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Abstract. In [Toner and Bacon, Phys. Rev. Lett. 91, 187904 (2003)], 1 bit of

communication was proven to be enough to simulate the statistics of local projective

measurements over the maximally entangled state. Ever since then, the question of

whether 1 bit is also enough for the case of generalized measurements has been open.

In this thesis, we retort to inefficiency-resistant Bell functionals, a powerful technique

to prove lower bounds communication complexity, to numerically study this question.

The results obtained suggest that, indeed, as is the case with projective measurements,

1 bit of communication suffices to simulate POVMs over maximally entangled qubits.

Keywords: Bell theorem, quantum nonlocality, communication complexity,

detection loophole.

1. Introduction

One of quantum theory’s features which have puzzled scientists the most since its

origin is nonlocality, the fact that measuring a property of a quantum system can

instantaneously determine the results of another property measured on a distant system.

Such kind of nonlocal influence was part of an important debate inside the scientific

community. In their article of 1935 entitled “Can quantum-mechanical description of

physical reality be considered complete?”, Einstein, Podolsky and Rosen [8] argued that

any theory making the same predictions as quantum theory and, at the same time,

avoiding such spooky action at a distance, as they called these non-local influences, has

to postulate the existence of “real properties” (or, hidden variables) which, when taken

into account, allow for the complete local determination of the observations’ outcomes.

Since orthodox quantum theory does not include these, from the assumption of the

impossibility of nonlocal causation one has to conclude its incompleteness. Decades

later, in 1964, John S. Bell proved that the predictions of quantum mechanics can never

be explained by a physical theory of local hidden variables, under the assumption of

free will, going against EPR’s intuition [2]. Besides producing a fundamental change

in our perception of the universe, the study of Bell nonlocality [4] has led to new
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technological applications, and now we know that nonlocal correlations are the key

resource in most of quantum mechanics’ advantages for informational and computational

tasks; key distribution protocols [17], algorithms for distributed computation [13], or

random number generators [10, 3] are examples of such applications [18].

Given the existence of quantum correlations that cannot be reproduced by classical,

non-communicating devices, it is natural to study how much classical communication

would that devices need in order to be able to reproduce them. In a celebrated result,

Toner and Bacon [20] proved that 1 bit of communication suffices to simulate the

correlations arising from projective measurements over the maximally entangled state.

However, for generalized (i.e. POVMs) measurements, it is an open question whether

a finite amount of communication suffices or not. This is precisely the problem we will

study in this thesis.

To tackle the aforementioned problem we will retort to inefficiency-resistant Bell

functionals. These are functionals on the space of probability distributions which are

bounded above by 1 on all local distributions that can abort, i.e. local distributions with

an additional abort outcome ⊥ for each party. The reason for considering this type of

Bell functionals is that the logarithm of the value they take on a given distribution

is a lower bound on the distribution’s communication complexity [12]. Moreover, this

value coincides with the value given by the partition bound, the tightest lower bound

on communication complexity discovered so far [12]. The plan will be to generate

examples of these functionals and try to find POVMs measurements over a maximally

entangled of 2 qubits such that the value that the resulting quantum distribution takes

on the considered Bell functional (i.e. its ’violation’) is above 2 (which, by the above

reasoning, implies that its communication complexity is above 1). In order to generate

the inefficieny-resistant Bell functionals, two methods will be used.

The first method consists on transforming the facets of the polytope of local

distributions in an scenario with N inputs and K outputs per party (for different values

of N and K), which are (by definition) Bell functionals, to inefficiency-resistant Bell

functionals. The problem of enumerating the facets of the local polytope becomes

infeasible already for small values of N and K. Hence, for the largest values of N and

K considered in this thesis (see the Results section), we will retort to symmetries that

will allow us to reduce the computational complexity of the problem.

The second method to generate candidate inefficiency-resistant Bell functionals

consists of computing the dual of the eff linear program (see its definition in the

Preliminaries section) for distributions (in general, nonquantum) having nontrivial

communication complexity appearing the literature. The reason being that the solutions

of the this linear program are, precisely, inefficiency-resistant Bell functionals.

This thesis is organized as follows. In section 2 we define the necessary concepts

from the areas of Bell nonlocality and communication complexity. In section 3 we

present the results we obtained. Finally, in section 4, we provide our conclusions and

outline possible future lines of research.
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2. Preliminaries

2.1. Quantum non-locality

A bipartite Bell experiment consists of two systems, which may have previously

interacted, that are separated and each one of these systems is measured by an observer,

Alice or Bob. Alice may choose a measurement x between many others, and may obtain

an outcome a. Similarly for Bob but with y and b. From one run of the experiment

to the other, these measurements and outcomes may vary. Thus, there is a probability

distribution p(a, b|x, y) which describes the probabilities for each pair of outcomes when

a certain pair of measurements is performed.

We say that a probability distribution p(a, b|x, y) is local if it can be written as

p =
∑
λ

qλdλ, with qλ ≥ 0,
∑
λ

qλ = 1 (1)

where dλ corresponds to a deterministic behaviour :

dλ(ab|xy) =

{
1 if a = ax and b=by

0 otherwise.
(2)

For N different measurements per party, each of them yielding K possible outcomes,

there are K2N deterministic behaviours. Thus, the set of local distributions, which

we denote by L, is the convex hull (i.e the set of convex combinations of) of a finite

number of points (the deterministic distributions) and, hence, it is a polytope. By virtue

of Minkowski’s theorem, a polytope can, equivalently to the representation (1) as the

convex hull of its vertices, be represented as the intersection of finitely many half-spaces.

Hence, a distribution p ∈ L iff

si · p ≤ Si ∀i ∈ I, (3)

where I indexes a finite set of linear functionals si over RN2K2
. In the case of the

local polytope L, this functionals are known as Bell functionals and the corresponding

inequalities as Bell inequalities. If s ·p ≤ Sl is a valid inequality for the polytope L, then

F = {l ∈ L|s · l ≤ Sl} is called a face of L. Faces of dimension dim F = dim L − 1 are

called facets of L and the corresponding inequalities are called facet Bell inequalities.

On the remainder of this thesis, we will denote the application of a Bell functional B

on a distribution p as B(p). If a distribution p is such that B(p) > b for some Bell

inequality B(l) ≤ b ∀ l ∈ L, we say that p is nonlocal.

In quantum physics, the joint probabilites are computed using the Born’s rule which

is given by p(ab|xy) =
〈
ψ
∣∣Aa|x ⊗Bb|y

∣∣ψ〉, where: |ψ〉 is a quantum state in some tensor

product Hilbert spaceHA⊗HB; and, for every x, {Aa|x}a is a POVM (Positive operator-

valued measurement) over HA (i.e. Aa|x are positive semi-definite operators satisfying∑
aAa|x = I for every x) and the same goes for Bob.

Bell’s 1964 result [2] is the discovery of nonlocal quantum distributions. In the

simplest scenario of two binary measurements per party, Clauser, Horm, Shimony and
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Holt (CHSH) [6] discovered the Bell inequality 〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉 ≤ 2,

where 〈axby〉 =
∑

a,b abp(ab|xy), which is violated in quantum mechanics by measuring

appropriate (local) qubit observables over the maximally entangled qubit state with a

maximal value of 2
√

2.

2.2. The detection loophole

In the context of experimental tests of quantum nonlocality, people have studied (what

are now known as) loopholes, i.e experimental situations that may allow classical, non-

communicating devices to generate nonlocal correlations. For instance, if, in an optical

setup, the detectors were somehow coordinating their behavior, they may choose to

discard a run (i.e. not to click), and though the conditional probability (conditioned on

the run not having been discarded) may look quantum, the unconditional probability

may very well be classical (i.e local). This is called the detection loophole. When

an experiment aborts with probability at most 1 − η, we say that the efficiency is

η. To close the detection loophole, the efficiency has to be high enough so that the

classical explanations are ruled out. It is thus important to study, given a target

distribution p (say, one maximally violating the above CHSH inequality), what is the

efficiency required for the detectors above which no local explanation p, which exploits

the detection loophole is possible, that is

max{η : ∃ l ∈ L⊥, l(a, b|x, y) = ηp(a, b|x, y) + (1− η)a(a, b|x, y) ∀a, b, x, y} (4)

where L⊥ denotes the set of local distributions with one additional outcome per

party, the abort outcome ⊥ (corresponding to the ’no-click’ events), and a ∈ L⊥.

Intuitevely, the smallest the value of this quantity the more suceptible to the detection

loophole the correlations are. The inverse of (4), which can be expressed by the following

linear program,

eff(p) = min
η,µl≥0

1

η
(5)

subject to
∑
l∈L⊥det

µll(a, b|x, y) = ηp(a, b|x, y) for a 6= ⊥ and b 6= ⊥ (6)

∑
l∈L⊥det

µl = 1 (7)

is a measure of nonlocality, i.e. the higher eff(p) the further from the local polytope is

p. Notice that a distribution p is nonlocal iff eff(p) > 1. As every linear programm, (5)

has a dual:

eff(p) = max
B

B(p) (8)

subject to B(l) ≤ 1 ∀l ∈ L⊥det. (9)

The solutions of (8) are Bell functionals which are bounded above by 1 on the set L⊥
and whose coefficients for the abort events are all 0. This class of Bell functionals is

known as ’inefficiency-resistant Bell functionals’ [13].
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2.3. Inefficiency-resistant Bell functionals and communication complexity

Communication complexity theory, introduced by Andrew Yao in 1979 [21], studies

the communication requirements in the distributed computation of functions. More

formally, given a function f : {0, 1}n×{0, 1}n → {0, 1}, the communication complexity

of f , denoted CC(f), is the number of bits, in the worst case of the inputs, that have to

be exchanged between Alice holding input x ∈ {0, 1}n and Bob holding input y ∈ {0, 1}n
in order for him to output f(x, y). The standard scenario of functions easily generalizes

to the simulation of probability distributions. In this setting, Alice gets input x, Bob

gets input y, and after exchanging bits, Alice has to output a and Bob b such that

the joint distribution is some given p(a, b|x, y). This allows us to recast the theory

of non-locality in the language of communication complexity: local distributions are

those that can be simulated with zero bits of communication and access to some shared

randomness λ, i.e. CC(l) = 0 for all l ∈ L. Several techniques to prove lower bounds

in communication complexity are known (see, e.g. [11]). In [12], it was shown than one

of the strongest techniques, the partition bound, coincides with the log of (8). We thus

have:

Proposition 1 [12]. For any distribution p, CC(p) ≥ log(eff(p)).

Proposition 1 implies that if we find an inefficiency-resistant Bell functional

B and a quantum distribution q obtained by measuring POVMs over a pair of

maximally entangled qubits and such that B(q)>2, we would have proven that 1 bit of

communication is not enough to simulate generalized measurements over the singlet.

2.4. NPA hierarchy for optimization problems

As previously stated, after obtaining the inefficiency resistant Bell functionals we will

calculate their quantum violation. When the dimension of the quantum states is fixed,

as in the case we are considering (recall we will be working with qubits), the standard

technique to find the maximal violation of a given Bell functional, introduced in [14]

and known as ’seesaw’ algorithm, is to fix one of the players’ measurements, say, Bob,

optimize over Alice’s measurements, and iterate this procedure with the newly found

measurements for the other player. This method, however in many cases efficient, is not

guaranteed to reach the global maximum (i.e., it can get stuck in a local maximum).

To cope with this issue, we will retort to the NPA hierarchy.

The NPA hierarchy, introduced by Navascués, Pironio and Aćın [15], is a sequence

of semi-definite programs (SDP) {Pi}i approximating the set of quantum correlations

(with no restriction on the dimension) from the outside and converging to it in the limit

of i going to infinity. That is, the sets {Qi} of feasible points of the SDPs {Pi}i include

the quantum set and get closer and closer to it as i (known as, the level of the hierarchy)

increases. Therefore, the maximal value of a given Bell functional in the i-th level of

the hierarchy is an upper bound to its maximal quantum violation (and, hence, also to

its maximal quantum violation with qubits).
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3. Results

In this section we report on the results obtained during this master project. As stated

in the Introduction, the question we are interested in is whether, as is the case for

projective measurements, 1 bit of communication suffices to classically simulate the

statistics of POVMs over a pair of maximally entangled qubits. As is the case with

every problem in communication complexity, to prove an upper bound of 1 bit (i.e.

to prove that 1 bit suffices), one has to give a communication protocol that works

for any valid input, in this case, any set of POVMs for Alice and Bob and, in the

worst case, uses 1 bit of communication. On the other hand, to prove that 1 bit

of communication is not enough, it suffices to find a particular set of POVMs such

that the resulting quantum distribution has a communication complexity higher than

1 bit. For this thesis we decided to pursue this second path, not only because it is

simpler and, hence, more appropriate for the duration of a master, but also because

we were hoping to benefit from the power of inefficiency-resistant Bell functionals as

lower bounds for the communication complexity of quantum distributions (recall that

the logarithm of the value that a quantum distribution take on an inefficiency-resistant

Bell functional is a lower bound on its communication complexity). Therefore, we set

out to find a inefficiency-resistant Bell functional and a qubit distribution whose value

on the functional is above 2.

As we briefly discussed in the Introduction, to find the above-mentioned inefficieny-

resistant Bell functionals we followed two strategies. The first consisted on enumerating

the facets of the local polytope for different bipartite Bell scenarios (i.e. for different

number of inputs and outputs for Alice and Bob), and the second on obtaining them

as solutions to the dual of the efficiency linear program (see (8)) for appropriately

chosen distributions. After finding the inequalities, our plan was to study their maximal

quantum violation with POVMs over a pair of maximally entangled qubits. However,

given that searching over the space of all POVMs is computationally very costly and that

the available methods are not guaranteed to converge, we decided to first compute the

violation in the first levels of the NPA hierarchy (which, as explained in the Preliminaries

section, gives an upper bound on its quantum violation).

Unfortunately, for all the Bell functionals that we found, their value already on the

first level of the NPA hierarchy is (although sometimes above 1) always below 2. We

interpret this an indication that, as is the case for projective measurements, 1 bit of

classical communication is, in fact, enough to simulate POVMs over qubits as well (we

will say more about this in the Conclusions). Nevertheless, in this section we report on

the functionals found and the values obtained in the NPA for the two different methods

mentioned above.

3.1. First method: Facets transformation

The steps of this method can be summarized as follows:
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(i) Compute the facets of the local polytope for a scenario with N inputs per party

and K outcomes per input.

(ii) Extend the Bell functionals defining the facets to a scenario with one more outcome

per party (the ’abort’ outcome) putting 0 in the coefficients corresponding to this

new outcome.

(iii) Divide all the coefficients of the new functionals by the maximal value that each

functional takes (if nonzero) on the set of local distributions in the N inputs and

K + 1 outputs scenario. This two steps transform the standard Bell functionals

obtained in Step 1 for the (N,K) scenario to inefficiency-resistant Bell functionals

for the scenario (N,K + 1).

(iv) Compute the maximal value that the resulting inefficieny-resistant Bell functional

takes on the firsts levels of the NPA hierarchy.

For the computations carried out with this method, a hierarchy of Python classes

was developed ‡. We anticipate it will be of further use by the members of ICFO’s QIT

group working in the topic of nonlocality.

In Table 1 we summarize the results obtained with this method for different number

of inputs N and outcomes per input K.

Table 1. Largest values that the transformed functionals for the different scenarios

studied take on the first level of the NPA hierarchy. The larger number of outcomes in

the scenario {N = 3,K = 4} made the facet enumeration infeasible. For this reason,

we decided to leverage the techniques developed in [1] to only enumerate the symmetric

subset of the facets. The facets of the local polytope in the {N = 4,K = 2} scenario

were obtained from [7].

Scenario Max. NPA violation of transformed functionals

N = 3 and K = 2 1.59

N = 3 and K = 4 (symmetric) 1.34

N = 4 and K = 2 1.61

3.2. Second method: Dual of eff

The steps of this method can be summarized as follows:

(i) Compute the (dual of the) efficiency linear program (see (8)) for each of the

candidate distributions (see below). Recall that the solutions to this linear program

are inefficiency-resistant Bell functionals.

(ii) Compute the maximal value that the resulting inefficieny-resistant Bell functional

takes on the firsts levels of the NPA hierarchy.

‡ Ricard Ravell Rodŕıguez and Gabriel Senno. Python library for Bell nonlocality.

https://github.com/gsenno/nonlocality
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The candidate distributions came from two sources:

(i) communication complexity problems for which there is a quantum advantage over

classical communication complexity. In [13], quantum distributions are constructed

from quantum communication protocols and inefficiency-resistant Bell functionals,

which the distributions violate, are extracted from the dual of the efficiency linear

program from (8). The quantum distributions in that construction, however, only

violate the Bell inequalities for a sufficiently big number of inputs. Moreover, the

dimension of the quantum states grows with the input size. In this thesis, we

wanted to test whether the resulting inefficiency-resistant Bell functionals, which

we know have quantum violations, can be violated with qubits.

The distributions in this category are pDISJn , pEQ′
n
, pV SPn and pGHDn , where:

the input sets are binary strings of length n (hence, there are 2n inputs per

player); the outputs are bits; DISJn(x, y) = 1 if |{i : xi = 1 = yi}| = 0 and 0

otherwise; EQ′n(x, y) = 1 if the Hamming distance between x and y is 2n−1 and

0 otherwise; GHDn(x, y) = 1 if
∑

i(−1)x[i]+y[i] ≥ 2n/2 and 0 otherwise; V SPn(·, ·)
is the discretized version of the (continuous) Vector in Subspace Problem (see [5,

Section 3.6]); and, finally, pfn(a, b|x, y) = 1/2 if a⊕b = fn(x, y) (with ⊕ the bitwise

XOR) and 0 otherwise.

We could only test the n = 2 case as, already for n = 3, the size of the local

polytope makes the problem unfeasible even for ICFO QIT’s cluster. The results

obtained for these distributions were:

Table 2. eff values and maximal NPA violation of the corresponding inefficiency-

resistant Bell functional for the candidate distributions. The values of the third column

being less than 2 implies that the corresponding functionals are, unfortunately, not

useful for our purposes. These results also imply that: 1) pDISJ2
, pEQ′

2
and pV SP2

are

nonlocal distributions, as expected. They are also nonquantum, as the corresponding

values in the third column are smaller than in the second. pGHD2
, on the other hand, is

local, which is something we did not expect (as we know from [13] that, for sufficiently

large n, pGHDn
is nonlocal). There is also some numerical error in eff(pEQ′

2
) because

the distribution is non-signaling and from [13] we know that eff should be ≤ 4.

Distribution p eff(p) NPA violation for the solution to eff

DISJ2 3.99 1.66

EQ′2 4.01 1.62

V SP2 3.66 1.65

GHD2 1 1

(ii) quantum information protocols for nonclassical tasks. We extracted quantum

nonlocal distributions appearing in self-testing and randomness extraction protocols

and computed their efficiency value using (8). This distributions were selected

because they make nontrivial use of POVMs over maximally entangled qubit (that

is, POVMs are necessary to achieve the desired characteristic in the corresponding
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quantum information protocol). The result of eff for these distributions not only

gave us a lower bound on their communication complexity (which is what we were

interested in) but also, by definition, a lower bound on the inverse of the efficiency

required in an experimental setup aimed at testing such protocols, which is of

independent interest.

Table 3. eff values and maximal NPA violation of the corresponding inefficiency-

resistant Bell functional for the distributions appearing in [19, Section IV.A] and in

[9]. The values of the third column being less than 2 implies that the corresponding

functionals are, unfortunately, not useful for our purposes.

Distribution Efficiency Value NPA violation for the solution to eff

randomness extraction [9] 1.29 1.66

selftesting POVM [19] 1.31 1.54

4. Conclusions and future work

In this thesis we set out to study the question of whether 1 bit of communication is

enough to classically simulate the statistics of local POVMs over maximally entangled

qubits. For that purpose, our strategy was to numerically search for inefficiency-resistant

Bell functionals, as the logarithm of value they take on quantum distributions is a lower

bound on their communication complexity. As we did not find any distribution coming

from POVMs over maximally entangled qubits giving a violation of an inefficiency-

resistant Bell inequality with a value above 2, we cannot claim a positive answer to

the above question. However, giving the diversity of origins for the Bell functionals

considered, we interpret our results as an indication that, as is the case for projective

measurements, 1 bit of communication might in fact be enough for the simulation of

any bipartite quantum distribution over maximally entangled qubits.

Of course, the next step in this research program is to prove the above-mentioned

conjecture. For this goal, we expect that the results of [16] about simulating POVMs

with projective measurements might be of use. However, as we know that, if the

Hilbert space dimension is kept fixed, not every POVM can be simulated by a projective

measurement (take, for example, the ones used in [9]), the simulation will have to be

such that it holds for maximally entangled qubits but not in general.
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Experimental nonlocality-based randomness generation with nonprojective measurements.

Physical Review A, 97(4):040102, 2018.

[10] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number generators.

Reviews of Modern Physics, 89(1), feb 2017.

[11] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,

2006.

[12] S. Laplante, V. Lerays, and J. Roland. Classical and quantum partition bound and detector

inefficiency. In Proceedings of the 39th International Colloquium on Automata, Languages and

Programming, pages 617–628, 2012.

[13] Sophie Laplante, Mathieu Laurière, Alexandre Nolin, Jérémie Roland, and Gabriel Senno. Robust

bell inequalities from communication complexity. Quantum, 2:72, 2018.

[14] Yeong-Cherng Liang and Andrew C Doherty. Bounds on quantum correlations in bell-inequality

experiments. Physical Review A, 75(4):042103, 2007.

[15] Miguel Navascués, Stefano Pironio, and Antonio Aćın. A convergent hierarchy of semidefinite
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