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Abstract 

The objective of this project is to create software capable of analyzing a video sequence of 

running competitions. The analysis consists of detecting the runners, tracking them with 

the intention of knowing their position when they cross the finish line and counting them. 

Another functionality of the system will be recognizing the bib numbers, thus making it 

possible for every runner to get their time. The software was developed studying different 

techniques of object detection, tracking and character recognition to try to choose the best 

for this specific application. A set of experiments has been performed to validate the 

proposed system. 
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1. Introduction 

1.1. Motivation and contributions 

 

Running is known for being one of the oldest sports in human history, and it’s in constant 

evolution. Currently, there is a lot of races and the organizers and runners want to record 

the time of arrival, position, velocity and many other statistics. Nowadays the cost of signal 

processing is being reduced and becomes more and more popular to be used in all kind of 

sports to help to diminish human errors and provide information about the competition. 

 

Many competitions offer the option of buying a chip that registers the personal time from 

the start to the finish line. This method is pretty cheap and precise but if not all competitors 

get the chip, the organization cannot assure the complete order of arrival. Another problem 

with using the chip, is that it is an intrusive method as it must be locked in the shoes. 

 

To solve that problem, the company DAPCOM came with the idea of using a video system 

to register the competitors that cross the finish line using a simple camera behind the line. 

The camera will take a shot over the last minutes of every person that manages to finish 

the race assuring that the number and order of the participants, who have finished the race, 

is known. 

 

In this work we study how computer vision can assist with that, using an automatic 

algorithm for detecting and tracking people in the finish line providing timestamps for each 

competitor. Moreover, a character recognition system will allow identifying each participant 

by their bib number. The system should work by applying person detection on periodic 

frames followed by a person tracking step that will take the lead, predicting the position of 

the objects from the initial position given by the detector. 

 

This work is a project supported by DAPCOM in partnership with the UPC which aims to 

find a new solution using the newest technologies available in machine learning. 

 

1.2. Objectives 

 

The main objective of this work is to create a software prototype with a computer vision 

system to count the people crossing the finish line in running races from video sequences. 

The system will also be evaluated to recognize the identification numbers of each runner 

and assign them to each participant with a timestamp. 

 

More detailed the project focus on three main aspects: 
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• Study different people detection and tracking techniques to evaluate their 

performance in the framework of video sequences of running races. 

• Similarly, detection and recognition techniques for the identification numbers will be 

analysed and applied to the prior system. 

• Determine the optimal configuration for the complete system, parameters, set up of 

cameras for recordings, and if the system is capable of performing in real-time. 

1.3. Work Plan 

 

This project has been carried out as a Final Master’s Thesis of the “Master of 

Telecommunication Engineering” at Universitat Politecnica de Catalunya. Myself, Prof. 

Ramon Morros and Prof. Javier Ruiz, have arranged weekly meetings to revise the work’s 

progress. 

 

1.3.1. Work Division 

The work division of the project are defined as follow:  

• P1: Project Management 

• P2: Research about possible algorithms 

• P3: Dataset preparation 

• P4: Main Architecture 

• P5: Validation 

1.3.2. Milestones 

The Milestones are listed in table 1.1. 

Table 1.1 - Milestones 

Work Part Milestone Date 

P1 Project Definition 15/02/2019 

P2 Define detector algorithms 07/03/2019 

P2 Define tracker algorithms 10/04/2019 

P3 Unirun Record 03/03/2019 

P3 Cursa Besos Record 09/06/2019 

P3 Cursa Barca Record 16/06/2019 

P4 Integrate Detection and Tracking 23/04/2019 

P4 Reidentification system 18/05/2019 
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P4 Counting system 25/05/2019 

P5 Test on detector 01/03/2019 

P5 Test on tracker 05/04/2019 

P5 Test on detection + tracking 10/05/2019 

P5 Tests on full design software 30/06/2019 

1.3.3. Gantt Diagram 

The Gantt Diagram with the work division and the different tasks can be seen in figure 1.1. 
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Figure 1.1 – Gantt Chart 
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2. State of the art 

This project includes three sections, object detection, tracking, and character recognition. 

In each one of them, there is a great variety of techniques to work on, in this chapter, we 

review some of the techniques.  

 

2.1. Object Detection 

The aim of object detection is finding all instances of objects in a cluster of known classes 

over an image. The detection can be given in the form of a class and/or bounding box that 

will define the position of the detected object in the image. 

 

Object detection models are typically divided between sliding windows [1] and region 

proposal classification approaches [2], the second method is the most used in the last years 

due to a great jump in the accuracy provided by R-CNN [2] later improved by the Faster R-

CNN [3]. In the following sections, we are taking a closer look at some of the methods and 

their approach over the object detection problem. 

 

2.1.1. Faster R-CNN 

The R-CNN [2] refers to the convolutional neural networks, focusing on region-based, trying 

to detect a bounding box of objects. That means generating a rectangle over the identified 

object, analyzing the original image and generating candidate regions for the objects that 

will be named as Region of Interest or RoI. These regions will be passed through a 

convolutional network to have their bounding box extracted to a correspondent object. 

 

Further, the Faster R-CNN [3] method was an improvement that managed to decrease the 

searching time for the RoI using a Region Proposal Network (RPN). For that, the RPN uses 

classification of the areas called anchors and proposes the ones with a higher probability 

of containing objects. 

 

2.1.2. YOLO 

This method takes a different direction then the R-CNN and sees the task as a regression 

problem. Using the features of the whole image to predict each bounding box and with the 

components separated from the detection are being unified in one neural network, it 

predicts all bounding boxes through all the classes for an image in a simultaneous way 

making that an extremely fast method. 

 

The design of YOLO [4] allows training from start to finish in real-time with a high average 

precision although lags behind the state-of-the-art. The system divides the input image into 

cells of S x S. If the center of an object is inside one of these cells, that will be responsible 

to detect the object. Each cell in the grid predicts a bounding box and the confidence score 

for that cell. They reflect the confidence of the model in which the bounding box contains 
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one object.  If it wasn’t possible to recognize any object inside the cell the score would be 

zero. 

 

2.1.3. Mask R-CNN 

Mask R-CNN [5] is a method based on the Fast R-CNN [3], which means, it’s a deep neural 

network that serves to segment different objects of a figure in a similar way to the others 

R-CNN. The major difference is that this method can give us at the same time a bounding 

box and a mask over the object as the class of it. 

 

The process happens in two different stages. The first is named RPN which analyzes the 

original image and generates the RoI exactly equal to the Faster R-CNN. The second 

phase takes each one of these regions and classifies them according to the classes of the 

objects, generating the masks as we can see in the representation of the process in figure 

2.1. 

 

Figure 2.1- Mask R-CNN process representation. 

 

2.1.4. RetinaNet 

The RetinaNet [6] is a network which has two sub-networks for specific tasks and a 

backbone network. While the backbone oversees convolving one array of features from the 

input image, the two other networks are there to perform the classification of the objects at 

the output of the trunk network and convolutional regression from the bounding box. 

 

The sub-network of classification is nothing more than an estimation of the probability of 

the presence of objects in each spatial position for each class of object. There’s a matrix 

of characteristics where usually the input is ResNet 50 or ResNet 101. The sub-network of 

regression is like the classification network but with non-compatible parameters. The output 

of this is the place of the object in the image and its respective bounding box. 
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2.2. Multi-Object Tracking 

The Multi-Object Tracking or MOT consists of the act of location all targets of interest in a 

video track and relating temporally the locations of each object. A track is then the 

succession of detections of a given object along a video sequence.  

 

2.2.1. Kalman Filter 

The Kalman Filter [7] was one of the first methods for tracking objects. Their idea is based 

on motion estimates, a vector of state that includes the parameters of the object, such the 

position, and their speed, combining prediction based on a linear dynamic model and a 

measure over the image. Both prediction and measurement can be affected by noise, that 

the Kalman filter is considered Gaussian. 

 

2.2.2. Correlation Tracker 

The tracker based on filters [8] is responsible for modeling the image of the objects using 

trained filters with sample images. The object is selected initially based on a small object-

focused tracking window in the first frame, from where the tracking and the training work at 

the same time, while the object is tracked by a correlation filter in a window of search on 

the next frame. The location corresponding to the maximum value of the output of the 

correlation corresponds to the new position of the object. 

 

One popular tracker is called MOSSE [9] and works well on objects that only move from 

one side to the other but fails if the object approaches or moves away from the camera due 

to the changing of scale. A possible solution for that is a scale pyramid to estimate with 

precision the scale of an object after the movement, and with that, the tracking of the object 

can be done even for dislocation of position as well as scale. 

 

2.2.3. Re3 

By giving only an initial bounding box we get a serious problem at the generic object 

tracking and so it represents a big challenge for convolutional neural networks. The major 

part of the deep-learning algorithms is based on having a million examples to properly work 

in a way that it can learn the invariant concepts from a high-level perspective. In that way, 

the object detection learns to differentiate between object, but it cannot distinguish two 

objects which are in the same category, like one person from two different people. 

 

This tracker works giving one initial example and then specializes in following an object. 

The adaptation of deep learning to tracking of an object is a difficult task and that’s why 

they are classified in three different categories. These categories are online training, offline 

training and hybrid training methods. 

 

The Re3 [10] works as a hybrid training. It works as a regression network in real-time as it 

says in its full name: Real-Time Recurrent Regression Networks. This tracking system 
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consists of diverse convolutional layers that introduce the form of a given object, recurrent 

layers which record the form and the movement information, and a regression layer that 

predicts the location of the object. An example of how it works are showed in figure 2.2. 

 

Figure 2.2 – Re3 Process to obtain the predictions of the tracked object 
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2.3. Character recognition 

The optic character recognition is a method that converts images into text. When we 

visualize an image our brain can recognize the forms and associates that to previously 

seen forms to identify what we are seeing. However, a computer can only recognize 

different points in an image and not that in that image exist a text, at least not directly. 

 

The OCR, either adopt Connected Components Analysis (CCA) or Sliding Window based 

classification [11]. CCA methods extract possible components in various ways, then 

filtering the non-text components using designed rules or classifiers. Sliding window 

methods pass a window varying sizes over the image, where each window is classified as 

text segments or not. 

 

Every line of an image is checked to see whether the different points can represent a letter 

or a number. It’s important to understand that it is an estimation and the limitations are vast, 

especially when the quality is affected. 

 

There is a process that uses OCR like Tesseract [12]. That follows a traditional process of 

step by step with the first of which being an analysis of connected components, memorizing 

the contours of these components and Kraken [13], which is an implementation of the OCR 

combined with a neural network, differently from traditional approaches, this technique 

mimics the way we learn to recognize letters. 

 

Furthermore, one of the most recent methods is the Fast Oriented Text Spotting [14]. This 

method approaches the problem of detecting and recognizing as a mutual task, while most 

existing methods treat it as separate tasks. Using a single network that shares computation 

and visual information among these two tasks, it achieves a more generic feature. 

 

2.3.1. Aruco Code 

 

With movement, diversity of illumination, scales, and distance the OCR can fail as it 

requires a lot of processing and perfect conditions. A possible alternative for that is the use 

of Aruco code. 

The Aruco code is a binary square marker, as showed in figure 2.3 that allows the 

registration of the information inside it, using an inner codification [15]. The markers are 

printed in regular printers having a minimal cost, high robustness, and fast detection. 
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Figure 2.3 – Example of different markers. 

3. Methodology 

In this chapter the methodology followed by obtaining the experimental results from each 

part of the full implementation is explained, so is the dataset used, the devices and software 

used in the validation of the techniques. 

 

3.1. Full Implementation 

The complete software prototype methodology is based on an analysis of the video 

sequence frame by frame to detect, every N frames, and track, in the other frames, each 

of the people present in the scene. The ratio between detection and track is due to detection 

systems are much slower compared to track systems. To accelerate the process the track 

system is used in most of the frames, but as it only relates objects previously detected, a 

periodic detection is required to capture new people that appear in the video. In the case 

of occlusions or people disappearing there is a function who tries to re-encounter them 

after a few frames. The output of this is a bounding box (a set of rectangle coordinates 

around each person) associated with a Unique ID during the entire time, the person is in 

that video. After detection/tracking, there is a system of identification of bib number, to get 

the number inside each bounding box and relate it to a Unique ID. 

 

The following sections describe how the detector and the tracking system work together, 

and the technique used to count the people and an algorithm section. 

 

3.1.1. General Scheme 

The software is composed of five modules. They are as follows: a detection module, a 

tracking module, and a association module, bib # identification and people counting. The 

association module, gives a unique ID to new detections and resigns the detected objects 

to existing tracks when possible. 
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A high-level block diagram is presented in Figure 3.1. The system is composed of a people 

detection system, a people tracking system, an association system and an identification 

module. Every frame starts going through the detection or the tracking system depending 

on the frame number. At the detection system, new people can be detected and will have 

a new ID associated with them. The tracking system catches the objects detected and 

follows their movement through the video frames. Note that every frame, independently if 

it is detection or a tracking frame, passes through the relation and identification system. 

The association of objects is designed to relate detections to previously tracked people. An 

already detected object will be marked in order to avoid double counting when it moves 

within the finish zone. 

 

 

 

Figure 3.1 – High-level block diagram 

 

3.1.2.  Detection and Tracking 

The objective of detection and tracking systems is to determine the spatial position of the 

objects for every frame. In order to do that the detection system chosen is an 

implementation by the Facebook AI Program Detectron[16]. The only change on the 

system was to discard any detected objects that were not classified as people. The tracking 

system is a deep learning network Re3[17] created by Daniel Gordon. 

 

3.1.3. Association of objects to tracks 

In every frame, being detection or tracking, every bounding box must be associated with 

one existing object or verified if it’s new and then associated with a new unique ID. To 

implement that idea, we calculate the Euclidian distance between the centroids from all 

existent objects and the objects that appear in the following frame, that the centroid has 

calculated using a list of bounding boxes that correspond to each object detected and is 

represented in figure 3.2. 
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Figure 3.2 – Graphical representation of the Euclidian distance calculation. 

 

This technique is used every time, but to register/deregister a new object that must happen 

in the frames that will pass through the detector. Moreover before that the algorithm will 

have a max distance from the old centroid to the new centroid and if one object centroid is 

inside this area it will be associated with the previous unique ID and not generate a new 

ID, in the case of more than one centroid is in that area, the closest one will be the assigned 

as represented in figure 3.3. 

 

 

Figure 3.3 – Graphical representation of register/deregister of objects. 

 

A simple flow chart explaining this function is described in figure 3.4 
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Figure 3.4 – flow chart of association track  

 

 

3.1.4. Counting 

For people counting, we must count the people that cross the finish line and exclude the 

ones that are in the field of view and are not runners. A three polygon was designed to be 

placed using the first video frame (figure 3.5) in order to perform people counting. It consists 

of one polygon for the finish zone (green, figure 3.5) which will detect objects crossing the 

finish line, two polygons (red, figure 3.5) which is responsible for the dead zones, zones 

outside of the race track, and they should not count any people. 
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Figure 3.5 – example of the design of zones on the first frame 

 

The exact way of how these zones work with the program is explained in the following 

flowchart (figure 3.6). 
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Figure 3.6 – Flowchart of the counting technique 

 

3.1.5. Bib number recognition 

For recognition of bib number, the objective is to determine the numbers of each runner. 

Using the OCR Tesseract in every bounding box from every frame the text would be 

extracted and associated with the object. If there are different numbers being recognized 

to the same object in different frames, the number that appears most will be the one 

assigned. Another possibility for the bib number recognition is to add and use Aruco codes 

with the number in their codification, making this process faster and more reliable. Both 

systems can work together. 

 

3.1.6. Algorithm 

The full algorithm of the software consists of the combination of the detection, tracking and 

counting system. At each time instant, the system maintains a list of tracked people, with 

an associated ID that is maintained along with the video. For every new frame the position 

of the tracked people is updated to a new position in the image, which occurs only when 
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the people are already being tracked. For new people the detector part will take a step in 

every N frames to try to identify new people to track. When the tracking module cannot 

predict the next location of the object, a new marker (“disappear”) is applied to this object. 

If the object contains this marker, a linear motion model tries to predict the position using 

the velocity of the object. A simplified algorithm of the software is described below. 

 

counted_objects = 0 
trackedObjects = {} # Dictionary of tracked persons, key = ID 

 
for each frame:  
 rectangles = [] 
 if t%N == 0: 

  rectangles = detect(frame) 
 else 
  rectangles = track (trackedObjects, frame) 

 
 trackedObjects = associate (rectangles, trackedObjects)  

 
 if disappear != 0 and disappear < maxdissapear 

  rectangles = linearmotion (trackedObjects,frame) 

  disappear++ 

 elsif disappear > maxdissapear 

  delete object  

 
 for object in trackedObject: 
  if object->centroid > finish_line and object->counted = 

False: 
   counted_objects = counted_objects + 1 

   object->counted = True 

 

4. Results 

This chapter presents and analyses the results of the different parts of the complete 

program as well as the full implementation, in terms of accuracy and timing; It also 

discusses all challenges found during the whole process.  

 

4.1. Dataset acquisition 

 

The dataset used in this master thesis was created by making video records from 3 different 

runs in Barcelona using a mobile phone camera, during the period of the thesis. It’s 

composed of videos with a resolution of 3840 x 2160 pixels. A total number of 18 videos in 

three different height (1.5m, 2m, and 2.5m) with a sum of over 800 seconds of useful video 

with different density of persons, different illuminations and angles. 

 

Our first session took place on the Unirun on the 3rd of March in Parc del Forum, followed 

by Cursa Besos on the 9th of June in CEM Maresme and the last session recorded at 
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Camp Nou on the 16th of June in the Cursa Barça. These three mentioned locations are 

marked in figure 4.1. 

 

In the first session, we recorded clips at 4K and with lower quality, to determine the quality 

necessary for the system. After analysing the data obtained it was decided to record in 4K 

because of the bib number recognition. At this session, it was being possible to obtain 183 

seconds in 3 different clips. 

 

During the second session, we got videos recorded from two parallel positions close to the 

finish line trying to obtain fewer occlusions than before. Using a selfie-stick the records 

were done at a height of 250cm. As a result, we achieved a total of 278 seconds divided 

into 8 different clips. This session was a familiar run with a small number of people and 

almost zero occlusions. 

 

Furthermore, during the third session, we acquired 7 clips with 309 seconds in total. That 

day we couldn’t use the selfie-stick for the height, which results in only 200cm this time. 

Because of a platform in the middle finish line, these videos have a lot of occlusions. 

 

 

Figure 4.1 – Location of the runs 

After each session, a manual person counting was done to obtain a ground truth and 

posterior analysis of the results of the project. 

 

4.2. Detection model analysis and decision 

 

The test was proposed to try different networks and check if the RetinaNet would be better 

in our images than the Μask R-CNN the results are presented at table 4.1. To perform this 

test we run the Detectron program on the UPC Imatge  group cloud server using a GPU 
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and 6GB of ram, over 10 frames of our dataset using one network of Mask R-CNN (model 

id: 35861858) and 4 networks of RetinaNet (RetinaNet R-50-FPN model id: 36768677, 

RetinaNet R-101-FPN model id: 36768907, RetinaNet X-101-64x4d-FPN model id: 

36768907, RetinaNet X-101-32x8d-FPN model id: 36769641) that can be obtained at [3]. 

All of them were trained, by the Facebook research group on the COCO Database. These 

images were randomly selected from the videos recorded in the first session of our 

database. 

 

Table 4.1 – Number of people separated in runners and spectators in all the frames 

analyzed 

  Total Runners Spectators 

Unirun1 24 15 9 

Unirun2 20 12 8 

Unirun3 13 6 7 

Unirun4 16 12 4 

Unirun5 16 8 8 

Unirun6 21 16 5 

Unirun7 22 13 9 

Unirun8 22 13 9 

Unirun9 21 11 10 

Unirun10 20 15 5 

TOTAL 195 121 74 

 

Using the five different models we generated table 4.2 which provide an analyzed result 

from each one of the models. 

 

Table 4.2 – Analysed results obtained with different models 

  Mask Retina 50 Retina 101 RetinaX 64 RetinaX 32 

TP 141 25 20 24 35 

TN 54 170 175 171 160 

FP 0 0 0 0 0 

 

While TP is the number of people that were properly identified as people, TN is the number 

of people that conversely not identified and FP represents a wrong identification of people. 

 

From table 4.2, we can calculate the accuracy of the detection system. The accuracy is a 

statistical measure that quantifies true value. These values can be checked in table 4.3 for 

each one of the tested models. 

 

 



 

 26 

Table 4.3 – Model Characteristics. 

  Accuracy 

Mask 0.723 

Retina50 0.128 

Retina101 0.102 

Retinax64 0.123 

Retinax32 0.179 

 

As we can see the Mask Model shows a much better accuracy when compared with any 

other model. Comparing the brute numbers of each model we can see that the best model 

of RetinaNet detects in total 35 people, including runners and spectators, while the Mask 

model detects 141 persons in a pool of 195 persons. An image example of the difference 

between the best Retina Model and the Mask model is shown in figure 4.2 

 

 

Figure 4.2 – Example of detection using Mask model (right) against RetinaNet model (left) at 

the same frame 

 

We don’t have any distinction between a spectator and a runner for the detecting part of 

the project. The Mask model is the best possible solution for it and will be used in the full 

implementation. 

 

4.3. Tracking analysis and decision 

This test was supposed to be performed in the whole dataset. After preliminary tests over 

only two videos, in all their qualities, we verified a difference of over 6 times more 

computational timing to process the tracking using the correlation tracker against the Re3 

tracker. Due to that, we decided to abandon the correlation tracker and perform the tests 

and the full implementation using the Re3 tracker. 

At the Re3 tracker test, we decided to downscale the videos from the original resolution 

(4K) by 2x, 4x,5x,6x checking how that affects the time and the accuracy of the tracker. 

These tests were running at the same platform used for the people detection tests with an 

integration of the tracker’s technique with the Detectron to perform automatic detection of 

the people. 
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The Re3 tracker results from the videos are shown in table 4.4. Two other tables are 

presented for timing (Table 4.5) and preliminary people counting (Table 4.6). These tables 

were generated by analyzing videos one by one after processing and checking the misses 

and false. 

 

Table 4.4 – Videos used for the validation of Re3 

Recording ID Session People crossing the line Duration Height of the camera 

5972 1 69 62 s 150cm 

5977 1 16 31s 150cm 

5978 1 57 90s 150cm 

 

 

 

Table 4.5 – Timing using Re3 tracker 

Timing on all videos (183 s) 

Timing (s) 
Original 

Resolution x2 x4 x5 x6 

Detection 1424,74 300,33 98,11 84,22 68,73 

Track 3214,16 900,31 342,96 281,83 234,48 

Program 1281,98 370,54 128,79 99,31 80,56 

Movie 4778,22 1199,6 309,99 200,06 134,95 

Total 10699,1 2770,78 879,85 665,42 518,72 

 
The Program is the time elapsed outside the track and the detection system, that means 
the time from all the other functions as Association of IDs, and people counting. While the 
Movie time is the time elapsed to generate an output video for visualization from the 
whole set of frames obtained during the program run. 

Table 4.6 – People counting using Re3 tracker 

People Counting over all videos (142 people) 

  
Original 

Resolution 
x2 x4 x5 x6 

Total 115 114 114 114 117 

Correct 112 112 112 114 116 

Misses 30 30 30 28 26 

False 3 2 2 0 1 

 

Using the Re3 as a tracker we achieve a failure rate of 21%, this number is a result of the 

sum of misses and false positives. The misses are in the majority due to an occlusion of 

the people during the entry in the finish zone, while the false positives are originated by 

people who are not runners but are in the field of view, including commentators, or people 

that randomly enter in the race zone. 
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4.4. Full implementation 

The tests over full implementation are realized due to the new functions integrated from 

correlation tracker on Re3, the addition of bib number recognition. The results are obtained 

from a partial dataset presented in table 4.7. The results are done only in a part of the total 

dataset since after checking the videos some of them had a huge number of spectators in 

front of the camera and in the trajectory to the finish line. As in the tracker analysis, a table 

of timing (Table 4.8) and also the one for people counting (Table 4.9) were created for 

analysis. 

 

 

 

Table 4.7 – Dataset of videos used for validation of the program 

Recording ID Session People crossing the line Duration Height of the camera 

5972 1 69 62 s 150cm 

5977 1 16 31s 150cm 

5978 1 57 90s 150cm 

6491 2 9 30s 250cm 

6492 2 4 30s 250cm 

6493 2 6 30s 250cm 

6494 2 11 30s 250cm 

 

 

Table 4.8 – Timing using the full implementation 

Timing on all videos (303 s) 

 FR x2 x4 x5 x6 

Detection 2594.29 308.26 165.58 146.98 137.03 

Tracking 3303.57 956.99 401.24 322.42 277.47 

Program 8308.17 2252.94 635.48 375.22 265.14 

Total 14206.03 3518.19 1202.3 844.62 679.64 

 

Table 4.9 – People counting using the full implementation 

People Counting over all videos (172 people) 
 Ground Truth FR x2 x4 x5 x6 

Total 172 171 165 159 160 158 

Correct 172 161 155 152 153 151 

Misses 0 11 17 20 19 21 

False 0 10 10 7 7 7 
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With the full implementation, using the Re3 as a tracker mixed with the correlation tracker 

functions we managed to have great improvement in both aspects, timing, and counting. 

We worked with around 60% more time on the videos to be processed than before and got 

results equivalent to 75~80% faster for all resolutions. The people counting, with all 

functions implemented lead to diminish the misses in a great amount and the number of 

false positive didn’t raise so much. An example of perfect tracking is showed in the below 

sequence of frames in figure 4.3. 
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Figure 4.3 – Sequence of frames of good tracking and counting with re-identification 

 

At figure 4.3 we can see 3 frames of the video after the processing showing the paths of 

the person ID 3 (green) and ID 4 (pink). In the first figure (upper) both of them are outside 

of the finish zone and the counter shows the quantity of 1, the moment after the ID 4 

crosses the line at the second figure (central) and the track goes to 2 and at least with the 

occlusion before of the ID 3 what possible to re-detect. Separated tables for each video 

can be found at Annex II. 

 

The people misses are in the majority of people that are occluded near the finish line.  The 

false positives are originated by persons who are not runners but still in the running area. 

These errors can be checked in the sequence of frames in figure 4.4 and 4.5. The errors 

can be reduced with a better position for the camera, which means centered recordings. 



 

 32 



 

 33 

 

Figure 4.4 – Sequence of frames for an occlusion miss 

 

Looking at the man in orange identified as ID 9, a partial occlusion happens between frame 

1 and frame 2 (first two frames) there is poor detection/tracking. Resulting in the sequence 

tracked on frame 3 that will lead to him not be reassociated after the occlusion. 
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Figure 4.5 – Sequence of frames for a false positive. 

 

The other type of error presented in figure 4.5 is a false positive. A person that isn’t a runner 

enters in the tracking area and is identified as a person receiving a unique ID, in this case, 

13 in dark blue, and being counted. 
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4.5. Number Recognition analysis 

 

For that, a manual segmentation over the dorsal of different people in different videos was 

made. In case of the manual segmentation had good results, we would apply some 

automatic segmentation over the bounding boxes using text detectors on the bounding 

boxes areas. The number recognition analysis was done over 57 images of 14 different 

people. There are different possibilities of pre-processing that we could use, 4 different 

processes were designed, always relying on the previous process results. 

The first processing was getting the original image pass by a to resize interpolation, change 

from RGB to Grayscale, binarize it, invert the color and then closing to eliminate the 

interferences. The second process adds a dilatation before the closing to make the lines a 

bit thinner, and after the closing, an erosion is done to redefine the lines. The third process 

is equal to the second changing only the order of resizing with the change of color to 

grayscale. The last process tries to fix the difference of illumination doing an equalization 

over the grayscale. This part was implemented by another member of our team but is 

included here for completeness. The complete details are graphically detailed in Annex I. 

We obtained very disappointing results with all the pre-processing, as showed in table 4.10 

 

Table 4.10 – Character Recognition results 

 Process 1 Process 2 Process 3 Process 4 

Correct Detection 2 9 8 2 

Incorrect Detection 0 3 6 3 

No Detection 55 45 43 52 

 

From table 4.10, it’s possible to see that process 2 has the best results, 15% accuracy. 

Looking at the different results obtained we can say that it will not be effective and for the 

moment won’t be integrated into the full system. Figure 4.6 below shows one example of 

the dorsal segmentation and process over a correct detection of number. 
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Figure 4.6 – Dorsal with a correct number read by OCR 

5. Budget 

The costs associated with this project are mainly personnel costs of one junior engineer 

working as a full-time worker for the master thesis, one junior engineer working as a full-

time worker for the graduation thesis, and two senior engineers to supervise the work. 

 

Table 5.1 – Budge table 

 Wage Hours/Week Total Weeks Total (€) 

Junior engineer x2 8€/h 25 21 8.400 

Senior engineer x2 60€/h 2 21 5.040 

 

Finally, the personal cost goes around 13.440 €, but the resources used from the group of 
Imatge from UPC are not included but can be assumed that rent a similar server on Amazon 
Web Services would cost 0.33€ per hour estimating the usage of that for approximately 
100 days we will add to the sum 792€ as well as a coworking place in Barcelona for 8 hours 
a day will add another sum of 420€. 

By that, the total cost of the project would be 14.652€.   
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6. Conclusions and future development 

 

The main goal of this study was to design and implement a computer vision system capable 

of counting and identifying the participants in any kind of running competition. The 

proposed system can detect, track, and count the competitors when they cross the finish 

line without using any special device. Furthermore, it is able to extract the bib number from 

each runner so the order of the arriving can be known. This thesis has focused on the study 

of different methods related to each part of the complete system. The tests that were done 

and showed in the chapter of results, divided the whole system into four main sections, 

detection, tracking, counting, and character recognition. 

 

At the detection part, we managed to test two different networks, Mask R-CNN, and 

RetinaNet, obtaining much better results using the Mask R-CNN. The Mask R-CNN was 

the model implemented at the final system. 

 

Furthermore, two different methods of tracking were being tested, a correlation tracker and 

a deep learning algorithm. In this case, the deep learning method was presenting much 

better timing results than the correlation tracker, overpassing it on a scale of 1:10 as it 

works with GPU. For the final system, the deep learning method was chosen thinking of 

having a real-time system. 

 

For the counting, the test was made with both tracking methods. It works better with the 

functions predefined on the correlation tracker. Integration between the Re3 tracker and 

the functions available in the correlation tracker was done to obtain results with only 6~7% 

of errors caused by occlusions or when people get amounted in the finish zone. 

 

Finally, character recognition didn’t give the results that we expect. Tested in the best 

situation possible, taking the segmentation by hand in good frames without any occlusion 

of the dorsal so this part isn’t implemented in the final design for now. 

 

For possible next steps for the system, first is necessary to find a better record spot, 

probably a centralized one in a higher position to diminish the occlusions and by 

consequence lead to fewer errors. Another problem is character recognition, for that, must 

be develop an automatic detection only over the numbers of the dorsal to exclude manual 

segmentation. The recognition can be done using other methods as adding an Aruco code 

[19] that will have in its content the number of the competitor as it’s a well-known system 

with pretty solid results that can raise the correct results. 
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Annex I 

The following diagrams show every pre-process tried for the Dorsal Recognition Function. 

 

Process 1: 

 

 

Process 2: 

 

 

Process 3: 
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Process 4: 
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Annex II 

The following tables show the Re3 tracker people counting results and the duration of the tests, 

detailed for each video. 

 

Timing on video 5972 (62 s) 

Timing (s) Full Res. x2 x4 x5 x6 

Detectron 646.50 73.17 35.46 31.17 27.91 

Track 736.62 204.81 81.37 64.99 54.71 

Program 1858.88 476.27 120.00 81.04 62.78 

Total 3242.00 754.25 236.83 177.20 145.40 

 

Timing on video 5977 (31 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 257.82 31.28 17.77 15.82 14.25 

Track 355.36 95.17 40.17 33.51 30.19 

Program 902.21 236.77 59.37 38.95 27.91 

Total 1515.39 363.22 117.31 88.28 72.35 

 
Timing on video 5978 (90 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 654.15 84.26 45.85 41.65 38.39 

Track 986.29 269.42 113.31 90.7 80.14 

Program 2767.19 704.39 173.7 110.24 77.65 

Total 4407.63 1058.07 332.86 242.59 196.18 

 

Timing on video 6491 (30 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 270.25 31.41 16.55 14.88 14.27 

Track 387.21 107.76 43.86 34.81 30.81 

Program 827.88 225.07 55.37 36.01 27.02 

Total 1485.34 364.24 115.78 85.70 72.1 

 

Timing on video 6492 (30 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 244.41 29.64 13.35 12.48 13.39 

Track 165.99 81.96 24.64 21.69 25.83 

Program 532.39 218.66 34.83 22.87 25.50 

Total 942.79 330.26 72.82 57.04 64.72 
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Timing on video 6493 (30 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 267.82 23.40 17.22 15.72 15.39 

Track 408.31 68.72 44.55 33.14 27.83 

Program 858.63 144.84 121.44 45.37 25.5 

Total 1534.76 236.96 183.21 94.23 68.72 

 

Timing on video 6494 (30 s) 

Timing (s) FR x2 x4 x5 x6 

Detectron 253.34 35.10 19.38 15.26 13.43 

Track 263.79 129.15 53.34 43.58 27.96 

Program 560.99 246.94 70.77 40.74 18.78 

Total 1078.12 411.19 143.49 99.58 60.17 

 
People Counting video 5972 

 Ground Truth FR x2 x4 x5 x6 

Total 69 65 59 58 58 57 

Correct 69 63 57 56 56 56 

Misses 0 6 12 13 13 13 

False 0 2 2 2 2 1 

 

People Counting video 5977 
 Ground Truth FR x2 x4 x5 x6 

Total 16 17 18 17 17 18 

Correct 16 16 16 16 16 16 

Misses 0 0 0 0 0 0 

False 0 1 2 1 1 2 

 
People Counting video 5978 

 Ground Truth FR x2 x4 x5 x6 

Total 57 59 55 55 56 54 

Correct 57 55 55 53 54 52 

Misses 0 2 2 4 3 5 

False 0 4 3 2 2 2 

 
People Counting video 6491 

 Ground Truth Original Resolution x2 x4 x5 x6 

Total 9 11 11 10 10 10 

Correct 9 9 9 9 9 9 

Misses 0 0 0 0 0 0 

False 0 2 2 1 1 1 
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People Counting video 6492 

 Ground Truth Original Resolution x2 x4 x5 x6 

Total 4 4 4 4 4 4 

Correct 4 4 4 4 4 4 

Misses 0 0 0 0 0 0 

False 0 0 0 0 0 0 

 

People Counting video 6493 
 Ground Truth Original Resolution x2 x4 x5 x6 

Total 6 6 6 6 6 6 

Correct 6 6 6 6 6 6 

Misses 0 0 0 0 0 0 

False 0 0 0 0 0 0 

 
People Counting video 6494 

 Ground Truth Original Resolution x2 x4 x5 x6 

Total 11 9 9 9 9 9 

Correct 11 8 8 8 8 8 

Misses 0 3 3 3 3 3 

False 0 1 1 1 1 1 

 

 


