.

The Rotary residue checker is based on the same principle of the residue checker
applied to power-of-two modules but including a rotation mechanism to change the bit
that will be protected after a predefined number of cycles. Figure 4.3 shows visually
how the rotary residue checker behaves by protecting a different set of bits depending
on the execution cycle. The picture shows the simplest of the condition to update the
bits to protect that is just adding N to the initial bit index and resetting these values
when needed the more significant bits has already protected. This condition fits if the
module value, N, is multiple of the total number of bits that the original register has,
X. However, in case N is (X/2) + 1, one bit more than the original size of the register
then the most significant will be always unprotected. This case has been taken into
account on the implemented rotary residue checker, but it is not depicted to simplify
the pseudo-code of the picture.

Figure 4.3: Explanation of the rotary residue checker mechanism
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4.1.2 Fault injector

The fault injection module is designed to return an output value based on its input with
a certain bit change on it. In concrete, the fault injection component defined is based
on the following specification (Figure 4.4).

Figure 4.4: RTL schematic of the fault injector component

The control input signals are the clock to update the output only at the rising edge
of the clock, and an enable signal that allows activating the fault injector or just let
the input go by. The other two inputs are the input value to be attacked and an input
position to know where to insert the fault. The output value of the module behaves
differently based on the enable signal. If the enable signal is activated, the output is the
input value with the bit on the indicated position flipped. In case it is deactivated, the
output is the input value with no modifications. Figure 4.5 shows a simplified internal
representation of the fault injector in case the input signals has a size of 2 bits.

Figure 4.5: Internal design based on logic gates of the fault injector component for an
input of size 2 bits

This component is used to test that the fault-detection mechanism behaves as it was
defined. This fault injector is instantiated multiple times on each design, specifically,
there is one instance one for each of the values protected.

The injector has been designed on a parameterized way to enable its use for different
input sizes. Additionally, it is as simple as possible and it can easily be extended or
changed. For this reason, it only flips one of the bits in the input signal and it inserts
the fault when it enables instead of having an extra signal indicating the time. This
control of the time when the fault is inserted is done outside this component and it is
further explained in the evaluation section 5.
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4.2 Protection of RSA applying residue checking
4.2.1 Algorithm

RSA is a cryptographic algorithm named after its designers Rivest, Shamir and Adleman.
This cryptosystem was originally presented as one of the first asymmetric algorithms for
cryptography in 1977[46]. Unlike symmetric cryptography algorithms, where the same
secret key is used for encryption and decryption, asymmetric algorithms make use of two
different types of keys i) a public-key and ii) a private key (Figure 4.6). The public key is
used for encryption and it is shared between other users so messages are encrypted with
the public key of the receiver. The private key is used for decryption and it is known
only to the owner keeping the secret of the encrypted message to the receiver.

Figure 4.6: Encryption/Decryption scheme in asymmetric cryptography

This kind of cryptographic algorithms can also be used for digital signatures (Figure
4.7) in which keys are applied the other way around, a message is signed with the private
key of the sender and is verified with the public key of the sender.

Figure 4.7: Digital signature scheme in asymmetric cryptography

RSA encryption(4.3) and decryption(4.4) need to perform just two operations, but
the operational complexity of these operations is as costly as the factoring problem. So
the security of the algorithm remains unbroken until factoring problem could be rapidly
solved for large numbers.

The operations applied in RSA involve three large positive integers: i) the encryption
key e, ii) the decryption key d, and a number use as a part of the public or private key
depending on the operation n . There is not restriction for e and d but n must be value
such that 0 ≤ m ≤ n where m is the value of the message to encrypt. Such that for all
the previously described integers the following equation holds:

(me)d ≡ m mod n (4.1)

(md)e ≡ m mod n (4.2)
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The previous values e, d and n involved in the computations cannot be any value
but they have to be calculated based on the following rules.

1. n is obtained as the product of two very large randomly chosen prime numbers p
and q

2. e can be chosen as any value following 1 ≤ e ≤ λ(n) where λ represents the
Carmichael’s function[14].

3. d is computed based on n and d following this equation d = 1 mod λ(n)
e

Encryption operation is calculated given a plaintext m as:

c = me mod n (4.3)

Decryption operation does the same as (4.3) for the encryption but applying the
power of the encrypted message to the decryption key:

m = cd mod n (4.4)

4.2.2 RTL implementation of the original algorithm

As the previous subsection 4.2.1 defines, RSA is based on a modular exponentiation
operation. In order to compute efficiently, this operation square-and-multiply algorithm
is used in the original RTL design of the RSA algorithm that we will protect with residue
checker.

Square-and-multiply also called exponentiation by squaring or binary exponentiation,
the method examines the bits of the exponent to determine which powers are computed
and then it divides the operations in powers of two and multiplications (4.5).

xn =
{
x (x2)

n−1
2 , if n is odd

(x2)
n
2 , if n is even.

(4.5)

The RTL of the RSA algorithm to modified was taken from the Trojan benchmarks’
code BasicRSA-Tx00 in TrustHub[41]. The design of this code is done in VHDL and
follows the following scheme represented in figure 4.8. In the depicted schema from figure
4.8, each block represents a VHDL component and its instances are represented within
a block. The input/output signals of the modsqr block are not drawn for simplicity, but
it has the same inputs/outputs as the modmultiply block as they both instantiate the
same component.

Figure 4.8: RSA schema of the components from the original RTL
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The rsacypher is the main module receiving the plaintext or encrypted text in indata,
the encryption or decryption key in inExp, the module in inMod along with some control
signals. This module controls the modular multipliers across the value it pass them, and
it collects the results they return.

The modmultiply and modsqr blocks instantiate the modular multiplier component
and they use it to produce products and to take care of squaring operations, respectively.
These blocks are the ones actually computing RSA. For that reason, most of the register
protected in this design are included inside this component.

1 product = prodreg4
2 if ( mpreg [0] == ’1’)
3 prodreg1 = prodreg + mcreg
4 else
5 prodreg1 = prodreg
6 // Subtract modulus and subtract modulus * 2
7 prodreg2 = prodreg1 - modreg1
8 prodreg3 = prodreg1 - modreg2
9 // Negative results mean that we subtracted too much

10 modstate = prodreg3 ( mpwid +1) & prodreg2 ( mpwid +1);
11 // Select the correct modular result and copy it
12 if ( modstate == ’11 ’)
13 prodreg4 = prodreg1
14 else if ( modstate == ’10 ’)
15 prodreg4 = prodreg2
16 else
17 prodreg4 = prodreg3
18 // Subtract the modulus from the shifted multiplicand
19 mcreg1 <= mcreg - modreg1 ;
20 // Select the correct modular value and copy it.
21 if ( mcreg1 (32) == ’1’)
22 mcreg2 = mcreg
23 else
24 mcreg2 = mcreg1

Listing 4.1: Main operations of RSA within the modular multiplier component

Listing 4.1 shows the internal signals use in the modular multiplier components and
the main operations applied to calculate RSA. These signals are controlled by the bits of
a multiplier and a multiplicand values based on the indata signal of the rsacypher that
represents the message to encrypt/decrypt.

The modular multiplier operates under the Shift-and-Add algorithm to efficiently
multiply integers as the square-and-multiply algorithm requires. The algorithm first
shifts the multiplicand (i.e. mpand) value for each bit of the multiplier (i.e. mplier)
storing these values in mcreg. Then for each bit of the multiplier which value is one, the
shifted multiplicand is added to the product as operation in line 3 shows in listing 4.1.
Subtractions are computed to make sure the product is always expressed as a remainder,
lines 7 and 8 in listing 4.1. The most significant bits of these subtractions, line 10 in
listing 4.1, are used to the value of the product, lines 12 to 17. The algorithm ends after
going across all bits set to one in the multiplier.
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4.2.3 Modifications to the design

RSA operations allow applying the original definition of residue checker to any module
as explained in the previous subsection 4.1.1.

The protection mechanism of the operations is based on duplicating the signals of
the original algorithm and applied the same operations based on the modules (Listing
4.2). These have been done by partially duplicating the functionality of the algorithm
but with a much smaller amount of signals and bits per signal. A block representation
of these changes on the design is shown in figure 4.9.

Figure 4.9: RSA schema of the modifications added to the original design
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In spite of the operations following the modular-arithmetic properties, there are some
issues to take into account when they have to be protected like the possible negative
results of a subtraction solved like in lines 7 to 10. Additionally, there are some signals
that can not be calculated from the replicated modules, lines 35 to 43. The module has
been calculated based on the operations that VHDL provides for the modulo (mod) and
the remainder (rem).

1 // ------------ Protection of signals with residue checker ------------
2 if ( mpreg (0) == ’1’)
3 prodreg1_rc = ( prodreg_rc + mcreg_rc ) mod MOD_VALUE
4 else
5 prodreg1_rc = prodreg_rc
6
7 if ( prodreg1_rc >= modreg1_rc )
8 prodreg2_rc = ( prodreg1_rc - modreg1_rc ) mod MOD_VALUE
9 else

10 prodreg2_rc = ( MOD_VALUE + ( prodreg1_rc - modreg1_rc ))
11
12 if ( prodreg1_rc >= modreg2_rc )
13 prodreg3_rc = ( prodreg1_rc - modreg2_rc ) mod MOD_VALUE
14 else
15 prodreg3_rc = ( MOD_VALUE + ( prodreg1_rc - modreg2_rc ))
16
17 if ( modstate == ’11 ’)
18 prodreg4_rc = prodreg1_rc
19 else if ( modstate == ’10 ’)
20 prodreg4_rc = prodreg2_rc
21 else
22 prodreg4_rc = prodreg3_rc
23
24 if ( mcreg_rc >= modreg1_rc )
25 mcreg1_rc = ( mcreg_rc - modreg1_rc ) mod MOD_VALUE
26 else
27 mcreg1_rc = ( MOD_VALUE + ( mcreg_rc - modreg1_rc ));
28
29 if ( mcreg1 (32) == ’1’)
30 mcreg2_rc = mcreg_rc
31 else
32 mcreg2_rc = mcreg1_rc
33
34 // Copy values from the original algorithm for mcreg and mpreg as use division
35 if ( signed ( mcreg ) >= 0)
36 mcreg_rc = ( signed ( mcreg ) mod MOD_VALUE )
37 else
38 mcreg_rc = ((( signed ( mcreg ) rem MOD_VALUE ) + MOD_VALUE ) mod MOD_VALUE )
39
40 if ( signed ( mpreg ) >= 0)
41 mpreg_rc = ( signed ( mpreg ) mod MOD_VALUE )
42 else
43 mpreg_rc = ((( signed ( mpreg ) rem MOD_VALUE ) + MOD_VALUE ) mod MOD_VALUE );

Listing 4.2: Pseudo-code of the protected operations of RSA within the modular
multiplier component

The verification of the signals values to corroborate that there is no change on the
circuit operation is shown in listing 4.3. All signals can be verified to check if there is an
error. However, as the algorithms iterates over all values and all the modifications pass
through the last signal (i.e. prodreg4 ) the checks can be limited to that signal reducing
the overhead in the hardware of this protection mechanism.
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1 // ------------ Verification of signals with residue checker ------------
2 if( prodreg4_mod != prodreg4_rc ) -> ERROR!
3 if( prodreg3_mod != prodreg3_rc ) -> ERROR!
4 if( prodreg2_mod != prodreg2_rc ) -> ERROR!
5 if( prodreg1_mod != prodreg1_rc ) -> ERROR!
6 if( prodreg_mod != prodreg_rc ) -> ERROR!
7 if( modreg2_mod != modreg2_rc ) -> ERROR!
8 if( modreg1_mod != modreg1_rc ) -> ERROR!
9 if( mcreg2_mod != mcreg2_rc ) -> ERROR!

10 if( mcreg2_mod != mcreg2_rc ) -> ERROR!
11 if( mcreg1_mod != mcreg1_rc ) -> ERROR!
12 if( mcreg_mod != mcreg_rc ) -> ERROR!
13 if( mpreg_mod != mpreg_rc ) -> ERROR!

Listing 4.3: Pseudo-code of the verification of signals using residue checker in RSA
within the modular multiplier component

The rsacypher module has been also protected even though most of its signals are
one-bit signals used to control the flow of the algorithm. No code is shown as it follows
the same mechanism shown in listing 4.2 and 4.3 for verification.

4.3 Protection of SHA applying residue checking
4.3.1 Algorithm

SHA is a cryptographic hash function which initials stands for Secure Hash Algorithm.
SHA has multiple variants of the same algorithms changing the size of the keys to
encrypt, the construction of the resulting hash and the number of construction rounds
it uses making each specific algorithm more or less secure. It has been published by the
National Institute of Standards and Technology (NIST) as a U.S. Federal Information
Processing Standard (FIPS)[42].

Figure 4.10: Application cryptographic hash functions from the SHA family

SHA function are use for many applications like i) file and messages verification,
ii) digital signatures like SSL certificates, iii) password verification or data identifier .
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4.3.2 RTL implementation of the original algorithm

From all the SHA functions, the RTL design to apply our protection mechanism with
residue checker uses SHA-1. SHA-1 generates a hash function with a length of 160-bit
and it can be applied to messages with no length restriction. This algorithm has been
discovered to be not secure anymore[5] so the standard was no longer approved for most
cryptographic applications after that. However, it can be used to probe that residue
checker can protect SHA functions against attack as it is explained in subsection 3.1.

SHA-1 algorithm divides the original plaintext into chunks of 512-bits, 64 characters,
and iterates eighty times performing bitwise operations and permutations on this chunk.
Then, if the initial message is bigger it takes the next chunks and does the same
operations but applying the hash value obtained from the previous chunk to the next
chunk and so on. The algorithm finish after going through all the chunks producing a
single hash value that was a combination of all the iterations over the message.

The RTL has been developed as a part of the project in the Processor Design subject
from MIRI at UPC. The design of the shacrypto component has been based on a pseudo
code of the SHA-1 algorithm[55]. The design used (Figure 4.11) is defined based on three
main components: i) the cryptographic module called shacrypto, ii) a MIPS16 processor
(i.e. MIPS16 ) and iii) a main data memory (i.e SRAM ). In spite of the three modules,
the modifications to protect the design are only done within the shacrypto that is the
one defining the SHA-1 function.

Figure 4.11: SHA-1 schema of the components from the original RTL

The shacrypto component has two input signals from MIPS16. There is a enable
input signal to the module coming from the processor to indicate that the module has
to start computing an SHA-1 operation. Another input entry, from the processor to the
module, is the address in memory where the data to encrypt is located, @in.

The outputs are the address in memory where the encoded data has been placed,
called @out in the picture of figure 4.11. Also, there are two signals to indicate if the
module wants to read or write from memory called read_en and write_en, respectively.
Moreover, there is a one-bit output signal that indicates the end of the encoding process
named done.
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Additionally, the cryptography accelerator is connected with main memory (SROM)
by the entries called data and @data that, respectively, indicate the data to encrypt and
the address where this data is located in memory.

The shacrypto module instantiates a pre-processor that is in charge of applying the
initial modifications to raw data received from memory, so as the SHA-1 algorithm can
be applied. These modifications are:

These modifications are:

• Append a bit with value one to the raw message.

• Append k zeroes starting from that one bit so that the equation l + 1 + k ≡
448mod 512 is satisfied.

• Append a 64-bit block (l) containing the length of the original message.

In figure 4.12 the definition of the pre-processing module can be seen. This module is
fed with the clock, a reset signal, the length of the raw data, a 512-bit chunk containing
the raw data, and finally an enable signal. After one cycle, the module produces the
processed data, which is output through data_out and a ready signal.

Figure 4.12: Pre-processor component instantiate within the shacrypto component

Listing 4.4 describes using a pseudo-code the operations done on the RTL of the
shacrypto component to perform SHA-1 function.

Figure 4.13 shows the components inside the shacryp component. This cryptographic
component has a cache memory to store the data to be encoded and the hash key. It
also has multiple registers, in this case, ninety registers have been defined. The registers
contain the data to perform the cryptography encoding and the hash key.

Then, there is a counter to perform the eighty rounds needed by the SHA-1 algorithm.
There are four sets of rounds that operate over the values applying different logic
functions. For that reason, there are two multiplexers to compute all possible values
in parallel and then obtain the correct computed value based on the current round.
Finally, the values obtained by the multiplexer and other values from the registers are
added to obtain a new value needed on next rounds. In the end, the values of the
registers storing a,b,c,d and e are updated as the algorithm indicates. This final storing
is not represented in figure 4.13 to reduce the number of connections on the draw.
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1 for chunk 0 to NUM_CHUNKS
2 for counter_val in 0 to 79
3 if ( counter_val >= 0 AND counter_val <= 19)
4 f = (b and c) or (( not b) and d)
5 k = 0 x5A827999
6 else if ( counter_val >= 20 AND counter_val <= 39)
7 f = b xor c xor d
8 k = 0 x6ED9EBA1
9 else if ( counter_val >= 40 AND counter_val <= 59)

10 f = (b and c) or (b and d) or (c and d)
11 k = 0 x8F1BBCDC
12 else if ( counter_val >= 60 AND counter_val <= 79)
13 f = b xor c xor d
14 k = 0 xCA62C1D6
15
16 temp = (a leftrotate 5) + f + e + k + w[i]
17 e = d
18 d = c
19 c = b leftrotate 30
20 b = a
21 a = temp
22
23 if ( counter_val == 79) // Save this chunk to the result
24 h0 = h0 + a
25 h1 = h1 + b
26 h2 = h2 + c
27 h3 = h3 + d
28 h4 = h4 + e
29
30 hh = {a, b, c, d, e} // Produce the final hash as a 160 - bit number

Listing 4.4: Pseudo-code of the operations performed by the SHA-1 function

Figure 4.13: Internal overview of the SHA-1 function based on the RTL design
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4.3.3 Modifications to the design

The SHA-1 algorithm is mostly composed by bitwise operations (e.g. AND, OR, XOR,
NOT) so residue checker cannot be directly applied as this operations do not follow
the modular arithmetic properties to can use residue checker for any module. For that
reason, as it is explained in subsection 4.1.1 residue checker has been applied using
power-of-two modules that it is basically to protect the last n bytes when the module
2n is used.

Listing 4.5 shows a pseudo-code of the protected operations for SHA-1 where the
replicated signals are denoted as the name of the original signals concatenate with the
suffix _rc. But, these replicated signals has a size of n bits where 0 < n < 32 as the
original size of the protected signal is 32 bits.

1 for counter_val in 0 to 79
2 if ( counter_val >= 0 AND counter_val <= 19)
3 f_rc = (b_rc and c_rc) or (( not b_rc) and d_rc)
4 k_rc = 0 x5A827999 // Take last n bits of this constant
5 else if ( counter_val >= 20 AND counter_val <= 39)
6 f_rc = b_rc xor c_rc xor d_rc
7 k_rc = 0 x6ED9EBA1 // Take last n bits of this constant
8 else if ( counter_val >= 40 AND counter_val <= 59)
9 f_rc = (b_rc and c_rc) or (b_rc and d_rc) or (c_rc and d_rc)

10 k_rc = 0 x8F1BBCDC // Take last n bits of this constant
11 else if ( counter_val >= 60 AND counter_val <= 79)
12 f_rc = b_rc xor c_rc xor d_rc
13 k_rc = 0 xCA62C1D6 // Take last n bits of this constant
14
15 temp_rc = (a leftrotate 5) + f_rc + e_rc + k_rc + w[i]
16 e_rc = d_rc
17 d_rc = c_rc
18 c_rc = b leftrotate 30
19 b_rc = a_rc
20 a_rc = temp

Listing 4.5: Pseudo-code of the protected operations executed in SHA-1 function

The code verifying that these signals are correctly protected is shown in listing 4.6.
This code is quite similar to the one for the protecting the other cryptographic algorithms
(listing 4.3 and 4.12) as it only checks if the protected signals are equal to the protected
part from the original signals and if throws an error in case the condition is not satisfied.

1 if(a_rc != a[( MOD_SIZE - 1) ..0]) -> ERROR!
2 if(b_rc != b[( MOD_SIZE - 1) ..0]) -> ERROR!
3 if(c_rc != c[( MOD_SIZE - 1) ..0]) -> ERROR!
4 if(d_rc != d[( MOD_SIZE - 1) ..0]) -> ERROR!
5 if(e_rc != e[( MOD_SIZE - 1) ..0]) -> ERROR!
6 if(f_rc != f[( MOD_SIZE - 1) ..0]) -> ERROR!
7 if(k_rc != k[( MOD_SIZE - 1) ..0]) -> ERROR!
8 if( temp_rc != temp [( MOD_SIZE - 1) ..0]) -> ERROR!

Listing 4.6: Pseudo-code of the verification operations executed in SHA-1 function

Additionally, it has also been applied to the design of SHA-1 the rotary residue
checker defined in subsection 4.1.1 with the objective of improving the detection rate
on this algorithm as the limitation of only using power-of-two in residue checker always
keep some unprotected bits and this fact detriments our protection system for cases in
which the number of protected bits is very low.
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The pseudo-code of the rotary residue checker application to protect the operations
of SHA-1 function is shown in listing 4.7. The rotary residue checker replicates the
operation mostly in the same way it was done without the rotation mechanism that we
show in listing 4.5. However, after n rounds the protected bits are changed and due to
that, the protected bits must be copied from the original signals before using them.

1 K_HASH_ROUND_1_19 = 0 x5A827999
2 K_HASH_ROUND_20_39 = 0 x6ED9EBA1
3 K_HASH_ROUND_40_59 = 0 x8F1BBCDC
4 K_HASH_ROUND_60_79 = 0 xCA62C1D6
5
6 for counter_val in 0 to 79
7 if ( counter_val >= 0 AND counter_val <= 19)
8 f_rc = (b_rc and c_rc) or (( not b_rc) and d_rc)
9 k_rc = K_HASH_ROUND_1_19 [( iniBit + MOD_SIZE - 1..) iniBit ]

10 else if ( counter_val >= 20 AND counter_val <= 39)
11 f_rc = b_rc xor c_rc xor d_rc
12 k_rc = K_HASH_ROUND_20_39 [( iniBit + MOD_SIZE - 1..) iniBit ]
13 else if ( counter_val >= 40 AND counter_val <= 59)
14 f_rc = (b_rc and c_rc) or (b_rc and d_rc) or (c_rc and d_rc)
15 k_rc = K_HASH_ROUND_40_59 [( iniBit + MOD_SIZE - 1..) iniBit ]
16 else if ( counter_val >= 60 AND counter_val <= 79)
17 f_rc = b_rc xor c_rc xor d_rc
18 k_rc = K_HASH_ROUND_60_79 [( iniBit + MOD_SIZE - 1..) iniBit ]
19
20 temp_rc = (a leftrotate 5) + f_rc + e_rc + k_rc + w[i]
21 e_rc = d_rc
22 d_rc = c_rc
23 c_rc = (b leftrotate 30) [( iniBit + MOD_SIZE - 1..) iniBit ]
24 b_rc = a_rc
25 a_rc = temp [( iniBit + MOD_SIZE - 1..) iniBit ]
26
27 // Copy values when protected bits are rotated after 3 iterations
28 if (( counter_val mod 3 == 0) AND ( counter_val >= 3) AND ( REG_WIDTH > MOD_SIZE ))
29 if (rst == 1)
30 new_iniBit = 0
31 else
32 // Take next n bits there are still n or more most significant bits to protect
33 if (( iniBit + MOD_SIZE ) < ( REG_WIDTH - MOD_SIZE ))
34 new_iniBit = iniBit + MOD_SIZE
35 else // Restart index if the most significant bits were protected on last round
36 if (( iniBit == ( REG_WIDTH - MOD_SIZE )))
37 new_iniBit = 0
38 else // Protected the most significant n bits if not protected
39 new_iniBit = REG_WIDTH - MOD_SIZE ;
40 // Copy new bits to protect keeping the bits already protected if possible
41 if (( new_iniBit > iniBit ) AND (( new_iniBit + MOD_SIZE ) == REG_WIDTH )
42 AND (( REG_WIDTH mod MOD_SIZE ) != 0))
43 a_rc = {a[ REG_WIDTH ..( REG_WIDTH -( new_iniBits - iniBits ))], a_rc >> ( new_iniBits - iniBits )}
44 b_rc = {b[ REG_WIDTH ..( REG_WIDTH -( new_iniBits - iniBits ))], b_rc >> ( new_iniBits - iniBits )}
45 c_rc = {c[ REG_WIDTH ..( REG_WIDTH -( new_iniBits - iniBits ))], c_rc >> ( new_iniBits - iniBits )}
46 d_rc = {d[ REG_WIDTH ..( REG_WIDTH -( new_iniBits - iniBits ))], d_rc >> ( new_iniBits - iniBits )}
47 e_rc = {e[ REG_WIDTH ..( REG_WIDTH -( new_iniBits - iniBits ))], e_rc >> ( new_iniBits - iniBits )}
48 else if (( new_iniBit < iniBit ) AND (( REG_WIDTH div 2) > MOD_SIZE ))
49 a_rc = {a_rc << ( iniBit - new_iniBit ), a[( iniBit - new_iniBit ).. new_iniBit ]
50 b_rc = {b_rc << ( iniBit - new_iniBit ), b[( iniBit - new_iniBit ).. new_iniBit ]
51 c_rc = {c_rc << ( iniBit - new_iniBit ), c[( iniBit - new_iniBit ).. new_iniBit ]
52 d_rc = {d_rc << ( iniBit - new_iniBit ), d[( iniBit - new_iniBit ).. new_iniBit ]
53 e_rc = {e_rc << ( iniBit - new_iniBit ), e[( iniBit - new_iniBit ).. new_iniBit ]
54 else // Copy all bits from the original signals
55 a_rc = a[( new_iniBit + MOD_SIZE - 1) .. MOD_SIZE ]
56 b_rc = b[( new_iniBit + MOD_SIZE - 1) .. MOD_SIZE ]
57 c_rc = c[( new_iniBit + MOD_SIZE - 1) .. MOD_SIZE ]
58 d_rc = d[( new_iniBit + MOD_SIZE - 1) .. MOD_SIZE ]
59 e_rc = e[( new_iniBit + MOD_SIZE - 1) .. MOD_SIZE ]
60 iniBit = new_iniBit // Set the initial bit to the new protected bit after copy

Listing 4.7: Pseudo-code of the protection in SHA-1 with rotary residue checker
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From listing 4.7, we can see that the rotary mechanism does not rotate only on one
direction taking MOD_SIZE bits to the left in each rotation, where MOD_SIZE is the
number of bits to protect. This has been done because it is not possible to protect
non-consecutive bits as it is not possible to make the residue checker work this way.
For that reason, the rotary mechanism protects all the possible chunks of MOD_SIZE
bits going from the less significant to the most significant bit until the next chunk is
smaller than MOD_SIZE. In this particular, case happens the rotary mechanism act in
an inverse way taking MOD_SIZE bits from the most significant to the less significant
bit and then it resets the rotary mechanism to start once again from bit zero. This has
been done because protecting only the missing most significant bits, in case there are
less that MOD_SIZE, would lead to less protection.

Figure 4.14 shows an example of how this rotation mechanism would work using a
module value non-multiple of the register width for the next three rounds. Fourth round
and the following are not represented but they will do the same restarting the initial
protected bit in the fourth round behaving as in the first round and so on.

Figure 4.14: Example of the rotary residue checker protecting 14 bits

The code verifying that these signals are correctly protected is the same as the one
for the residue checking without the rotary mechanism shown in listing 4.6, but taking
into account that now the bits that have to be checked change depending on the rotation
as listing 4.8.

1 // ------------ Verification of signals with rotary residue checker ------------
2 if(a_rc != a[( new_iniBit + MOD_SIZE - 1..) new_iniBit ]) -> ERROR!
3 if(b_rc != b[( new_iniBit + MOD_SIZE - 1..) new_iniBit ]) -> ERROR!
4 if(c_rc != c[( new_iniBit + MOD_SIZE - 1..) new_iniBit ]) -> ERROR!
5 if(d_rc != d[( new_iniBit + MOD_SIZE - 1..) new_iniBit ]) -> ERROR!
6 if(e_rc != e[( new_iniBit + MOD_SIZE - 1..) new_iniBit ]) -> ERROR!
7 if(f_rc != f[( iniBit + MOD_SIZE - 1..) iniBit ]) -> ERROR!
8 if(k_rc != k[( iniBit + MOD_SIZE - 1..) iniBit ]) -> ERROR!
9 if( temp_rc != temp [( iniBit + MOD_SIZE - 1..) iniBit ]) -> ERROR!

Listing 4.8: Pseudo-code of the verification operations performed by the SHA-1
function using rotary residue checker

With the extra control part in the case of the rotary mechanism, we can improve the
detection of faults using residue checker on this concrete algorithm as the evaluation,
chapter 5, explains in more detail.
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4.4 Protection of AES applying residue checking
4.4.1 Algorithm

AES stands for Advanced Encryption Standard but it is also known by the name of
Rijndael. This cryptographic algorithm was defined in 1998 by and it was established
as a Federal Information Processing Standard (FIPS) in 2001[52] by the U.S. National
Institute of Standards and Technology (NIST).

AES is a symmetric key algorithm like RSA so it can be used for encryption and
decryption using the same key. More information about symmetric key algorithms can
be checked on the previous section 4.2.1 for RSA.

AES algorithm is based on a set of operation performed over the message to be
encrypted or decrypted applying the cipher key. The steps performed by AES are the
next ones:

1. KeyExpansion operation. This operation derives round keys from the cipher key
using a schedule defined by the authors.

2. AddRoundKey operation is performed on the initial round of the algorithm. AddRoundKey
applies the exclusive or operation for each byte of the state1 with a block of the
round key (Figure 4.15).

Figure 4.15: Add round key operation[54]

3. Round key operations is a set of operations applied sequentially during 9, 11 or 13
rounds depending on if the key size is of 128, 192 or 256 bits, respectively. This
set of operations includes the following one concrete operations:

• SubBytes operation. This operation replaces each byte by another according
to a predefined lookup table (Figure 4.17).
• ShiftRows operation. This operation shifts the last three rows of the state to
a certain position (Figure 4.18).
• MixColumns operation combines the bytes of each column of bytes by applying
the exclusive or operation to each byte with a fixed polynomial (Figure 4.16).

1state: Message to encrypt/decrypt using AES. It can be the original message or a modification of
it depending on the round.
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Figure 4.16: Mix columns operation[54]

• AddRoundKey operation (Figure 4.15)

4. The following operation are performed on the final round being the 10, 12 or 14
round depending on the key length being 128, 192 or 256 bits, respectively.

• SubBytes operation (Figure 4.17)

Figure 4.17: Substitution of bytes operation[54]

• ShiftRows operation (Figure 4.18)

Figure 4.18: Shift rows operation[54]

• AddRoundKey operation (Figure 4.15)

29



AES can be defined to be secured for most of the attacks perform to then as the
operational complexity to discover its cipher key is huge if it is tried to break using the
most simple of the attacks that it is to bruce-force-attack that it tries all the possible key.
However other attacks reduce substantially this operational complexity. One example
is differential fault analysis that recovers the key in seconds[28]. In spite of differential
fault attacks, AES is included in the instructions set of modern processors such as Intel
or AMD.

4.4.2 RTL implementation of the original algorithm

AES algorithm can be implemented for different key sizes, in this case, the chosen design
uses the smallest key possible that it has 128 bits.

The RTL design chosen is the Trojan free design provided in the AES-T100 Trojan’s
benchmark from TrustHub[41]. This design is composed by four components: i) aes_128,
ii) expand_key_128, iii) one_round and iv) final_round. These components from the
RTL design to be modified are depicted in 4.19.

Figure 4.19: AES schema of the components from the original RTL

The aes_128 is the external component controlling the input message to which apply
the AES algorithm called state and the cipher key called key. It instantiates the other
components and passes these inputs to them in order to compute the AES algorithm
defined on the previous subsection 4.4.1. Also, it runs the addRoundKey operation
using base on the input key and state.

The expand_key_128 component is instantiated ten times in order to do the key
expansion operation that derives a set of keys from the cipher key that is input to
aes_128. This key expansion is done sequentially as instances need the output of the
previous instance in out_1 as the in input to can perform the key expansion operation.
Then, it uses the result obtained from each instance to execute the addRoundkey
operation defined in point 2 of the algorithm described in subsection 4.4.1.
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The one_round component is instantiated nine times and it uses the expand key
output returned by the expand_key_128 component, called out_2 in figure 4.19, as the
input of the state_in signal to compute all three operations explained in point 3 of the
algorithm described in subsection 4.4.1. These operations are executed sequentially as
the output of the first instance, called state_out is the state_in input of the second
instance and so on.

The final_round is only instantiated once and it perform the operations defined in
point 4 of the algorithm described in subsection 4.4.1 having as the key_in input the
out_2 from the last instance of expand_key_128 component and as the state_in input
the state_out output from the last instance of one_round component.

4.4.3 Modifications to the design

The design of AES described on the previous subsection 4.4.2 has been modified to apply
residue checker in order to protect all the possible operations. However, not all operation
can be protected without adding a big overhead to the original design. For that reason,
these operations are not duplicated on our protection mechanism. One example of a
not protected operation in our implementation for AES is the subBytes operation. This
operation is not protected as it needs of a lookup table to do the substitution of bytes
and we do not want to replicate all this table. For that reason, only bitwise operations
are protected.

As it is previously mentioned bitwise operations are the objective as AES does not
have any arithmetic operation that can be protected. This implies that the implementation
of the residue checker for this algorithm has the same limitation as to the SHA-1
algorithm so only power-of-two values for the module can be used. And due to this
restriction, the protection of the operations is not as high as if non-power of two values
had been used unless the modules are big numbers close to 2signal_width.

The initial addRoundKey operation cannot be protected as it is directly applies from
the input key and state of the main module (i.e. aes_128 ), point 2 of the described
algorithm in subsection 4.4.1. Listing 4.9 shows how this operation is performed.

1 // AddRoundKey operation applies the exclusive or operation between
2 // the input state and key
3 s0 = state XOR key;

Listing 4.9: Pseudo-code of the initial addRoundKey operation performed as part of
the AES algorithm described in point 2 of the algorithm description subsection 4.4.1

The subBytes operation, described in point 3 of the described algorithm in subsection
4.4.1, substitutes the bytes using a lookup table that it is not protected to avoid the
overhead in replication. The application of this operation can be seen in the pseudo-code
of listing 4.10.

1 // Application of the subBytes operation to the input of one_round
2 p = SubBytes ( state_in );

Listing 4.10: Pseudo-code of the subBytes operation performed as part of the rounds
of AES algorithm described in point 3 of the algorithm description subsection 4.4.1
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The shiftRows operation applied in the nine-round operations described in point 3
of the described algorithm in subsection 4.4.1 is performed along with the mixColumns
operations and the addRoundKey operation. Therefore, as these three operations are
executed on the same operation, they are protected together. The protection of these
operations has been protected by replicating some bits of the original signals and replicating
the exclusive or operation of the last three rows with a predefined value as the pseudo-code
in listing 4.11 shows.

1 // Get state columns of the state by coping the input to avoid
2 // possible internal manipulation within the component of the state_in signal
3 s0_rc = state_in [(96 + MOD_SIZE - 1) ..96]
4 s1_rc = state_in [(64 + MOD_SIZE - 1) ..64]
5 s2_rc = state_in [(32 + MOD_SIZE - 1) ..32]
6 s3_rc = state_in [( MOD_SIZE - 1) ..0]
7
8 // Divide output of the subBytes operations by cells
9 p = {p00 , p01 , p02 , p03}

10 {p10 , p11 , p12 , p13}
11 {p20 , p21 , p22 , p23}
12 {p30 , p31 , p32 , p33}
13
14 // Perform shiftRows and mixColumns operation to compute the value of the
15 // state_out signal
16 z0_rc = p00 XOR p11 XOR p22 XOR p33 XOR k0_rx
17 z1_rc = p03 XOR p10 XOR p21 XOR p32 XOR k1_rc
18 z2_rc = p02 XOR p13 XOR p20 XOR p31 XOR k2_rc
19 z3_rc = p01 XOR p12 XOR p23 XOR p30 XOR k3_rc

Listing 4.11: Pseudo-code of the protected mixColumns operation performed as part
of the rounds of AES algorithm described in point 3 of the algorithm description
subsection 4.4.1

The verification of these operations, shown in listing4.11, has been done by checking
that the replicated signals have the same value as the original ones. In the same way, as
it has been done for the other algorithms, RSA (subsection 4.2.3) and SHA-1 (subsection
4.3.3). Listing 4.12 shows concretely how this verification has been done.

1 // ------------ Verification of signals with residue checker ------------
2 if (k0 [( MOD_SIZE - 1) ..0] != k0_rc ) -> ERROR!
3 if (k1 [( MOD_SIZE - 1) ..0] != k1_rc ) -> ERROR!
4 if (k2 [( MOD_SIZE - 1) ..0] != k2_rc ) -> ERROR!
5 if (k3 [( MOD_SIZE - 1) ..0] != k3_rc ) -> ERROR!
6 if (s0 [( MOD_SIZE - 1) ..0] != s0_rc ) -> ERROR!
7 if (s1 [( MOD_SIZE - 1) ..0] != s1_rc ) -> ERROR!
8 if (s2 [( MOD_SIZE - 1) ..0] != s2_rc ) -> ERROR!
9 if (s3 [( MOD_SIZE - 1) ..0] != s3_rc ) -> ERROR!

10 if (z0 [( MOD_SIZE - 1) ..0] != z0_rc ) -> ERROR!
11 if (z1 [( MOD_SIZE - 1) ..0] != z1_rc ) -> ERROR!
12 if (z2 [( MOD_SIZE - 1) ..0] != z2_rc ) -> ERROR!
13 if (z3 [( MOD_SIZE - 1) ..0] != z3_rc ) -> ERROR!

Listing 4.12: Pseudo-code of the verification operations performed by the AES
algorithm described in point 3 of the algorithm description subsection 4.4.1

The final round operations described in point 4 of the described AES algorithm in
subsection 4.4.1 are protected in a similar way as its corresponds operation was in the
previous rounds described in point 3 of AES algorithm description in subsection 4.4.1.
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The subBytes operation is not protected as it happens in the previous use of this
function to avoid lookup tables replication. For that reason, we had omitted the pseudocode
performing this operation as it duplicates the listing 4.4.1.

The shiftRows and addRoundKey operations on the final round are performed together
in the RTL design so its protection has been also done in this way as it can be seem in
listing 4.13.

1 // Protection of the key signal by coping the input to avoid
2 // possible internal manipulation within the component of the key_in signal
3 k0_rc = key_in [(96 + MOD_SIZE - 1) ..96]
4 k1_rc = key_in [(64 + MOD_SIZE - 1) ..64]
5 k2_rc = key_in [(32 + MOD_SIZE - 1) ..32]
6 k3_rc = key_in [( MOD_SIZE - 1) ..0]
7
8 // shiftRows and addRoundKey operation
9 z0_rc = {p00 , p11 , p22 , p33} XOR k0_rc

10 z1_rc = {p10 , p21 , p32 , p03} XOR k1_rc
11 z2_rc = {p20 , p31 , p02 , p13} XOR k2_rc
12 z3_rc = {p30 , p01 , p12 , p23} XOR k3_rc
13
14 // The state_in signal is protected even though the subBytes operation
15 // cannot be protected . The protection is done by coping the input
16 // to avoid possible internal manipulation within the component
17 s0_rc = state_in [(96 + MOD_SIZE - 1) ..96]
18 s1_rc = state_in [(64 + MOD_SIZE - 1) ..64]
19 s2_rc = state_in [(32 + MOD_SIZE - 1) ..32]
20 s3_rc = state_in [( MOD_SIZE - 1) ..0]

Listing 4.13: Pseudo-code of the shiftRows and addRoundKey operations performed
as part of the final round of AES algorithm described in point 4 of the algorithm
description subsection 4.4.1

The verification of the final round on AES algorithm has been done as listing in
lst:aesVerification for the other rounds by confirming that the original signals used in
the shiftRows and addRoundKey operations have the expected value compared to the
replicated ones.
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5. Evaluation of the work
This chapter describes the details of how the proposal has been evaluated and how the
metrics indicated in the earlier section 3.2 have been applied to evaluate the system.
Then, it gives the results obtained from this evaluation and it compares them to the
calculated theoretical values of how the system should behave.

5.1 Definition of evaluation metrics
The metrics to evaluate are based on two objectives: i) test the detection rate that
our proposal provides and ii) calculate the overhead that this implementation put in
the algorithms. These two objectives evaluate the feasibility of this technique given the
protection needs and overhead limits a system may have.

On one hand, the metrics to obtain the detection rate have been evaluated by testing
the system to detect hardware Trojans and to protect against DFA attacks.

The hardware trojans tested are the BasicRSA-T100, BasicRSA-T200 and BasicRSA-T300
benchmarks from TrustHub[41].

DFA attacks are simulated as bit-flip injections into the three tested algorithms. The
idea is that if the protection mechanism with residue checking can detect these bit-flips
then the system can protect from DFA attacks by non-returning the output obtained
from that computation with faults but a random number. This random output ensures
that the system does not provide any meaningful information to the attacker, and thus
it yields the DFA attack ineffective.

On the other hand, the overhead of the proposal will be measured as: (1) extra
amount of power consumption, (2) additional area utilisation, (3) reduction on the
maximum operating frequency and (4) the possible affection of the new signals on the
timing critical path of the design.

The difference between the power consumption between the initial design and the
one including the protection mechanism has been measured based on relative terms as
the values have been taken using a tool that estimates these values from a synthesis
design. So, these values are not as accurate as measuring the consumption on a physical
system but it can still be good to calculate the power overhead.

The difference in area utilisation has been measured in the number of LookUp Tables
(LUTs) as the design has been synthesis on two different FPGAs and these components
are the common ones used to implement programmable combinational logic.

The maximum operational frequency has been also obtained from a tool calculation
based on a synthesis of the design, so it has been also evaluated as a relative term to
measure the impact on the frequency after the modifications in the design.

The addition of a worse critical path due to the new signals on the design has been
also evaluated based on the synthesis and the idea is to determine if the proposal includes
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a new maximum delay path that it can affect the performance of the initial design.

5.2 Performance results
5.2.1 Study of the detection rate

First, hardware Trojan protection has been evaluated obtaining a positive result as all
the hardware Trojans from the tested benchmarks are detected.

Then, the DFA attacks have been evaluated running simulations where each execution
includes a bit-flip that the detection system will try to detect. All these simulations
report if the fault has been detected. This report has been analysed to obtain the
detection rate of these techniques against faults.

In order to provide statistically significant results for the simulation, it is usually
understood to provide as many simulations as a 99% confidence level at 5% error margin
requires. The concrete minimum number of simulations needed[50], n, based on a certain
confidence and error margin can be computed as in (5.1) where zα/2 is the value of the
standard normal for a percentage of confidence of (1−α) and w is the confidence interval
width computed based on (5.2).

n =
4zα/2

2 ×AV F (1 − AV F )
w2 (5.1)

w = 2× error_margin×AV F (5.2)

AVF indicates the Architectural Vulnerability Factor[19] defined as the probability
of an error to be visible by the user when a bit flips in a storage cell.

Base on 5.1, we have calculated concrete numbers of the simulation we need for each
cryptographic algorithm tested. These values are represented in table 5.1.

Confidence level 99% 95%
Error margin 10% 5% 1% 10% 5% 1%
RSA (AVF = 0.51) 638 2551 63756 370 1477 36910
SHA-1 (AVF = 0.53) 589 2354 58846 341 1363 34068
AES (AVF = 0.09) 6709 26839 670951 3885 15538 388429

Table 5.1: Number of simulations for a certain confidence an error margin[50]

The confidence level indicates the confidence interval percentage of the experiments
that would return a true result, based on layman’s terms. This means that setting the
confidence level as high as possible the probability of having the expected result, what
it is defined as a true result, on the simulations is higher.

The error margin determines the percentage that the confidence interval can deviate
from the theoretical population as many times as the confidence interval sets. So it
indicates the precision of the result based on a confidence level. For that reason, this
value must be as small as possible. Based on the previous definitions, the ideal value
for the confidence interval would be 100% with a 0% of error margin but this would
significantly increase the number of simulations to do to an unfeasible number. So we
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aim for a tradeoff between the confidence level and error margin with the number of
executions or execution time.

Therefore, as the required number of experiments rises with the increase in confidence
level and decrease in the error margin, the number of simulations has been calculated for
a set of high confidence level and low error margins to check what combination would
better fit in precision and execution time.

In the end, the confidence level chosen is 99% while the margin error is 1% to provides
the most accurate result within a feasible computation time.

The simulations have been executed in parallel on the Arvei cluster provided by the
architecture department at UPC[17]. This cluster is composed of several nodes with
different computational power so the execution time varies depending on the node and
the load of the server. To give some numbers, the average execution time was of 25
minutes for RSA, 1 hour for SHA-1 and more than 2 hours for AES. In addition to the
simulation time, the analysis time must be included. The analysis was automatically
performed with a script interpreting the report from the simulation. The analysis
execution takes less time going from 4 minutes to analyse RSA report to 57 minutes
for AES.

The first analysis done was about the inherent fault tolerance of each algorithm. Due
to logical, electrical and temporal masking, not all faults injected will result in a visible
change in the output. Thus, the first analysis performed is to measure how many of the
injected faults result in a change in the outputs. Figure 5.1 reports the percentage of
faults injected that lead to an erroneous output and which not for each of the tested
algorithms. From figure 5.1, the difference between the algorithms is significant showing
that the percentage of faults tolerate depends directly on the operations and implying
that DFA attacks will not be as effective in case the algorithm is able to highly tolerate
faults not outputting erroneous errors even if faults have been inserted. Due to the
simulation framework, the numbers reported corresponding to logical and temporal
masking.

Figure 5.1: Comparison of the inherent fault-tolerance represented by algorithms
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As the objective of these simulations is to evaluate how good the proposal protects
the algorithm against DFA attacks only the simulation that propagates an error has
been taken into account to evaluate the proposed protection system. For that reason
the following figures 5.2, 5.3 and 5.4 display the percentage of detected errors according
to the value of the modulo use by the residue checker.

Figure 5.2 represents the evaluation of the residue checker for power-of-two modules
with the blue squares and the non-power of two values of the module as orange diamonds.
These results show that any non-power-of-two value detects all the injected faults while
power-of-two value only detects all faults if the signals are completely replicated.

These results were expected as it was previously mentioned when explaining residue
checking mechanism in subsection 4.1.1, as power-of-two values, only protect the less n
significant bits. Therefore, faults injected on the most significant bits, non-protected,
are not detected. Consequently, the detection capabilities of non-power-of-two modules
are much higher as without needing to replicate all the bits of the signals it can detect
100% of the faults injected avoiding intentioned erroneous outputs and providing full
protection against DFA attacks.

Figure 5.2: Percentage of DFA attacks detection in RSA

Figure 5.3 indicates the results obtained from the evaluation of the protected SHA-1
circuit. This algorithm cannot be protected with non-power-of-two modules, for this
reason, the results seem similar to the ones obtained for non-power-of-two values for the
RSA algorithm. And consequently, the protection rate is smaller than the one obtained
for power-of-two modules in RSA (Figure 5.2). These results were the expected ones
as we already knew about this constraint and that the fault detection rate would be
reduced due to this limitation.

The evaluation of SHA-1 has been done using the base residue checker and the
rotary residue checker defined in subsection 4.1.1. The base residue checker mechanism
is represented with green circles while the rotary residue checker is represented with
purple triangles in figure 5.3. Comparing the two lines the rotary residue checker gives
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better results. In concrete, the rotary residue checker can improve the fault detection rate
of the non-modified residue checker up to 84% (for some residue values). Nevertheless,
the rotary residue checker has some drawbacks as due to the copies need to do during
the rotations it can also decrease the detection rate for some modules down to 4% (for
large residue values).

Figure 5.3: Percentage of DFA attacks detection in SHA-1

Figure 5.4 shows the evaluation results of the protection mechanism implemented
into the AES algorithm. These results are only shown for non-power-of-two modules as
in the case of the SHA-1 algorithm. This is because AES presents the same restriction
as SHA-1 of only executing bitwise operations in its algorithm which makes impossible
to protect it with non-power-of-two modules using residue checker. For that reason, the
results obtained are based on the number of protected bits having a 50% of protection
when half of the bits are protected (i.e. value of the module is 216) and just obtaining
the 100% of protection in case the protected signals are fully replicated (i.e. value of the
module is 232).

Figure 5.4: Percentage of DFA attacks detection in AES
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The rotary residue checker has not been applied to the AES algorithm as the chosen
design is composed of component instances that run for a single cycle and then use
this output as the input to another component. The signals are protected within these
components, for that reason, there is no benefit to the algorithm when applying the
rotary mechanism as the protection needs to be recomputed every single cycle. The aim
of this proposal is to protect the circuit applying residue checker to the original signals
in the circuit but without adding big modifications to the initial non-protected design.
Therefore, AES design has not been modified. Still, rotary residue checking could be
applied to a sequential version of the AES algorithm, yet, this version of AES is not
commonly used due to its poor performance.

Summarising the results for each algorithm, in order to obtain 100% of protection it
just needed to protect a few bits using a non-power-of-two module. However, this value
of the module cannot be always used as we show for SHA-1 and AES. In these cases, the
protected signals have to be fully replicated but as it was described in the development
chapter 4 due to the operations performed by the algorithms that are usually based on
multiple rounds mixing the values of these signals, it is not needed to fully replicate all
the signals in the system so the overhead is smaller than replicating the whole circuit
but also getting full protection.

In some DFA attacks, the attacker injects multiple controlled faults, instead of only
one per execution, to derive the keys of the algorithm. We, next, evaluate the robustness
of our proposed mechanisms against multiple faults (i.e. bit-flips) in the RSA algorithm
only. Yet, residue checking should behave in the same way for the other algorithms.

Figure 5.5 shows the behaviour of the residue checker when more errors are applied
showing that the protection mechanism can even detect more errors if more faults are
injected. In the case of power-of-two modules, injecting two faults increases the residue
checker detection by a 19.71% compared to only injecting one fault per simulation.
In case of power-of-two modules, the protection is the same, that is why the red line
showing the results for two injections is not visible on figure 5.5 as it overlaps with the
line representing simulations with one injection.

Figure 5.5: Comparison of DFA attacks detection injecting consecutive faults in RSA
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5.2.2 Study of the overhead included to the original design

In order to study the overhead that including residue checker has in the systems, the
design of each one of the algorithms has been synthesised with and without including the
protection mechanism provided by residue checker. Overhead comparisons include the
base implementation of each of the algorithm and the largest residue checker simulated.
This will give us the worst overhead values.

The synthesis has been applied to two different Xilinx FPGAs belonging to a distinct
family. In concrete, the chosen FPGAs are Artix-7[25] and Virtex Ultrascale+[26].
These families are very different between them. Virtex Ultrascale+ is one of the last
released products from Xilinx and it provides the highest performance and integration
capabilities including many programmable resources compared to other products from
Xilinx. Artix-7 is a low-cost board which provides a good performance-per-watt and
its number of programmable logic and memory is much more limited than the ones for
Virtex Ultrascale+.

Another thing to clarify from the synthesis is the strategy option. Xilinx provides
through the Vivado IDE[57] different strategies for the synthesis that can directly synthesise
the design as it is or optimise it. There many possible optimisations focusing on the
area utilisation, the performance or the runtime. To avoid any possible change on our
design we had decided to choose the default synthesis strategy that sets the parameters
to the values indicated in listing 5.1.

1 // Maximum number of global clock buffers used by synthesis
2 -bugfg = 12
3 // Fanout limit
4 -fanout_limit = 10 ,000
5 // directive = default implies no optimizations applied
6 -directive = Default
7 // FSM extraction encoding is chosen based on the coding style .
8 -fsm_extraction = auto
9 // Sharing arithmetic operations is chosen based on the coding style .

10 -resource_sharing = auto
11 // control_set_opt_threshold indicates the threshold for synchronous control
12 // set optimizations to lower number of control sets based on the coding style .
13 -control_set_opt_threshold = auto
14 // It indicates the minimum length for chain of registers to be mapped onto SRL
15 -shreg_min_size = 3
16 // max_bram indicates the maximum number of block RAM allowed in the design .
17 // In this case , none.
18 -max_bram = -1
19 // max_uram indicates the maximum number of Ultra RAM allowed in the design .
20 // In this case , none.
21 -max_uram = -1
22 // max_dsp indicates the maximum number of block DSP allowed in the design .
23 // In this case , none.
24 -max_dsp = -1
25 // casca_dsp means to control how adders summing DSP block outputs
26 // will be implemented based on the coding style .
27 -cascade_dsp = auto

Listing 5.1: Synthesis strategy parameters
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One of the metrics to measure the overhead is the increase in power consumption of
the modified design. To calculate this measure, apart form synthesising the design, it is
advisable to run a post-synthesis functional simulation of the design in order to obtain
information about the circuit and provide a more accurate power report.

Table 5.2 shows the power report obtained for the Virtex Ultrascale+ FPGA. This
report includes values for power and temperature but we will focus on the values for the
dynamic power as the highlighted column indicates. Dynamic power has been chosen as
it is directly related to the design and is not so dependable on the hardware system as
the whole power consumption that includes the device static power. From these values,
we had calculated the percentage difference between the design including our protection
proposal and the original one as in 5.3.

Percentage_different = |V 1− V 2|
V 1 × 100 (5.3)

The result from these calculations is that the power consumption increases by a
5.55% for RSA, by a 4.28% for both SHA-1 modifications and by a 0.88% for AES.

xcvu13p-fhga2104-3-e
(Virtex UltraScale+)

Power
consumption(W)

Junction
temperature(oC)

Thermal
margin

Dynamic
power(W)

Device
static(W)

RSA 3.084 26.7 73.3 oC
(121.8 W)

0.018 3.067

RSA with residue
checker

3.085 26.7 73.3 oC
(121.8 W)

0.019 3.067

SHA-1 3.209 26.7 73.3 oC
(121.7 W)

0.140 3.069

SHA-1 with residue
checker

3.216 26.7 73.3 oC
(121.7 W)

0.146 3.069

SHA-1 with rotary
residue checker

3.216 26.7 73.3 oC
(121.7 W)

0.146 3.069

AES 3.413 26.8 73.2 oC
(121.5 W)

0.339 3.074

AES with residue
checker

3.424 26.8 73.2 oC
(121.5 W)

0.342 3.074

Table 5.2: Power consumption synthesising with Virtex UltraScale+

The same power report has been calculated for the Artix-7 FPGA as table 5.3 shows.
In this case, the percentage difference in power between the design based on (5.3) are
the followings. The protected version of RSA circuit increases its power consumption by
a 6.36%, SHA-1 circuit with residue checker consumption rises by an 8% while SHA-1
with rotary residue checker rises by 9.6%, and the modified design of AES consumes a
0.48% more than the non-protected one.
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xc7a50tcsg324-1
(Artix 7)

Power
consumption(W)

Junction
temperature(oC)

Thermal
margin

Dynamic
power (W)

Device
static (W)

RSA 0.081 25.4 59.6 oC
(12.4 W)

0.011 0.070

RSA with residue
checker

0.081 25.4 59.6 oC
(12.4 W)

0.0117 0.070

SHA-1 0.195 25.9 59.1 oC
(12.3 W)

0.125 0.070

SHA-1 with
residue checker

0.205 26.0 59.0 oC
(12.3 W)

0.135 0.070

SHA-1 with
rotary residue
checker

0.207 26.0 59.0 oC
(12.3 W)

0.137 0.070

AES 0.492 27.4 57.6 oC
(12 W)

0.415 0.077

AES with residue
checker

0.494 27.4 57.6 oC
(12 W)

0.417 0.077

Table 5.3: Power consumption synthesising with Artix 7

In general, the consumption obtained indicates that the rise is not more than 0.01
Watts for any case what it is at less than a 10% more consumption compared to the
original design. These results also indicate that AES has less overhead in power while
SHA-1 has the most. This is because the operation of each cryptographic algorithm
are different and implies diverse modifications to protect the design as it is explained in
subsections 4.4.3 and 4.3.3 respectively.

Next presented measure is the area utilisation of each design for the two chosen
FPGAs. From the are utilisation report, we will focus on the LUTs value to evaluate
the area increase of each algorithm.

Table 5.4 shows the resources used for each design using a Virtex Ultrascale+. From
these values for the LUTs, column highlighted in table 5.4, we have applied the formula
in (5.3) obtaining the following percentage difference between the original and modified
design. RSA circuit with residue checker increases a 0.33% in the number of LUTs,
SHA-1 circuit increases the number of LUTs in use by a 1.84% and AES circuit does by
a 7.81%.

xcvu13p-fhga2104-3-e
(Virtex UltraScale+)

CLB
LUTs

CLB
registers

CARRY8 F7
muxes

F8
muxes

Block
RAM
Tile

Bounded
IOB

Global
clock
buffer

RSA 596 459 40 - - - 132 1
RSA with residue
checker

598 459 40 - - - 133 1

SHA-1 6881 4254 28 1216 352 - 746 4
SHA-1 with residue
checker

7008 4249 28 1216 353 - 763 4

SHA-1 with rotary
residue checker

7008 4249 28 1216 353 - 763 4

AES 2560 3968 - - - 86 385 1
AES with residue
checker

2760 3980 - - - 86 400 1

Table 5.4: Area utilisation synthesising with Virtex Ultrascale+
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The same calculation in area utilisation has been calculated for Artix-7 FPGA getting
these results. RSA circuit rises a 0.33% of LUTs as if the Virtex Ultrascale+ is used,
SHA-1 residue checker circuit increases the number of LUTs by a 1.93% while including
the rotary residue checker increases SHA-1 by a 1.96%, and the use of LUTs in AES
protected circuit goes up by a 7.81%.

xc7a50tcsg324-1
(Artix 7)

Slice
LUTs

Slice
registers

F7
muxes

F8
muxes

Bonded
RAM Tile

Bounded
IOB

BUFGCTRL

RSA 596 459 - - - 132 1
RSA with
residue checker

598 459 - - - 133 1

SHA-1 6883 4236 1280 352 - 746 4
SHA-1 with
residue checker

7016 4241 1280 353 - 763 4

SHA-1 with
rotary residue
checker

7018 4240 1280 353 - 763 4

AES 2560 3968 - - 86 385 1
AES with
residue checker

2760 3980 - - 86 400 1

Table 5.5: Area utilisation synthesising with Artix 7

The results for area utilisation seen to be more stable comparing the percentage
differences using one FPGA or the other. Unlike the results obtained for power consumption,
the design increasing more in area utilisation is AES while RSA is the one with the fewer
increment.

Then the maximum frequency of operation for each design has been calculated. These
calculations have been done by defining some timing constraints for the design. In
particular, the constraints used are the ones in table 5.6 and are taken just as a base value
to do the calculation using these same constraints for all the algorithms. These constraint
values are not optimised for each one of the design so they should be re-calculated in
case the design is going to be implemented.

Signal Waveform Period (ns) Frequency (MHz)
clk {0.000, 6.400} 12.800 78.125

Table 5.6: Restrictions to calculate the timing constraints of the designs

In order to calculate the maximum frequency, Vivado provides a tool to do a timing
analysis based on the predefined timing constraints. However, this report does not
directly return the maximum operational frequency but other timing metrics such as
the Worst Negative Slack (WNS), Worst Hold Slack (WHS) and Worst Pulse Width
Slack (WPWS). So the maximum frequency must be calculated from these reported
metrics and the timing constraints set using the following formula 5.4.

Fmax = 1
(Period−WNS) (5.4)

The timing analysis for Virtex Ultrascale+ gives as the following slack values shown
in table 5.7. In this table, the maximum frequency has been already calculated and
allocate in the first column of this table that it is highlighted.
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xcvu13p-fhga2104-3-e
(Virtex Ultrascale+)

Max.
frequency
(MHz)

WNS
(ns)

TNS
(ns)

WHS
(ns)

THS
(ns)

WPWS
(ns)

TPWS
(ns)

RSA 134.390 5.359 0.000 -0.343 -83.527 6.125 0.000
RSA with residue
checker

134.390 5.359 0.000 -0.343 -83.527 6.125 0.000

SHA-1 71.921 -1.104 -26.109 -0.933 -486.846 5.932 0.000
SHA-1 with residue
checker

74.123 -0.691 -15.103 -3.527 -1087.741 5.932 0.000

SHA-1 with rotary
residue checker

73.926 -0.727 -15.710 -3.524 -1099.980 5.932 0.000

AES 136.072 5.451 0.000 -0.311 -295.838 5.905 0.000
AES with residue
checker

136.072 5.451 0.000 -0.311 -287.875 5.905 0.000

Table 5.7: Time constraints from synthesis with Virtex Ultrascale+

Table 5.8 shows the timing analysis in Artix-7, where the highlighted column contains
the maximum frequency values.

xc7a50tcsg324-1
(Artix 7)

Max.
frequency
(MHz)

WNS
(ns)

TNS
(ns)

WHS
(ns)

THS
(ns)

WPWS
(ns)

TPWS
(ns)

RSA 116.890 4.245 0.000 0.134 0.000 5.900 0.000
RSA with residue
checker

116.890 4.245 0.000 0.134 0.000 5.900 0.000

SHA-1 42.938 -10.489 -540.877 -3.791 -762.692 5.150 0.000
SHA-1 with residue
checker

44.949 -9.447 -615.120 -3.304 -690.837 5.150 0.000

SHA-1 with rotary
residue checker

44.949 -9.447 -615.120 -3.304 -690.837 5.150 0.000

AES 116.890 4.245 0.000 0.139 0.000 5.900 0.000
AES with residue
checker

116.890 4.245 0.000 0.139 0.000 5.900 0.000

Table 5.8: Time constraints from synthesis with Artix 7

From the maximum frequency values, we can state that our modifications in the
design do not change the operational frequency for RSA and AES. But they do for
SHA-1 reducing the frequency a 3.06% and 4.68% comparing the original design with
the one including residue checker for the Virtex Ultrascale+ and Artix 7, respectively.
The operational frequency also gets reduced for the SHA-1 implementing the rotary
residue checker a 2.78% for the Virtex Ultrascale+ and 4.68% for the Artix 7.

In order to summarise all the results to measure the overhead of the residue checker
implementation, the relative values calculated using the percentage difference formula
(5.3) has been group on figure 5.6 graph per algorithm showing the obtained values for
both of the synthesis with Artix 7 and Virtex Ultrascale+ FPGA.
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(a) RSA percentage difference between original
and modified design

(b) AES percentage difference between original
and modified design

(c) SHA-1 percentage difference between
original and modified design

(d) SHA-1 percentage difference between
original and modified design with rotary
residue checker

Figure 5.6: Summary of the overhead because of adding residue checker

Finally, the critical paths of each design have been checked to ensure that none of the
changes affects it. The results obtained are positive as the critical path of the designs is
not affected by any of the signals included for the residue checker.
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6. Publications and future work
The work of this thesis describes a novel method with good results. For that reason,
we had decided to publish it for the different attacks and algorithms. Currently, the
following publication is already submitted focused on the RSA algorithm, but this work
could lead to more publications related to the other cryptographic algorithms.

• Ana Lasheras, Ramon Canal, Eva Rodriguez and Luca Cassano. Protecting RSA
Hardware Accelerators against Differential Fault Analysis through Residue Checking.
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, (Submitted), 2019.

• Ana Lasheras, Ramon Canal, Eva Rodriguez and Luca Cassano. Detecting Hardware
Trojans in RSA Cores through Residue Checking. IEEE Transactions on Very
Large Scale Integration Systems (TVLSI), (Submitted).

6.1 Future work
This proposal is a beginning to test that residue checking can be applied as a security
mechanism, but there are other points to continue it like the ones proposed right below.

The evaluation part can be extended to be tested on a physical circuit tested with
real DFA attacks[34] and hardware Trojans to obtain more realistic results than the ones
given with simulation and synthesis evaluation tools.

This mechanism can be tested on other cryptographic algorithms to strengthen the
idea that residue checker can be used as a protection mechanism to security attacks that
it started with the test of the three ciphers chosen.

The actual proposal can detect hardware Trojans that manipulate the circuit signals
which objective can be to stole sensitive information or Denial of Service (DoS) attacks.
However, DOS attacks now can only be detected not corrected so the proposal can be
extended for this aim.

Additionally, residue checking can be applied to protect systems against other security
attacks manipulating the circuit to get sensitive information.

The current application of residue checker is done following a white box approach
where this proposed mechanism is inserted on the design phase of the circuit where all
signals are known. But, it can be extended to protect black box IPs.

46



7. Conclusions
This thesis proposed an innovative mechanism to detect security attacks to cryptographic
algorithms using residue checker. Security attacks to computing devices are increasing
including hardware attacks, that are the objective of this thesis. In concrete, hardware
Trojans and DFA attacks are two of the most common attacks currently used. Three
certified cryptographic algorithms have been chosen to implement and test the proposal:
i) RSA, ii) SHA and iii) AES . Residue checking has been inserted within an RTL design
of these cryptographic algorithms. While power-of-two residue values are compatible
with any of the algorithms, non-power-of-two residue values are only applicable to RSA.
We have extended the residue checking with a rotary mechanism to extend the detection
capabilities of residue checking for power-of-two values.

The evaluation results for each algorithm show that residue checker is a valid method
to protect these cryptographic algorithms against hardware Trojans and DFA attacks
obtaining 100% of detection to hardware Trojan and to DFA attacks when non-power-of-two
modules can be used. While the DFA attacks detection is increased up to 84% using
rotary residue checker than doing a signal replication when the algorithm cannot use
non-power-of-two modules.

The overhead of the residue checker application increases up to 8% of the area
utilisation and its power consumption is below 10% for all the tested algorithms. In
concrete, RSA has a low increase in area consumption of 0.33% and power consumption
rise up a maximum of 6.36%. The SHA-1 algorithm increases the area up to 1.93% for
both implementations of residue checker while power increases at most 9.6%. AES has
an increase in the area of 7.81% and a maximum increase in power of just 0.88%. The
maximum operating frequency has not been affected for RSA and AES only decreasing
for SHA-1 by 4.68% maximum.

In conclusion, residue checking has been shown to be an excellent choice for defending
against hardware Trojans and DFA attacks. These results indicate that it can take a
relevant place in further research in the security area.
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