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Abstract: In this work, a mathematical formulation of the train scheduling
problem is provided as a Mixed Integer Linear Program. The MILP
can be solved for easy cases, but computation time makes it impractical
for more complex examples. Then a genetic algorithm is employed in
the solution of the problem, with heuristic techniques to generate an
initial population. The algorithm is applied to a number of problem
instances producing feasible, though not optimal, solutions in less then
one minute. Some improvements are suggested to obtain better results
and further improve computation time.
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Chapter 1

Introduction

The objective of the project is to model the scheduling of trains on a railways
network as a Mixed Integer Linear Program and develop a heuristic algorithm
to optimize the scheduling.

In this work we are motivated by train scheduling but other situations
may fit in the same mathematical model.

The creation of a new timetable is known to be an NP-hard problem.
Nowadays this work is mostly done by humans[1], but some operators, like
Schweizerische Bundesbahnen (SBB) are investigating the possibility to au-
tomatize the process[2]. This show that there is an interest from the industry
in this direction.

The situation that we want to address in this work is that of a network
composed by busy multi-platform stations connected by at least a one-way
track in each direction, that is the most common situation around Europe.
We are not interested to solve the problem in the situation, more common
in North America or Russia, where there are far stations connected by one
two-way track with loops for the intersection of trains in opposing directions.

Although the solver may be able to manage also this situation, there is a
fair amount of research that specifically address it.

The task of scheduling trains on a network is an evolutionary process:
there is almost never a complete redesign, but the new timetable is based
on the previous one with some variations or adjustment. Some networks
are operated on a Clock-face schedule and they have a traffic so dense that
respecting the clock-face structure is a priority. The Swiss railway network,
for instance, has been adapted in such a way that the journey time between
the main stations is a multiple of 30 minutes.

Another thing to consider, that is common in Europe, is the interna-
tional traffic, that usually is decided before the internal traffic and becomes
a constraint of the problem.
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Scheduling means generating a timetable giving, for each train, arrival
and departure times at various points on the network. The difficulty in this
process is given by the fact that it is necessary to take into account possible
conflicts between trains over a resource, that can be, for instance, a cross
between two ways. The objective of the scheduling is to avoid such conflicts
in the planning phase by computing the time instants in which each train
should take over and release a certain resource.

The main difference with other kind of algorithms that can be employed
for packets or also other kind of vehicles and infrastructure, is the fact that
trains cannot overpass one another and that it is not possible to buffer them.
This means, in other words, that if the entrance of a train into a section is
delayed, then the section before will be occupied for a larger amount of time
and no other train will be allowed into, nor through it.

Fast scheduling algorithms can also be employed to adjust the schedule
in real time when some situation that had not been planned arise.

A further purpose of the algorithms is that they can be used to simu-
late and explore the effects of alternative draft timetable, operating policies,
station layouts, and random delays or failures.
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Chapter 2

State of the art

In this chapter, we will cite some past research in this field that are related
to this work and the software libraries and tools that have been used in the
program.

2.1 Related Work
Scheduling trains on a railway network is known to be an NP-hard problem
with respect to the number of conflicts. Since the advent of computers, people
started to think about ways to automatize the process. Some heuristics have
been developed in the years to find and solve the conflicts in polynomial time.

Nedeljkovic and Norton[3], for example, developed for Westrail heuristic
techniques to generate master train schedules recognizing the relative Prior-
ities of trains. The method relies heavily on man-machine interaction.

Remaining in Western Australia, Mees[4] presents an efficient approxi-
mate algorithm which can find good feasible solutions for real-world networks
quickly with modest computing resources.

Cai and Goh[5], propose an algorithm which is based on local optimality
criteria in the event of a potential crossing conflict. The suboptimal but
feasible solution can be obtained very quickly in polynomial time. The model
can also be generalized to cater for the possibility of overtaking when the
trains have different speed.

Higgins, Kozan, Ferriera wrote a series of researches in the field, employ-
ing branch and bound[6] and various local search heuristic techniques[7] for
the scheduling on single line rail corridors.

Carey and Crawford[1] propose an heuristic technique to solve the prob-
lem of scheduling trains on a network of busy complex stations, like the ones
that can be found all around Europe.
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Some recent researches apply genetic algorithms in the field, but mostly
to reduce the number of trains subject to a given passengers flow[8], or to
assign drivers to trains[9]

2.2 Technology used in this work
Pyomo [10][11] was the python-based package selected to solve the optimiza-
tion model proposed in Section 3.1, along with GLPK as underlying solver.

The heuristic optimization program has been developed using the Rust
programming language.

The “rayon” crate1 has been used to obtain concurrency based on work
stealing. Work stealing is a scheduling strategy for computer programs ex-
ecuting a dynamically multithreaded computation, that can “spawn” new
threads of execution, on a computer with a fixed number of processors (or
cores). It does so efficiently both in terms of execution time, memory usage,
and inter-processor communication.

In a work stealing scheduler, each processor in the computer system has
a queue of work items (computational tasks, threads) to perform. Each work
item consists of a series of instructions, to be executed sequentially, but in
the course of its execution, a work item may also spawn new work items that
can feasibly be executed in parallel with its other work. These new items are
initially put on the queue of the processor executing the work item. When
a processor runs out of work, it looks at the queues of other processors and
”steals” their work items. In effect, work stealing distributes the scheduling
work over idle processors, and as long as all processors have work to do, no
scheduling overhead occurs[12].

The “oxigen” crate provides a framework for genetic algorithms. This was
modified and adapted to solve this specific problem. The modified version
has been published.

“serde” is used to perform efficient serialization and deserialization of json
objects into native Rust data structures for input of the problem instances
and output of the solutions. It uses the powerful Rust preprocessor to au-
tomatically generate serializers and deserializers implementations from and
into a wide range of formats. With some attributes it is possible to guide the
serde implementations, for example changing the name of fields or structures
between the serialized and deserialized form.

Also the “chrono” crate has been used for the correct management of
time and “time-parse” to provide a parser for the duration in the ISO format.

1name used by Rust developers to indicate a published library or program
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chrono can manage dates, instants and durations also considering time zones.
It also provides implementations for the mathematical operations between
time instants and intervals, such that it is as easy to handle them as it is
to manage any other numerical data types. It is also space optimal and
reasonably efficient.

Finally we use the crate “rand” for pseudo-random number generators
and other functions related to randomness and “petgraph” for a flexible graph
data structure providing also the implementation of some basic algorithms
and tools to visualize the graph.

All the crates are available at https://crates.io, the official Rust Pack-
age Registry.

5
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Chapter 3

Methodology

In this chapter a model of the problem will be proposed in the form of a
Mixed Integer Linear Program. Then a heuristic solution employing genetic
algorithms will be proposed.

As input data to the problem we assume to have a draft schedule which
proposes some service intentions and for each of them a list of section re-
quirements, that are stations where the train have to stop. The section re-
quirement may specify connections with other services, a minimum stopping
time, and some earliest or latest entry or exit time.

Another data we assume to have is the route for each service intention,
that is a Directed Acyclic Graph in which the route sections are annotated
with the minimum running time required by the train that execute that ser-
vice to traverse the section. If two service intentions run technically on the
same route but with different rolling stock (with different characteristics of
maximum speed and acceleration), then two different routes must be pro-
vided.

The objective of the solver is to

• choose a path for each service intention and

• assign a time instant to each event, i.e. decide for each section of each
route, the moment a train should enter it and the moment it should
exit

in order to minimize the delay and try to avoid some penalized paths.
In other terms the solutions must respect a number of constraints that

are formalized into the mathematical model and enforced by the heuristic
and must minimize an objective function where the delays and the penalties
for running on specific route paths contribute to.

7



3.1 A model of the problem
In the presentation of the model we will start by introducing some notation.
Then the meaning of the employed parameters and variables will be explained.
Finally the objective function and the constraints will be introduced and
discussed.

3.1.1 Subscripts and superscripts
We will use the following superscripts:

in To indicate a parameter or a variable related to the entrance in a section;

out To indicate a parameter or a variable related to the exit from a section;

and the subscripts to indicate an index that can vary into a set.

3.1.2 Parameters
First of all, all the information about routes and service intentions are read
from input files. Routes information includes an id and a list of route sections
each one with values related to:

• Minimum running time, 𝑚𝑟𝑡

• Minimum stopping time, 𝑚𝑠𝑡

• Penalty in case of using the route section by a service intention, 𝑝.

• Earliest/Latest entry/out times, 𝐸𝑎𝑟𝐼𝑛, 𝐸𝑎𝑟𝑂𝑢𝑡, 𝐿𝑎𝑡𝐼𝑛, 𝐿𝑎𝑡𝑂𝑢𝑡.

• Entry/Exit delay weights, 𝑤𝑖𝑛, 𝑤𝑜𝑢𝑡

• Route alternatives

With this information, all the feasible paths for each service intention are
computed, taking into account all the alternatives. In order to manage service
intentions, routes and sections, we have defined different sets as parameters
of our model. We have a list of service intentions, a list of paths for each one
and a list of resources of each path of each si. We have also a general list of
route resources.

SI Set of Service Intentions
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P Set of Paths of each SI (taking into account alternative paths). Each
element of this set depends on the service intention, si, and one feasible
route of the si, r, i.e. (si, r).

RS Set of Route Sections of each path of each SI (counting alternative paths).
Each element of this set depends on the service intention, si, one feasible
route of the si and one route section of this path, rs, i.e. (si, r, rs).

RE Set of Resources feasible to be used by each SI. Each element of this set
depends on the service intention, si, and one feasible route section to
be used by it, re, i.e. (si, re).

RSE Set of Resources of each SI at each route. Each element of this set
depends on the service intention, si, one feasible route of the si, and
one section of whatever path, re, i.e. (si, r, re).

RSI Set of pairs of services intentions and possible resources to be occupied
by them. Each element of this set depends on the pair of service inten-
tions, si1, si2, and one section of the list of resources, re, i.e. (si1, si2,
re).

RSIRE Set of pairs of services intentions, their routes and possible resources
to be occupied by them. Each element of this set depends on the pair
of service intentions with feasible routes, si1, r1, si2, r2, and one section
of the list of resources, re, i.e. (si1, r1, si2, r2, re).

In addition we have to define:

C The minimum time to wait for a coincidence between two service inten-
tions at a common section requirement

M and 𝜖 for linearization purposes.

3.1.3 Variables
The following are the variables defined in the model:

𝑡𝑖𝑛
𝑠𝑖,𝑟,𝑟𝑠 Train entrance time into a section of a route (si:train, r:route, rs:resource).

𝑡𝑜𝑢𝑡
𝑠𝑖,𝑟,𝑟𝑠 Train exit time of a route section (si:train, r:route, rs:resource).

𝛿𝑠𝑖,𝑟 Binary variable equal to 1 if the service intention (train), si, uses the
route r, 0 otherwise.
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𝑥𝑠𝑖,𝑟𝑒 Binary variable equal to 1 if the service intention (train), si, uses the
resource re, 0 otherwise.

𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 Binary variable equal to 1 if both services intentions si1 and si2
use the same resource re, 0 otherwise.

3.1.4 The objective function

The objective of the optimization is to minimize the delay of each train and
at the same time avoid to use some tracks if possible. This can be modeled
by an objective function that uses the Goal Programming method.

𝑓(𝑥) =
1
60 ⋅ ( ∑

𝑆𝐼,𝑅,𝑅𝑆
𝑤𝑖𝑛𝑟𝑠 ⋅ max(0, 𝑡𝑖𝑛

𝑠𝑖,𝑟,𝑟𝑠 − 𝐿𝑎𝑡𝐼𝑛𝑠𝑖,𝑟𝑠)+

𝑤𝑜𝑢𝑡𝑟𝑠 ⋅ max(0, 𝑡𝑜𝑢𝑡
𝑠𝑖,𝑟,𝑟𝑠 − 𝐿𝑎𝑡𝑂𝑢𝑡𝑠𝑖,𝑟𝑠)) +

∑
𝑆𝐼,𝑅,𝑅𝑆

𝑝𝑠𝑖,𝑟𝑠 ⋅ 𝑥𝑠𝑖,𝑟𝑠 (3.1)

In this formulation, the priority of a service is encoded into the weight
of the corresponding delay: a service with higher priority will have higher
weights then one with a lower priority.

3.1.5 Constraints

We have to respect several constraints to get valid solutions.
First of all, we include constraints that define the behaviour of one train

along the sections of a route to ensure a confortable railway service, that
means avoiding a train to depart earlier than the scheduled departure time,
avoiding the stop to be short to let the passengers get on or off the train
safely, or avoiding the scheduled connection between two trains to be too
short for the passengers to effectively take advantage of it.

More concretely, we have included the following constraints:
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𝑡𝑜𝑢𝑡
𝑠𝑖,𝑟,𝑟𝑠 − 𝑡𝑖𝑛

𝑠𝑖,𝑟,𝑟𝑠 ≥ 𝑚𝑟𝑡 + 𝑚𝑠𝑡 − 𝑀 ⋅ (1 − 𝛿𝑠𝑖,𝑟) ∀{𝑠𝑖, 𝑟, 𝑟𝑠} ∈ 𝑅𝑆 (3.2a)
𝑡𝑖𝑛
𝑠𝑖,𝑟,𝑟𝑠 ≤ 𝑡𝑜𝑢𝑡

𝑠𝑖,𝑟,𝑟𝑠 ∀{𝑠𝑖, 𝑟, 𝑟𝑠} ∈ 𝑅𝑆 (3.2b)
𝑡𝑜𝑢𝑡
𝑠𝑖,𝑟,𝑟𝑠 ≤ 𝑡𝑖𝑛

𝑠𝑖,𝑟,𝑟𝑠+1 ∀{𝑠𝑖, 𝑟, 𝑟𝑠} ∈ 𝑅𝑆 (3.2c)
𝑡𝑖𝑛
𝑠𝑖,𝑟,𝑟𝑠 ≥ 𝐸𝑎𝑟𝐼𝑛𝑠𝑖,𝑟,𝑟𝑠 − 𝑀 ⋅ (1 − 𝛿𝑠𝑖,𝑟) ∀{𝑠𝑖, 𝑟, 𝑟𝑠} ∈ 𝑅𝑆 (3.2d)

𝑡𝑜𝑢𝑡
𝑠𝑖,𝑟,𝑟𝑠 ≥ 𝐸𝑎𝑟𝑂𝑢𝑡𝑠𝑖,𝑟,𝑟𝑠 − 𝑀 ⋅ (1 − 𝛿𝑠𝑖,𝑟) ∀{𝑠𝑖, 𝑟, 𝑟𝑠} ∈ 𝑅𝑆 (3.2e)

The first set of constraints (3.2a) specify that, for the selected path of a
service intention (with 𝛿𝑠𝑖,𝑟 = 1), the minimum time between entering and
going out of a section is the summation of the minimum running time and the
minimum stop time. In addition, the set of constraints in (3.2b) determine
the sequence of times along the sections that form the route to be used by
the service instance (the train first enters into the section and then goes out).

Constraints in (3.2c) define that for each track section, it is occupied
right after the section before is freed. In others words, after a train frees one
section, it does not get lost, but goes immediately in the next section.

Constraints in (3.2d) and (3.2e) specify the earliest requirements for the
selected path of each service intention (with 𝛿𝑠𝑖,𝑟 = 1). The first set of con-
straints (3.2d) avoids to depart earlier than the scheduled departure time,
and the second (3.2e) avoids to stop too short in the station to let the pas-
sengers get on or off the train safely.

In addition, we include the constraints (3.3a) to ensure that exactly one
path is assigned to each service intention.

∑
𝑟∈𝑃

𝛿𝑠𝑖,𝑟 = 1 ∀𝑠𝑖 ∈ 𝑆𝐼 (3.3a)

On the other hand, constraints in (3.4a) establish the relationship be-
tween the variables 𝑥𝑠𝑖,𝑟𝑒 and 𝛿𝑠𝑖𝑟

, i.e., if a route r is assigned to a service
intention, all the sections of this path will be occupied by this service inten-
tion (train).

𝑥𝑠𝑖,𝑟𝑒 ≥ 𝛿𝑠𝑖,𝑟 ∀{𝑠𝑖, 𝑟, 𝑟𝑒} ∈ 𝑅𝑆𝐸 (3.4a)

Finally, we need constraints to solve the coincidence at a common section
of two service intentions.

The following constraints (3.5a) permit to fix 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 = 1 in case the
two selected paths for the service intentions s1 and s2 (r1 and r2, respectively),
coincide at the section re and si1 enters earlier than si2. In the same way,
constraints (3.5b) establish 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 = 0 in case the two selected paths for
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the service intentions s1 and s2 (r1 and r2, respectively), coincide at the
section re and si1 enters later than si2.

𝑡𝑖𝑛
𝑠𝑖1,𝑟1,𝑟𝑒 − 𝑡𝑖𝑛

𝑠𝑖2,𝑟2,𝑟𝑒 ≤𝑀 ⋅ (1 − 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒)+
𝑀 ⋅ (2 − 𝛿𝑠𝑖1,𝑟1 − 𝛿𝑠𝑖2,𝑟2)

∀{𝑠𝑖1, 𝑟1, 𝑠𝑖2, 𝑟2, 𝑟𝑒} ∈ 𝑅𝑆𝐼𝑅𝐸 (3.5a)
𝑡𝑖𝑛
𝑠𝑖2,𝑟2,𝑟𝑒 − 𝑡𝑖𝑛

𝑠𝑖1,𝑟1,𝑟𝑒 + 𝜖 ≤𝑀 ⋅ 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒+
𝑀 ⋅ (2 − 𝛿𝑠𝑖1,𝑟1 − 𝛿𝑠𝑖2,𝑟2)

∀{𝑠𝑖1, 𝑟1, 𝑠𝑖2, 𝑟2, 𝑟𝑒} ∈ 𝑅𝑆𝐼𝑅𝐸 (3.5b)

The following constraints (3.6a) determine that in case of section coinci-
dence and 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 = 1, the second train (si2) entry time to the section has
to be delayed until the first train (si1) has left the section plus an extra time
C (time to wait between two trains that share a common section). On the
contrary, the constraints (3.6b) provoque the delay of the first train.

𝑡𝑜𝑢𝑡
𝑠𝑖1,𝑟1,𝑟𝑒 − 𝑡𝑖𝑛

𝑠𝑖2,𝑟2,𝑟𝑒 + 𝐶 ≤𝑀 ⋅ (1 − 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒)+
𝑀 ⋅ (2 − 𝛿𝑠𝑖1,𝑟1 − 𝛿𝑠𝑖2,𝑟2)

∀{𝑠𝑖1, 𝑟1, 𝑠𝑖2, 𝑟2, 𝑟𝑒} ∈ 𝑅𝑆𝐼𝑅𝐸 (3.6a)
𝑡𝑜𝑢𝑡
𝑠𝑖2,𝑟2,𝑟𝑒 − 𝑡𝑖𝑛

𝑠𝑖1,𝑟1,𝑟𝑒 + 𝐶 ≤𝑀 ⋅ 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒+
𝑀 ⋅ (2 − 𝛿𝑠𝑖1,𝑟1 − 𝛿𝑠𝑖2,𝑟2)

∀{𝑠𝑖1, 𝑟1, 𝑠𝑖2, 𝑟2, 𝑟𝑒} ∈ 𝑅𝑆𝐼𝑅𝐸 (3.6b)

The pseudo code of the collision avoidance is the following:

if 𝑟𝑒 ∈ (𝑟1, 𝑟2) and (𝛿𝑠𝑖1,𝑟1 = 1 & 𝛿𝑠𝑖2,𝑟2 = 1) then
if 𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 = 1 (i.e. 𝑡𝑖𝑛

𝑠1,𝑟1,𝑟𝑒 ≤ 𝑡𝑖𝑛
𝑠2,𝑟2,𝑟𝑒) then

𝑡𝑖𝑛
𝑠2,𝑟2,𝑟𝑒 ≥ 𝑡𝑜𝑢𝑡

𝑠1,𝑟1,𝑟𝑒 + 𝐶
else {𝛽𝑠𝑖1,𝑠𝑖2,𝑟𝑒 = 0 (i.e. 𝑡𝑖𝑛

𝑠1,𝑟1,𝑟𝑒 ≥ 𝑡𝑖𝑛
𝑠2,𝑟2,𝑟𝑒)}

𝑡𝑖𝑛
𝑠1,𝑟1,𝑟𝑒 ≥ 𝑡𝑜𝑢𝑡

𝑠2,𝑟2,𝑟𝑒 + 𝐶
end if

end if

Relevant parts of the model input preparation are reported in Listing A.1.
The model has been defined in the pyomo framework and executed using the
GNU Linear Programming Kit solver. In Listing A.2 it is possible to read
its definition and execution. Parts of the code that produce the output have
been elided.
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3.2 Implementation
The mathematical model of the problem is an integer optimization problem
with side constraints, and it is difficult or impossible to solve exactly in
reasonable time. In order to solve this NP-hard problem, a heuristic approach
is adopted that makes use of genetic algorithms to find a good solution.

The full implementation of the program developed to solve the train
scheduling problem will be discussed in this section, starting from the in-
put model, to later describe the data structures used internally, the resource
manager used to ensure a coherent management of the resources, the al-
gorithm used to produce an individual of the initial population, that is a
solution generated with a certain amount of randomness, to the techniques
employed in the genetic optimization and the output model.

3.2.1 Input model
The input files consist in json serialized structures that represent the service
intentions, the routes and the resources.

The service intention is an ordered list of section requirements. Because
json serialization and deserialization does not guarantee to keep the ordering
correct, each entry contains a sequence number.

The section requirement object encodes information about the earliest
and latest instant a train is expected to enter and exit a station or a certain
block, the minimum duration of the stop at a station and the weight of a
delay after the latest intended entry or exit of the train into the required
section. All the information is optional. Moreover it can contain connections
with other service intentions. In this case the connection structure indicates
how much should it last in order to allow passengers to comfortably change
service.

Each service intention is linked through a unique identifier to a route,
that is a directed acyclic graph represented through its edges, that are the
route sections. The graph is divided into route paths, linear sub-graphs that
represent the alternative paths a train can take, for example different ways
into a multi-platform station. The edges in each route path are connected in
sequence and the route paths are connected to each other using markers, i.e.
unique strings that identify nodes.

Each route section contains the list of identifiers of the resources a train
would require when occupying the section and the minimum time required
for the train to pass through the section. An optional section marker allow
the link between the section requirements and the route sections.

Finally, the resources are identified using a string and contains a release
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time. Some resources could allow following trains in the same direction to
pass through before the release time has expired.

3.2.2 Internal representation
After the input file is deserialized it must be converted into a more suitable
representation.

Each service intention and the corresponding route are merged into a
unique data structure that is a graph. Each node of the graph will be an
“event”. It will contain an optional time, that will be left unassigned in the
first place, and an optional marker, if this is assigned by the
“route_alternative_marker_at_entry” or
“route_alternative_marker_at_exit” fields of the route section. The edges
of the graph, instead will bring all the information about the route section
and also to the section requirement if the current route section corresponds
to a section requirement. Listing A.3 on page 42 shows the definition of the
node and the edge of the graph, while Listing A.5 on page 42 the logic that
builds it.

A vector will contain the source points and will be associated to the graph
into the “Route” struct.

The set of the graphs obtained in this way, collected into a wrapper struct
called “Route Manager” and the set of the resources taken directly from
the input model will constitute the internal representation of the problem
instance: a struct called “Instance”.

A resource manager will be created from the list of resources every time
a solution must be generated or checked.

After a service intention is scheduled, it will produce the internal repre-
sentation of a “TrainRun”, that will be a graph similar to the one in the
instance, but with all the times assigned on the chosen path. For conve-
nience, there is also a vector containing the sequence of nodes of the chosen
path and another containing the related times. The service intention id is
also kept associated with these structures. The collection containing all the
“TrainRun”s is the “Solution” of the problem.

The “Route” and the “RouteManager” definitions can be found in List-
ing A.4 on page 42 while Figure 3.1 on the next page shows how the generated
graph look like in a very simple case.

The “Instance”, the “TrainRun” and the “Solution” are instead in List-
ing A.7 on page 47.

This representation is optimal to compute the value of the objective func-
tion or to perform further optimizations, but it has to be converted into a
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Figure 3.1: A representation of the graph contained into the Route structure
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more suitable one before being emitted as output. The struct also implements
the “Genotype” trait providing the methods for the Genetic optimization.

3.2.3 Resource Manager
From the list of the resources a HashMap is generated that will allow direct
access to a resource. The values are protected by a Mutex lock to allow
resource allocation to be safely performed concurrently. In the value, a vector
of intervals keep track of the allocations. A wrapper object built around the
map will provide safe management of the resources, allocating time intervals
and considering the release time needed by each resource.

The Vector containing the allocation intervals works like an interval-tree,
allowing only the insertion of non-overlapping intervals and refusing the other
cases.

The “Interval” struct contains the identifier of the service intention and
the index of the route section that is allocating the resource for the interval.
It also contains the start and end instants.

The ordering operation (“Ord” trait) is implemented for this struct based
only on the start field. This allows an easier and more efficient management
of the consistency of this structure. In fact, to see if an interval has collisions,
it is sufficient to perform a binary search into an ordered vector: if the search
have success, we will know the exact position of the first colliding interval,
otherwise the first colliding interval may be the one before the position where
the new interval should have been, or the one in that position, or both. One
of the two may not exist and in either case, only one comparison is needed.

The private method “search_collisions” return the range of intervals col-
liding with a given interval on the given resource. The resource mutex must
be locked before calling the method and the lock is passed to it. This func-
tionality is exposed by the “collisions” public method that returns a vector
with all the intervals in the range.

The “take” method, instead, uses it internally to verify that a request is
acceptable. This function will accept allocations that collide with intervals
scheduled by the same intention and return an error if the requested resource
does not exist, if the requested interval has a negative duration (i.e. the end
precedes the start), or if there is a collision, specifying the first collision with
another intention. On success, instead, a token will be returned containing
a reference to the resource and the interval, that allows easy deallocation of
the resource.

An extensive test suite has been developed for this data structure to find
and fix bugs as it is the core of all the heuristic algorithm.
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This structure heavily exploit cache locality, as all the intervals are stored
in a continuous memory space, but an insertion requires the copy of all the
intervals that are located after the insertion point. Another possibility would
have been to base it on a Tree or B Tree structure, but it was not already
available in the Rust ecosystem, it would have required more time to develop
and its development is outside the scope of this work. Moreover it could
also have had worse performances because of the impact of cache locality on
the vector and the capability of modern computers to copy large portions of
memory very quickly.

Listing A.6 on page 44 contains the code of the resource manager, in-
cluding the definition of the data type, of the errors and the token that is
returned after a successful allocation.

3.2.4 Generation of the initial population
Each individual of the initial population is generated according to the algo-
rithm described in this section. The algorithm will produce a feasible solution
that tries to be good, but not optimal. Some randomness ensures that the
initial population is wide enough.

The algorithm is designed to be partially concurrent, so that it can scale
out easily on more complex problems using more hardware instead of more
expensive one.

The first step is to chose a path and compute a feasible timetable for this
path. When there are alternative paths, one is chosen randomly, without
considering that some paths will incur in penalties.

At this point, some of the events are assigned based on the section re-
quirements that sets an entry earliest or exit earliest rule.

The other events, instead, are assigned according to the following strat-
egy:

1. Push the node indices into the stack until the first node with an as-
signed time instant 𝑡𝑖 is found;

2. At this point, pop one node from the stack and assign it the instant
𝑡𝑖−1 = 𝑡𝑖 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔_𝑡𝑖𝑚𝑒;

3. Update 𝑖 = 𝑖 − 1 to proceed backward.

4. Go to step 2 until the stack is empty.

5. For each successive instant 𝑡𝑖, if it is unassigned, set

𝑡𝑖 = 𝑡𝑖−1 + 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 + 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔_𝑡𝑖𝑚𝑒,
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otherwise 𝑡𝑖 =

max(𝑡𝑖, 𝑡𝑖−1+𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔_𝑡𝑖𝑚𝑒).

This part of the algorithm is performed in parallel on the base of the
service intentions: each service intention is treated as a separate job and ac-
tual concurrency use the technique of work stealing to avoid unequal division
of the work between physical processing units. The code that execute this
algorithm is reported in Listing A.8 on page 47.

Notice that at this point all the constraints except the resource allocation
and the connections between services are enforced by construction.

The next step of the algorithm performs resource allocation. This is done
in a separate method as it is also used to fix unfeasible solutions resulted by
the crossover of other solutions in the genetic meta-heuristic framework.

To perform it, a new resource manager is created. Then, for each service
intention, a recursive allocation function is called until it returns with success.

The recursive function:

1. Try to allocate all the resources needed for one route section.
If some allocation fails it will compute the first moment the unavailable
resource becomes free, propagate the delay from the event of entry in
the section and undo the allocations already performed (backtrack).
Finally an error will be returned to the caller.
If all the allocations succeed, it will recur onto the next section.

2. If the recursive call does return Ok, then also the current call will
return Ok. Otherwise the instance of “alloc_r” that received Err will
try to allocate all the needed resources for the additional time until the
resources of the next section becomes available, as in step 1.

3. The call after the last section will return Ok and terminate the recur-
sion.

The resource allocation is done in a sequential way to avoid repetitive
conflicts on a resource by services that happen to occupy some common
resources and to be scheduled simultaneously. The recursive function that is
the core of the resource allocation is shown in Listing A.9 on page 49.

The delay propagation is performed in a way that ensures, for each couple
events 𝑖 and 𝑖 + 1 that

𝑡𝑖+1 + 𝑑𝑒𝑙𝑎𝑦𝑖+1 ≥ 𝑡𝑖 + 𝑑𝑒𝑙𝑎𝑦𝑖 + 𝑚𝑠𝑡 + 𝑚𝑟𝑡
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where mrt and mst are, respectively, the minimum running time for the
section between the events and the minimum stopping time if the section is
a requirement of halt.

This means that at each step of the propagation process, the value of the
delay can be updated according to the following formula:

𝑑𝑒𝑙𝑎𝑦 = 𝑡𝑖 + 𝑑𝑒𝑙𝑎𝑦 − 𝑡𝑖+1 + 𝑚𝑠𝑡 + 𝑚𝑟𝑡

in order to have the minimum possible value.
When the variable becomes negative, we probably hit a section require-

ment that set an entry earliest or exit earliest rule that is adsorbing all the
delay. In this case we stop the propagation and the negative delay will not
be applied. The delay propagation is performed in the “propagate_delay”
function, that can be found in Listing A.10 on page 51, in Appendix.

After this phase, the graph will be similar to the one illustrated in Fig-
ure 3.2 on the next page.

3.2.5 Look Ahead
The “look ahead” method has been developed as an improvement for the
resource allocation algorithm. It propagates the delay to the next section
requirement that sets an entry or exit latest rule and try to estimate how
much the cost function would change because of that delay. The code that
performs this estimate is reported in Listing A.11 on page 52.

With this information we know, in case of conflict, if it is better to delay
the service that is being scheduled or the conflicting one. The first case is
the same as acting without the look ahead method.

If we have to delay the other service, instead, we need to cleanup all
the allocations relative to it at least since the offending route section, as
done in Listing, and to push the service intention back into the queue of the
intentions to be scheduled.

In case of multiple conflicts with the same allocation, the values to com-
pare are computed as follow:

• For the scheduling service, the result of applying the look_ahead func-
tion with the delay necessary to move the allocation after the last of-
fending one

• For the already scheduled intentions, the sum of the results obtained
applying the look_ahead method to all the offending services with the
delay necessary to move the first offending interval after the allocation
we want to perform
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Figure 3.2: Example of graph contained in the TrainRun data structure
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To avoid heavily dependent service intentions to be rescheduled an infinite
number of times, a threshold is set and a counter is kept for each of the
services so that, if one of the offending intentions has been rescheduled a
number of times that exceed the threshold, the algorithm will move the
allocation of the currently scheduling intention. With this threshold it is
easy to disable the application of the look ahead method by just setting it
to 1: in fact in this way all the intentions will be scheduled just once.

The value of the threshold needs to be fine tuned in order to find one that
avoids the waste of computation time but at the same time does not degrade
the performance.

It is also possible to use the inverse of the result of the look ahead function
as a weight for a random choose in order to obtain non deterministic results
and brake some patterns.

It is important to notice that it is hard to obtain a reliable estimate of the
delay in which a service will occur without performing the actual resource
allocation. In fact this implementation gives only a local estimate that does
not keep into account, for instance, the possibility that allocations in the pre-
vious section (necessary to delay the event of entrance in the current section)
fail or even that future allocations are refused by the resource manager. On
the other hand it keeps into account the fact that a delay may be adsorbed
into already delayed route sections.

Finally, given its local nature, this computation may bring to a decision
that is not optimal in the long run. On the other end, giving a longer view to
the look ahead algorithm may become too expensive while still not improving
the results enough to justify the usage of that computational power. The
exploration of the solution space will be done at the level of the genetic
optimization.

3.2.6 Genetic Optimization
Once the initial population has been generated, this is used inside a Genetic
Algorithm to obtain a better solution.

In the genetic framework, we will use the single point crossover strategy,
exchanging all the train runs after a certain point and the fitness function
will be the negation of the value resulting by the application of the objective
function explained in 3.1.4 on page 10.

The “Genotype” trait is implemented onto the “Solution” struct, where
each train run is considered a gene. The individual can be streamed into
the sequence of its genes and built from an iterator of this same type. The
“is_solution” method of the trait checks that all the service intentions are
scheduled and that there are no conflicts on any resource. This is done by
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issuing a new resource manager and trying to allocate every interval. As
soon as one allocation fails this is interrupted and the function will return
false. In this case the allocations are potentially performed in parallel on the
base of the service intentions.

A fix function is provided so that the allocation of resources can be per-
formed again in case the crossover generates collisions. No mutation strategy
has been provided, so that only crossover will be employed in the research.

The genetic algorithm framework used for this work, “oxigen”, originally
did not provide the possibility to access any data other then the current
individual inside the functions that have to compute the fitness value, to
validate a solution and to fix the individual in order to be valid. The “Geno-
type” trait has been modified in order to provide all the relevant methods
with a reference to the Problem Instance, where it is possible to cache all the
information that may be needed in problems of a certain complexity to be
solved. The modified version has been published1.

In particular, in this work, it is necessary to have access to the list of the
resources inside the “fix” and “is_solution” methods in order to be able to
build a new ResourceManager out of it.

The “oxigen” crate provides one more level of parallelism. In fact the
generation of the population individuals and all the other operations are
performed concurrently on the available threads using the same work stealing
technique provided by the rayon crate.

Genetic Algorithms present high parallelization possibilities because in
fact all operations are independent given that they operate on disjoint indi-
viduals. This is an important advantage point to consider given the increasing
number of threads modern CPUs can handle simultaneously.

3.2.7 Output Model
Finally, the program will output the found solution according to the output
model.

The output is a json file. The main object is a Solution, that contains
a label and a hash that identify the problem instance, a hash that assures
integrity of the solution file and a list of train runs.

Each train run contains the identifier of the service intention and of the
route into the problem instance and a list of train run sections.

A train run section indicates the time of entrance and of exit from the
route section and the identifier of the route section itself, plus a sequence

1This version is available at https://www.github.com/garro95/oxigen
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number to preserve the correct ordering and the section marker if the current
section is a requirement.

The structures derive the Serialize trait and are automatically converted
into valid json strings by the serde-json library.

3.2.8 The main function
The main of the program will orchestrate all the operations that need to be
done. The parameters it takes as input on the command line are the path of
the input file, containing the problem instance according to the input model,
the path of the output file, where the best solution will be written to accord-
ing to the output model, an optional objective value the objective function
should reach and an optional number being the number of individuals in the
population. The latter defaults to 16 if not provided.

If the expected value of the objective function is too low, the program
could not manage to find a solution that satisfy that constraint. On the other
hand, the optimization will terminate once the value is met, so a too high
value may bring to solutions that are suboptimal, given that the optimization
could run longer to provide better results. If no value is provided, the opti-
mizer will use a stop criterion based on the progress of the objective function:
when there is no more progress with respect to the previous generation, the
optimization is terminated.

After opening and deserializing the input file from the provided path, it
is converted into a problem instance. Then the “GeneticExecution” environ-
ment is initialized with the provided configuration or with the default one
and it is run over the instance created before. When the optimization finish,
all the feasible solutions of the problem are evaluated and the value of the
objective function is printed on the console. The best solution is saved onto
the specified output file.
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Chapter 4

Results

The results presented in this section are based on the problem instances
provided for the “train schedule optimization challenge” proposed by SSB on
the website CrowdAI[13].

First, the simplest possible scenarios are proposed as sample files. These
have been modified to produce simple scenarios with collisions. The case
without collisions was solved by the GLPK solver in 3.06 s. When adding
the collisions, in two different formats, the model gave a result respectively
in 272.16 s and 25.02 s.

In the same situations, the heuristic solver produced an exact solution in
0.009 s, probably dominated by input, output and concurrency set up. The
optimal solution could be obtained in these cases using only the heuristic
algorithm without further genetic optimization (i.e. using a population of
only one individual).

The model could not be applied to more complicated problem instances
due to the computation time becoming too high. Figure 4.1 on the following
page shows the relative increase in computation time between the model
solver and the heuristic.

The problem instances present examples with increasing level of difficulty.
The easiest one is the scheduling of 4 trains that do not have conflicts.

Minimal routing is possible with some discouraged paths.
The second case proposes the routing of 58 trains with some conflicts and

minimal routing alternatives.
The third case becomes more difficult, increasing the number of trains to

143 but still keeping minimal number of alternative paths.
The fourth case increase the routing alternatives and features slightly

more trains. The fifth case is very similar but with one more train and no
optimal solution.

Sixth and seventh instances continue to increase the alternatives and add
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Figure 4.1: Computation times for model solver and heuristic; relative per-
cent change

a lot more trains, while the eighth and ninth reduce again the number of
trains but increase the number of paths.

For the last one it is not sure whether there is a solution with objective
value 0. All the instances except number 5 can be solved optimally. Table 4.1
contains a schematic description of all the problem instances.

Note that instances from number 3 to number 9 also contain connections
between services, but the logic to handle them has not been implemented in
this project.

All the tests have been executed on a personal computer featuring a AMD
A10 processor (4 cores, 1 thread per core), with 8 GB of RAM and a Solid

Table 4.1: Description of the problem instances
Problem Instance Number of trains Route alternatives
01_dummy 4 Minimal
02_a_little_less_dummy 58 Minimal
03_FWA_0.125 143 Minimal
04_V1.02_FWA_without_obstruction 148 Few
05_V1.02_FWA_with_obstruction 149 Few
06_V1.20_FWA 365 Some
07_V1.22_FWA 467 Some
08_V1.30_FWA 133 Lots
09_ZUE-ZG-CH_0600-1200 287 Lots
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Table 4.2: Results obtained without applying the look ahead method
Problem Instance Objective Value Computation time (s) Individuals
01_dummy 0.0 0.045 2
02_a_little_less_dummy 2.95 25.882 128
03_FWA_0.125 627.2 50.640 256
04_V1.02_FWA_without_obstruction 1253.33 60.295 256
05_V1.02_FWA_with_obstruction 2204 53.022 256
06_V1.20_FWA 5148.70 21.072 32
07_V1.22_FWA 21 919.95 34.394 32
08_V1.30_FWA 4770.65 10.122 64
09_ZUE-ZG-CH_0600-1200 5262.78 37.703 64

Table 4.3: Results obtained employing the look ahead method with a thresh-
old of 100

Problem Instance Objective Value Computation time (s) Individuals
01_dummy 0.0 0.116 16
02_a_little_less_dummy 142.98 33.078 128
03_FWA_0.125 1530.42 238.023 256
04_V1.02_FWA_without_obstruction 4844.83 330.661 256
05_V1.02_FWA_with_obstruction 8331.67 315.022 256
06_V1.20_FWA - - 32
07_V1.22_FWA - - 32
08_V1.30_FWA 65 041.5 177.728 64
09_ZUE-ZG-CH_0600-1200 10 267.4 37.788 32

State Drive.
The results for all the cases are reported in Table 4.2.
The easiest case can be solved with optimality also using a very small

population, for example 2 individuals, in only 0.045 s.
The second case features 58 trains with minimal routing alternatives.

This solver can find a feasible solution with an objective value of 2.95, that
practically means, considering that all the delays are weighted 1, less then
3 min delay among all the section requirements of all the service intentions.
This solution has been found in a running time of 25.882 s using a population
composed by 128 individuals.

The worst case instead has been the seventh problem instance, that is
the one featuring more trains. In this and also in the sixth case the solver
would have been killed if run with a population of more then 32 individuals.
In that case, the average delay per service intention is less then 1 h on all the
schedule.

The usage of the look ahead method produces generally worse results, as
it can be seen in Table 4.3. In some cases it is not able to find a feasible
solution.

The computation time depends primarily on the population size. The
most complex type of problem for this architecture is the one with lots of
trains, because it tends to increase substantially the memory footprint of the
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program, that sometimes is killed for this reason.
The results in general are far from optimal. Several improvements are

possible, for example:

• Implement a mutation strategy to further exploit the solution space
around good solutions, for example exploring alternative paths or chang-
ing some time events in ways that are not explored in the generation
of the individuals;

• Use some data structures that implements a copy on write mechanism
in order to reduce the overall memory footprint and the number of
allocations of the program.

• improve the look ahead method and fine tune the value of the threshold
to obtain a better initial population
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Chapter 5

Budget

All the tests presented in the results section have been performed on a quite
old Personal Computer. The high level of parallelism of this solution, ob-
tained with real time concurrency and the optimal task scheduling obtained
through the work stealing technique can easily scale on machines with higher
core count.

Moreover, this approach can also be extended to wider clusters if the
number of services to schedule becomes higher or a solution needs to be
found in nearly real time.

Even for a medium size rail network, scheduling requires a large numbers
of train schedulers or planners many months to complete, and makes it dif-
ficult or impossible to explore alternative schedules, plans, operating rules,
objectives, ecc.

Works in this field can reduce in a sensible way the impact of timetabling
on the operative costs of railways.
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Chapter 6

Environmental impact

Rail transport is recognized as an energy efficient (though capital intensive)
means of transport. Moreover, each freight train can take a large number of
trucks off the roads, making them safer.

Researches in this field can help to make railways more attractive to trav-
elers. by reducing the operative cost and increasing the number of services
and their punctuality.

In a world that is daily threatened by the impacts of global warming,
we as society should take every possible move to reduce the usage of energy,
make things more efficient and use means that can easily switch to renewable
sources.
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Chapter 7

Conclusions

In this project a complex problem and its mathematical formulation is pre-
sented and its model is run against easy problem instances. More complex
instances cannot be managed by a MILP solver. The proposed solver is based
on genetic metaheuristic and can provide feasible solutions in seconds.

The usage of genetic algorithms allow the solver to scale well on more
complex problem when more hardware is available, for example running in a
computer with a high core count and a sufficient amount of main memory.

The results, far from being optimal, have delays that, in the worst case,
are less then 1 hour per train on a very packed timetable draft.

Some improvements are proposed to obtain better results. They must
be explored in order to make the project ready for the use in real world
problems.

This research wants to make a step further in the direction of automation
into the field of train scheduling on railways networks in order to increase the
usage of smart and ecologic means of transport for people and freights in the
society of the future and try to apply the benefits of information technologies
as an innovation boost for one more field of what is meant to become the
Smart Society.
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Appendix A

Code snippets

In this appendix are reported the relevant parts of the code.

Listing A.1: Read input data and preparation for the model execution
# Read input data
scenario = "./sample_files/sample_scenario_overlap2.json"
#sample_scenario2.json"
#sample_scenario_overlap1.json
#sample_scenario_overlap2.json

with open(scenario) as fp:
scenario = json.load(fp)

ListOfResources = []
# Build the graph.
route_graphs = dict()
for route in scenario["routes"]:

# set global graph settings
G = nx.DiGraph(route_id = route["id"], name="Route-Graph for route "+str(route["id"]))

# add edges with data contained in the preprocessed graph
for path in route["route_paths"]:

for (i, route_section) in enumerate(path["route_sections"]):
sn = route_section['sequence_number ']
if sn not in ListOfResources: ListOfResources.append(sn)
if 'section_marker' in route_section.keys() and route_section['section_marker ']!=[]:

sm = route_section['section_marker '][0]
else:

sm = None
mrt = route_section['minimum_running_time ']

G.add_edge(from_node_id(path, route_section, i),
to_node_id(path, route_section, i),
sequence_number=sn,
section_marker=sm,
section_mrt = mrt,
section_penalty = route_section['penalty'])

route_graphs[route["id"]] = G

# Extract all the información about routes and parameters of each train
trains = dict()
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num_service_intentions = len(list(scenario["routes"]))
service_intentions = [0 for s in range(num_service_intentions)]

for si, route in enumerate(scenario["routes"]):
# Create the graph of the route
route_graph = route_graphs[route['id']]
service_intentions[si] = route['id']

for node in route_graph.nodes():
route_graph.node[node]['label'] = node

edge_ids = {}
edge_markers = {}
edge_mrt = {}
edge_penalties = {}
for node1, node2, data in route_graph.edges(data=True):

edge_ids[(node1, node2)] = data['sequence_number ']
edge_markers[(node1, node2)] = data['section_marker ']
edge_mrt[(node1, node2)] = data['section_mrt ']
edge_penalties[(node1, node2)] = data['section_penalty ']

for edge in route_graph.edges():
route_graph.edges[edge]['id'] = edge_ids[edge]
route_graph.edges[edge]['marker'] = edge_markers[edge]
route_graph.edges[edge]['mrt'] = edge_mrt[edge]

# Train service intention with all the routes and times information
trains[route['id']]={}

# Extract all the possible paths for a service instance
nodes=list(route_graph.nodes())
target = nodes[len(nodes)-1]
source_nodes=[s for s in nodes if "beginning" in s]
target_nodes=[s for s in nodes if "end" in s]
p=0
for source in source_nodes:

for target in target_nodes:
for path in nx.all_simple_paths(route_graph,source,target):

trains[route['id']][p]={}
pairs = [(path[i], path[i + 1]) for i in range(len(path) - 1)]

rs=0
for rs,edge in enumerate(pairs):

re=edge_ids[edge]
trains[route['id']][p][re]={}
trains[route['id']][p][re]['id']=edge_ids[edge]
trains[route['id']][p][re]['marker']=edge_markers[edge]
mrt=GetISOTime(edge_mrt[edge])
trains[route['id']][p][re]['mrt']=mrt
trains[route['id']][p][re]['LatestIn ']=0.0
trains[route['id']][p][re]['LatestOut ']=0.0
trains[route['id']][p][re]['EarliestIn ']=0.0
trains[route['id']][p][re]['EarliestOut ']=0.0
trains[route['id']][p][re]['win']=0.0
trains[route['id']][p][re]['wout']=0.0
trains[route['id']][p][re]['mst']=0.0
if edge_penalties[edge] is not None:

trains[route['id']][p][re]['p']=edge_penalties[edge]+1
else:

trains[route['id']][p][re]['p']=1
if edge_markers[edge] is not None:

for intention in scenario["service_intentions"]:
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if intention['id']!=route['id']: continue
for sr in intention['section_requirements ']:

if sr['section_marker '] == edge_markers[edge]:
if 'entry_earliest' in sr.keys():

trains[route['id']][p][re]['EarliestIn ']=\
GetSecTime(sr['entry_earliest '])

if 'exit_earliest' in sr.keys():
trains[route['id']][p][re]['EarliestOut ']=\

GetSecTime(sr['exit_earliest '])
if 'entry_latest' in sr.keys():

trains[route['id']][p][re]['LatestIn ']=\
GetSecTime(sr['entry_latest '])

if 'exit_latest' in sr.keys():
trains[route['id']][p][re]['LatestOut ']=\

GetSecTime(sr['exit_latest '])

# weights of the delay
if 'entry_delay_weight' in sr.keys():

trains[route['id']][p][re]['win']=\
sr['entry_delay_weight ']

if 'exit_delay_weight' in sr.keys():
trains[route['id']][p][re]['wout']=\

sr['exit_delay_weight ']

# minimum stop time
if 'min_stopping_time' in sr.keys():

trains[route['id']][p][re]['mst']=\
GetISOTime(sr['min_stopping_time '])

p+=1

Listing A.2: Definition and execution of the model
#MODEL
from pyomo.environ import *
from pyomo.opt import SolverFactory
from pyomo.core import Var

model = ConcreteModel()

# Delete the parameters. Useful if we want to rerun this cell.
model.del_component( 'SI' )
model.del_component( 'P')
model.del_component( 'RS' )
model.del_component( 'RE' )
model.del_component( 'RSE' )
model.del_component( 'RSI' )
model.del_component( 'RSIRE' )

# Set of Service Intentions (SI)
model.SI = RangeSet(num_service_intentions)

# Paths of each SI (taking into account alternative paths)
model.P = Set(dimen=2, initialize=set((si, r) \

for si in ServiceIntentions \
for r in range(ServiceIntentions[si]['num_paths'])))

# Section Routes of each path of each SI (counting alternative paths)
model.RS = Set(dimen=3,

initialize=set((si, r, rs) \
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for si in ServiceIntentions \
for r in range(ServiceIntentions[si]['num_paths'])\
for rs in [trains[service_intentions[si]][r][i]['id'] \

for i in list(trains[service_intentions[si]][r].keys())]))

# Set of Resources of each SI
model.RE = Set(dimen=2, initialize=set((si, re) \

for si in ServiceIntentions \
for re in ListOfResources))

# Set of Resources of each SI at each route
model.RSE = Set(dimen=3, initialize=set((si, r, re) \

for si in ServiceIntentions \
for r in range(ServiceIntentions[si]['num_paths'])\
for re in ListOfResources))

# Set of pairs of services intentions and possible resources to be occupied
model.RSI = Set(dimen=3, initialize=set((si1, si2, re) \

for si1 in ServiceIntentions \
for si2 in ServiceIntentions\
for re in ListOfResources))

# Set of pairs of services intentions, their routes and possible resources to be occupied
model.RSIRE = Set(dimen=5, initialize=set((si1, r1, si2, r2, re) \

for si1 in ServiceIntentions \
for r1 in range(ServiceIntentions[si1]['num_paths'])\
for si2 in ServiceIntentions\
for r2 in range(ServiceIntentions[si2]['num_paths'])\
for re in ListOfResources))

# Minimum time to wait for a coincidence between
# two service intentions at a common section requirement
# In this case, it is considered equal for all situations,
# but it could have different values for each section.
C = 10

# For linearization purposes
M = 1000
epsilon=0.01

# Delete the variable. Useful if we want to rerun this cell.
model.del_component( 'tin' )
model.del_component( 'tout' )
model.del_component( 'delta' )
model.del_component( 'x' )
model.del_component( 'beta' )

# tin[si,r,rs] time of train entrance into a route section (si:train, r:route, rs:resource)
model.tin = Var(model.RS, within=NonNegativeReals, initialize=0)

# tout[si,r,rs] time of train exit of a route section (si:train, r:route, rs:resource)
model.tout = Var(model.RS, within=NonNegativeReals, initialize=0)

# delta[si,r]=1 if the service intention (train) si uses route r
model.delta = Var(model.P, within=Binary, initialize=0)

# x[si,re]=1 if the service intention (train) uses the resource re
model.x = Var(model.RE, within=Binary, initialize=0)
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#beta[si1,si2,re]=1 if both services intentions si1 and si2 uses the same resource re
model.beta = Var(model.RSI, within=Binary, initialize=0)

# Delete the Objective function. Useful if we want to rerun this cell.
model.del_component( 'Objective' )

# Minimize weighted sum of all delays plus the sum of routing penalties
def Objective_rule(model):

return 1/60.0*(sum(trains[service_intentions[si]][r][rs]['win'] * \
(model.tin[si,r,rs] - trains[service_intentions[si]][r][rs]['LatestIn'])+\
trains[service_intentions[si]][r][rs]['wout'] * \
(model.tout[si,r,rs] - trains[service_intentions[si]][r][rs]['LatestOut'])\
for (si,r,rs) in model.RS))\

+ sum (trains[service_intentions[si]][r][rs]['p']*\
model.x[si,rs] \
for (si,r,rs) in model.RS)

model.Objective = Objective(rule=Objective_rule, sense=minimize)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C1' )

# For the selected route of a SI, the difference between the
# output and the enter and exit time of the train has to
# be at least the minimum running time + minimum stop time
def C1_rule(model,si,r,rs):

mrt = trains[service_intentions[si]][r][rs]['mrt']
if 'mst' in trains[service_intentions[si]][r][rs]:

mst = trains[service_intentions[si]][r][rs]['mst']
else: mst=0
return model.tout[si,r,rs] - model.tin[si,r,rs] >= mrt + mst- M*(1-model.delta[si,r])

model.C1 = Constraint(model.RS,rule=C1_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C2' )

# In general, the exit time from a section has to be later than enter time.
def C2_rule(model,si,r,rs):

return model.tin[si,r,rs] <= model.tout[si,r,rs]

model.C2 = Constraint(model.RS,rule=C2_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C3' )

# After a train frees one section, it does not get lost, but goes immediately in the next section
def C3_rule(model,si,r,rs):

pos=list(trains[service_intentions[si]][r].keys()).index(rs)
if pos < num_route_sections[si][r]-1:

return model.tin[si,r,list(trains[service_intentions[si]][r].keys())[pos+1]] >= model.tout[si,r,rs]
else:

return Constraint.Skip

model.C3= Constraint(model.RS,rule=C3_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
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model.del_component( 'C4' )

# For the selected route of a SI, include earliest-requirements.
# This constraint avoids to depart earlier than the scheduled departure time
def C4_rule(model,si,r,rs):

if 'EarliestIn' in trains[service_intentions[si]][r][rs].keys():
return model.tin[si,r,rs] >= trains[service_intentions[si]][r][rs]['EarliestIn']-\

M*(1-model.delta[si,r])
else:

return Constraint.Skip

model.C4 = Constraint(model.RS,rule=C4_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C5' )

# For the selected route of a SI, include earliest-requirements.
# This constraint avoids to stop too short in the station
# to let the passengers get on or off the train safely
def C5_rule(model,si,r,rs):

if 'EarliestOut' in trains[service_intentions[si]][r][rs].keys():
return model.tout[si,r,rs] >= trains[service_intentions[si]][r][rs]['EarliestOut']-\

M*(1-model.delta[si,r])
else:

return Constraint.Skip

model.C5 = Constraint(model.RS,rule=C5_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C6' )

# Each Service Instance has to get a path
def C6_rule(model,si):

return sum(model.delta[si-1,r] for r in range(ServiceIntentions[si-1]['num_paths'])) == 1

model.C6 = Constraint(model.SI, rule=C6_rule)

# Delete the constraint.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C7' )

# Relationship between variables x and delta
def C7_rule(model,si,r,re):

if alpha[si,r,re]==1: # if re belongs to the route r of si
return model.x[si,re] >= model.delta[si,r]

else:
return Constraint.Skip

model.C7 = Constraint(model.RSE, rule=C7_rule)

# Constraints to solve the coincidence at a common section of two service intentions

# Delete the constraints.
# Useful if we want to rerun this cell without reinit the model.
model.del_component( 'C8' )
model.del_component( 'C9' )
model.del_component( 'C10' )
model.del_component( 'C11' )

# The following constraints permit to fix �[si1,si2,re] = 1 in case the two
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# selected paths for the service intentions s1 and s2 (r1 and r2, respectively), coincide at
# the section re, and si1 enters early than si2.

def C8_rule(model,si1,r1,si2,r2,re):
if si1<si2:

if re in list(trains[service_intentions[si1]][r1].keys())and \
re in list(trains[service_intentions[si2]][r2].keys()):

return model.tin[si1,r1,re] - model.tin[si2,r2,re] <= \
M*(1-model.beta[si1,si2,re]) + \
M*(2-model.delta[si1,r1]-model.delta[si2,r2])

else: return Constraint.Skip
else: return Constraint.Skip

model.C8 = Constraint(model.RSIRE, rule=C8_rule)

# In the same way, the followgin constraints establish �[si1,si2,re] = 0 in case the two
# selected paths for the service intentions s1 and s2 (r1 and r2, respectively), coincide at
# the section re and si1 enters later than si2.

def C9_rule(model,si1,r1,si2,r2,re):
if si1<si2:

if re in list(trains[service_intentions[si1]][r1].keys())and \
re in list(trains[service_intentions[si2]][r2].keys()):

return model.tin[si2,r2,re] - model.tin[si1,r1,re] + epsilon <= \
M*(model.beta[si1,si2,re]) + \
M*(2-model.delta[si1,r1]-model.delta[si2,r2])

else: return Constraint.Skip
else: return Constraint.Skip

model.C9 = Constraint(model.RSIRE, rule=C9_rule)

# The following constraints determine that in case of section coincidence
# and �[si1,si2,re] = 1, the second train (si2) entry time to the section has to be
# delayed until the first train (si1) has left the section plus an extra time C (time
# to wait between two trains that share a common section).

def C10_rule(model,si1,r1,si2,r2,re):
if si1<si2:

if re in list(trains[service_intentions[si1]][r1].keys())and \
re in list(trains[service_intentions[si2]][r2].keys()):

return model.tout[si1,r1,re] - model.tin[si2,r2,re] + C <= \
M*(1-model.beta[si1,si2,re]) + \
M*(2-model.delta[si1,r1]-model.delta[si2,r2])

else: return Constraint.Skip
else: return Constraint.Skip

model.C10 = Constraint(model.RSIRE, rule=C10_rule)

# On the contrary, the following constraints provoque the delay of the first train.

def C11_rule(model,si1,r1,si2,r2,re):
if si1<si2:

if re in list(trains[service_intentions[si1]][r1].keys())and \
re in list(trains[service_intentions[si2]][r2].keys()):

return model.tout[si2,r2,re] - model.tin[si1,r1,re] + C <= \
M*(model.beta[si1,si2,re])+ \
M*(2-model.delta[si1,r1]-model.delta[si2,r2])

else: return Constraint.Skip
else: return Constraint.Skip

model.C11 = Constraint(model.RSIRE, rule=C11_rule)
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# Construct the instance of the model and pass it to an (external) solver, in this case GLPK
opt = SolverFactory('glpk')
#instance = model.create_instance()
results = opt.solve(model)
print("EXECUTION␣TIME:␣---␣%s␣seconds␣---" % (time.time() - start_time))

Listing A.3: Definition of the Node and Edge in the route graph
#[derive(Default, Debug, Getters, Setters, Clone)]
#[get = "pub"]
pub struct Node {

#[set = "pub"]
time: Option<NaiveTime>,
route_alternative_marker: Option<String>,

}

#[derive(Debug, Getters, Clone)]
#[get = "pub"]
pub struct Edge {

route_section_id: (i64, i64),
route_path_id: Id,
section_marker: String,
section_requirement: bool,
resource_occupations: Vec<ResourceOccupation>,
penalty: f64,
starting_point: String,
min_running_time: Duration,
min_stopping_time: Duration,
connections: Vec<Connection>,
ending_point: String,
entry_delay_weight: f64,
exit_delay_weight: f64,
entry_earliest: Option<NaiveTime>,
entry_latest: Option<NaiveTime>,
exit_earliest: Option<NaiveTime>,
exit_latest: Option<NaiveTime>,

}

Listing A.4: The route and the RouteManager
#[derive(Getters)]
#[get = "pub"]
pub struct Route {

id: i64,
intention_id: i64,
graph: Graph<Node, Edge, Directed>,
sources: BTreeSet<NodeIndex>,

}

pub struct RoutesManager {
routes: Vec<Route>,

}

Listing A.5: Generation of a route
/// Generate the graph relative to the possible routes given a specified service intention and the
/// route described in the problem instance. Merges the service requirements with the routes
fn generate_graph(

route: Vec<RoutePath>,
intention: ServiceIntention,
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) -> (Graph<Node, Edge, Directed>, BTreeSet<NodeIndex>) {
let mut g: Graph<Node, Edge, Directed> = Graph::new();
let mut alternatives: HashMap<String, NodeIndex> = HashMap::new();
let mut sources = BTreeSet::new();
let requirements: IndexMap<_, _> = intention

.section_requirements()

.into_iter()

.map(|sr| (sr.section_marker().clone(), sr))

.collect();

for mut rp in route {
// sort to avoid any problem
rp.route_sections

.par_sort_unstable_by_key(|rs| *rs.sequence_number());
let src_marker: Option<String> = rp.route_sections[0]

.route_alternative_marker_at_entry()

.clone()

.and_then(|arr| arr.get(0).cloned());

let src_node = Node {
time: None,
route_alternative_marker: src_marker.clone(),

};

let mut src = if let Some(marker) = src_marker {
let a = alternatives

.entry(marker.clone())

.or_insert_with(|| g.add_node(src_node));
sources.insert(*a);
*a

} else {
let src = g.add_node(src_node);
sources.insert(src);
src

};
let rp_id = rp.id().clone();
for rs in rp.route_sections {

let section_marker = rs.section_marker().get(0);
let requirement = section_marker.and_then(|marker| requirements.get(marker));

let dst_marker: Option<String> = rs
.route_alternative_marker_at_exit()
.clone()
.and_then(|arr| arr.get(0).cloned());

let dst_node = Node {
time: None,
route_alternative_marker: dst_marker.clone(),

};

let dest = if let Some(marker) = dst_marker {
*alternatives

.entry(marker.clone())

.or_insert_with(|| g.add_node(dst_node))
} else {

g.add_node(dst_node)
};

let rs = Edge {
route_section_id: (*intention.id(), *rs.sequence_number()),
route_path_id: rp_id.clone(),
section_requirement: requirement.is_some(),
section_marker: section_marker.cloned().unwrap_or("".to_string()),
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resource_occupations: rs.resource_occupations().clone(),
penalty: rs.penalty().unwrap_or(0.0),
starting_point: rs.starting_point().clone(),
min_running_time: *rs.minimum_running_time(),
ending_point: rs.ending_point().clone(),
connections: requirement

.and_then(|r| r.connections().clone())

.unwrap_or_default()

.into_iter()

.filter_map(|oc| oc)

.collect(),
min_stopping_time: requirement

.and_then(|r| *r.min_stopping_time())

.unwrap_or(Duration::zero()),
entry_delay_weight: requirement

.and_then(|r| r.entry_delay_weight().clone())

.unwrap_or(0.0),
exit_delay_weight: requirement

.and_then(|r| r.exit_delay_weight().clone())

.unwrap_or(0.0),
entry_earliest: requirement.and_then(|r| r.entry_earliest().clone()),
entry_latest: requirement.and_then(|r| r.entry_latest().clone()),
exit_earliest: requirement.and_then(|r| r.exit_earliest().clone()),
exit_latest: requirement.and_then(|r| r.exit_latest().clone()),

};
g.add_edge(src, dest, rs);
src = dest;

}
sources = sources

.into_iter()

.filter(|nx| g.edges_directed(*nx, Direction::Incoming).count() == 0)

.collect();
}
(g, sources)

}

Listing A.6: The resource manager
/// Manage the resource allocation
#[derive(Debug)]
pub struct ResourceManager {

resources: HashMap<String, Arc<Mutex<Resource>>>,
}

#[derive(Debug)]
pub enum AllocationError {

Inexistent,
Occupied(Interval),
NegativeInterval(Interval),

}

#[derive(Debug, Getters)]
pub struct AllocationToken {

#[get = "pub"]
interval: Interval,
resource: Arc<Mutex<Resource>>,

}

impl ResourceManager {
/// Take a resource for a time interval. Returns `Ok(())` if the allocation was successful,
/// `Err(Interval)` if the interval was occupied by another service intention.
pub fn take(
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&self,
resource_id: &str,
mut interval: Interval,

) -> Result<AllocationToken, AllocationError> {
if interval.start() > interval.end() {

return Err(AllocationError::NegativeInterval(interval));
}
let r = self

.resources

.get(resource_id)

.ok_or(AllocationError::Inexistent)?;
let token = AllocationToken {

interval,
resource: r.clone(),

};
let mut r = r.lock().unwrap();
let mut range = self.search_collisions(&r, interval);
interval.end += r.release_time;
if range.start >= range.end {

let i = range.start;
let mut prev_merged = false;
let prev_i = i.overflowing_sub(1).0;
if let Some(prev) = r.occupation_intervals.get(prev_i) {

if prev.end == interval.start && prev.intention() == interval.intention() {
prev_merged = true;

}
}
// check successor, if any
if let Some(succ) = r.occupation_intervals.get(i) {

if succ.start == interval.end && succ.intention() == interval.intention() {
// we can merge both
if prev_merged {

r.occupation_intervals[prev_i].end = r.occupation_intervals[i].end;
r.occupation_intervals.remove(i);

} else {
r.occupation_intervals[i].start = interval.start;

}
return Ok(token);

}
}
if prev_merged {

r.occupation_intervals[prev_i].end = interval.end;
} else {

r.occupation_intervals.insert(i, interval);
}
return Ok(token);

}
let collisions = &mut r.occupation_intervals[range.clone()];
if let Some(int) = collisions

.iter()

.find(|c| interval.intention != c.intention)
{

if int.start > interval.end || interval.start > int.end {
panic!("{:#?}, {:?}", r.occupation_intervals , interval)

}
return Err(AllocationError::Occupied(*int));

}
// merge all the colliding intervals into the first
collisions.first_mut().unwrap().start =

collisions.first().unwrap().start.min(interval.start);
collisions.first_mut().unwrap().end = collisions.last().unwrap().end.max(interval.end);
// check if also the successor needs to be merged
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if let Some(succ) = r.occupation_intervals.get(range.end).cloned() {
if succ.start == r.occupation_intervals[range.clone()].first().unwrap().end

&& succ.intention == interval.intention
{

let collisions = &mut r.occupation_intervals[range.clone()];
collisions.first_mut().unwrap().end = succ.end;
r.occupation_intervals.remove(range.end);

}
}
let first = r.occupation_intervals[range.clone()]

.first()

.unwrap()

.clone();
if let Some(prev) = r

.occupation_intervals

.get_mut(range.start.overflowing_sub(1).0)
{

if prev.end == first.start && prev.intention == interval.intention {
prev.end = first.end;
range.start -= 1;

}
}
range.start += 1;
//remove all the others
r.occupation_intervals.drain(range.clone());
Ok(token)

}

fn search_collisions(&self, r: &Resource, mut interval: Interval) -> Range<usize> {
interval.end += r.release_time;
match r.occupation_intervals.binary_search(&interval) {

Ok(i) => {
let mut j = i;
for int in &r.occupation_intervals[i..] {

if int.start < interval.end {
j += 1;

} else {
break;

}
}
i..j

}
Err(mut i) => {

// check predecessor, if any
let prev_i = i.overflowing_sub(1).0;
if let Some(prev) = r.occupation_intervals.get(prev_i) {

if prev.end > interval.start {
i -= 1;

}
}
let mut j = i;
for int in &r.occupation_intervals[i..] {

if int.start < interval.end {
j += 1;

} else {
break;

}
}
i..j

}
}

}
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/// Returns the vector of all the allocated intervals colliding with the given one.
pub fn collisions(&self, resource: &str, interval: Interval) -> Vec<Interval> {

let r = match self.resources.get(resource) {
Some(r) => r,
None => return Vec::new(),

};
let r = r.lock().unwrap();
let range = self.search_collisions(&r, interval);
r.occupation_intervals[range].to_vec()

}

pub fn free(&self, resource: &str, interval: Interval) -> Result<(), AllocationError> {
if interval.start > interval.end {

return Err(AllocationError::NegativeInterval(interval));
}
AllocationToken {

interval,
resource: self

.resources

.get(resource)

.ok_or(AllocationError::Inexistent)?

.clone(),
}
.free();
Ok(())

}
}

Listing A.7: Definition of the Internal Instance TrainRun and Solution
pub struct Instance {

routes: RoutesManager,
resources: Vec<crate::input_model::Resource>,

}

/// An internal representation of the intention solution.
#[derive(Debug, Getters, Clone)]
#[get = "pub"]
pub struct TrainRun {

/// The graph with assigned events
pub(crate) graph: Graph<crate::routes::Node, crate::routes::Edge>,
/// The sequence of node ids traversed for the choosed path
pub(crate) path: Vec<NodeIndex>,
/// The times assigned to each event
pub(crate) times: Vec<NaiveTime>,
/// The id of the intention this solution refers to.
pub(crate) id: i64,
/// Identifier of the route
pub(crate) route: i64,

}

#[derive(Clone, Debug)]
pub struct Solution {

train_runs: Vec<TrainRun>,
}

Listing A.8: Code of the solve method
/// Generate a feasible solution
pub fn solve(&self) -> Result<Solution, ()> {
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let mut rng = rand::thread_rng();
let train_runs: Vec<TrainRun> = self

.routes

.iter_random(&mut rng)

.par_bridge()

.map_init(rand::thread_rng, |mut rng, r| {
let mut g = r.graph().clone();
let int_id = *r.intention_id();
let route_id = *r.id();
let mut path = Vec::new();
let mut stack = Vec::new();
// choose a random path and assign time to the events
let mut src = *r

.sources()

.iter()

.choose(&mut rng)

.expect("No starting point in the graph");
path.push(src);

// put the earliest times on the nodes
while let Some((target, entry_earliest, exit_earliest)) =

g.edges(src).choose(&mut rng).map(|e| {
(

e.target(),
*e.weight().entry_earliest(),
*e.weight().exit_earliest(),

)
})

{
path.push(target);

let t0 = std::cmp::max(*g[src].time(), entry_earliest);
g[src].set_time(t0);

let t1 = std::cmp::max(*g[target].time(), exit_earliest);
g[target].set_time(t1);

src = target;
}
for (src, target) in path.windows(2).map(|arr| (arr[0], arr[1])) {

let edge_weight = g.edge_weight(g.find_edge(src, target).unwrap()).unwrap();
let (min_run_time, min_stop_time) = (

*edge_weight.min_running_time(),
*edge_weight.min_stopping_time(),

);

match (g[src].time().clone(), g[target].time().clone()) {
(None, None) => {

// keep it for later
stack.push(src);

}
(Some(t0), None) => {

let t1 = t0 + min_run_time + min_stop_time;
g[target].set_time(Some(t1));

}
(None, Some(t1)) => {

let mut t0 = t1 - min_run_time - min_stop_time;
g[src].set_time(Some(t0));
let mut p = src;
// Fix all previous times
while let Some(s) = stack.pop() {

let e = g.edge_weight(g.find_edge(s, p).unwrap()).unwrap();
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let min_run_time = *e.min_running_time();
let min_stop_time = *e.min_stopping_time();
let t1 = t0;
t0 = t1 - min_run_time - min_stop_time;
g[s].set_time(Some(t0));
p = s;

}
}
(Some(entry), Some(exit)) => {

g[target]
.set_time(Some(exit.max(entry + min_run_time + min_stop_time)));

}
}

}
let times: Vec<_> = path

.iter()

.map(|&n| {
g[n].time()

.expect(
format!(

"FATAL ERROR! Time not assigned for intention {}. path: {:?}",
int_id, path

)
.as_str(),

)
.clone()

})
.collect();

TrainRun {
graph: g,
path,
times,
id: int_id,
route: route_id,

}
})
.collect();

let mut train_runs = Solution { train_runs };
// perform resource allocation
train_runs.fix(self);
Ok(train_runs)

}

Listing A.9: Code of the recursive resource allocation function
fn alloc_r(

train_runs: &HashMap<i64, TrainRun>,
count_reschedule: &mut HashMap<i64, u64>,
id: i64,
path: &[NodeIndex],
times: &mut [NaiveTime],
graph: &Graph<routes::Node, routes::Edge>,
deepth: usize,
resource_manager: &ResourceManager,
to_schedule: &mut VecDeque<i64>,

) -> Result<(), ()> {
let int_id = id;
let mut allocations = vec![];
let dst_node = if let Some(dst) = path.get(1) {

*dst
} else {

// EXIT CASE
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return Ok(());
};
let src_node = path[0];
let mut res = Err(());
while res.is_err() {

let mut fail = false;
let interval = Interval::new(int_id, deepth, times[0], times[1]);
// try to allocate all the resources;
let resources = graph

.edge_weight(graph.find_edge(src_node, dst_node).unwrap())

.unwrap()

.resource_occupations()

.iter();
for r in resources {

match resource_manager.take(r.resource(), interval) {
Ok(allocation) => {

allocations.push(allocation);
}
Err(AllocationError::Occupied(occupation)) => {

let collisions = resource_manager.collisions(r.resource(), interval);
let delay1 = *collisions.last().unwrap().end() - times[0];
let delay = times[1] - *occupation.start();
let mut others = 0.0;
//look ahead the occupying schedules
for &occupation in &collisions {

if *occupation.intention() == int_id {
continue;

}
others += look_ahead(

occupation,
delay,
&train_runs[occupation.intention()].path,
&train_runs[occupation.intention()].graph,

);
}
//look ahead the current schedule
let current = look_ahead(interval, delay1.clone(), path, graph);
if others >= current

|| collisions
.iter()
.any(|i| count_reschedule[i.intention()] >= THRESHOLD)

{
// move this
propagate_delay(delay1, times, path, graph);
fail = true;
break;

} else {
// move others and reschedule
for occupation in &collisions {

if occupation.intention() == &int_id {
continue;

}
to_schedule.push_back(*occupation.intention());
clean(

*occupation.intention(),
train_runs[occupation.intention()].times(),
train_runs[occupation.intention()].path(),
train_runs[occupation.intention()].graph(),
*occupation.index(),
resource_manager,

);
resource_manager.free(r.resource(), *occupation).unwrap();
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}
let r = resource_manager.take(r.resource(), interval);
match r {

Ok(r) => allocations.push(r),
Err(e) => {

dbg!(e, collisions);
}

}
}

}
// Should not happen!
Err(AllocationError::Inexistent) => panic!(),
// should not happen!!!
Err(AllocationError::NegativeInterval(i)) => {

panic!(
"I requested a negative interval {:?}! {}\n{:?}",
i, int_id, times

);
}

}
}
if fail {

// backtrack
for allocation in allocations.drain(..) {

&allocation.interval();
allocation.free();

}
return Err(());

}
res = alloc_r(

train_runs,
count_reschedule,
id,
&path[1..],
&mut times[1..],
graph,
deepth + 1,
resource_manager,
to_schedule,

)
}
Ok(())

}

Listing A.10: Code of the function that propagates the delay
fn propagate_delay(

starting_delay: Duration,
times: &mut [NaiveTime],
path: &[NodeIndex],
graph: &Graph<routes::Node, routes::Edge>,

) {
let mut delay = starting_delay;
for (i, (src, dst)) in path.windows(2).map(|arr| (arr[0], arr[1])).enumerate() {

times[i] += delay;
let edge = &graph[graph.find_edge(src, dst).unwrap()];
delay = times[i] - times[i + 1] + *edge.min_running_time() + *edge.min_stopping_time();
if delay <= Duration::zero() {

break;
}

}
*times.last_mut().unwrap() += delay.max(Duration::zero());
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}

Listing A.11: Code of the look ahead function
/// returns how much the cost function would increase at the next station if
/// the service intention was delayed of `delay` seconds from interval
fn look_ahead(

interval: Interval,
mut delay: Duration,
path: &[NodeIndex],
g: &Graph<routes::Node, routes::Edge>,

) -> f64 {
// propagate the delay to the next section requirement. This is optimistic.
for (src, dst) in path

.windows(2)

.skip(*interval.index())

.map(|arr| (arr[0], arr[1]))
{

let edge = &g[g.find_edge(src, dst).unwrap()];
let mut res = 0.0;
let mut end = false;
// if the arc is a section requirement compute the increase of the cost function
if let Some(t) = edge.entry_latest() {

let t = edge.entry_delay_weight()
* (((g[src].time().unwrap() + delay) - *t).num_seconds() as f64);

if t >= 0.0 {
res += t;

} else {
res += 10000.0;

}
end = true;

}
if let Some(t) = edge.exit_latest() {

let t = edge.exit_delay_weight()
* (((g[src].time().unwrap()

+ delay
+ *edge.min_running_time()
+ *edge.min_stopping_time())
- *t)
.num_seconds() as f64);

if t >= 0.0 {
res += t

} else {
res += 10000.0;

}
end = true;

}
if end {

return res;
}
// else propagate delay
delay = (g[src].time().unwrap() - g[dst].time().unwrap()

+ delay
+ *edge.min_running_time()
+ *edge.min_stopping_time())

.max(Duration::zero());
}
0.0

}
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