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Chapter 1

Introduction

1.1 Context

1.1.1 The company

Airbus is a major actor in the global aerospace and aircraft industry, conceiving, design-
ing, producing and delivering products and services in the field of commercial aircraft,
helicopters, space and defence for a global market. It is divided into three entities, one for
each main domain: Airbus Commercial Aircraft, Airbus Helicopter and Airbus Defence
and Space. The present Projet Final d’Etudes was done in Airbus Commercial Aircraft, a
company of more than 54.000 employees that designs and produces a family of airplanes
for commercial exploitation, and offers maintenance and retrofit services.

This project took place in the EYAM1 working group (Diagnostics and Predictive
Maintenance), which is part of the Engineering division of Airbus Commercial Aircraft.
The detailed hierarchy structure is shown in figure 1.1. The EYAM]1 team is responsible for
the design and implementation of on-board maintenance systems, which monitor aircraft
sensors and send fault and warning codes to the Electronic Centralised Aircraft Monitor
(ECAM), in charge of informing the cabin crew, and to the Aircraft Condition Monitoring
System (ACMS), which also records the sensor data along the flight and is retrieved after
landing.

1.1.2 Predictive Health Management

Traditionally, the main approach to Prognosis and Health Management (PHM) for aircraft
maintenance has been focused on periodical piece testing and replacement based on phys-
ical degradation models, which can offer a Remaining Useful Life (RUL) indicator, and
reactive corrections after fault detections. Unexpected critical failures that led to opera-
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Figure 1.1: EYAM1 upstream hierarchy.
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tional interruptions (OI), as well as ahead-of-time piece replacements, carry non-quality
costs for the airline companies.

The increased accessibility to massive data storage systems and the availability of af-
fordable computing power have opened the doors to almost-real-time monitoring of fleet
health, allowing for a much more effective PHM supervision through the ingestion and
analysis of great volumes of A/C data. This opens a door to new and better methods for
tackling unplanned Ols, as well as correctly estimating the RUL of the different system
components, generating value for airlines and business opportunities for Airbus.

1.1.3 The 0-AOG plateau

In order to respond to exploit the business potential of these new trends, Airbus created
PHM products such as the AiIRTHM platform, which is referred to in the next chapter,
through its SBO6 team (A /C Diagnostic and Predictive Maintenance) of the Airbus Com-
mercial customer services division.

Recently, in an initiative to integrate expertise from both services and engineering
departments, the 0-AOG plateau has been created. This transversal unit brings together
experts in data science, informatics, health management and A/C systems in order to
define health indicators issued from domain expertise and historical data analysis for the
different programs, integrate them in a PHM pipeline, supervise fleet health and manage
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customer communications.

1.1.4 Available data

The platform can access the following data sources in order to observe the condition of the
air fleet:

e Post Flight Report (PFR): List of warning and fault codes registered by the
Aircraft Condition Monitoring System during a flight.

e Smart ACMS Recording (SAR): They are retrieved on the ground after landing,
and contain high frequency data from various system sensors during certain periods
of the flight. Multiple SARs are recorded during a single flight, each one identified
with a number according to the recorded sensors, which usually belong to a same
system.

e Logbook: Contains a list of the issues registered by the cabin crew on a plane and
all the actions carried by the ground technicians to solve them.

e Events: List of Operational Interruptions (OI) of an aircraft.

1.1.5 The Innovation Stream

Flight data consists of large sets of heterogeneous, multivariate readings produced by the
embedded sensors during A /C operation. This data, most of which represents multi-modal,
multi-scale physical magnitudes from different subsystems, requires systems expertise and
hand-crafting in order to be usable for aircraft monitoring.

As an effort to keep up with the state of the art of the methods for anomaly detection,
as well as exploring new tools for multi-discipline knowledge management, the 0-AOG
plateau created the Innovation Stream.

This group, led by Philippe Chantal, has provided with various machine learning tools
and demonstrators for this purpose. One of the research approaches led by Fabrice Jiménez,
this internship’s supervisor, has been the distributed computation of time-series features for
a posterior unsupervised analysis through distance-based isolation techniques. As of now,
these features consist mainly of statistical descriptors and functional decomposition coef-
ficients (i.e. FFT and DWT). Enriching these features through machine-learning methods
is one of the main motivations of this project.
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Figure 1.2: Pipeline scheme of the anomaly isolation approach for SAR data.
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1.2 Objective

The aim of this project is to explore Deep Learning techniques for A/C anomaly detection
and analysis, as well as, if feasible, to propose and implement solutions taking into account
the domain-specific needs of the aircraft maintenance activity of the 0-AOG plateau.

There is no current anomaly detection strategy or previous study in the team involving
similar methods, therefore the author has been given freedom to explore a broad number

of approaches and use-cases.



Chapter 2

Deep Learning for Time Series Analysis

In this chapter, the challenges of aircraft predictive health maintenance (PHM) are ex-
plained along with the interest for anomaly detection in sensor data, as well as the current
industrial approaches and tendencies for this task (section 2.1).

Section 2.2 introduces the concept of deep learning and its theoretical foundations, while
explaining its potential for anomaly detection. It also introduces and lists some mainstream
practical pre-processing and training strategies for neural networks, which have been used
for this work’s experiments.

Section 2.3 contains a bibliographic review of the families of deep auto-encoders that
can potentially be used for this study, commenting on their advantages and drawbacks.
Inspired in these architectures, three approaches for A/C time-series analysis have been
proposed in 2.4; two of these have been considered feasible and implemented.

Finally, some deep learning drawbacks which have had an impact on this work’s results
have been presented in section 2.5.

2.1 Anomaly Detection

A common definition for anomaly refers to any unexpected or unforeseen pattern in time
series. This deviation from the expected behaviour may be originated from a system
degradation or malfunction. Reciprocally, a confirmed system fault may be preceded by
an anomaly in one or more of its associated sensor readings, in which case such signature
becomes of interest for PHM purposes as a mean to predict a malfunction before it occurs.
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2.1.1 Current Industrial Approach

Aircraft health supervision is a real-time challenge with a direct impact on an essential
group of Airbus shareholders: airlines. Their A/C exploitation costs depend strongly
on their reliability, as well as the number of unplanned (and therefore more expensive)
maintenance activities.

As part of its services for the A350 and A380 families, the company created the Airbus
Real Time Health Monitoring (AIRTHM) platform, which processes SAR data as it is
generated and compute health indicators, developed by system experts, from sensor pre-
cursors for a range of A /C subsystems in order to reach the fleet operators in a streamlined
fashion.

These aircraft systems experts, having a deep knowledge and experience on the analysed
components and their intricate dependencies with other systems, are currently handling the
task of identifying precursor anomalous patterns in sensor readings and fault root causes.
This experience-based approach, however, is ill-posed for cases when highly multi-variate
signals must be analysed and requires a lot of manual labour in a pool of ever-growing
massive data.

2.1.2 Emerging Trends: Machine Learning

As a way to support system experts and automate certain processes in fault diagnosis
through signal analysis, machine learning algorithms offer approaches that can, in a system-
agnostic way, make use of latent, non-obvious information in the dataset.

A typical use-case for machine learning in anomaly detection would take a supervised
approach: training a classifier on a labelled, sufficiently balanced dataset with normal and
anomalous instances. Except for cases presenting a slow degradation, which have been
studied in this work but are a minority, this supervised approach is not suitable for A/C
anomaly detection: pathological instances are notably scarce, therefore it is impossible to
construct a representative dataset.

Furthermore, flight data contains perturbations coming from the numerous, intertwined
systems that form the A/C, environmental factors such as weather, ageing, component
replacements and flight duration. These factors are a cause of variability on the sensor
data, and create non-relevant anomalies.

Another machine learning approach on this task comes from an unsupervised analysis:
the goal is not to classify flight instances as normal or anomalous, but to find the underlying
common structure in the dataset through clustering or dimensional reduction among other
techniques.
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2.2 Principles of Deep Learning

The term deep learning (DL) comprises a family of machine learning techniques that employ
neural network architectures formed by multiple layers of artificial neurons, each one of
which increases its learning capability.

Deep neural networks gained notoriety in the machine learning community around 2012,
when deep models demonstrated a greater performance than the contemporary state-of-
the-art approaches on complex tasks such as speech recognition and image labelling.

The main interest behind DL algorithms is their capacity to automate the extraction
of abstract representations (i.e. features) from the dataset. Models and NN architectures
based on shallow learning such as support vector machines, decision trees and vanilla neural
networks may be unable to extract useful information from complex, high-dimensional
structures and relationships in the input data. In contrast, DL architectures can infer
more intricate learning patterns.

This ability becomes intuitive considering that abstract representations can be decom-
posed into the combination of numerous simpler ones. If the DL network is interpreted a
set of consecutive non-linear transformations, then the outer-most layers are hierarchical
combinations of simpler, low-level patterns computed by the lower layers. This allows for
a proper representations of the main factors of variation in data.

2.2.1 Neural Networks

Artificial neural networks (NN) are mathematical functions inspired by a (very) simplified
interpretation of the processes occurring in the biological brain. They are defined as
unidirectional graphs composed by a set of [ € [1...L] layers, each one grouping a certain
number i of neurons n!? € N® (nodes), some of which are connected by an edge ell) =

i ij
(ny), nEHl)) with an associated weight wg-) € W, Each layer also has a trainable bias b()

connected to the downstream layers.

The training of the NN on a dataset of input/output pairs and for a given error metric
is done through the back-propagation algorithm (see Algorithm 1), which calculates the
gradient weight-wise in order to allow for an adapted stochastic gradient descent (SGD)
method application as defined in [14] (see Algorithm 2).
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Algorithm 1 BackPropagation

Let ag»l) be the activation value for a given cell j in the layer [ for a certain input:

procedure BACKPROPAGATION(Z, ¥)
Compute activations for all neurons for the given 7
for n; ;, neuron outputs in the last layer L do

o Srtlwal@) =yl = = (v — ") 1 (=)
for [ =[(L—1)...1] do
o (Sl wlol ) p)

return
D a(l+1
S EOV,bi,y) = a0
S E(W,byx,y) = of

Algorithm 2 StochasticGradientDescent

procedure GRADIENTDESCENT(TrainingDataSet)
for j in [0 : numIterations| do
TrainingBatch < randomSubset(TrainingDataset)
AW® 0, AbY 0
for (x;,y;) in TrainingBatch do
Calculate Vi, E(W, b;yi, 9:), VLE(W,b;y;, 9;) through BackPropagation
AW — AW + Vi, E(W, b; y;, ;)
AW® — AW O + 75 E(W, b; s, 1)
Update network weights:
wO =w® _ o ((#AW(Z)) + pyw(l))
b = p) — (%Ab(”)
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2.2.2 Good Practises for Training Neural Networks

Training a NN is a non-convex optimization problem:

min () = 323 filw) (2.1)

wERFK

where w are the NN weights (to be optimised) and f; is the error function that calculates
the deviation between the ground truth output for an input value z; € R™ and the NN
output. Although there are few results guaranteeing the convergence and performance
proprieties of NN for the general case, good empirical results have been achieved both in
real and benchmark cases, given the adequate architecture and hyper-parameter tuning

[7]-
Some rules of thumb for model convergence and validation are commonly taken into
account:

Model Validation

In the present case, which concerns only deep auto-encoders, the mean squared error (MSE)
metric defines a similarity measure between the input and the output. In order to ensure
the proper generalization of the AE model within the limits of the available data, a random
holdout of 20% to 33% of the dataset has been reserved for validation|[11].

This holdout is used during training in order to detect over-fitting!. In order to avoid
information leakage, only the training dataset is used for calculating the normalization
transformation.

Data Normalization

It is done with the aim of bringing all the entry variables to a similar scale and range of
values, avoiding an ill-defined problem and guaranteeing a stable convergence of weights.
In this work two variants have been explored:

e Standardization: The data is centred as if generated by a unitary Gaussian, x =
(= ) NG

e [—1,1]-Normalization: The data is scaled to the [-1, 1| value interval. Usually, the
process consists in an affine transformation where the minimum value is brought to

"When a statistical or machine learning model learns to classify or reproduce the training dataset too
well while losing performance on the rest of the cases (therefore losing generalization properties), it is said
that such model is over-fitted. In order to control this phenomenon, part of the training dataset is left out
and used to test the model’s generalization capacity (validation).
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-1 and the maximum to 1. Since in the studied case there are no defined upper or
lower bounds, the values corresponding to 36 of the empirical distribution of each
variable have been used as maximum and minimum for the affine transformation,
and the outliers have been clipped into this interval.

In order to avoid information leakage, only the training dataset is used for calculating
the normalization transformation.

Batch Training

The back-propagation training of the NN is commonly based on a Stochastic Gradient
Descent (SDG) algorithm or one of its variants; specifically, the ADAM method has been
the tool of choice for this task. As in any SDG algorithm, the size of the data batch
becomes a hyper-parameter to be defined.

There is empirical evidence that a mini-batch size of between 32 and 512 data-points
is a good choice for most cases; greater values, on the other hand, tend to produce models
that do not generalize as well [4].

2.2.3 Deep Auto-Encoders

Deep auto-encoders (AE) are a family of NN architectures interesting to the machine
learning community for their dimensionality reduction proprieties: unlike PCA or Negative
Matrix Factorization, they can represent non-linear, intricate relations between the input
variables.

They consist of a multiple-layer neural network trained to approximate the identity
function while being subject to a certain regularization, and can be decomposed into two
sub-networks: an encoder that maps an input to a representation in a space of a generally
lower dimension, and a decoder that reconstructs a vector in the input space from a vector
belonging to the latent or hidden space [13]|. In the usual case where the latent space is of
a lower dimension than the input space, the composition of these two functions will be a
projection to a hyper-surface or manifold of reconstructible inputs.

This ability to learn in an unsupervised fashion is what makes deep AE interesting for
anomaly detection, where classification is not feasible as datasets are unbalanced, and the
final user does not necessarily know which is the signature of the anomaly.
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2.3 Considered Architectures

The following Deep AE architectures have been considered as potentially suitable for the
treatment of time-series in terms of dimensionality reduction, straight-forward anomaly
detection, or both.

2.3.1 Long Short-Term Memory Auto-Encoder

Recurrent Neural Networks (RNN) are a family of NN adapted to the processing of sequen-
tial data. Instead of dedicating one neuron to each input value (as in the fully connected
case), each RNN cell processes and emits an activation value for every time-step. The
calculation of the output is a function of the input and a hidden-state value (memory)
calculated during the last step. These two values are also used for updating the mentioned
hidden-state.

This temporal dependence makes RNNs able to produce very deep models with very
strong representational capabilities for time-series. This comes at the cost of a computa-
tionally greedy training, as well as gradient explosion and vanishing issues [9].

In order to handle the gradient problems, the Long Short-Term Memory (LSTM) and
the Gated Recurrent Unit (GRU) architectures were studied. Since benchmark tests on
the difference in performance between these are inconclusive [3|, the author has opted for
he more mainstream LSTM. The details of the LSTM architecture will not be explored in
this document; more information on it can be found in the original paper [8].

Although an LSTM AE will not be capable to reduce the temporal dimension of an
input, as all RNN-inspired networks return one output time-step for each input time-
step, it can do it parameter-wise; for instance, for a dataset containing temporal signals
composed of n channels or parameters, an AE composed by stacked LSTM should be
capable to compress the information parameter-wise and output a latent signal composed
by m channels, with m < n. Following the auto-encoder principle, the input signal can be
approximately reconstructed from this embedding, using the error as an anomaly indicator.
This dimensional bottleneck will act as a regulariser.

Some works that use LSTM for anomaly reconstruction are [1][14], although they use
a windowed approach. This will be referred to in the next section.

2.3.2 Sequence-to-Sequence Auto-Encoder
Most commonly known as Seq2seq, this recurrent AE was conceived for translation tasks,

providing outstanding results [16]. It is composed by an LSTM-based encoder and decoder,
with the particularity that the resulting encoding is the LSTM memory state at the last
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Figure 2.1: Seq2seq architecture for time series encoding as proposed in [13].
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time-step of the encoder. This embedding is used as an initial memory state for the decoder
LSTM, which is trained to reconstruct the output in inverse order.

This architecture solves the need for temporal dimensional reduction, as it can trans-
form time-series of any length to a fixed-length vector of abstract features. Its main
drawback is its very high training cost, especially for long series, which made it impossible
to apply in this work, as training a Seq2seq AE capable to model a whole flight (up to
60.000 time-steps or more) was not feasible due to computational limitations.

2.3.3 Convolutional Neural Network Auto-Encoder

This family of architectures (CNN) is the foundation stone of most of the image treatment
algorithms based on neural networks.

CNN are composed by pairs of convolutional and pooling layers: the former learns
discrete filters that extract the most relevant patterns on the input image, while the latter
down-samples the convoluted outcome through local averages or maximal values.

Reinterpreting time-series as images of width equal to the number of samples, unitary
height and number of channels equal to the number of parameters, CNNs can be proposed
as alternatives to RNNs with reasonable results [2].

This approach has the advantage over LSTM of a considerable faster training time, as
well as the possibility of temporal-wise dimensional reduction, allowing for latent feature
space learning when implemented as an AE. Its downside is that it requires all input data
to have the same dimension, requiring padding or truncation depending on the case.
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2.3.4 Variational Auto-Encoder

Variational auto-encoders (VAE) are a Bayesian reinterpretation of the deterministic AE.
While both types learn a lower-dimension representation of the input data, VAEs do not
define a mapping to the hidden space; instead they infer a normal distribution over each of
the embedding variables. These distributions can be sampled generating synthetic elements
of the input space (generative network) and provide a regularizing effect (hidden values in
a local vicinity will correspond to similar outputs).

As well as deterministic AEs, they can be trained through SGD thanks to the definition
of a lower bound of the Kullback-Liebler difference between the inferred and the real
posterior, as well as a re-parametrization trick, both presented in the original paper [10].

A recent training strategy for the VAE, the 5-VAE, has been successfully used for
the construction of disentangled interpretable latent spaces, where each hidden variable
corresponds to one of the major sources of variation of the dataset [12].

A specific sub-architecture of VAEs called Variational Recurrent Auto-Encoder (VRAE),
the Bayesian counterpart to Seq2seq AEs, has been proposed in [5]. As with Seq2seq AEs,
it has not been used in this work due to its computational greediness.

VAEs and their variants have not been considered but not used for this work, as they
do not present any advantage to their deterministic alternatives for the present study and
do not overcome their drawbacks, which are related to data scarcity and computational
limitations.

2.4 Approaches for Anomaly Detection

Given the architectures studied in the previous section, the nature of the studied data
and the needs of the 0-AOG plateau, three different approaches have been considered for
anomaly detection, of which two have been deemed feasible. About the discarded idea, the
reasoning behind its proposition and dismissal is presented in this section:

2.4.1 Feature generation for anomaly isolation

As a part of its mission to provide the 0-AOG plateau with tools for aircraft system diag-
nosis and prognosis, the Health Anomaly Detection with Evolutionary Strategy (HADES)
was developed by Fabrice Jiménez, the supervisor of this project. It is programmed to de-
tect anomalies in a set of flights from their features, which have been previously extracted.

As a way to enrich HADES through the automatic feature generation capabilities of
DL methods, the idea of training a deep auto-encoder for flight reconstruction in order
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Figure 2.2: Auto-encoders are essentially compositions of non isomorphic functions.
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to use the learnt features for anomaly detection was proposed. Deep learning methods,
nonetheless, have been found to be ill-adapted for this task.

The problem comes from the fact that auto-encoders are, as commented before and
shown in figure 2.2, compositions of an encoding and a decoding function. The encoder,
which takes as input an element of the original space (in this case, flight data), maps it
to a lower-dimension space, therefore defining a non-injective function. This means that
certain families of flights will correspond to the same embedding. On the other side, the
decoder defines a mapping from a lower to a higher dimension, which implies that the
function will not be exhaustive.

The composition of both encoder and decoder, therefore, becomes a projection: all
flights will be mapped into ® = {f o g(z),Vx € R"}, with ® ¢ R"™ the manifold defined
by its image. Let’s see what its shape looks like.

This manifold is learnt during the training of the auto-encoder. Since the model is
forced to give priority to the most explicative traits of the dataset [6], if this dataset is
composed only by normal flights or has a very low ratio of anomalous flights (which is the
case in this study), the projection image will be, ideally, the manifold of normal flights.
Therefore, any anomaly in the data will be overlooked as an outlier and the generated
latent features will not represent the variability outside the norm. A schematic of this
phenomenon is shown in figure 2.3.

Due to the presented reasons, this approach has been left out of the study, as these
automatically generated features will not provide relevant information for the isolation
algorithm.
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Figure 2.3: An auto-encoder trained on a mostly normal dataset will not reconstruct
anomalous signatures; instead it will return a normalized instance of the flight. Features
generated by the encoder will not encode anomalous or rare behaviours.

Maormal flight
manifold

2.4.2 Time series reconstruction for anomaly detection

Another proposed approach is to use the auto-encoder reconstruction error for a given
input (such as the mean squared error metric) in order to detect the "deviation" of a given
flight from the normality. This is a common approach for unsupervised anomaly detection
using neural networks [13][14][15].

The studied literature proposes the use of LSTM auto-encoders for reconstruction learn-
ing, applying the analysis on rolling windows. Nonetheless, the windowed approach has a
drawback for the studied use-case: A/C data has a strong non-periodic component that
depends on the flight phase and the operational context in general, which would be lost on
an isolated window as it does not take into account the long-term temporal dependencies
expected to be found in flight data. The AE will be trained on the whole flight instead.

2.4.3 Feature extraction for fault characterization

Given a sufficiently large number of well identified anomalous cases preceding faults on a
certain system, there is interest in seeing various failure modes. This can be done through
training an auto-encoder with a balanced dataset (that is to say, using a similar number of
flights for each class) and extracting a flight embedding that represents the main factors
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of variability.

These embeddings can be studied in order to correlate the different behaviours with
the fault causes.

2.5 Challenges

Neural networks in general, and DL methods in particular, have certain characteristics
that make them fit for some machine learning tasks, but may pose inconveniences in other
cases. This section presents some considerations regarding the particularities of both the
deep learning approach and the available data for this study.

Unlabeled data

Labelling flights as anomalous or normal is not an evident task, since being anomalous
depends on the rest of observed flights. Furthermore, only those anomalies that can be
identified as precursors to system faults are interesting for PHM purposes, while many can
correspond to unrelated perturbations.

For this study, certain system faults have been identified through Event messages and
confirmed by mature algorithms currently used in the 0-AOG platform. These instances,
while not numerous, will be the only way to validate the studied unsupervised approaches.

Data quality

Deep learning models are, at best, as good as the dataset on which they are trained.
Inferring good predictors is only possible when the training data presents all the variability
to be expected in real-life applications in a balanced way; this is far from granted in the
aircraft industry, where each flight data instance is dimensionally voluminous with high
variability, and instances are costly to process, which is a problem if computational capacity
is not abundant. All this causes a lack of representativeness.

Interpretability

Artificial features issued from a deep encoder may not be interpretable or mappable to
their associated behaviour or even physical origin, unlike in probabilistic or functional
decomposition-based features. This black-box behaviour is undesirable from a diagnostics
point of view, as there is a need for identifying the subsystem or component that originates
the anomalous data.
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Computational cost

Another constraint is computational greediness: deep learning algorithms are costly to
train, with training times that depend on the dataset size, the number of weights to be
trained, the architecture (recurrent, feed-forward or convolutional) and the number of
necessary gradient descent iterations, which depend on the variability of the data.

For the present work, an Intel© Core™ with a i5-6300U CPU was employed, which
supposed a bottleneck in terms of computation and made many analysis infeasible. Due to
data privacy policies, cloud computing on commercial platforms such as AWS or Google
Cloud, which provide GPU instances, can not be used.

For flight data extraction and pre-processing from the AIRTHM data lake, the author
has had access to the platform’s on-premises Hadoop cluster, which is well-dimensioned
for the task on hand.






Chapter 3

Case Studies

3.1 Times Series Reconstruction through RNN Auto-
Encoders

3.1.1 Case Study: ATA 28

The ATA 28 contains all subsystems related to fuel containment, management and feeding.

In this analysis, the turbine fuel feeding pumps have been studied as a validation case for
the LSTM time-series reconstruction approach. Each one of these components is powered
by a three-phase electrical current, which is generated by a power electronics subsystem,
one for each pump. These electronic boards are subject to material degradation leading
to failure, leaving the fuel pump out of service. In this scenario, a secondary pump is
activated in its place.

While such faults do not necessarily cause an OI, as A/C are allowed to fly with one
faulty main pump as long as the secondary one is operative, there is an interest in predicting
such faults in order to improve maintenance planning as well as A /C reliability.

With the aid of system experts, the key signals for this analysis were identified. For
the studied anomaly, the historic SAR recordings of the electrical current intensities for
each pump have been retrieved and used, as they have been confirmed to show precursor
signatures by other detection algorithms.

Around a thousand flights from all available A/C have been retrieved for training. The
number of retrieved samples had to be limited to this scale of values due to the difficulties

LATA 28 is one of the chapters of the ATA 100 standard for numerical designation of the main systems
for commercial aircraft, as defined by the Air Transportation Association of America (ATA). It is shared
by the main aircraft makers such as Airbus, Boeing or Bombardier. Chapter ATA 21, for instance, refers
to air conditioning, and ATA 27 to flight controls.

19



20 Chapter 3. Case Studies

Figure 3.1: Fuel pump distribution on the A380.
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in training for greater datasets. For the same reason, the signal (originally at 8Hz) had to
be down-sampled to 1Hz, giving a final signal of between 20.000 and 60.000 data-points
per channel. The implication of these decisions will be further commented.

With the support of the Health Engineering team, a list of confirmed A/C faults has
been compiled with vessels from various companies in order to validate the method.

3.1.2 Model definition

The first approach for TS reconstruction in this work are stacked LSTMs. Even if, as
recurrent networks, they are unable to compress data along the temporal dimension, they
can in fact compress it parametrically-wise, providing with data regularization in the multi-
variate case (see figure 3.2).

Due to the inherent computational complexity of RNN training, the study had to be
limited to a low-depth auto-encoder: for a given computation time, there was a trade-off
between the amount of flights in the training dataset and the complexity of the model.
Given the high variability of the data, it was considered preferable to use shallow models
along with richer, more representative datasets.

The chosen architecture consisted of a 9-7-5-7-9 auto-encoder as shown in the table 3.1.
Tanh was chosen for the internal and final activation functions, as unbounded alternatives
such as the linear and rectified linear units cause gradient explosion during training. Due
to this activation function, the training dataset was rescaled to the interval [—1, 1] using
the normalization process explained in section 2.2.2.

A random selection of 20% of training flights were left for validation. At epoch 12,
validation error started platooning and the training was stopped at 85 iterations; epoch 54
was found to minimize the error.
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Figure 3.2: Schematics of a (shallow) stacked RNN auto-encoder. Along the time axis, the
p-dimensional input is embedded into a ¢g-dimensional latent space, with p > q.

t t+0 t+6(n-1) t+nd

. ® @ ................................... .@@@ o

Table 3.1: Implementation detail of the LSTM auto-encoder.

Layer type | Output dimension | Activation function | Dropout
~ LSTM 7 Tanh 5%
LSTM 5 Tanh 5%
LSTM 7 Tanh 5%
LSTM 9 Tanh 0%
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Figure 3.3: Training loss for the LSTM auto-encoder. Epoch 54 corresponds to the lowest
validation MSE value.
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3.1.3 Results

In order to test the model, three real fault cases outside the training time interval have
been extracted and manually verified. For each confirmed fault, the reconstruction error
for the two previous months of flights is computed and the evolution of the error along
time is analysed for each of the channels. Intensity readings associated to the faulty feed
pump are expected to raise over normality.

Results are shown in this section. Plane 1, with a fault in pump 3, presents an anoma-
lous behaviour during all instances before degradation (figure 3.4). On the other hand,
planes 2 (figure 3.5) and 3 (figure 3.6), both with a faulty pump 1, do not present a
higher MSE for this signal relative to the rest of pumps. There is no consistency between
malfunctions and signal error, and no apparent increase in abnormality before fault.

These negative results can be due to different causes:

e There are precursor signatures but those are masked by more apparent factors of
variation. In such case unsupervised approaches will not be able to detect interesting
anomalies; an alternative approach such as a model-based analysis should be taken.

e There are no precursors in the analysed signal, as they are lost to down-sampling or
they are found in correlations with non analysed signals.
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Figure 3.4: Reconstruction error for fuel pump currents in plane 1. Flights previous to

fault at pump 3.
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Figure 3.5: Reconstruction error for fuel pump currents
fault at pump 1.

in plane 2. Flights previous to
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Figure 3.6: Reconstruction error for fuel pump currents in plane 3. Flights previous to
fault at pump 1.
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3.2 Spectral Analysis through CNN Auto-Encoders

3.2.1 Case Study: ATA 28

In the previous study, the signal was down-sampled to 1Hz from 8Hz due to computational
constraints. Because of this down-sampling there is a loss of information in the frequency
domain due to the Nyquist-Shannon theorem; in the case where fault precursors are found
in the high frequency spectrum, relevant anomalies for the task in hand may be lost.

Given that the observed signal corresponds physically to an alternate current that may
possibly show behavioural changes previous to an anomaly, an approach to specifically
analyse anomalies in the signal frequency spectrum has been proposed:

Using a continuous wavelet transformation on the full signal (without down-sampling),
a scaleogram? for each channel has been generated and used in order to extract the in-
stantaneous frequency information for all along the flight. The analysed frequencies range
from 8 Hz (the SAR sampling ratio) to 0,13 Hz; lower frequencies have not been explored
as they have been considered to be taken into account by the previous analysis.

The resulting image had to be down-sampled in the time axis to the same size for all
signals, as the used architecture required all inputs to have the same dimension. The final
image dimensions are 48 wavelength amplitudes and 1024 time steps.

2A scaleogram is a visual representation of the spectrum of frequencies of a signal along time given a
wavelet transformation.
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Figure 3.7: Scaleogram of the continuous wavelet decomposition of a sample pump current
signal. It has been down-sampled along the time axis to 1024 values.

3.2.2 Architecture

Based on the success of Deep Learning on image analysis and treatment, this tackled this
problem through the same approaches used for the visual domain: the convolutional neural
network family.

A CNN auto-encoder has been chosen in order to learn a low-dimensionality embedding
of the normal spectrogram representation. Once the model has learnt to reconstruct the
input, the reconstruction error is to be used as a tool for determining the anomaly of the
flight in the frequency domain.

The implemented architecture consists of various consecutive pairs of convolutive and
pooling layers (as in figures 3.9 and 3.10) ending with a fully connected layer mapping to
a 512-dimensional latent space. The decoder consists of the same number of layers of the
encoder: a first fully connected layer that reverts the last encoder mapping, and a series
of alternate deconvolutive and upsampling layers. The deconvolution is just a convolutive
layer with shifted entry and output channel dimensions, and the latter repeats the input in
order to revert the dimensionality reduction done by the pooling layer. The combination
of both sub-nets yield an auto-encoder with an architecture similar to figure 3.8.

The detailed architecture is shown in table 3.2; visual schematics of the convolution
and pooling procedures are presented in figures 3.9 and 3.10.



26 Chapter 3. Case Studies

Figure 3.8: Illustrative schematics of a CNN auto-encoder architecture.
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Figure 3.9: Convolution step in a CNN.
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Hidden dimension

Layer (or # of filters) Kernel size | Activation function | Dropout
Convolution 32 (3, 5) Relu 5%
Max Pooling - (2, 2) Linear 0%
Convolution 64 (3, 5) Relu 5%
Max Pooling - (2, 2) Linear 0%
Convolution 128 (3, 5) Relu 5%
Max Pooling - (2, 2) Linear 0%
Convolution 256 (3, 5) Relu 5%
Max Pooling - (2, 2) Linear 0%
Convolution 256 (3, 5) Relu 5%

Flatten - - Linear 0%
Dense 512 - Relu 0%
Dense 49152 - Relu 0%
Reshape (256, 3, 64) - Relu 0%
Convolution 256 (3, 5) Relu 5%
Upsampling - (2, 2) Linear 0%
Convolution 128 (3, 5) Relu 5%
Upsampling - (2, 2) Linear 0%
Convolution 64 (3, 5) Relu 5%
Upsampling - (2, 2) Linear 0%
Convolution 32 (3, 5) Relu 5%
Upsampling - (2, 2) Linear 0%
Convolution 1 (3, 5) Relu 5%

Table 3.2: Implementation detail of the CNN auto-encoder for spectrogram reconstruction.
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Figure 3.10: Pooling step in a CNN.
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3.2.3 Results

The method did not converge for the proposed architecture: the training dataset variability
was too high for the model to detect significant patterns to reconstruct the scaleogram.

Two approaches are proposed in order to overcome this problem: on one hand, in-
creasing the network complexity (i.e. amount of layers and number of filters per layer)
would allow the model to learn more complex and intricate relationships; on the other,
the down-sampling applied to the scaleogram matrices eliminates local frequency patterns
that might be of interest, therefore less down-sampled transformed signals might be easier
to reproduce. For that, a greater computational power would be required.

As a final observation, nonetheless, it must be noted that, as in the previous case, there
is no guarantee that the anomalies detected by the reconstruction would be correlated to
a system fault.
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3.3 Feature Extraction for Fault Prediction and Char-
acterisation

3.3.1 Case Study: Degradation Analysis in ATA 24

The ATA 24 chapter contains all commercial A/C subsystems related to electrical power
including alternate and direct current generation and load distribution among other func-
tions.

In the case of the A380, this group contains the variable frequency generator (VFG),
an electromechanical component in charge of harvesting mechanical power directly from
the turbines in order to generate electrical power. There are a total of four VFGs in the
A380, one for each power plant.

Certain VFG components suffer slow degradations leading to failures (with a time-span
in the order of up to 10 weeks), and such degradations can be observed through certain
signals in the SAR files.

Returning to the idea of generating significant features through Deep Auto-Encoders,
the reason that made it impossible to apply such an approach was the skewed training
dataset, were anomalies are too scarce to be learnt by the model. Nonetheless, in this case
the opposite is true: since the degradation is slow, there is a considerable amount of flights
presenting a different dynamic before and after the fault (and corresponding component
replacement), allowing for the construction of a balanced dataset.

Additionally, some faults are originated from different degradation processes. In this
work the possibility of identifying the underlying fault causes through the latent space will
be explored, as well as the possibility of using the extracted information to construct a
health indicator based on a classification model.

According to the advice of system experts, the analysed signal corresponds to the
temperature differences between the Non-Drive End (NDE) of the pump and the oil (mono-
variate signal).

Three planes with well-identified faults were used to elaborate the dataset: two of
them had a mechanical degradation issue; the other one had a malfunction related to the
embedded computer collecting the sensor data. Two months of flights were labelled as pre
and post replacement. A visual comparison of the different planes is shown in figure 3.11.

3.3.2 Model definition

As commented in section 2.3.1, RNN-inspired networks can not reduce the input dimen-
sionality time-wise, as they output one value for each time step in the input. Therefore,
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Figure 3.11: For each plane, flights before component replacement in red, after replacement
in green. Leftmost and rightmost planes present mechanical degradation in the VFG, while
the one in the centre suffers from embedded computer malfunction. The plane in the right
is left for model validation.
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the two candidate architectures to consider are Seq2seq AE and CNN AE.

Sequence to sequence AEs, while having an ideal behaviour for the task in hand since
they map time series of arbitrary length into a single vector, have been dismissed as they
are incapable to reconstruct the input for time-series with lengths of the order of those in
this use case, given the available computational power.

Convolutional neural networks, on the other hand, are computationally less intensive
than recurrent networks and, with minor reinterpretations as those presented in 2.3.3,
allow for processing time series just as if they were images, therefore being proposed as the
method of choice for the task in hand.

Their main drawback is their inflexibility regarding sequence length, forcing the use of
zero padding in order to achieve an uniform time-series longitude, which contributes to a
less precise reconstruction. This fact, while undesirable, is not necessarily important as,
in this case, the goal is to generate a representative latent space rather than achieving a
precise reconstruction.

As shown in figure 3.12; the main idea behind the proposed architecture is roughly the
same as with the previous study, with the difference that, in the current case, the hidden

layer will be used directly for classification purposes. The detailed architecture is shown
in table 3.3.

In this case, rectified linear units were chosen as activation functions, which allowed
the data to be unconstrained; therefore, in this case data was normalized through stan-
dardization as shown in section 2.2.2. 20% of the flights were left for validation, and the
training results are shown in figure 3.13.
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Table 3.3: Implementation detail of the CNN auto-encoder for VF'G signal encoding.

Layer ilrd;lfr; fd%rlrézl;;on Kernel size | Activation function | Dropout
Convolution 32 (1, 5) Relu 0%
Max Pooling - (1, 4) Linear 0%
Convolution 64 (1, 5) Relu 5%
Max Pooling - (1, 4) Linear 0%
Convolution 64 (1, 5) Relu 5%
Max Pooling - (1, 4) Linear 0%
Convolution 128 (1, 5) Relu 5%
Max Pooling - (1, 2) Linear 0%
Convolution 128 (1, 5) Relu 5%
Max Pooling - (1, 2) Linear 0%
Convolution 256 (1, 5) Relu 5%
Max Pooling - (1, 2) Linear 0%
Convolution 256 (1, 5) Relu 5%

Flatten - - Linear 0%
Dense 512 - Relu 0%
Dense 16384 - Relu 0%
Reshape (256, 1, 64) - Linear 0%
Convolution 256 (1, 5) Relu 5%
Upsampling - (1, 2) Linear 0%
Convolution 128 (1, 5) Relu 5%
Upsampling - (1, 2) Linear 0%
Convolution 128 (1, 5) Relu 5%
Upsampling - (1, 2) Linear 0%
Convolution 64 (1, 5) Relu 5%
Upsampling - (1, 4) Linear 0%
Convolution 64 (1, 5) Relu 5%
Upsampling - (1, 4) Linear 0%
Convolution 32 (1, 5) Relu 5%
Upsampling - (1, 4) Linear 0%
Convolution 1 (1, 5) Linear 0%
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Figure 3.12: For the current case, the interest in generating a feature space is to obtain
a low-dimensional representation of the data and use the new representations to train a
classifier on these features.
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Figure 3.13: Training loss for the CNN auto-encoder. Training was interrupted before
overfitting became apparent. The epoch that minimizes the error is the 40th.
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Figure 3.14: t-SNE plot for the flights in the AE latent space. Normal flights in blue,
flights with mechanical degradation in red and embedded computer degradation in yellow.
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3.3.3 Results

In order to see whether the latent features did effectively separate the different anomalous
cases and the normal ones, the generated latent space was observed in search of structures
that reflect the variance among the different flight classes.

A t-SNE analysis is shown in figure 3.14. A very apparent separation between anoma-
lous and normal flights can be seen, as well as between both fault types. Furthermore, the
three principal components of the flight features (see figure 3.15) show very clear clusters
for each flight category.

Given these results, an ADABoost model is trained to classify the different types of
flight, which is validated on the remaining flight, which suffers of a mechanical fault. In
figure 3.16 the results of the test on the plane left for validation are shown: flights before
piece replacement are correctly classified; nonetheless, after the repair the classifier labels
them as suffering of a mechanical fault. This is understandable given that, due to inherent
factors to this plane that can not be identified, its average temperature for normal operation
is well above the normality (40°C instead of 20°C) as seen in figure 3.11. Therefore, even
in normal conditions, on a visual analysis such flights would appear anomalous.

As expected, due to the lack of a sufficiently large and representative training dataset
it is impossible to train a deep learning algorithm capable of generalizing for all cases.
Nonetheless, with this analysis it has been shown that the feature space learnt by auto-
encoders can in certain cases identify relevant signal characteristics given a balanced
dataset.
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Figure 3.15: Plots for the three main components of the PCA transformation. Normal
flights in blue, flights with mechanical degradation in red and embedded computer degra-

dation in yellow.
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Figure 3.16: Probabilities calculated by the model. The vertical bar corresponds to the
component replacement date for this A/C. Normal flights in blue, flights with mechanical
degradation in red and embedded computer degradation in yellow.
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Chapter 4

Conclusion

During the last years there has been a growing interest in the industry and the academic
community regarding the application of deep learning models for anomaly and fault detec-
tion in time-series. The goal of this work has been to study their viability and efficacy on
commercial aircraft predictive health monitoring given the particularities of flight sensor
data and the needs of the 0-AOG plateau, explained in chapter 1.

A survey on auto-encoder architectures for time series has been presented in chapter 2,
where three different approaches have been proposed for flight data analysis:

e Feature extraction for anomaly isolation
e Time series reconstruction for anomaly detection

e Feature extraction for fault characterisation

of which only the two last ones have been considered viable and tested in this work for
the reasons explained in the same section. Also, some relevant limitations that have had
an impact of this work’s findings and scope have been pointed out, namely the scarcity of
faulty instances, the high variability and volume of each flight’s data and the restricted
computational capacity available.

In chapter 3, different deep auto-encoder architectures have been tested on A/C data
for fault prediction. In the first case, a stacked LSTM AE has been trained on ATA 28
sensor data and used for anomaly detection through signal reconstruction. The results
have not show any relationship between the reconstruction error value and the imminence
of the component’s malfunction.

In the second case, the same subsystem was analysed with a focus on the signal’s
frequency behaviour: a CNN auto-encoder was trained on scaleogram images in order to
be used for reconstruction error analysis. In this case the model training did not converge
due to the high variability of the data.

35
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Finally, a CNN auto-encoder was used on series data in order to generate a low-
dimension latent space for flight data of the ATA 24, where many anomalous instances
were available before the component replacement, which along the normal flights after re-
placement formed balanced datasets that allowed for a supervised approach. Even though
the few available cases did not allow for generalization, the auto-encoder generated embed-
ding spaces where different types of anomalies formed clusters in a non-supervised way.

Regarding the viability of deep learning on commercial A/C predictive maintenance,
during this work it has become evident that the benefits that come from the learning
capability of this family of methods are lost if a balanced, varied and representative training
dataset is not provided. This is the case with aircraft data, where faults for a given system
are scarce, systems are complex and tightly intertwined and a great amount of variability
comes from environmental factors and ageing.

Furthermore, even if unsupervised approaches can learn the most relevant variation
factors of the dataset and detect anomalies through reconstruction error, there is no way
to assure that the detected signature is of interest for fault detection, or in case it exists,
that it is not masked by a more prominent factor of variation.
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