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Abstract

This Bachelor thesis revolves around the scheme of pairs of matrices with vanish-
ing commutator. It is conjectured to be reduced, irreducible, Cohen-Macaulay
and normal. Some known results are overviewed and some new results are pre-
sented. Among them, generic reducedness and regularity in codimension one,
some results for the jet schemes over our scheme of interest, results on simple
and semi-simple quiver representations, small computations on the Bernstein-
Sato polynomials and results on related schemes including the solution to a
small open problem.

Keywords: commuting variety, jet schemes, quiver representations, log-
canonical threshold.



Contents

1__Introductionl 4
2 Some known results| 9
2.1 Generators of the defining ideal| . . . . . .. ... ... ... ... 10
2.2 Irreducibility and dimension of X,| . . . . . . ... ... ... .. 10
[2.3 _Proof of conjecture forn < d . ... ... ... ... ... .. 12
23T Reducednessn=21. . . . . .« ot 12
............................. 14

2.3.3 Cohen-Macauly forn<<d| . . . ... .. ... .. .. ... 17

2.4 Jet schemes| . . . . . . .. Lo L 19
[2.4.1 Defining equations| . . . . .. ... ... ... ... ... 19

2.4.2 istinguished openset| . . . . . . . . ... ... ... 21

2.4.3  Trreducibility of the jet schemes forn=2[ . . . . . ... .. 21

2.4.4  Trreducibility of the reduced jet schemes for n=3f . . . . . 21

2.4.5  Reducibility of the reduced jet schemes for bign| . . . . . 23

13 New results concerning X,,| 24
8.1 _Generic reducednessl . . . . . . ..o 24
8.2 Jet schemes . . . ... .. oo oo 30
[3.2.1 1st jet scheme|. . . . . .. ... ... ... L. 31

[3.2.2 Trreducibility of the 1st jet scheme for n—=4] . . . . .. .. 47

3.2.3  Dimension of the 1st jet scheme for n=5| . . . . . .. . .. 47

3.2.4  Attempt at improving the lower bound for reducibility |

| and non-equidimensionality of the jet schemes|. . . . . . . 48
3.3 Log-canonical threshold| . . . . . . ... ... ... ... ... 49

[3.3.1 Relation between log-canonical threshold and reducedness| 49

[3-3:2 Bernstein-Sato Polynomials] . . . . . . . . . .. ... ... 50

3.4 Quiver representations| . . . . . .. ... ... 52
3.5 Dome determinants of the Jacoblan matrix|. . . . . . .. ... .. 95

4 New results concerning related schemes| 62
4.1 Variety of pairs of matrices with zero diagonal. . . . . . . . . .. 62
4.2 Other schemes of pairs of matrices with vanishing of some entries |

[ of their commutator] . . . . . .. ... .. ... ... ... ... 66
6_Final remarks| 67
6 Appendix 67
6.1  General algebra definitions and properties| . . . . . . . ... ... 67
6.1.1 Serre criterial . . . . . ... ... 67

6.1.2° Some types of rings| . . . . ... ... oL, 68

[6.1.3 Liealgebras|. . . . ... ... ... ... . ...... 70

6.2 gebraic Geometryl . . . . . . ... 70
6.2.1  General scheme properties|. . . . . . . ... ... ... .. 70

16.2.2  Singularities and invariants| . . . . . ... ... 71




72



Disclaimer:

I would like to remark that to simply understand the posed question required
a lot of prior work. In fact, most of the time was actually invested in just
understanding it, since I had to learn all the background knowledge by myself.
The main reason is that I did not course neither the Algebraic Geometry elective
course in the bachelor’s degree nor the Algebraic Geometry and Commutative
Algebra lectures from the master’s degree.

Even though there is a lot of work and results that I studied (including a
lot topics that at the end have not been used), presenting it all here probably
would simply bother the reader. In this sense, I have tried to present the new
results that have been obtained in the main body of the text, being concise with
the general knowledge, and including in an appendix a basic compendium of the
definitions and statements that are used in the main text.

1 Introduction

We will use the convention of defining a variety over an algebraically closed field
as a finite type, reduced and irreducible (integral) scheme over it.

Sometimes in the definition of a scheme not necessarily reduced we just
mention the associated set of closed points. Hopefully, the intended scheme
structure will always be clear.

The purpose of this thesis is to present some results that we have obtained
surrounding a long studied affine scheme. For n > 0, consider the scheme
(associated to the following set with the natural scheme structure, which we
also name X,,):

X, = {(A, B) € Mat(n,C)*? | [4, B] = 0}

where [A, B] = AB — BA, and we consider Mat(n,C)*? as an affine 2n?2-
dimensional space, where A and B are generic matrices. Throughout the text,
we refer to this scheme by the commuting scheme or X,,. Its reduced associated
scheme is usually referred to as the commuting variety.

Conjecture 1.1. X, is reduced, irreducible, Cohen-Macaulay and normal for
alln > 0.

Presumablyﬂ it is a long standing conjecture (reduced and Cohen-Macaulay
(cf. |Kadif|, [Ngold], [Knu03|, [Budif]), normal (cf. [Pop08], [Pre03])). In
addition, it is thought to have rational singularitiesﬂ This conjecture is actually
a specific case of a bigger one:

Tt is cited as being posed by M.Artin and M.Hochster in 1982 ([Kadi8], [Ngo14], [Knu03]),
but none of the references cites those two authors directly and we have not been able to find
a direct source that supports it.

2The statement of rational singularities is not a published conjecture or open problem, but
it would fit in the behaviour of a more general family of schemes that are closely related to
it, studied in [Budlg§|



Conjecture 1.2. Let g be a reductive Lie algebra, then the associated scheme
to

C(g) = {(a,0) € g | [a,b] = 0}

1s reduced, irreducible, Cohen-Macaulay and normal.

Conjectureﬂ;fl is a particular case of it considering g = gl,,. Even though we
know of the existence of this wider conjecture, we will only focus on the specific
case of X,,.

A long known important result relating to X,, first proven by Motzkin and
Taussky [MT55] (as well as a bit later by Gerstenhaber [Ger61]), is the following
theorem:

Theorem 1.3. X, is irreducible and of dimension n?> +n for alln > 1.

We will reproduce a proof of this fact extracted from [Gur92|, since his
methods relate to some results over the jet schemes (which, as we discuss further
on, are of our interest).

This result is a concrete case of a theorem later proven:

Theorem 1.4. (Richardson [Ric79]) Let g be a reductive Lie algebra over an
algebraically closed field F of characteristic zero and let

CT&d(g) = {(avb) €9 | [aab] = 0}

be the reduced scheme of pairs of commuting elements. Then C"°%(g) is irre-
ducible.

Even though the following statement does not apply to our case, it is, nev-
ertheless, somehow motivating for the conjecture being about Cohen-Macaulay
and not Gorenstein:

Theorem 1.5. (Corollary 9.3.18 [Vas94)]) Let g be a semi-simple Lie algebra
over an algebraically closed field F' of characteristic zero and let

C(g) = {(a,b) e g | [a,b] = 0}
be the scheme of pairs of commuting elements. Then C(g) is not Gorenstein.
On the other hand, for small n, the following is known:

Proposition 1.6. (see [Hre94), [Hre06l]) X,, is reduced, irreducible and Cohen-
Macaulay but not Gorenstein for n < 5.

Even though it is a well known result, we present a proof by ourselves of
the case n = 2 and we check, using Macaulay2 [GS|, the cases n = 3 and
n = 4, as well as we try to implement the ideas in [Hre06a] to the case n = 5.
Furthermore, although it is, in a sense, a trivial result, we introduce a small
improvement in performance reducing the number of variable of the polynomial
ring we are working on:



Proposition 1.7. Ox, is Cohen-Macaulay (respectively reduced) iff, for any
1 < 4,j < n, the quotient Ox, /(a;;,b; ;) is Cohen-Macaulay (respectively re-
duced). Where (a;,;,b; ;) is the ideal (sheaf) generated by the (i,i)-th entry of
the matriz A and the (4, j)-th entry of the matriz B.

On another direction, one of the main new results that we present here is
the following:

Theorem 1.8. X,, is generically reduced for all n > 1.
In particular, this implies the following proposition:
Proposition 1.9. If X, is Cohen-Macaulay, then it is reduced.

This implication was known previously (cf. [Hre94]), but, naturally, the
argumentation was different (see Problem 2.7.1 [Vas9g]).
This result can actually be improved by the following theorem:

Theorem 1.10. ([Pop0§])
Given g a connected non-commutative reductive lie algebra over an alge-
braically close field F' of characteristic 0, let

¢(g) = {(a,b) € g | [a,b] = 0}

be the reduced scheme of pairs of commuting elements. Then
codimgy ¢(C™4(g))*"™9 > 2, where (C™*(g))*™9 stands for the singular lo-
cus of C"*%(g).

This implies:
Proposition 1.11. If X,, is Cohen-Macaulay, then it is reduced and normal.

Even though this proposition comes from results that were already known,
its implications to X,, for n < 5 do not seem to be recorded in the literature.
In any case, we have:

Proposition 1.12. X, is reduced, irreducible, Cohen-Macaulay and normal for
n <>s.

On the other hand, relating to the singularities of a variety, there is the
following results by Mustata [Mus01] on jet schemes over complete intersection
varieties:

Theorem 1.13. ([Mus01]) Let X be a locally complete intersection variety.
The following are equivalent for m > 1:

(i) X is irreducible,
(ii) dim 7, (Xsing) < (dim X)(m + 1),

(i) X is  a locally complete intersection wariety of dimension
< (dim X)(m + 1).



Theorem 1.14. ([Mus01]) Let X be a locally complete intersection variety.
The following are also equivalent:

(a) The conditions (i)-(iii) are fulfilled for all m,
(b) X has rational singularities,
(¢) X has canonical singularities.

These, in conjunction with another result by Crawley-Boevey [CB01] on
simple quiver representations and reducedness (which we will describe later on)
where applied by N. Budur [Bud18]| on a set of schemes related to X, to establish
reducedness and rational singularities:

Theorem 1.15. ([Budi8]) Let g = 2. The scheme
X ={(z1,91,--.,74,Yy) € Mat(n,C)*? | [z1,y1] + -+ + [74, y,] = 0}
s a variety with rational singularities for all n > 1.

These schemes relate to ours through the fact that they can all be constructed
as the zero loci of a specific moment map on the representations of the doubles
of the quivers with a single vertex and g loops (in his case, for g > 2, and in
our case, g = 1). Since his results arouse from the study of the semi-simple
and simple representations of the quivers and some results relating to them, we
studied these in our case, leading to the following proposition:

Proposition 1.16. If L is the loop quiver (single vertez, single loop) and? its
double (in this case, obtained adjoining another loop), then X!°* = Rep(L,n)
(where X!°? is the associated reduced scheme) and

(i) The only simple representations intersecting X,, occur for n = 1.

(i) The semi-simple representations in X, are pairs of simultaneously diago-
nalisable matrices.

Furthermore, there was another result by Mustata:

Theorem 1.17. ([Mus02]) If X is a smooth variety and Y < X is a closed
sub-scheme, then the log canonical threshold of the pair (X,Y) is given by

dim Y (™)
let(X,Y) = dim X — _—
) = A= o

where Y (™) represents the m-th jet scheme over Y.

All these results motivated the study of the jet schemes over our scheme,
because on the one hand we have these promising results for complete intersec-
tion varieties and, in a more general sense, they relate to the singularities of
the scheme. On the other hand, we thought that imposing a bound on the log-
canonical threshold or imposing some conditions on the jet schemes themselves



could imply reducedness. We have explored it for the case of the log-canonical
threshold and found counterexamples to some statements of this kind. For the
conditions on the jet schemes for them to imply reducedness, we have not ex-
plored it enough for us to obtain any result.

About the jet schemes over our schemes, the main results known prior to
our work were:

Theorem 1.18. ([Sv09]) For n < 3 and for all m > 0, the m-th jet scheme
over X, is irreducible and of dimension (n? +n)(m + 1).

Theorem 1.19. ([Sv09]) For all m > 0 exists an integer N(m) such that for
all n = N(m) the m-th jet scheme over X,, is reducible.

Even though it is not mentioned in that paper, the following corollary is
immediate:

Corollary 1.19.1. For all m > 0 exists an integer N(m) such that for all
n = N(m) the m-th jet scheme over X,, is not equidimensional and of dimension
> (n? +n)(m + 1).

Joining these results with the results by Mustatd from Theorem [T.17, we
obtain the following proposition:

Proposition 1.20. Forn < 3, let(Mat(n,C)*?, X,,) = n? —n = codimX,,.
Proposition 1.21. For n > 30, let(Mat(n, C)*?, X,,) < n? — n = codimX,,.

The main results by Sethuraman and Sivic comes from the existence of an
specific irreducible open set of dimension (n?+n)(m+1) on the m-th jet scheme
over X,,. We prove the existence of another open set of such dimension.

We have mainly worked on m = 1, i.e., the first jet scheme. Using similar
techniques, we have proven the belonging of certain matrices to the closure of
the open set from Sethuraman and Sivic, which has led to the following results:

Proposition 1.22. The first jet scheme over X4 is irreducible of dimension
2(4%2 +4) = (m +1)(n* + n)

Proposition 1.23. The first jet scheme over X5 has dimension 2(5% + 5) =
(m +1)(n® +n)

These results on the jet schemes have implications on another open problem
(see [Sv09]), that deals with the dimension of the k[Aj,..., A, ], the algebra
generated by m square n x n commuting matrices over a field k. The question is
whether it is bound by n or not. The answer is positive for m = 2 and negative
for m >4 (cf. [Sv09)]).

Specifically, Sethuraman and Sivic introduce a relation between the jet schemes
over X,, with algebras generated by three commuting matrices:

Proposition 1.24. ([Sv09]) Given F an algebraically closed field and k = 0
an integer, if Jyy1 is the nilpotent Jordan block of dimension k + 1, C is a



block diagonal matriz in Mat(n(k + 1), F) consisting of n copies of Ji11 along
the diagonal upto addition of scalars and A, B two matrices commuting with C,
then if Xék) is irreducible

dim F[A, B,C] < n(k + 1)

In particular, if we combine this proposition with the results that we obtain
on the jet schemes, we obtain the following new result:

Corollary 1.24.1. Given F and algebraically closed field, if Jo is the nilpotent
Jordan block of dimension 2, C is a block diagonal matriz in Mat(8, F') consist-
ing of 4 copies of Jo along the diagonal upto addition of scalars and A, B two
matrices commuting with C':

dim F[A, B,C] < 8

This is a direct implication of our result on the first jet scheme on X, and
another result by [Sv09]. We will present the whole reasoning in a later section.

Furthermore, to study the singularities of our scheme, we have attempted
at the computation of the Bernstein-Sato polynomial associeted to it, as well
as the multiplier ideal of the pair (Mat(n,C)*2, X,,). We have not spent much
time on this and, consequently, the results are rather minor and coming from
simple computations.

Finally, we have worked with some related schemes, which has lead to the
solution of an small open problem:

Theorem 1.25. Given F a field, the scheme associated to
X = {(a,b) € Mat(n, F) | diag([a,b]) = 0}

where diag(M) applied to a matriz M is the projection onto the diagonal el-
ements, (i.e., M = (m;;)i<ij<n — diag(M) = (mii)i<i<n), is a complete
intersection integral normal scheme over F.

This actually fits in a bigger result that we have proven concerning schemes
of pairs of matrices with some entries of their commutator vanishing. For ease
of lecture, we will present it in the corresponding section.

2 Some known results

We will start by proving some relevant known results related to some aspects
of the problem. All the results presented here concern the scheme

X, = {(A, B) € Mat(n,C)*? | [4, B] = 0}

or, in some cases, more general results are presented, e.g. with the analogue
construction over an arbitrary algebraically closed field F.



2.1 Generators of the defining ideal

Proposition 2.1. If we name the defining ideal of X,, as I, and the (r,s)-th
entry of [A, B] as fr s, we get:

n
> (@i kbri — ak,ibix) ifi=j
£=0
fig = ko -
2 (@ikbej — arbink) + i (Y55 — vii) = vij(Ti5 — 2iq) i i #
k=0
k#i

and {f; j}iz; O {fiitizk is a generating set of I, for any k which has a minimal
number of generators.

n
Proof. First, we want to remark that )| fi; = Tr([A, B]) = 0, which is a direct
consequence of the properties of the tlraoce.

Therefore, {f; j}iz; U {fii}izx for any k is a generating set of I,,.

Finally, we notice that each of the monomials appearing in the f; ; for i # j
appear only in that polynomial of the set {f; ;j}i+; U {fi:}izx for any k. On the
other hand, if we consider the set {f; j}ix; U {fii}izr for a specific k, we get
that the monomial a; ;b; ; only appears in the polynomial f; ;. This observation,
together with the fact that all these polynomials are of degree 2, we get that
this set has the minimal number of defining elements for the ideal. O

2.2 Irreducibility and dimension of X,

Theorem 2.2. (Motzkin-Taussky [MT55]) Given F and algebraically closed
field, the following scheme:

X, = {(A, B) € Mat,xn(F) x Mat,x,(F)|[A4, B] = 0}
is irreducible and of dimension n% + n.

We will give a short proof following the one that R.M.Guralnick gives in
[Gur92].
First of all recall the following definition:

Definition 2.3. A matrix A € Mat, «,(F) is called regular or non-derogatory
if it fulfils any of the following equivalent conditions:

(i) All its eigenspaces have dimension one.

(ii) The geometric multiplicity of each eigenvalue is one.

)

)
(iii) Its minimal polynomial is of degree n.
(iv) A% Al ... A"~! are linearly independent matrices.
)

(v) All matrices commuting with A are a polynomial evaluated on A (i.e.
{f(A) | deg f <n} = C(A) = {B € Mat(n, F) | [4, B] = 0}).

10



Let us notice that the condition (i4¢) implies that regularity is an open
condition.
In this proof we will make use of the following lemma:

Lemma 2.4. For every matrix A, there exists a reqular matriz R that commutes
with it.

Proof. Consider A in Jordan canonical form: A = diag(Ji,...,J,) where the
eigenvalue a; corresponds to the i-th block. The matrix is regular if and only if
all the a;’s are different. For given by, ...,b,, take the matrix R = diag((b; —
a))I + Ji,...,(by —a,)I + J.) (where I denotes the identity matrix of the
appropriate size). This matrix is in Jordan canonical form and the i-th block
has b; as the associated eigenvalue. A and R commute if and only if each block
commutes, i.e. if J; and (b; — a;)I + J; commute, which is trivial. For every set
of b;’s where all of them are different, R is regular. O

Proof of Theorem[2.4 Consider a commuting pair of matrices (4, B). If we
take a regular matrix R commuting with A, we have that (A, B + zR) is a
commuting pair for all x € F. Since the regularity condition is open (and the
set {B+ xR} cr is irreducible, of dimension 1 intersecting non-emptily with the
set of regular matrices), we have that B + xR is a regular matrix for all but
finitely many values of x. Therefore, the closure of the set of pairs of commuting
matrices (A, B) where B is regular, is dense in the commuting variety.
Finally, consider the following morphism:

¢: Po_i x Matyyn(F) — c
(f,B) — (f(B),B)

Where P, _; is the set of polynomials of degree at most n — 1. The domain is
irreducible and, therefore, the image is irreducible. Since the image contains
the dense set where the second component is regular, we have that the image is
dense. Consequently, the commuting variety is irreducible.

On the other hand, since the regularity of a matrix B is equivalent to
BY B!, ..., B" ! being linearly independent. We have that the restriction of ¢
to the P,_1 x R, (F), where R,,(F) is the set of regular n x n matrices, is injec-
tive. Since regularity is open, we get that dim R,,(F) = n?, and dim P,_; = n.
Thus dim C = n? + n. O

We have stated the proof here because, even though it is well known, it has
applications to some proofs concerning the dimension of the jet schemes.

We should notice, as we mentioned in the introduction, that it is a concrete
case of a more general result that we announce without proof:

Theorem 2.5. (Richardson [Ric79]) Let g be a reductive Lie algebra over an
algebraically closed field F of characteristic zero and let

C"(g) = {(a,b) € g | [a, 5] = 0}

be the reduced scheme of pairs of commuting elements. Then C"°%(g) is irre-
ducible.

11



2.3 Proof of conjecture for n <5
This section move around the following theorem:
Theorem 2.6. X,, is reduced, Cohen-Macaulay and normal for n <5.

This is a well known result (cf. [MZS11], [Hre94]), but we present a new
proof for the case n = 2 for reducedness, and in all three cases we use algebraic
computation tools (such as Macaulay2 [GS]) to check the results, applying some
of the methods by Hreinsdottir [Hre94] [HreO6al.

2.3.1 Reducedness n =2
The specific result we will prove here is the following;:
Proposition 2.7. X5 is a reduced scheme.

First of all, let’s make some observations that will help us during the proof.

Lemma 2.8. If R is a ring, and a € R is not a zero-divisor, then R is a domain
(respectively reduced) if and only if R, is a domain (respectively reduced).

Proof for the domain case. (=): Assume that 3-% -2 e R, (with z,y € R)

a™’ am

such that a%agfn = (. This is equivalent to 31 > 0 such that a'zy = 0 in R. If
R is a domain, we have that zy = 0 and, therefore, that either z = 0 or y = 0,
which implies % = 0 or 2% = 0.

(«<): Assume 3z,y € R such that xy = 0, then we have that £ =0 in R,.

If R, is a domain, without lost of generality, we can assume that = 0 in R,,
which is equivalent to 31 > 0 such that a'z = 0. Since a is not a zero-divisor,
we get that x = 0. O

Proof for the reduced case. (=): Assume that 35 € R, (with z € R) and Im >

1 such that (ﬁ)m = 0. This is equivalent to 3! > 0 such that a'z™ = 0 in

R, which implies, if R a reduced ring and since a is not a zero-divisor, that
r=0= 5 =0.

<): Assume 3z € R and In > 1 such that ™ = 0, then we have that

)n = 0in Ry. If R, is reduced, we get that ¥ = 0 in R,, which is equivalent

0 31 > 0 such that a'z = 0. Since a is not a zero-divisor, we get that z = 0. [

Remark: This implies that if we have an element a € R and an ideal such
that (I : (a)) = I, I is prime (resp. radical) iff it is prime (resp. radical) in R,
(thanks to the localisation at a multiplicative set S being an exact functor from
R-modules to S~!R-modules).

Lemma 2.9. Given a ring R, it is a domain (respectively reduced) iff the poly-
nomial ring R[X] is a domain (respectively reduced).

Proof. The implication to the left is trivial.
For the implication to the right, assume that R[X] is not a domain and take
f,9 € R[X]\{0} such that fg = 0. Now, there exist f = ap + a1 X + -+ +

12



anX™, G =bo+ b1 X + -+ bpX™ such that ag # 0,by # 0 and f = fX",g =
GX*. Therefore, fg =0 < f§ = aghy + (---)X = 0 = aghy = 0. Consequently,
R is not a domain.

Analogously, assume that R[X] is not reduced and take f € R[X]\{0} such
that 3m > 0 such that f™ = 0. Now, there exists f =ap+a X+ +a, X"
such that a9 # 0 and f = fX". Therefore, f™ = 0 < f™ = al’ + ()X =
0 = af* = 0. Consequently, R is not reduced. O

Proof of Proposition[2.7 Given F an algebraically closed field, consider the fol-
lowing matrices over F[{a; ;,b; j}1<ij<2]:

A= aiil a2 B = b1,1 b1,2
a1 G2,2 ba1 bapo
Then we evaluate their commutator:

[A B] _ 01,252,1 - Cl2,1bl,2 a1,2(b2,2 - b1,1) - b1,2(a2,2 - al,l)
’ —a2,1(ba2 —b11) + b21(az2 —a1,1) —a1,2b21 + ag,1b12

The ideal defining X5 is generated by the entries of that commutator and,
hence, the following;:

al,zbz,l - a2,1b1,2
Iy = a12(b22—0b11) —b12(ag2 —a11)
az1(b22 —b11) —ba1(age —a1,1)
Now, consider the following F-algebra automorphism:

¢: Fl{ai; bijh<ij<e] — Fl{ai;, bijb1<i <]
@ Qj,5 if (Z’]) # (272)
©J azz +ary if (4,7) = (2,2)
b s . { bi,j if (27.7) 7> (2’2)
J bao+ b1 if (i,7) = (2,2)

Our ideal is prime (respectively radical) if and only if its image is so. And
its image is:

a1,zb2,1 - a2,1bl,2
J =1 aigbz2—bi20a22
az,lbz,z - bz,1a2,2
Which, by Lemma [2.9] is prime or radical if the ideal generated by the same
elements over F[{a; ;,b;;} 1<ij<2 ] is so.
(4,5)#(1,1)
Renaming a1 = a1,2,02 = a2,1,03 = a272,b1 = b172,b2 = b271,b3 = b272
and calling F[ay,az,as, by, be,b3] = R. And we get the following ideal:

f1:=a1by — biaz
J/ = f2 = a1b3 — b1a3
f3 1= azbz — baag

In the next step we need to prove the following lemma:

13



Lemma 2.10.
(I:(a1))=1

Proof. Take f € R such that a;f € J’, which means that 3g;, g2, 93 € R such
that a1 f = g1f1 + g2f2 + g3 fs.

We can assume that a; does not appear in any of the g;’s (i.e. all the
monomials that contain a; to a non-zero power have a zero coeflicient).

In this situation, a1 f = a1(g1b2+g2bs)+b1(g1a2+g2a3)+gs fs, f = giba+gabs
and by(g1a2 + g2a3) + gsfs = 0. Since f3 is an irreducible polynomial and a
polynomial ring over a UFD is a UFD and a field is a UFD, we get that the ideal
generated by f3 is prime. Thus, since by ¢ (f3) because all non-zero elements in
the ideal (f3) have at least degree 2, we have that (gias + g2a3) € (f3). That
is, g3 such that (gias + gaa3) + gafs = (91 + gsbs)az + (g2 — gzbz2)az = 0.
Consequently, as | (g1 + gsbs), a2 | (g2 — gsb2) and there exists h € R such
that has = (g1 + g3bs) and hag = —(g2 — gzb2). That is, f = g1ba + gobs =
h(a3b2 — a2b3) + 93(b3b2 — bgbg) = hfg € (fg) c I. ]

Therefore, by Lemma [2.8] it is equivalent to check the primality over R as
over R,,, where the ideal is:

b2 — aflblag
J” = b3 - aflblag
azbs — baas

Taking the following algebra automorphism:

Y Flai,as,a3,b1,b2,b3] — Flai,az,as,bi,bs,bs3]
by — by + aj 'bras
bs — b3 +a1_1b1a3

The image ideal is

b
J/// _ bz _ < b2
ag(b;g + al_lblag) — (bg + al_lblag)ag = asbs — baas € (bg, b3)

which is clearly prime. O

2.3.2 ne{3,4}

For this two cases, at the moment of writing, there are no proof that does not use
algebraic computation tools. However, the tool that we have access to, and that
we want to use to check these results, can only do computations over finite type
Q-algebras. Consequently, our question is whether given I ¢ Q[X1,...,X,]
a radical ideal, i.e. an ideal such that it is its own radical, its extension into
C[Xy,...,X,] is a radical ideal or not. The answer is positive. In fact, there is
a more general result:

14



Proposition 2.11. Given a perfect field k, A a finite type k-algebra and K a
k field extension, then, if A is a reduced algebra, B = A® K is also a reduced
algebra.

It can be seen that this implies the result we want to prove:

Obviously, Q is of characteristic 0 and, therefore, perfect.

If we take A = Q[X4,...,X,]/I, we get a finite type Q-algebra, and A is
reduced if and only if I is radical (as a reminder, a reduced algebra is an algebra
such that its nilradical is 0).

Furthermore, C is a field extension of Q, and, if J = IC[X1,...,X,] is the
extension ideal of I < Q[X1,...,X,], then B=AQ®C = (Q[X4,...,X,]/ ) ®
C~C[Xy,...,X,]/J. Therefore, since B is reduced if and ouly if J is a radical
ideal, we get the implication we want.

We are going to piece the proof in different steps, based on the proof of the
same statement in [LR].

First of all, we will actually prove the following statement:

Proposition 2.12. Given a perfect field k, A a finite type k-algebra and K a
k field extension, then, if A is a domain, B = A® K is a reduced algebra.

That is, we have reduced to the case of A a domain. It is actually not a lost
of generality:

Lemma 2.13. Proposition implies Proposition [2.11]
First of all, let us recall the following proposition:

Proposition 2.14. If R is a Noetherian reduced ring with the minimal prime
ideals p1,...,pn , then Q(R) = @ Q(R/p;). Where, for a ring S we write Q(S)
i=1

for the total ring of fractions.

Proof of Lemma[2.13 Since A is Noetherian (since it is a finite type algebra
over a field) and reduced, from the proposition in the appendix, we have
that it injects into a direct sum of finitely many fields. Next, we have that
there is a natural algebra isomorphism (M @ M) N = (M QN)® (M'® N)
for M, M’, N algebras over a certain ring. Since any field extension K over
k is a flat module over the base field (since it is faithfully flat, what can be
checked by noticing that the induced map f# : Spec(K) — Spec(k) is surjective
since it maps the single point at the domain to the single point at the image),
which means that tensoring with it preserves injections. Finally, we have that
a subring of (or a ring that injects in) a direct sum of reduced rings is reduced.
Therefore, if it enough to prove the result for A a field, and, in particular, a
domain. O

Lemma 2.15. Let K be a finite separable extension over k. Let A be a domain
and a k-algebra. Then B = AQK is reduced (though not necessarily a domain).

15



Proof. Since K is finite and separable, the Primitive Element Theorem applies
and we have that K = k(a) = k[X]/f, where a € K and f € k[X]. AQK =
AQE[X]/f = A[X]/f < (Frac(A))[X]/f. If K is a separable extension, f has
no multiple roots and, therefore, (Frac(A))[X]/f is reduced. Finally, since a
ring that injects into a reduced ring, is reduced, B is reduced. O

Corollary 2.15.1. Let K be an algebraic separable extension over k. Let A be
a domain and a k-algebra. Then B = A® K is reduced.

Proof. If there exists x = Z a; ® k; € B such that 2™ = 0 for a certain n > 0,

we can consider z € A ® k(k1,® km). Since k(k1,®, k) is a finite separable
extension of k, we get that x = 0. O

Lemma 2.16. Let K be a purely transcendental extension over k. Let A be a
domain and a k-algebra. Then B = A® K is reduced.

Proof. First, take a transcendence base of the extension, {X;};cz, then K =
k({X;}iez). Now we have that B = AQK = A®k({X;}icz). Since k({X,}icz) =
S7 k[{X;}iez] with S the set of all non-zero elements and, since A is a k-
algebra, we have that A ® k[{X;}iez] = A[{X;}iez] and A ® ST E[{X;}iez] =
STYA[{X}iez]- Since A is reduced, any localisation is reduced, so B is reduced.

O

Corollary 2.16.1. Let K be a separably generated extension over k. Let A be
a domain and a k-algebra. Then B = A® K is reduced.

Proof. 1t is a combination of the previous lemma and the corollary to the one
before last lemma. O

Corollary 2.16.2. Let K be a separable extension over k. Let A be a domain
and a k-algebra. Then B = A® K is reduced.

m

Proof. If there exists = . a;®k; € B such that 2™ = 0 for a certain n > 0, we

1=1
can consider x € AQk(k1,®, k). Since k(k1,®, k) is a finitely generated over
k, we get that it is separably generated and, therefore, reduced, which implies
that z = 0. O

Finally, we recall that any field extension over a perfect field is separable,
which proves the Proposition 2.11]

In this way, if we check that our ideals of interest are radical over Q, we
know that they are radical over C. And this can be done with a simple code
such as the following (for Macaulay2 [GS]):

= 3;
QQla_(1,1) .. a_(n,n), b_(1,1) .. b_(n,n)];
= transpose genericMatrix(R, a_(1,1), n, n);
transpose genericMatrix(R, b_(1,1), n, n);
ideal (A*B-B*A) ;

time print(I == radical I);

H W > o B
|
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A small improvement through Proposition [2.18] can be immediately imple-
mented:

n = 3;
R = QQ[a_(1,1) .. a_(n-1,n),a_(n,1) .. a_(n,n-1),
b_(1,1) .. b_(n-1,n),b_(n,1) .. b_(n,n-1)71;

A= {};

B = {};

for i from 1 to n do (
c = {};
d={};

for j from 1 to n do (
if (i,j)!=(n,n) then (
c = append(c, a_(i,j));

d = append(d, b_(i,j));
)
else (

c = append(c, 0);

d = append(d, 0);
)3

)
A = append(4,c);
B = append(B,d);

)

A = matrix A;
B = matrix B;
M = AxB-B*A;
I = ideal()

for i from O to n-1 do
for j from O to n-1 do
if (i,j)!=(n-1,n-1) then I = I + ideal(M_(i,j));
time print(I == radical I);

However, it is worth noticing that this is quite computation intensive (in
fact, we have only been able to use it for n = 3) and, actually, was not the
method used by [Hre94]. She proved that it is Cohen-Macaulay, which implies
reducedness and normality. In the next subsection we present a sketch of her
method and we apply it.

2.3.3 Cohen-Macauly for n <5
To check Cohen-Macaulayness, all the results to the moment use the following
proposition:

Proposition 2.17. (see [Hre9j)|) Let S = F|[x1,...,2,] be a polynomial ring
over a field F, let I < S be a homogeneous ideal, and let d = dim S/I. Then
S/I is Cohen-Macaulay if and only if deg S/I = deg S/(I, f1,..., fa) for some
(and hence all) system of parameters {f1,..., fa}-
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Here, the degree of a polynomial ring modulo a homogeneous ideal, makes
reference to its multiplicity, that is, the leading coefficient of the Hilber polyno-
mial multiplied by e!, where e is the degree of the Hilber polynomial.

Therefore, it is enough to compute two Groebner basis to determine Cohen-
Macaulayness.

In her first paper [Hre94|, Hreinsdottir uses random numbers to generate a
system of parameters, while in [HreO6b| she uses "extensive guessing to find a
regular sequence that can be checked by a computer".

The main point of her early work was finding an efficient monomial ordering
(see [Hre94], [Hre0O6a]) such that the computation of the Groebner basis becomes
more efficient.

She also found Groebner basis with 11 elements for the case 3 x 3 and 51
elements for the case 4 x 4. It is still an open problem whether or not these are
minimal.

Even though it is a new result (though elementary), we deemed it more
appropriate to mention and prove it here:

Proposition 2.18. Ox, is Cohen-Macaulay (respectively reduced) iff, for any
1 < i,j < n the quotient Ox, /(a;,b; ;) is Cohen-Macaulay (respectively re-
duced). Where (a;;,b; ;) is the ideal (sheaf) generated by the (i,i)-th entry of
the matriz A and the (4, j)-th entry of the matriz B.

Proof. 1t is immediate if we consider the following algebra automorphism:

C[{QT,S’ bTys}lér,sén] - C[{ar,sa br,s}lgr,sén]

Qr p g Qrr + Q4
bs,s — bs,s + bj.;
Qs — ars ifr # s
brs — bysifr#s

And remember:

Lemma 2.19. A ring R is Cohen-Macaulay (respectively reduced) if and only
if R[x] is Cohen-Macaulay (respectively reduced).

The result follows. O

In what follows, we have adapted into Macaulay2 (JGS]) the code that she
originally used with Macaulay (|[BS]) to test Cohen-Macaulayness. The main
point of her work was to introduce better monomial orderings, however, not to
bother the reader with cumbersome code, we only introduce a functional though
not optimal code:

n=2;

R =QQla_(1,1) .. a_(n,n), b_(1,1) .. b_(n,n)]

Il

=
]

transpose genericMatrix(R,a_(1,1),n,n);

18



(vs]
]

transpose genericMatrix(R,b_(1,1),n,n);

—
I

ideal (AxB-B*A) ;
time degl = degree I;
lin = ideal();

for i from 1 to n~2+n do (
p = 0;
for j from 1 to n do (
for k from 1 to n do (
rl = random QQ;
r2 = random QQ;
p=p + rixa_(j,k) + r2*b_(j,k);

)
)
lin = 1lin + ideal p;
);
J = I+lin;

time deglin = degree(J);
print (deglLin == degl);

A word of caution should be taken since a negative answer by the program
does not imply the refutation of Cohen-Macaulayness, since the ideal 1in does
not need to be a system of parameters.

We have used this code with the ideas on more efficient monomial orderings
by Hreinsdottir and the small improvement of Proposition [2:18|to check Cohen-
Macaulayness for n < 4 and attempt the case n = 5.

2.4 Jet schemes

Recall that the m-th jet scheme over a scheme X over a field F' is the set
XM (F) = Homp(Spec(F[t]/t™+'), X) with a natural scheme structure. Its
construction and basic properties can be found in any introductory notes on jet
schemes.

2.4.1 Defining equations

It is a well known result that the jet schemes over an affine scheme are again
affine. Furthermore, there is the following result:

Theorem 2.20. Given F a field and X = Spec(F[x1,...,2,]/I) an affine
scheme over it, where I = (f1,...,fr) < Flz1,...,2,] s an ideal, we have
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that the defining equations for the m-th jet scheme over the polynomial ring
F[{ka? ERRE xn,k}ogksm] are:

f1(Z1(t),...,Z,(t)) =0 mod t™+!

[r(Z1(2),. .. ,in(t)') ~(0 mod tm+!

where Z;(t) = x50 + i1t + - - + Ty mt™.
FEquivalently, given the derivation D over that polynomial ring such that
D(x; ) = i k41, the defining equations are:

fl(xl,Oa"'vxn,O) =0

.fT'(xl,Oa"'vl‘n,O) :O
D(fl(xl,Oa"'axn,O)) :0

D(f?"(xl,07'~-~71'n,0)) =0
D2(fi(z1,05---,%n0)) =0

Dm(.fr(xl,Or--;xn,O)) =0

The proof of this result is quite immediate and can be found in any intro-
ductory material to jet schemes.
Given that, we have:

Proposition 2.21. Qver the ring C [{ai’j’k,bi’j,k}0<k<m}, we define the ma-
1<i,j<n

trices Ak = (aijk)1<ij<n, Bk = (bi,jk)1<ij<n- In this situation, the elements
generating the ideal that defines the m-th jet scheme, which we name Xr(lm) are
the entries of the following matrices:

[Ao, Bo]
[1407 Bl] + [Al, Bo]
[Ao, B2] + [A1, B1] + [A2, Bo]

[A07Bm] + [Ala Bm—l] + -+ [A’rn—h Bl] + [Ama BO]

Or, equivalently:

[A(t) = Ag+ Ayt +- -+ Apt™ B(t) = Bo+ Byt +---+But™] =0 (mod t™1)

It is worth noticing that the group GL, (C) acts on the scheme by simulta-
neous conjugation on all the matrices Xo, ..., X;n, Yo,..., Y.
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2.4.2 Distinguished open set

The following statement is weaker than the one proven in [Sv(09] but it is enough
to understand the whole reasoning:

Proposition 2.22. Given a matriz A(t) = Ao + A1t + -+ + Apt™. Ag is a
reqular (or non-derogatory) matriz if and only if the matrices that commute with
A(t) and with t, (mod t™*1), can be described by m + 1 polynomials of degree
at most n — 1.

This implies the result that will be the base for our own ones:

Proposition 2.23. The open set on Xy(Lm) where Ag is non-derogatory, is irre-

ducible and of dimension (m + 1)(n? +n). We call it the distinguished open set
of the scheme and denote it by Uy(Lm).

This follows a similar proof as the proof of the irreducibility of X,,.

2.4.3 Irreducibility of the jet schemes for n = 2

Proposition 2.24. The m-th jet scheme over X5 is irreducible and of dimen-
sion 6(m + 1) for allm = 0.

We have not found an explicit proof of this result, but it is immediate from
Proposition and a simple induction argument.

Proof. The only possibility for a pair o matrices not to be in the distinguished
open set is if Ag is a scalar matrix. In this case, we have that if m = 0 it belongs
to the closure of the distinguished open set. Assume that it happens for all
m < k. The equations describing the closed subset where Ay is a scalar matrix
is described by the equations of the (k — 1)-th jet, whose reduced subscheme
we know to be irreducible. Therefore, since this closed irreducible set intersects
with the open set where By is regular, we get that it is included in the closure
of this set. So now we know that the closure of the open set where Ay is regular
and the closure of the open set where By is regular cover the whole reduced
scheme. Since both of them are irreducible and the open sets intersect, we get
that the closures are equal among them and to the whole reduced scheme, which
is irreducible. O

2.4.4 Irreducibility of the reduced jet schemes for n =3

Here we will present an outline of the proof found in the already mentioned
paper by Sethuraman and Siviv [Sv09)].

Proposition 2.25. The m-th jet scheme over X3 is irreducible and of dimen-
sion 12(m + 1) for all m = 0.

The proof of this proposition is based on a series of lemmata which we will
announce next.
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Lemma 2.26. If for alln < N, Xflm) has been proven to be irreducible, then
for any point (A = A(t),B = B(t)) € X](Vm) such that Ag or By have two distinct

eigenvalues, (A, B) € ng,n), where UE\T) denotes the closure of the distinguished

open set.

Let us define U™ as the open set on X\™ where By is non-derogatory.

Lemma 2.27. Let f be an automorphism of X such that f(Uflm)) =um™

or fUX™Y = U™ or FUS™ A U™ = US™ A UN™. Then (A,B) e T
. 77(m)
if f(A,B)eU, .

We can observe that f : (A, B) — (A — AI, B — uI) fulfils the hypothesis of
this lemma for any A, u, therefore:

Corollary 2.27.1. Let (A, B) € X™ such that A has a unique eigenvalue A
and B has a unique eigenvalue p, then (A, B) € ﬁim) iff (A=XI,B—pul) € Uf,f").

As a consequence of this last corollary and of Lemma [2.26] and of the fact
that the eigenvalues of A and Ay and of B and By are the same, when checking

if (A, B) belongs to T

» Wwe may assume that Ay and By are nilpotent.

Corollary 2.27.2. Let p(t) and q(t) be polynomials in F[t] of degree at most
m, and assume that q(0) = 0. Then (A(t), B(t)) € U;m) iff the following occur:

(i) (B(t), A(t)) e U™

(ii) (At) +p(t)], B(t)) e T

(iii) (A(t), B(t) + p(t)[) e T™

(iv) (A(t), B(t) + p(t)A(t)) e T

(v) (A()(1 +q(t)), B(t) e T

Corollary 2.27.3. If (A(t), B(t)) € U;m) whenever Ay or By is non-zero, then
Ufzm) _ 7(Im)

All these lemmata are used to reduce the problem to only checking for when
Ap and By are nilpotent and Ay has two jordan blocks, one of order 2 and the
other one of order 1. Furthermore, we can also consider Ag in Jordan canonical
form.

We will use some of these results to prove the irreducibility of X, il) and to

compute the dimension of X 5(1).
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2.4.5 Reducibility of the reduced jet schemes for big n

Theorem 2.28. ([Sv09]) For all m > 0 exists an integer N(m) such that for
all n = N(m) the m-th jet scheme over X,, is reducible.

We will reproduce the proof here since it has guided our attempts to obtain
a better lower bound.

The basic idea is that if we find a proper closed subset of dimension at least
(m + 1)(n? + n) we get that the scheme is not irreducible. The proof will be a
parafrasis of the one found in [Sv(09].

Proof. First, let n = 3a + b for a,b > 0 and write n x n matrices as 4 x 4 block
matrices. Next, consider W, the closed set of matrices in the m-th jet scheme
defined by:

01 00 0 BY BY BY
oo I o0 1o o B o0
Ao = 0000 Bo = 0 0 0 0
0000 0 0 BY 0
1 1 1 1 1 1 1 1
O I I R B e e
% B A A % Dip Das Daa
A41 A4,2 A43 A4,4 B4,1 B4,2 B43 B4,4

and Ag, ..., Ay, Ba, ..., By, are arbitrary as long as they fulfil the equations

[Ao, Bo] =0
[Ag, B1] +[A1,Bo] =0
[Ao, B2] + [A1, B1] + [A2,Bo] =0

[A(),Bm] + [Al,Bm—l] + -+ [Am_l,Bﬂ + [Am,Bo] =0

The first equation is already fulfilled by construction and we observe that
there are already some entries in the second one that already fulfil the equation,
in particular, (2,1),(3,1),(4,1),(3,2),(3,4). Furthermore, if we remember that
the commutator of two matrices always has trace zero, we get that from the
second block of equations we get at most n? —3a? —2ab—1 = 6a? +4ab+b* — 1.
The other blocks give at most n? — 1 independent equations each.

In this way:

dim W >2a? + 2ab + 2(8a® + 6ab + b*) + 2(m — 1)n?
— (6a* +4ab+b* —1) — (m —1)(n* — 1) =
=12a® + 10ab + b* + (m — 1)n* + m
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Considering the conjugation action by GL,(F) on the scheme, name V all

the pairs (A'(t), B'(t)) where Aj{ is similar to AI + Ag for certain A € F. V con-

tains S = {(AI + GA(t)G™, ul + GB(t)G™ |\, pe F,G € GL,(F), (A(t), B(t)) e W}.
Hence:

dimV >dim S = n? — dim C(Ap) + dim W + 2
>18a” + 14ab + b*> + m + 2 + (m — 1)n?

Next, we can write (m + 1)(n? + n) = 18a% + 12ab + 2b* + 6a + 2b + (m —
1)n? + (m —1)(3a + b).

Since V (the closure of V) is a proper subvariety, if we determine that
dimV = (m+1)(n? +n), we get that the m-th jet scheme over X, is reducible.

Consequently, if (m + 1)(n? +n) < 18a% + 14ab + b* + m + 2+ (m — 1)n? we
have that it is reducible.

This is equivalent to b2 + (m + 1 —2a)b + 3(m + 1)a —m — 2 < 0.

After some computations, the result is obtained. O

On the other hand even though it is not mentioned in that paper, the fol-
lowing corollary can be deduced from their proof and it brings information on
the log-canonical threshold:

Corollary 2.28.1. For all m > 0 exists an integer N(m) such that for all
n = N(m) the m-th jet scheme over X, is not equidimensional and of dimension
> (n? +n)(m+1).

Proof. In an obvious way, if we prove that there is a set with dimension strictly
greater than (m + 1)(n? 4+ n), we get that it is not equidimensional, and this
comes immediately by inspecting the proof of Theorem [2.28

It is equivalent at finding a, b such that b*>+(m+1—2a)b+3(m+1)a—m—2 < 0
and checking that if there exist a, b fulfilling it such that 3a + b = n, then for
all n’ > n there exist o', b fulfilling it. O

Remark. Actually, the result is stronger, that is, there is a lower bound D(n,m)

for the dimension of m-th jet scheme over X,,, such that, for all n = N'(m),
n—o0

dim X5 > D(n,m) > (m+1)(n?+n) and D(n,m)—(m+1)(n?+n) =5 +oo.

3 New results concerning X,

3.1 Generic reducedness

In this section we will prove the following theorem:
Theorem 3.1. X,, is generically reduced for all n > 1.

Remembering the defining polynomials of I,, = Cla1,1,- .., @nn, 01,1, -, b n]
(the ideal associated to X,,) computed in Proposition we observe the fol-
lowing:
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Lemma 3.2. Given a polynomial g € Clai1,...,0nn,011,---,0nn]\{0}, such
that contains, with a non-zero coefficient, a monomial not divisible by any mono-
mial of the type a; 1by ; or ay ;b; ., then g ¢ /1.

Proof. Tt is an immediate consequence of all the monomials in the defining ideal
only containing monomials of the form a; by ; or ax ;b; k. O

The following corollaries can be immediately deduced:

Corollary 3.2.1. Given a polynomial g € Cla11,...,ann]\{0} org e C[b11,...,b,.,]\{0},
then g ¢ \/I,,.

Corollary 3.2.2. Given o polynomial g € Cla11,...,8nn,b1.1,...,b0nn]\{0}
such that degg < 1, then g ¢ \/I,,.

Combining Corollary [B:2.1] with Theorem [2.2] leads to the following:

Corollary 3.2.3. Given a polynomial g € Clay 1, ..., ann]\{0} and a polynomial
heClbia, . bnn|\{0}, then gh ¢ \/I,.

Proof. Tt is an immediate consequence of the primality of the ideal /I, and
Corollary It can as well be deduced without a reference to Theorem
simply from the equations, but it does not provide much to do so. O

Now we will take a look at the Jacobian matrix of the ideal. We name the

. . YA : T
partial derivative of f, s by a; ; (i.e. 65“) as ¢;’; and of f. s by b;; (i.e. 0{i:j)

T,8
as d;’;.
Then we have:

rbr,r - bs,s lf <Z7.7) = (’I“, S)
o bjs ifi=rj#s
“J —br; ifi#rj=s
0 otherwise
_(ar,’r' - as,s) if (Zvj) = (T‘, 8)
g — —Qjs ifi=rj#s
J ar; ifi#rj=s
0 otherwise

\

Definition 3.3. Given a monomial g € C[b1,1, ..., by, ]\{0}, we define

degeq: Z degi,ig

o<i<n

where deg, ; g is defined as the degree of the polynomial respect to the variable
b; ;. This can obviously be extended to a general polynomial in that ring,
assigning the maximal degree for all the monomials with non-zero coefficients.
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Lemma 3.4.
det ((€3)2,) ¢V
17
Proof. First of all, take the matrix (c;’;)#s with the lexicographical order in
R

both pairs of indices, (i,7) and (r,s). In this matrix, we observe that out-
side the diagonal, degeqc:; = 0, and for the elements of the diagonal we have
deg,, czﬁ =1
Therefore, we have that the product of the elements of the diagonal (which
is non-zero) has deg, [[ ¢;7 = n, which is strictly greater than for any other
i#j

permutation in the determinant.
Thus, det (cg’;)#s € C[b1.1, -, bn.n]\{0}, and, consequently by Corollary|3.2.1
Ay

det ((cz”;)g: > ¢ VT, o

Proof of Theorem[3.1, By Lemma [3.4] and given that X, is irreducible of di-

mension 1 +n by Theorem H we have that codim (In + (det (c:’;)T¢S)> >
R o

n? —n. Which implies that X,, is generically reduced. O

S
J

There is actually a better result:

Proposition 3.5. The dense open set containing all closed points where B has
distinct eigenvalues is reduced.

Proof. Let us consider B with distinct eigenvalues A1, ..., )\, and in diagonal
form. We see that if we evaluate det ((cz’;)#S) [T(Ai = Aj), so the Jacobian
i) ) ity

has rank n? —n on those points. The rank of the Jacobian is not changed under
an scheme isomorphism, therefore, considering the action by GL,(C), we get
the proposition. U

In particular, this implies generic reducedness as well.

Proposition 3.6. The dense open set containing all closed points where B is
non-derogatory is reqular and, therefore, reduced.

Proof. Let us consider A in Jordan Canonical form. If we name Ji the nilpotent
Jordan block of size k, then there exist Ay, ..., A, € C pairwise different elements
and ay,...,a, > 0 integers such that a; + --- + a, = n, such that B is a
block diagonal matrix of the form B = diag(Mly, + Jays-- s Aela, + Jo,) =
(bi,j)1<i,j<n-

In this situation:

1 ifi=r,s=j7+1<nand bj; = bjt1,j+1
. -1 ifj=s,r=7—1>0 and bi—l,i—l = bi,i
B by =i 3 (4,5) = (r,s) and by # b

0 otherwise
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First, we will prove that det(c;})s, #b, ., # 0, where the columns of the
bi,i#bj,;
matrix are indexed by the (i,7) and the rows by (r,s), both with the same
ordering.
We observe that the diagonal is I (bj; — bii) # 0.
{(5,9)1bi,i #b;,5}

We will prove that all the other products in the determinant vanish.

Let us pick the column (7,7). If j +1 < n and bj; = bjq1 j+1, then b;; #
bj+1,5+41, so for the (4, j) column, we can get the entry of the (¢, j+1) row which
has a value of 1. In this case, for the (i, j+1) column we cannot get the diagonal
element. If i —1 > 0 and b;,_1 ;1 = b;;, then b;_1 ;1 # b, ; and for the (¢, j)
column we can get the entry of the (i — 1,7) entry that has a value of —1. In
this case, for the (i — 1,5) column we cannot get the diagonal element.

A non-vanishing product would be equivalent to this process having a cycle,
but either the ¢ decreases or the j increases, so we can never have a cycle and
all products, apart from the diagonal one, vanish, as we wanted to show.

Now, given (k,l) such that by = b, [+ 1 <n and b ; = bj11 41, assume
that all the columns with indexes in

S ={(1,7) | bii # bj}0{(i,J) [ bii = bj 5, J+1 <n,bj; = bjy1,5+1 and (i,5) < (k, 1)},

where the ordering is the lexicographic order, are linearly independent.
ci’ﬁ“ = 1 and for all (3,5) € S, cfj“ = 0. This proves that the columns
with indexes in S U {(k,[)} are linearly independent.

In this way, we have proven that the columns with indexes in

T =A{(i,7) | bii # bj;} v {(i,5) | bii =bjj,5 +1<n,bj;=0bji1j41}

are linearly independent.
Since the cardinality of I is n? — n, we get that this closed point is reduced.
Through the action ofGL, (C) we get that the open set that includes all
closed points where B is non-derogatory is reduced. O

Corollary 3.6.1. X, is reqular in codimension 1.

Proof. The result will follow from the fact that the complementary of the set of
closed points where A and B are non-derogatory has codimension at least 2.

We will do this working on reduced associated schemes, since the dimension
does not change.

This subvariety is a finite union of sets of the following form:

B derogatory commuting with A, which is derogatory, has 0 < r < n differ-
ent eigenvalues and has a concrete Jordan Canonical form. That is, there exists
g € GL,(C) such that:
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M @ 0 0 - 0 0 0 0 0 0 0
0 M €3 0 - 0 0 0 0 0 0 0
0 0 0 0 A €ay—1a, | O 0 0 0 0
A1 | 00 0 0 0 A |0 0 0 0 0
99 =170 0 0 o0 0 0 | X2 Carrianez 0 0 o0
0 0 0 0 0 0 0 Ay €ay 42,0143 0 0
0 0 0 0 - 0 0 0 0 0 Ar En—tim
0 0 0 0 - 0 0 0 0 0 0 A

for arbitrary distinct Aq, ..., A, specific ¢; ; € {0, 1} that make it derogatory.

If there are strictly less than n — 1 distinct eigenvalues, the set smaller than
n? —n — 2, so we are done with it.

If we consider A in the Jordan Canonical form, the case of n — 1 distinct

eigenvalues Ao, ..., \, gives us the following:

M 0] 0 0 0
0 M| 0 0 0
0 0 A O 0
A=1 0 0|0 M\ 0
0 0[0 0 - X\,

Which means that a generic B commuting with A has the form

biy bia| O 0 0
boy bao| O 0 0
N 0 0 [bss O 0
B=1 0 0] 0 by 0
0 0 [0 0 - by

If B is derogatory and commuting with a matrix similar to A, the dimension
of this set is n2 —n — 2. Which proves the corollary. O

Remark. When considering the associated reduced scheme, regular in codimen-
sion one was already known for the commuting variety of a reductive Lie algebra
as we exposed in the introduction, Theorem [Pop08]. When considering
the associated reduced scheme of X,,, there is a simpler prove of this result.

Lemma 3.7. X!°?, the associated reduced scheme to X, fulfils R;.
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Proof. As we saw in the proof of Theorem there is a morphism

¢: P, xR,(C) —  Xred
(f,B) - (f(B),B)

where R,,(C) is the variety of non-derogatory square n x n matrices over C and
P,,_; is the set of polynomials of degree at most n — 1 over C.

This is injective. So the points of the image, which are the ones where B is
non-derogatory, are smooth.

We know that the complementary of the subvariety where A or B is non-
derogatory has dimension at most n? — n — 2. Which proves the result. O

It is interesting to notice that Corollary provides another proof of the
reducedness of Xs:

Corollary 3.7.1 (Corollary to Corollary [3.6.1). X5 is reduced.
To prove this, let us remember Krull’s height theorem:

Theorem 3.8 (Krull’s height theorem). (see [AM9/)]) Let A be a Noetherian
ring, T1,...,x, € A. Then any minimal prime p belonging to (x1,...,x,) has
height < r.

Proof. Tt is immediate from the fact that the defining ideal has a minimal set
of generators of size n2 +n — 1 =n? 4+ 1 = 5 so by Krull’s height theorem, the
result follows. O

Remark. Analogously, if we proved regularity in codimension n, the reducedness
of X,,4+1 would follow. However, there is another remarkable result that stops
us from following this way:

Proposition 3.9. X,, is not regular in codimension 4.

Proof. Take the closed points of the form (A, B) where A and B are both di-
agonalisable and they both have n — 1 distinct eigenvalues. It is immediate to
check that the Jacobian matrix has rank at most n2 — n — 2, so these are all
non-regular points and the codimension is 4. O

Remark. This bound is reached for X5 and the reduced singular locus is exactly
the one used in the proof, that is, in the case of n = 2, the pairs of scalar
matrices (this can easily be checked using computational algebra programs such
as Macaulay2 [GS]). For Xj, the singular locus has codimension 4 as well
([HreO6D]).

Remark. It is just speculation, but this result might hint to X,, for n > 5
behaving in a fundamentally different way than for n < 4.
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Comment on the conjecture

A direct consequence of the Theorem that we already announced in the
introduction is the following proposition:

Proposition 3.10. If X,, is Cohen-Macaulay, then it is reduced.
This implication comes from Serre’s criteria:

Theorem 3.11. Given A a Noetherian commutative ring, Serre’s conditions
for it are:

o Ry: A, is a regular local ring for any prime ideal p < A such that
height(p) < k.

o Sj: depthA, > inf{k, height(p)} for any prime p.
Then:

o A is reduced iff A satisfies Ry and Si.

o A is normal iff A satisfies Ry and Ss.

o A is Cohen-Macauly iff A satisfies Sy for all k =0

Proof of Proposition[3.10. It is immediate from Theorem [B.I1} Ry is generic
reducedness and Cohen-Macaulay is equivalent to Sy for all k. O

Proposition was a previously known result (see Problem 2.7.1 [Vas98§]),
however, the argumentation was different.

R; was already known for the reduced associated scheme (Theorem ,
which already enabled us to assert the following proposition:

Proposition 3.12. If X,, is Cohen-Macaulay, then it is reduced and normal.

Proof. We have that, by Proposition if X,, is Cohen-Macaulay, then it
is reduced and, therefore by Theorem [I.10] satisfies Serre’s condition R; and,
consequently, it is normal. O

Remark. We have also proven Theorem in our specific case (Lemmal|3.7) but
5.6.1)

we have further proven a better result for X,, which implies it (Corollary

3.2 Jet schemes

Let us think about the m-th jet scheme over X,,, that is Xy(bm).
We know, as we explained in the section of known results (Proposition [2.23)
and as Sethuraman and Sivic showed in [Sv09|, that the open set where Ag

is regular, which we have been calling U,(Lm) is irreducible of dimension (m +
1)(n? + n).
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Therefore, as they did with X?(,m), the main idea is to reduced the problem
of irreducibility of X to check the belonging of some (A(t), B(t)), with a
concrete description, to the closure of U,(Im).

Thanks to Lemma [2.26] and Corollary for the case n = 4 it is enough
to check when Ay is nilpotent (it can be reduced to Ay and By both nilpotent,
but we do not make use of it). Despite the fact that we cannot apply those results
to n =5 yet, they point towards the fact that studying the belonging or not of
the elements where Ay is nilpotent entails some interest towards understanding
the jet schemes.

Our main method consists in proving that the closed subvariety where Ag
is in a specific nilpotent Jordan Canonical form is irreducible. In this case, the
set

Sa, = {(A'(t),B'(t)) | 3g € GL,(F), X € F such that A\ = gAgg~" + \I}

is irreducible. Finally, we have, as can be seen in the proof of Theorem [2.2]
that there is a non-derogatory matrix By commuting with Ag. Taking A(t) =
Ao + 0t + -+ + 0t™ and B(t) = By + 0t + --- + 0t™, we have that this pair
belongs to Uﬁm) and, therefore, S4, N Uém) # &. Which, by the irreducibility
of Sa,, implies Sa, © ulm,

We also use similar methods to set bounds on the dimension of the jet
schemes.

3.2.1 1st jet scheme

Since the first jet scheme only involves four matrices it is much easier to treat
than the other jet schemes. As we have explained, we will try to prove the
irreducibility of the closed subvarieties where Ag is in Jordan Canonical Form,
is nilpotent and has a specific Jordan structure. We have named each subsection
with the partition of n that corresponds to the Jordan structure studied in that
subsection.

We adopt the convention that Ji,, . 4,.) where a; +---+a, = n is the Jordan

r

Canonical nilpotent matrix with r blocks of size aq,...,a,.

3.2.1.1 Case (1,...,1)

Proposition 3.13. The reduced scheme associated to
{(A(t), B(t)) € XV | Ao = 0}
1s irreducible.

To prove this, we will first notice the following lemma:

Lemma 3.14. As reduced schemes:

{(A(t), B(t)) e X(™ | 4y = 0} ~ X(™=D x Mat(n, F)
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Proof. This follows immediately from the defining equations of X,gm). O

Proof of Proposition[3.13 By TheoremX,(lO) = X, is irreducible and, there-
fore, X,Smfl) x Mat(n, F') is as well. O

Corollary 3.14.1 (Corollary of Proposition [3.13]). For alln =1
(AW, B®) e XV | 4 =0} < T,

3.2.1.2 Case (2,1,772)1)

Proposition 3.15. The reduced scheme associated to
Y = {(A®). B(t)) € X{V | Ao = Jiz1,..1)}
1s irreducible for n = 4 and given
S ={(A(t),B(t)) e X{ | 3g€ GL,(F), e F s.t. gAog™ ' + AF = Jo1, 1)}
dim S < 2(n? + n).

For the proof of this proposition we have used the computation engine
Macaulay2 [GS]. However, it can only do computations over the base field
Q. Therefore we need to prove the following:

Lemma 3.16. Given an ideal I < Q[z1,...,x,] then (I : (z1)) = I implies
that, if J = IC[x1,..., 2], (J: (21)) = J.

There are obviously more general results related to this one, but we do not
need them.

Proof. First of all, let us notice that, considering the ideal (It + z1(1 —t)) <
Q[x1,...,zn,t], then (I : (z1)) = i(([t+:c1(1—t))m(@[x1, .., Zp]). This is the
basis of the algorithm that computes the quotient ideal. Given a Grébner basis
of (It+x1(1—t)) with a monomial order such that any monomial with ¢ raised to
a positive power is greater than any with ¢, then (It+z1(1—1)) " Q[x1,. .., 2y]
is generated by the elements of the Grobner basis that do not contain ¢ (whose
monomials with ¢ to a positive power have a zero coefficient).

Finally, we use the fact that Grobner basis are preserved under scalar ex-
tension between fields, i.e. the inclusion of a Grébner basis of (It +xz1(1 —1t)) <

Q[z1, ..., zn,t] with a certain monomial odering into Clxy, ..., 2,,t] is a Grob-
ner basis of (It +x1(1 —1))C[z1, ..., %y, t] with the same monomial ordering on
(C[l‘1, RPN ,.Z‘n,t].

This last statement comes from the fact that a field extension is a faithfully
flat (and therefore flat) module over the base field (which can be seen since the
morphism between the prime spectra is bijective and, in particular, surjective,
a condition for faithful flatness). This, combined with the following theorem:
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Theorem 3.17. ([BGS91l]) A Grobner basis over a polynomial ring A[z1, . .
is preserved under the scalar extension to Blxzy,..
algebra, if and only if B is a flat A-algebra.

s T
., Tn], where B is an A-

O

Proof of Proposition[3.15: irreducibility for n = 4. Even though the actual proof
is only for n = 4, we work with general n, given that we will use it to prove a
bound on the dimension for arbitrary n. It is equivalent to check for Ay with
the following shape:

0 0 1
0 0 0
Ag =

Now we compute the commutator of Ay with a generic matrix (b; ;)1<i j<n:

bn,l e bn,nfl bn,n - bl,l
0 . 0 _b271
[Ao, (bs)l = | . . :
0 e 0 7[)71’1

This means that By must have the following form for some values b; ;:

bi1 bi2 bi,n—1 bin
0 b2.2 ban—1 ba.n
By = : :
0 bn7172 bnflfnfl bnfl,n
0 0 0 b1,

By | Bia | Bis
0 | Bao | Bags
0 [ 0 |Bus

We see that it is convenient to work with block matrices.

Now we consider two generic matrices A; and B; as

(I+nm—-—2)+1)x 1+ (n—2)+1):

Arq | Ao | Ais
Asq | Aso | Aoz
Asq1 | Aso | Az
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Now we compute the second matrix of equations ([A1, Bo] + [Ao, B1]):
[A1, Bo]+[Ao, B1] =

[Ai1,1,B1,1] A11B12 + A12B22 A11B13+ A12B23
—Bl_gAQ,l — Bl 3A3 1 _B171A172 - Bl,2A2,2 +[A1,37 Bl,l] — Bl72A273
- C —B1,3A3 —Bj 3433
= Az 1811 — B2 2As As1B1o+ A22Bs +Aj,1B§3 +_A§,2Bii,3
—Bs3A31 —ByAgg — BazAss 2,3_g; T 2,2 2,3
[A31,B11] Az 1B+ A32B A31B13 + Az 2Ba 3
S —Bi1,145,2 +[As.3, B1,1]
Bél B§2 B§3*B£1
|70 o =
0 [ 0 | -B,

Where we can deduce that By ; = —[A1, Bol1,1, By o = —[A1, Bol1,2, By 1 =
[A1, Bol2,3 and B 3 = B — [A1, Boli,2. Where, given a (block) matrix M,
M; ; represents the (7, j)-th entry (block).

Which leaves us with the following equations:

[A1,Bol1,1 + [A1,Bols,3 =0

[A1,Bol21 =0
[A1,Bol22=0
[A17B0]3,1 =0
[A1, Bolz2 =0

Now we notice that the trace of a commutator always vanishes, which means
that if the third equation is fulfilled, then the first is. Furthermore, we observe
that B 1, As1 € C, which means that they commute, and the fourth equation
is always fulfilled.

Renaming Bg,g := Bj 11 — By 5 we obtain that the defining equations are:

32,2{12,1 + A31Bo3
AsoBs o + A3 1812
[A2,27 32,2] + A1B12 — Ba3As o

If we rename again A = Ay 2, B = By, a0 = Ap 1,8 = Baz, o = Az, =
B1,2,a = A3,13

Ba+aBf =0
oB+af =0
[A,B] + af’ — pa’ =0
Therefore, proving the irreducibility of the variety defined by this equations
is equivalent at proving the primality of the ideal

Ba + ap
I = o/B—|—aﬂ’ c (C[a7 {aiaa{nﬁhﬁg}i?{bi,jaai,j}i,j]
[4, B] + B’ — Bo’
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If (I:a)=1I, then we can localise at a using Proposition which leaves
us with the following equations:

B =—-1Ba
6/ _ —alO/B
[A, B] ‘ 1aa/'B+ 1Bao/ = [A—Laa/,B] =0
a#0

Renaming A=A- %ao/ , we get that the resultant equations are the ones
of the commuting variety: N
[A,B] =0

which is irreducible.

Furthermore, looking carefully, it can be noticed that the dimension is
m? +3m + 1 (where m = n — 2).

The only thing that remains to be checked is that (I : a) = I. This can be
done for m = 2 using Macaulay2 [GS| and a code such as the following:

n=4;

m = n-2;

R =QQ[a_(1,1) .. a_(m,m), b_(1,1) .. b_(m,m),
al_1 .. al_m, alp_1 .. alp_m, be_1 .. be_m,
bep_1 .. bep_m, c];

A = transpose genericMatrix(R, a_(1,1), m, m);

B = transpose genericMatrix(R, b_(1,1), m, m);

alpha = genericMatrix(R, al_1, m, 1);
alphap = genericMatrix(R, alp_1, 1, m);
beta = genericMatrix(R, be_1, m, 1);
betap = genericMatrix(R, bep_1, 1, m);

I = ideal (A*B-B*A + alphaxbetap - beta*alphap,
Bxalpha + c*beta, alphap*B + c*betap);

time J = quotient(I, ideal(c));

time J == 1

O

On the other hand, even though we do not have irreducibility results for
higher n, we can obtain bounds on its dimension.
To prove this, we will need another known result:

Theorem 3.18. (combination of [Hul81] and [Neu89[) Given an algebraically
closed field F' and two integers n = r = 0, the scheme defined by

Z = {(A, B) € Mat(n, F)*? | rank[A, B] < 7}
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1s irreducible for r # 1 and v = 1,n = 2, for r = 1 it has n — 1 irreducible
components and its dimension is

. n®+n ifr=20
dnnZ—{ n?4+2rn—1r2 ifr>=1

We also need to prove the following lemma:

Lemma 3.19. Given an algebraically closed field F, the dimension of the
scheme

{(4,B,0,0, 8,5 € Mat(n, F)* (F")" |80/ — o' = [4, B]}

is at most m?® + 4m + 1.

Proof. Using Theorem [3.18] we divide the associated reduced scheme in three
subschemes:

If rank[A, B] = 2, we get that dimIm[A, B] = dimIm[A4, B]T = 2 and and
Im[A, B] ={a, ) (that is, the image of the automorphism described by [A4, B]
is generated by a and 3), and Im[A, B]T = (/T, 8'T). Consider the projection
from this scheme to (4, B, @, a’T). We will bound the dimension of the fibres.
Now, consider a concrete 0 # o € Im[A, B] and a concrete 0 # o/7 € Im[A, B]*.
Then, Ba’ — af’ = Bo/ —aff iff (B— B)o’ = a5 — B) iff exists A € F such that
B = B+ Aa and 5’ = /3’ + Aa’. Consequently, the fibers have dimension at most
1, and we can bound the dimension of this subscheme by m? + 4m + 1.

If rank[A, B] = 1. A rank one matrix is a matrix of the type uv? # 0
for some vectors u, v, both non-zero. If we have uwv” = wv'T, then there is a
constant A € F\0 such that v’ = Au and v = Av’. Therefore, the dimension can
be bounded by (m? + 2m — 1) + (2m + 1) = m? + 4m.

If rank[ A, B] = 0, the dimension can be bounded by (m? +m) + (2m +1) =
m? +3m + 1. U

Corollary 3.19.1. Given an algebraically closed field F', the dimension of the
scheme

{(A’ B’ a) alT?B? B/T) € Mat(n7 F)XQ (Fm)4’/3a/ - a/B/ = [A7 B]’detB = O}

is at most m? + 4m.
Proof. A parallel proof to the one from Lemma [3.19} O

Proof of Proposition[3.15: dimension bound. Given the equations expression that
we reached in the previous proof:

Ba+apf =0

oB+af =0
[A,B]+ af’ —Ba’ =0
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We can consider that a = 0, if @ # 0 the elements belong to Uim), which
leaves us with the following equations:

Ba=0
oB=0
[A,B] = B’ — aff
If B is invertible: Let us take: B=1a= -B7 1B —a),& = —(8 —

o YB71 A =ad . )
(A,B,a,d,3,5',a=0)— (A+xA,B+x2B,a + za,d +xd, 3,3, 2%)

[A +zA, B+ xB] =B +zd) — (o +xa) B

(B + zB)(a + za) = 228

(o + 2d)(B + zB) = 2%’
Consequently, this points belong to the closure of the points where a # 0.
Now we can consider det B = 0, which leaves us with:

Ba=0

o'B=0

[A,B] = o’ —af’
det B=0

We name as W _the associated scheme.
By Corollary [3.19.1) dim W < m? + 4m.
Therefore the dimension of the closed subscheme of the 1st jet scheme where

Ay is in the predefined Jordan Canonical Form and a'') = 0 (the (n,1)-th entry

n,l

of the matrix A;, which we renamed a) and det ((bg?)1<i,j<n — bﬂ) = 0 (which
is the determinant of the matrix that we named B), which we name W, can be
bounded in the following manner:

dim W = (dim C(Ap)) + (2m + 3) + (2) + dim W

Where C(Ay) is the centraliser of Ag. The first summand comes from By, the
second from A; (the elements that are free and do not appear in the generators
of the defining ideal of W) and the third from By (analogously the elements
that do not appear in the generators of the defining ideal of W)

If now we consider the image of the following morphism, which we name V:

¢o: WxGL,(C)xC — v
((A(t),B(t)),9,A) — (gA(t)g~' + A, gB(t)g~")

dimV = dimW +n? + 1 — dimC(4g) = n® + 2m + 3 + 2 + dim W <
n?+2m+5+m?+4m =2n%+2n—3 =2(n?+n) —3 < 2(n®+n). O

3.2.1.3 Case (even n) (n/2,n/2)

Proposition 3.20. For even n, the reduced scheme associated to

Y = {(A(t), B(t)) € XM | Ao = Jn2,n2)}
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18 irreducible if and only if XT(L})Q 18 irreducible.

In particular, it is irreducible for n < 6 (and with a later result, for n < 8).

Proof. 1t is equivalent if we check that for Ay with the following form:

On 2 Hn 2 )
Ay =
0 ( 0n/2 On/2
Now we compute the commutator with a generic block matrix (B, ;) (with
the same block dimensions as Ay):

B21322—Bl1)
Ao, (Bi ;)] = , , )
(o (1)) = (gt e B

Equating this to zero, leads to By having the following form:

Bi1| Bip
By = ) )
0 ( 0n/2 Bl,l )
Next, if we compute [A1, Bo] + [Ao, B1] for generic matrices A, By, we get
the following:

[A1,1,B1,1] A11B12 + [A1,2, B11]
[A1, Bo] + [Ag, Bi] = | —Bi2421+ By, —Bi2A22 + By, — By
[A2.1, B1,1] ‘ Ag1B1p + [A22,B11] — By,

Hence, it is irreducible iff the following is irreducible:

[A21,B11] =0
[A11+ A2, Bi1]+ [A21,B12] =0

Which is irreducible iff the following is irreducible:

{ [A5, Byl = 0
[A%, Byl + [Ap, Bi] = 0

3.2.1.4 Caser | n, (n/r,.7.,n/r)

It can be realised that the result in the previous section fits into a more general
one:

Proposition 3.21. For r | n, the reduced scheme associated to
Y = {(A(t)’B(t)) € Xr(Ll) ‘ AO = J(n/r,n/r)}

)

18 irreducible if and only if Xfl;;l 18 irreducible.
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Proof. We will work again with block matrices and the proof is really similar to
the previous one. It is equivalent to consider Ay with the following shape:

On/r ]In/r On/r o On/r
On/'r On/r Hn/r o On/r
Ao = ; : ; : ;
On/r On/r On/r o Hn/r
On/r On/r On/r T On/r

Now, we compute the commutator with a generic block matrix (B; ;) (with
the same block structure as Ag):

By1 Bao— DB Bys—DBio -+ DBap—DBi,1
[AO7 (Bz,g)] — : . . . :

Br,l BT,Q - Br—l,l BT,B - Br—1,2 e Br,r - Br—l,r—l

0n/7‘ _Br,l _BT,Z T _Br,rfl

From where we can deduce By has the following form:

Bin Bia -+ Biy-1 By
On/r Bl,l e Bl,r72 Bl,rfl
Bo=| ¢
On/r On/r o Bl,l B1,2
On/r On/r e On/r Bl,l

Now we take a look at the other set of equations and we name them:
[Al,Bo] + [Ao,Bl] =M = (Mi,j).
It is easy to check that

J n
M;; = Z AikBij—k+1 — Z Bi i—i+14k,;
k=1 k=i
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Now we operate with the equations:

t t 1 n
Z Mty = Z Z Ap—t16B11—k+1 — Z Bik—ntt—i+14k1 | =
=1

=1 \k=1 k=n—t+1
1 =141
= Z Z An—tyii—k+1B1k — Z Bk Agsn—tti-1, | =
1=1 \k=1 k=1
t t t—k+1
= > | D Antsii ki1 Buk = Bik D, Aksnotsiia | =
k=1 \i=k =1
¢ t—kt1
= n—t+l+k—1,1D1,k = DLEAk+n—t+I-1,1) =
= (A l+k—1,B81k — B1 pAx 1-1,1) =
k=1 I=1

-3

where we have applied the corresponding index changes and the adequate for-
mula for the swapping of the summations.
Now, renaming;:

t t—k+1
Z An—tyivk-11 |, Big
1 =1

i+l
A= Z Apn_ivi—1y1 Bj:= B 1
=1

We obtain that the initial scheme is irreducible iff the one describe the fol-
lowing equations is:

[Ao, Bo] =0
[A17B0] + [AOaBl] =0
[A2, Bo| + [A1, B1] + [Ao, B2] =0
[Ar—1,Bo]l + [Ar—2, B1] + -+ + [A1, Br—2] + [40, B,—1] =0

which are the same generators as the defining ideal for the r-th jet scheme for
n' =n/r. O

3.2.1.5 Case (n—1,1)

Proposition 3.22. The reduced scheme associated to
Y = {(A(t), B(t)) € XV | Ao = Jin1.1)}
1s irreducible for alln > 1

Proof. Ap has the following form:
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Ao

o o

0
0
0

1 0
0 1
0 0
0 0
0 0

0 0
0 0
10
0 0
0 0

Now, let us compute its commutator with a generic matrix (b, ;):

b2 1 bao— b1 bas — b1
bs.1 bso —bo 1 bs3 —bao
[, b)) = | : :
bnfl,l bnfl,Z - bn72,1 bn71,3 - bn72,2
0 —bp—1,1 —bp_1,2
0 _bn,l _bn,2
Which leads to:
bii bio bigs bin—2 bin—1|bin
0 b1 bio bin—g bip—o2| O
0 bi1 bin-a bin-3| O
By = : : : : :
0 0 b1 b12 0
0 0 T I
0 0 0 bn,nfl bn,n

Which is equivalent to:

(0) 0
bi,j = bi,j
b1,j7i+1

If we write now M = [Ay,By] = (M,;), we want to prove that Vk €

{1,...,n—2}

Expanding each summand:

If we now put that into the summation that we want to prove that vanishes:

I+1

My pyii01 = Z Op—k+1,hb1, 1420 —
h=1

k—1

Z My k41041 =0
1=0

41

n—1

ba.n—1— b1 n—2
bs.n—1 — ban—2

bnfl,nfl - bn72,n72

_bnfl,n72
_bn,n—2

ifi=nj<n—lori<n,j<iorl<i<mn,j=n
ifi=n,j=2n—1lori=1,j=n
otherwise

D1 aniabinnik-i

h=n—k+l

b2,n
bS,n

bnfl,n



k—1 k—1 /1+1 n—1

D My ka1 = D tn kiinbiisa-n— D, Ghiribiaomik-i1
=0 i=0 \h=1 h=n—k+1
k[ k=1 k=h
=3 D) @nkrrar2n— D, Gnkirin-rit1 | bia =0
h=1 \i=h—-1 1=0

Where we have used:

141 141
Z An—k+1,n01142-n = Z On—k+1,1+2—hb1,n
h=1 h=1
n—1 k—1
Z ani+101 hentb—t41 = Z htn—k+1—1,0+1b1,1
h=n—k+1

k

|
—

1=

“Ml HMI
= O
T
~
T
I
Il
>
|
L

- k k—h
h=1  h=11=0
k—h
Z An—k+l1+2—h = Q| Gn—k+l+h—1,1+1
I=h—1 1=0

This implies that the scheme is irreducible iff the following ideal is prime.

fn,l = an,l(bl,l - bn,n) - bnn 1an—1,1
I= fn—l,n = an—l,lbl,n + an—l,n( n,n bl 1)
fn,n = an,lbl,n - bn,n—lan—l,n
And I is prime in Clan, 1, @n-1,1, @n—1,n, 01,1, On,n—1, 01,1, bnn ] iff J is prime
in (C[an,la Gp—1,1,0n—-1,n, bl,n» bn,nflv B]

fl = an,lﬁ + bn,nflanfl,l
J = f2 = anfl,lbl,n + anfl,nﬂ

f3 = an,lbl,n - bn,n—lan—l,n

Now, if we rename aj = Qp,1, G2 1= Ap—1n, 43 = Ap_1,1, b1 = by pn_1,
by 1= by p, b3 := —B. We get the following ideal:
—a1b3 + b1a3
J = aszby — asbz
a1b2 — a2b1

Which are the same generators as the ones for the defining ideal of X5, which
is prime (Proposition . O
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3.2.1.6 Case (n—r,1,.7.,1)

While studying the case (n—2,1,1) we realised that that case and the case (n—
1,1) fit into a major result. Even though we have omitted the case (n —2,1,1)
for this reason, we have kept the case (n —1,1) as a reference for the process of

deduction of this proposition:

Proposition 3.23. Given r = 0, the reduced scheme associated to

Y = {(A(t))B(t)> € X’r(Ll) | AO = J(n—r,l,.’.‘.,l)}

18 irreducible for allm = r + 2 if and only if it is for some n = r + 2.

Proof. Ag has the following shape:

A(] =

010 0]0 0
0 0 1 0]0 0
0 0 O 110 0
0 0 O 01]0 0
0 00 00 0
0 00 00 0

Where the first block is of dimension n — r and the second, of dimension r.
Now we compute its commutator with a generic matrix (b; ;):

ba 1 ba 2 —b11 ba 3 — by 2 b m—r =01 n—r—1 b2 n—r41 b2 n
b3,1 b3,2 —b21 b3,3 — b2 2 b3 n—r — b2 n_r—1 b3 n—r41 LERS
bp—r,1 Pn—r2 _-bn—r—l,l bp—r,3 = .b'n,—'r—l.,2 bp—rn—r — b;w,—r—lsn,—r—l bp—rn—r+1 b'n,—.'r n
[Ag: (b5,5)] = o by —bp—rn—r—1 0 0
0 —bn_r41,1 —bn_r41,2 —bn—r4l,mn—r—1 0 0
0 - ~bn 2 T 0 0
Which tells us that By has the following shape:
bl,l bl,? b1,3 bl,n—r—l bl,n—r bl,TLfTJrl bl,n
0 bl,l b1,2 bl,n7r72 bl,nfrfl 0 0
0 0 b bin—r—3  bin—r—2 0 0
Bo=| 0 0 0 b b 0 0 = (8!
0 = 1,1 1,2 —\Tig
0 0 0 0 b1 0 0
0 0 0 0 bn—r+1,n—r bn—r+1,n—r+1 bn—r+1m,
0 0 0 0 bn,n—r bn,n—r+1 bn n
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Equivalently:

0 ifi>n—rj<n—rori<n—-nrj<iorl<i<n-—r,j>n-—r
0 e : . .
b£7]>= b ; ifi>n—r,j=zn—rori=1j>n—r

bi,j—i+1 otherwise

We want to prove that Vk e {1,...,n —r — 1}:

k-1
Z My —kyi—rtr1,041 =0
1=0
+1 n—r
My —kyi—rs1041 = Z Ap—ktl—r+1,0b1 0420 — Z 4101 b h—t4r
h=1 h=n—k+l—r+1
k—1 k—1 /1+1 n—r
Z My _pii—ry141 = Z Z Op—kti—r+1,n01 04021 — Z ani+101, h—ntk—i+r
1=0 1=0 \h=1 h=n—k+l—r+1
k-1 k—h
= Z 2 Up—k+l—r+1,0+2—h — Z An—ktith—ri+1 | b1,n =0
h=1 \l=h—1 1=0
Where we have used:
141 141
Z On—ktl—r+1,hb1 1421 = Z Qn—ktl—r+1,1+2-hb1n
h=1 h=1
n—1 k—l1
Z ani+101, h—ntb—tgr = Z Qhtn—k+l—ri+101.h
h=n—k+l—r+1 h=1
k—1 141 ko k-1
1=0 h=1 h=1l=h-1
k=1 k—1 k k—h
1=0 h=1 h=11=0
k-1 k—h
Z An—k+l—r+1,1+2—h = An—k+l+h—r,l+1
I=h—1 =0
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Finally, we observe that, for n > r + 2, the defining ideal is generated by:

r r
an—r+s,1b1,n—r+t + Z an—r+s,n—r+hbn—r+h,n—r+t - Z bn—r+s,n—r+han—r+h,n—r+t ¥
h=1 h=0 1<s<r
I<t<sr
r
Y an—r,lbl,n—r+t - Z a7L—r,n—r+hbn—r+h,n—r+t - bl,lan—r,n—r+t Y
h=1 1<t<r

r
Y {anr+s,1b1,1 - Z bnr+s,n'r+hanr+h,1}
h=0 1<s<r

Therefore, if it is prime for some n > r + 2, it is prime for alln > r+2. O

Corollary 3.23.1. The reduced scheme associated to
Y = {(A(t),B(t)) € Xr(Ll) | Ao = J(n—2,1,1)}
18 irreducible for all n = 4.
Proof. We have proved so for n = 4 and, therefore, for all n > 4. O
Corollary 3.23.2. Given r = 0, the reduced scheme associated to
Y = {(A(), B(t)) € XV | Ao = Jnr1,n.1)}

has the same codimension for alln = r + 2.
Proof. Tt can easily be deduced from the proof of the proposition. O
Corollary 3.23.3. Given r = 0, the reduced scheme associated to
Y = {(A(t), B(t)) e XV | 3g € GL,(F),A€ F s.t. gAog™  + X[ = Ji_r1.r 1)}
has dimension at most (m + 1)(n? + n).

Proof. This is a direct consequence of Corollary[3:23:2]and Proposition[3.15] [

3.2.1.7 Case odd n, ((n—1)/2,(n—1)/2,1)

Note: I think this result can be improved with not much effort.

Proposition 3.24. Given an odd n = 1, the reduced scheme associated to
S ={(A(t),B(t)) € XV | 3g € GL,(F), A€ F s.t. gAog ™ +AF = J((n_1)/2,(n-1)/2,1)}

dim S < 2(n? +n) forn = 5.
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Proof. We work again with block matrices. This time, ((n —1)/2+ 1+ (n —
1)/2) x ((n—1)/24+ 1+ (n—1)/2). A takes the following shape (we name the

closed subscheme defined by this as W):

0101
Apg=1 0]0|0
0(0]0

And the commutator with a generic matrix (B; ;) is:

B3 | B3o | B33 — DB1;
[Ao, (Bij)] = 0 0 —By
0 | 0 | —Bi

So By is of the following form:

Biy | Bia | Bis

By = 0 | Bap2 | Bags
0 [ 0 |Bu

Which leads to the commutator of A; with By to be:

—Bi A1 — B13As1 « .
+[A11, By ]
[A1, Bo] = A2,1(_%,1 1_432’21) Ag1 — Ba3Az2 *
23431
[As1, By 1] As1Bi As1B1 3+ A32Bs3
T —(B1,1 — BaoI)As 5 +[As 3, B11]

So the defining equations are:

[Ai1 + A3 3,B11] + [As,1,Bi3] + A3 2Bs3 — B12As1 =0
[A31,B1,1] =0

Ay 1By — By3A3; =0

A3 1B1o— B 1A32 =0

Were we have used the fact that the trace of a commutator vanishes.
Renaming the variables we may obtain the following:

[Ag, Bo] =0

[A1, Bo] + [Ao, B1] = B’ — af’

Oé,BQ = ﬂIAQ

A()B = B()Oé
Where Ag, A1, By, B1 € Mat,,(C) and o, 'T, 3, 8T € A%, where m =
name the scheme defined so by w.

n—1

2

. We

For n = 5, m = 2, we will obtain a bound on the dimension of this scheme.
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If we consider the first equation, we obtain that if we project onto (Ag, By)
the dimension is at most m? + m. If we take a look at the second equation,
since m = 2 we see that for any value of (Ag, Ay, Bo, B1), the left hand side
has always rank at most 2, so we will be able to find some («, ¢, 8, 8') fulfilling
the equation. In this case, we see that given (a,a’) both different that zero, if
Ba/ — af' = Ba’ — af’, then there exists ¢ € C such that beta = 8 + ca and
beta = B + ca’. So in this case the dimensio. is at most 2m + 1. If &/ = 0
and « # 0, then 8/ = 5’ and ﬁ: — f3 is free. So the dimension is at most 2m. If
both a = 0 and o/ = 0, then 8 — 8 and 8’ — 3’ are free, so the dimension is at
most 2m. This implies that the scheme defined by the two first equations has
dimension at most 3m? + 3m + 1.

Consequently, dim W = (dim C(Ag)) + (2m? +2m+1) + (1) +dim W. Where
the first summand comes from Bj, the second from the variables of A; that do
not appear in the generators of the ideal of W, and the third is the variable
BY ,0).

Finally, if we name the subscheme of the jet scheme where Ag is simlar to
M + Ag for some A € C, where Ay is the Ay that we have defined previously.

dimV = n?—dim C(Ao) +dim W+1 = n?+ (2m?+2m+1)+1+dim W +1 <
n?+2m?+2m+3+3m2+3m+1=n>+5m?>+5m+4=25+20+10+4 =
59 < 60 = 2(n? + n). O

3.2.2 Irreducibility of the 1st jet scheme for n =4

Proposition 3.25. The first jet scheme over X4, Xil), 18 1rreducible of dimen-
sion 2(4%2 +4) = (m + 1)(n? + n).

Proof. The possible Jordan Canonical Forms of a nilpotent 4 x 4 matrix are {4},
{3,1}, {2,2}, {2,1,1}, {1,1,1,1}. The first one is non-derogatory and all the

other ones have been checked to belong to U;m) in the previous subsubsection.

Therefore, the 1st jet scheme over Xj is irreducible. O

3.2.3 Dimension of the 1st jet scheme for n =5

Proposition 3.26. The first jet scheme over Xs, Xél), has dimension 2(5% +
5) = (m+1)(n* +n).

Proof. Since the 1st jet scheme over X, is irreducible, we get that, to obtain
the dimension of the 1st jet scheme over Xj it is enough to check the dimension
of the subscheme where Ay has a single eigenvalue and is derogatory.

This set can be covered by a finite closed sets where Ag has a single eigenvalue
and has a concrete Jordan canonical form. In the previous section we have
bounded the dimension of all this closed sets by 2(5%2 + 5) = (m + 1)(n? +
n), except for the case (3,2), which we have checked with Macaulay2. The
proposition follows. O
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3.2.4 Attempt at improving the lower bound for reducibility and
non-equidimensionality of the jet schemes

Remark. If we find a better bound on the dimension of 1st jet scheme, we
immediately obtain a better bound for all jet schemes. This can be done through
the closed subscheme where Ay is a scalar matrix. Since:

{(A(t), B(t)) e X\™ | Ag = A} ~ X(™~1) x Mat(n,C) x C,

so its dimension is n2 + 1 + dim X"V,

Furthermore, the bound obtained in [Sv09] for dim Xr(Lm)7 name it Bg(n,m),
is such that Bg(n,m + 1) = Bg(n,m) + n? + 1. Thus if we obtain a better
bound for the first jet scheme, we obtain better bounds for all jet schemes.

Our attempts have consisted basically on trying to apply the same reasoning
done in the paper of reference to a certain kind of matrix. Specifically, matrices
with the following block form of size (x + (y + 2)) x (y + = + 2):

- (31)

The one that is used in the proof by Sethuraman and Sivic is of this type
with y = a, x = 2a, z = b.
In that case, the condition that had to be fulfilled was:

¥+ (k+1-2a)b+3k+1)a—k—-2<0

For the case y = a, x = 3a, z = b, applying the same reasoning we get the
following condition:

P+ (k+1-2a)b+4k+1)a—-k—-2<0

Therefore, since some a, b satisfying it satisfy the one for y = a, z = 2a,
z = b, we get that this bound is not better than the previous one.

When we take x = y = a and z = b, applying the same kind of reasoning
as in the paper, we cannot obtain any bound neither for reducibility nor for
non-equidimensionality.

Taking this into consideration, we studied the case when y < x < 2y. And
we obtained the condition:

2 (k+l—sz—y)z+k+1)(z+y) —k—-2<0
from which, for a given n and a given z, the best bound is obtained for x = 2y,
which is the situation in [Sv09].

It is not easy to do a general study of all the possible Ay of this form. In
general, it can be studied for each m > 0 for the interval my < x < (m + 1)y
using block matrices of (m + 4 blocks) x (m + 4 blocks).

It is speculation, but given the situation, one might think that the best
bound that can be obtained with this kind of matrices and reasoning, is indeed
achieved for x = 2y and, therefore, to improve it, new kinds of arguments should
be used.
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3.3 Log-canonical threshold

The (global) log-canonical threshold of the pair of a scheme and an ambient
variety is of interest since it relates to the type of singularities of that scheme.
For that goal, there is an interesting result by Mustata:

Theorem 3.27. ([Mus02]) If X is a smooth variety and Y < X is a closed
sub-scheme, then the log canonical threshold of the pair (X,Y) is given by

dim Y (™)
let(X,Y) = dim X — sup amr
m=0 m + 1

where Y™ represents the m-th jet scheme over Y.

Observation. In particular, we have that lct(X,Y) < codimxY, and, in our
case, we are interested in X = Mat(n,C)*? and Y = X,,, so:

let(Mat(n,C)*2, X,,) <n® —n
Proposition 3.28. Forn < 3
lct(Mat(n, C)*?,X,,) =n® —n = codimyag(n,c)<2 Xn
Proposition 3.29. Forn > 30
lct(Mat(n,C)*?, X,,) <n?® —n = codimypag(n,c)<2 Xn
That is, the pair (Mat(n, C)*2, (codimygag(n,c)x2 Xn) - Xn) is not log-canonical.

Remark. There is actually a better bound that comes from the remark to Corol-
lary However, the interest of the proposition is to point at the general
fact that the log-canonical threshold and the jet schemes behave essentially dif-
ferent for small n and for big n, hinting at a possibly different behaviour of the
singularities for small and big n.

3.3.1 Relation between log-canonical threshold and reducedness

One of our interests on the log-canonical threshold was that bounds on it might
relate to reducedness. First, we thought that lct > % or lct > # might
imply reducedness. But this turned out to be false, even with the assumption
of generically reduced and even when lct = codim:

Observation. Given F an algebraically closed field and the ideal
a=(z1,...,7n_1,22) < Flz1,...,7,], which is not radical,

1
Ict(AL,a) =n—1/2 = 5t codimyn Spec(F[z1, ..., z,]/a).

Furhtermore, if we take a = (z1,22) - (21,...,24,22) < Flz1,...,x5], it is not
radical but is generically reduced, and

lct(F®,a) = 2 = codimpsSpec(F[x1, ..., 25]/a).
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Remark. The second counterexample fits into a more general set of ideals,
(1, @) (X1, T(ne1), 1) © K[z, ..., 2,]. A general formula for the lct of
these ideals can be obtained, since they are monomial ideals, but it does not
seem to be relevant.

However, the study of these conditions, sprouted the following open question:

Open problem 3.30. If lct=codim, does this imply Serre’s condition Ry for
some k = 0 or reducedness to some codimension?

It seems to be the case at least for hypersurfaces and Ry, i.e. generic re-
ducedness.

In the ring C[zy, 73], the scheme X associated to the ideal (zixa,23) =
(w1) - (w2, 2%) has let(AZ, X) = 1 = codimy2 X but it does not fulfil Ry and is
not reduced to codimension 1. )

Therefore, conditions on the lct cannot give us any new information about
reducedness, reducedness to a certain codimension or any Serre condition Rj.

Even though the log-canonical threshold did not lead to any useful condi-
tion for reducedness, there is still another open question that might be more
promising:

Open problem 3.31. Is there any condition on the jet schemes that might
imply reducedness of the base scheme?

3.3.2 Bernstein-Sato Polynomials

It is known that the Bernstein-Sato polynomial of polynomial of a complex
scheme not necessary reduced or irreducible (introduced by Nero Budur, Mircea
Mustata, and Morihiko Saito [BMS06]) is closely related to the multiplier ideals
of the pair of that scheme on an ambient smooth variety, as well as to its
singularities. For these reasons, it is of interest to study it.

We already have some information arising from the following theorem and
the knowledge that we have on the log-canonical threshold.

Theorem 3.32. ([BMS06]) Given Z a complex scheme embedded in a smooth
affine scheme X, naming by (s) the Bernstein-Sato polynomial of the ideal defin-
ing Z in X, then the log-canonical threshold of (X, Z) coincides with the smallest
root o'y of by(—s) (in particular,a’s > 0), and any jumping coefficients of (X, Z)
in oy, s + 1) are roots of bg(—s).

Some of the interest, even though not applicable to our case, comes as well
from a criterion for ration singularities for reduced complete intersections:

Theorem 3.33. ([BMS06]) Assume Z is a reduced complete intersection of
codimension r in X, a smooth affine scheme. Then Z has at most rational
singularities if and only if Ict(X, Z) = r and its multiplicity as a root of by(s)
(the Bernstein-Sato polynomial of the defining ideal of Z in X ) is 1.
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Since already the attempts to compute the lct have not been really fruitful,
we have not invested much time in trying to obtain results on the Bernstein-Sato
polynomials. Appart from understanding them and the theoretical background
around them, we have computed some small cases with the computational al-
gebra system Macaulay2 (|GS]):

Proposition 3.34. The Bernstein-Sato polynomial for the defining ideal of Xo
is bx,(s) = (s + 2)(s + 3), and bx,(s — codimXs) = s(s + 1).
The Bernstein-Sato polynomial for the defining ideal of

X2,2 = {(Al,Bl,A27BQ) € Mat(?,C)X4 | [Al,Bl] + [AQ,BQ] = 0}

is bx, ,(s) = (s +3)(s +4), and bx, ,(s — codimXz2) = s(s + 1).
The Bernstein-Sato polynomial for the defining ideal of
X35 ={(A1,B1,..., A3, B3) € Mat(2,C)*° | [Ay, B1] + -+ - + [A3, B3] = 0}
is bx, ,(5) = (s +3)(s + 6), and bx, ,(s — codimXy 3) = s(s + 3).
It is worth noticing the following lemmata:

Lemma 3.35. Given a ring R = C[Xy,...,X,] and an ideal I — R, consider
the ideal J = IR[Y] < R[Y] in the polynomial ring. Now, if we name their
Bernstein-Sato polynomials as br(s) and by (s) respectively, then br(s) = by(s).

Proof. This follows from the definition of Bernstein-Sato polynomial. O

Lemma 3.36. Given a ring R = C[X4,...,X,], an ideal I € R and an auto-
mophism ¢ on R, consider the ideal J = ¢(I). Now, if we name their Bernstein-
Sato polynomials as br(s) and by(s) respectively, then br(s) = by(s).

Proof. This follows from the following theorem:

Theorem 3.37. ([BMS06]) Given a ring R = C[X,...,X,] and Z = Spec(R/I) <
X = A and bi(s) the Bernstein-Sato polynomial of the ideal I — R, the poly-
nomial by (s — codimx Z) only depends on Z.

Since the codimension of Z in X does not change under the automorphism,
the lemma follows. O

These two propositions enable us to perform the computations of the Bernstein-

Sato polynomials over smaller rings and, therefore, to reduce the computational
load.
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3.4 Quiver representations

Definition 3.38. A quiver Q is a quadruple (V| E, s,t) of two sets V' (the set of
vertices) and E (the set of edges), and two maps s,t : E — V which correspond
to the source and target of each edge.

That is, a quiver is a directed graph where loops and multple arrows between
two given vertices are allowed.

Definition 3.39. Given Q = (I, E, s,t) a quiver and F' a field, the representa-
tions of Q of dimension vector a € NI are the elements of:

Rep(Q,a) = @ Mat(as(a) X O41&((1)5}7‘)
acE

Observe that the group
G(a) = (] [ GLa, (F))/Fx
iel
acts by conjugation on Rep(Q, o). F'* represents the multiplicative group of
F.

Definition 3.40. A morphism between two representations of a quiver @ =
(I,E,s,t), x € Rep(Q, ),y € Rep(Q, f) is an element

f € @Mat(ai X BuF)
iel

such that the following diagram commutes:

Ts(a) — Ty(a)

fs(a)J/ lft(a)

Ys(a) —ga " Yt(a)

Observation. Direct sums and exact sequences of representations have the nat-
ural definitions.

Definition 3.41. A quiver subrepresentation of a representation x € Rep(Q, )
is a representation y € Rep(Q, ) together with an in injective quiver represen-
tation morphism into x.

Definition 3.42. The quiver algebra of a quiver Q over a field F is its path
algebra with coefficients in F' and it is usually denoted as F'Q.

We notice that it can naturally be associated a F'Q-module to each quiver
representation of the quiver Q over F.

Definition 3.43. A quiver representation is said to be simple if its quiver
algebra is a simple algebra or, analogously, if it has no proper subrepresentation
apart from the trivial one.

A quiver representation is said to be semi-simple if it is a direct sum of
simple representations.
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Definition 3.44. When given a semi-simple representation x € Rep(Q, a), it
has a decomposition in simple representations

z:x?el@...@x§er

where z1,...,z, are non-isomorphic simple representations. If () is the di-
mension vector of x;, we say that = has representation type

T = (61,6(1);...;67«,ﬁ(r))

Given a semi-simple representation z € Rep(Q, a) of type 7 = (e1, 6V:. .. s e,, B1),
we name e = (eq,...,e,) and G(e) is a conjugate of G(a).

Definition 3.45. Given a quiver Q we construct its double Q by adjoining a
reverse arrow a# for each arrow a in Q.

Then there is a G(«)-equivariant map
fo.a: Rep(Qa) — End(a) =@ Mat(a;, F)
iel
x = Z [-Ta; xa*]
aceE

where [:Ea, xa*] = TaTax — TaxTy represents the commutator.
We denote its zero locus by

X(Q,a) = p15.,(0)

and we consider it as a closed subscheme of Rep(Q, ). It can be noticed that
it does not depend on the orientation of the arrows of Q (see Lemma 2.2 in
[CBH9S]).

Furthermore, given the action by conjugation of G(«a), the affine quotient

M(Q,a) = X(Q,a) | G(a)

parametrises the isomorphism classes of semi-simple representations in X (Q, «)
which are the closed orbits of G(«) in X (Q, a).
For a given quiver Q = (I, E, s,t) define for any dimension vector «, pg =
1 —{a, a)g, where we define (o, )0 = > @iffi — >, a5(0)Bt(a). Furthermore,
acE

el
define (o, B) g = (e, ) + (B, a)e.

If L, is the quiver with a single vertex and g loops, we notice that
X, = X(L1,n) and the schemes studied by Budur in [Budig| are X(L,,n) for
g =2.

Given this, Theorem about the irreducibility of X,, fits into a bigger
result:

Theorem 3.46. (see [CB03]) The underlying reduced scheme of
X(Q, )

1s irreducible but not always a normal variety.
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In the paper by Budur [Bud18]|, semi-simple representations and simple rep-
resentations contained in the scheme of interest were the key to control the jet
schemes and to obtain the results on reducedness and ration singularities. In this
sense, we thought that it might lead to something of interest if we understood
the simple and semi-simple representations of X,.

The main results that he used are the theorems that we already announced
in the introduction by Mustata (Theorem and Theorem [1.14]) and:

Theorem 3.47. (|CBO01), cf. [Bud1§]) If X(Q, ) contains a simple represen-
tation from Rep(Q, a) then:

(a) X(Q,«) is a reduced and irreducible complete intersection of dimension
a-a—1+2pg(a),

(b) the general element of X (Q, ) is a simple representation,
(c) the dimension of M(Q,a) is 2po(a),

(d) po(a) > 0 if and only if M(Q,«) contains an open dense subset of iso-
morphism classes of simple representations,

(e) the simple representations in M(Q,a)) are smooth points.

In conjuction with Luna’s étale slices theory. Specifically, one of the results
of that theory that he uses and might be useful in our case is the following
theorem:

Theorem 3.48. ([Budi8]) Let x € X(Q, a) be a semi-simple representation of
type 7. Then there exists a morphism

f:8— X(Qr,e)

from an étale slice S for X (Q, a) at x, sending x to 0, such that f is equivariant
via the canonical isomorphism G(a), ~ G(e), and the restriction of f is strongly
étale from a G(«),-saturated open neighbourhood of x onto a G(e)-saturated
open neighbourhood of 0.

Where, given a semi-simple representation z € X(Q,a) of type
T = (el,,é’(l); .. .;emﬁ(’")), we define ©, as the quiver with r vertices whose
double Q, has 2pg(e;) loops at vertex i and — (8%, () arrows from i to j if
i # 7.

It might be interesting to introduce here the étale slices theory because it
might entail as in [Bud18|] part of the solution to our problem. However, they
are not applicable to our case (yet) since they are only defined for varieties.
However, we think that there might be an analogue with similar behaviour for
more general schemes. We introduce some of the definitions in the Appendix.

All these results and their application in the case of [Budl8] motivated us
to compute the simple and semi-simple representations in X,,:

Proposition 3.49. Given the identification X,, = X (L1,n) < Rep(Ly,n):
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(i) The only simple representations intersecting X,, occur for n = 1.

(ii) The semisimple representations in X,, are pairs of simultaneously diago-
nalisable matrices.

Proof. Since pr, (n) = 1, we have that a-a—1+2pg(a) = n?+1, but dim X,, =
n? + n. This proves that there are only simple representations for n = 1 by
Theorem

Another way of proving (4) is to observe that if two matrices commute over
an algebraically closed field they are simultaneously triangularisable and, conse-
quently, they have a common eigenvector, which produces a subrepresentation
of dimension 1.

Therefore, since (A; @ Ag, By @ Bs) are a commuting pair of matrices iff
(A1, By) and (A, Bs) are, all semisimple representations are sums of represen-
tions of dimension 1. That is, all semisimple representations are the pairs of
matrices simultaneously diagonalisable. O

Corollary 3.49.1. All the semi-simple representation types that occur in X,
are of the form
T= (6171;"';6’”1)7

the quiver Q, consists of r disconnected vertices with a single loop each:

() )

° A °

-

and the associated scheme X(Qr,e) = Xe,, where X, is the commuting

i=1

scheme of dimension e;.

Although we obtained all the semi-simple representations, it does not seem
as simple as in Budur’s case to apply these for our goal. In particular, because
in his paper he made an strong use of the fact that the underlying variety
was a complete intersection, which implied through previous results of Crawley-
Boevey (JCBO03], cf. [Budl§|) the reducedness and irreducibility of his scheme,
which allowed for the application of Luna’s étale slices machinery.

3.5 Some determinants of the Jacobian matrix

If f;; = [A, Bl;,; is the (i, j)-th entry of the commutator of two generic matrices,

rs _ Ofrs ij k,l .
we define ¢;’; = Fars and Cpl = (ctm Jotl, (k1) 2 (i) - L Ren:
t#u, (t,u)#(r,s)

Proposition 3.50.

—det G if2 | nor(r—s)=(j—i) mod?2

@7 _ 5
det Crs {detcfjf if2fn and (r—s)#(j —i) mod 2
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Proof. Notice that

i,J _ 5T
Cr:s - cj,i

Which leads to the following identity:

det Cﬁ’; = —sgn(o, s)sgn(o; ;) det C;,,ir (1)

where o; ; corresponds to the permutation on {(r,s)|(r,s) # (i,j)} that corre-
sponds to sending the k-th element in in this set with the lexicographic order to
the k-th element in the same set but considering the ordering where (7, j) > (k,1)
iff j>lorj=1andi>k.

This comes from the fact that applying the permutation o, s to the columns
of Cﬁ:g, afterwards applying to its rows the permutation o; ; and, finally, trans-
posing the matrix, gives the matrix —C7;.

Taking the set {(r,s)|(r,s) # (i,)} considering the ordering where (7, j) >
(k,0) iff j >l or j =1and ¢ >k and apply the order preserving bijection that
sends (r,s) to (s,r), where the image lives in {(s,7)|(s,r) # (j,7)} with lexico-
graphic order. Now take the set {(r,s)|(r,s) # (i,7)} with the lexicographical
order and apply the order preserving bijection (r,s) — (s,r) where the image
set is {(s,7)|(s,7) # (J,4)} with the ordering (¢,7) > (k,1) iff j > or j =1 and
i > k. If we consider now o;;, we notice that, through the order preserving
bijections, it is equivalent to o, jl, so it has the same sign as o; ;.

Thus it is enough to compute sgn(o, 5) for r > s.

The way we will go about this is by computing the cycle decomposition.

First we take a look at the 2-cycles. These occur when we have (7, j) mapping
to (j,4) and (j,¢) mapping to (4,7). And (i,7) maps to (j,4) iff (4,7) > (r,s) or
(4,4) < (s,7) in lexicographical order. We call that number, N. So we are going
to count all the possibilities:

If (¢,5) < (s,r) and (4,¢) < (s,7), there are (s —1)s values of (¢, j) that fulfil
this. If (¢,7) > (s,r) and (j,i) > (s,r), there are (n — r + 1)(r — n) values of
(4,7). If (¢,7) > (r,s) and (4,7) < (s,r), there are (n — r)(s — 1) pairs. Finally,
the reversed case ((4,7) < (r,s) and (j,47) > (s, 7)) has the same number of pairs.
We have counted every pair twice, so in total:

2N=s(s—1)+(n—r+1)(n—7r)+2(s—1)(n—r)

Then, we take a distinguished element, (s,r).

First, we will name the permutation ¢ to simplify the notation. Then, we
will denote o* to indicate Hle o, that is, o composed k times with itself.

Now, for k < n —r, 02¢((s,r)) = (s, + k), since, for 0 < k < n —r
o2 =1((s,7)) = (r + k,s) > (1, 3).

7 ((5,7)) = (s,m)

So, ¢2("="*1((s,7)) = (1,5 + 1) and, for all ¢ > 0 such that (¢t + 1,5 + 1) <
(s,7), we have that o2 +2+1((5 1)) = (t + 1,5 + 1).
Now, if r = s+ 1:
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<72(”_S_1)+23_1((87 s+1))=(s,s+1)

Otherwise, o2("=")+25=1((5, 7)) = (5,5 + 1) < (s,7) and o2("~")+235((s, 7)) =
(s+1,5), and for all > 0 such that (s+1+t, s+t) < (r,8), o2 +25+L((5 1)) =
(s+1+t s+1t).

This leads to:

02("_T)+25+T_S_1((s,r)) =(r,r—1)> (r,s)

and
An=r)t2str=s((s 1)) = (r — 1,7) < (1, 5)

o
Hence, for all t < n — 7, g2 +2s+r=s42t((5 1)) = (r — 1,7 4 t) and
O_2(n—r)+2s+r—s+2(n—r) ((8, 7“)) _ (’I" -1, ’I’L)

This implies that g2(?=7)+2s+r=s+2(n=1)+1((5 1)) = (1,7), and for all t < s,
g2(n=r)t2str—s+2n=r)+14+20=1) ((5 1)) = (t,7). Leading finally to:
0_2(n—r)+2s+r—s+2(n—r)+1+2(s—1) ((S, 7“)) _ (S, ’I")
So the cardinality m of its orbit is:

_{2n-3 ifr=s+1
"= 4n+3(s—r)—1 otherwise

Now, observe the elements of the form (k, s+i+1) for s < k < s+i+1 <r—1.
We have that o((k,s+i+1)) = (s+i+2,k). Given that (s,7) < (s+i+2,k) <
(r,s), o*((kys+i+1)) = (k+1,s+1i+2).

For ksuch that s <k <r—1landt <n—r+1,0%((k,r—1)) = (k,r+t—1).
This can be seen because, for 1 <t <n—r+1, e ((k,r—1)) = (r+t—1,k) >
(r,s). Following this, one arrives at:

o> (k,r — 1)) = (k,n)
Next, 2=+ D+1((k r—1)) = (1,k+1) and, for 0 < t < s, g2V +DFIH2 (-
1)) = (t+ 1,k + 1). Which implies:
o2 DAL (1)) = (s + 1,k + 1) (2)

If we now take (s + 1,5+ ¢ + 1) for some ¢ > 0 such that s +¢ +1 <r —1,
we get that o' ((s+ 1,s +i+1)) = (s+ 1+ t,s+ i+ 1+1t) for ¢t such that
s+i+1+t<r—1, thus:

o2 (s s +i+ 1) = (r—i—1,7r—1)

We already know that, t < n—r+1, 02 ((r—i—1,r—1)) = (r—i—1,r+t—1),
hence applying the equation

02(’”75%72)*2(”7”1)*25“((5 +1,s+i+1)=(s+1,7r—1)
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If (s+1,r—i)=(s+1,s+i+1) we have finished, 2 f r — s, i = 7"_;;_1 and
the cardinality of the orbit is [ = 2n — r + s.

If not, then if we now consider (s + 1,5 +1+j) = (s + 1,7 — 1), we get that
j=r—s—i—1, which still fulfils s +1 <s+j7+1<r —1, so we can apply
the same reasoning and we obtain:

J(z(rfsfz‘fz)+2(n7r+1)+2s+1)+(2(rfsfj72)+2(nfr+1)+2s+1)((SJFLS+i+1)) _ (5+1,5+1+i)
Therefore, the cardinality of its orbit is 2(2n — r + s) = 2I, which does not
deppend on 1.
So given [ = 2(n — 1) — r — s, the cardinality of the orbit of (s+ 1,5+ 1 + 1)
fors+1l<s+i+1l<r—1is:

\Y

1

[ if2)(r—sandi:"_§_1
2l  otherwise

Now, we check that we have obtained the orbit for each element. We observe
that the orbits corresponding to 2-cycles, to (s,r) and to (s + 1,s + 1 + i) for
i < |==%=1| are disjoint and the cardinality of the union is:

2N+m=n?>-—n—1 ifr—s=1
2N +m+ (r—s—2)l =n?—n—1 otherwise

So in both cases it is equal to the total number of elements. Therefore, we
have the decomposition in disjoint cycles and we can compute its sign:

(—1)N (=1)m+1(—1) 2@+ ifr—s—2>221(r—s)
SENs = 4 (~)V (1)) TEECEN () i 52222 (r—5)
(_1)N(_1)'m+1 ifr—-s—-2<0er—-s=1

which working out through it leads to:

ERRY == : _
s — (-1) o if2 ] (r—s)
(=)= L i 2 (r—s)

This, together with equation [I] gets us to the desired result. O

Corollary 3.50.1.

‘Dt = det (C;‘);)T#:S or r=s=t = 0
Y d#g ori=j=t

Proof. By the properties of the determinant, we get the following expression:
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wa i 1)”:3§bs7tdet0f’ Z (=by,r) det Cpf | +

S

+

];ﬁt s;zé Trﬁt
+ 3 (=bia) | D (= 1)75by ¢ det C! Z )77t (—by ) det C
IZ;% i;% 7#:‘,

where 0,4 is the sign that corresponds to the associated minor.

O':J’jq = li7j + lr,s +1
where (noticing that i # j and r # s)

) s+ (r—1)(n—-1) ifs<r
"l s=1+(r—1)(n—-1) ifs>r

One thing that can be immediately noticed is that o) = o7’}
We will divide the proof into two cases:
e 2| n:

Notice that det C;f = —det C’;f = 0.

i,t

((_1)UZ:Z+1 4 (—1)7" ) bi,ibr, det CLt

5

Il
1=
1=

.
I
& =
<3

W
=

(1) + b, by, det O

_|_
Sl
1D
@
5
= 3
EllNg

(—1)70 1D, 1y, det CFF

+
NgE

RS
W
=

First we will take charge of the first summation:

LA N R i+r+1 ifr>ti>torr<ti<t
“ T =(mod2) | ;4 ifr>ti<torr<t,i>t
_ i+r+1 ifr>ti>torr<ti<t
_li’tJrlr’tJrl_(mOdz){i—i—r ifr>ti<torr<t,i>t

Therefore we have that O’t T=ob f mod 2. Which implies that (—1)

(-1)° "t =0 for all (i,7) such that t ¢ {i,r}.
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(_1)a§;§+1 (bt,sbt,i det C'f”ts + bi,tbs ¢ det CZ:E)

IS
[l
V)
RNV
-

oL
Wl
= 3
kS
=

.
|

Il
NgE
g

(=1)754 (b, sbui det CFF + by by det 1)

<.
W
=
w®
W
B

(—1)oret] (btysbm det C77 + by by ¢ det CZE)
1

+
=

S

S

¥
@ ||
= iti

.
|

Il
NgE
g

o’i't tﬂ: S,t
(_1) t,s (bt,sbt,i det Cs,t + bs,tbi,t det Ct,i )

..

W
=
w®»
W
=

(D741 (b b et CF5 -+ by det i)

J’_
=

=
®
~
+
—

0
w ||
\H\ .
~+

[l
NgE
=

<(_1)¢Tf,‘f + (_1)‘7::2“) (bt,sbt,i det Cit,’ts + b, b+ det C;’z)

S
'
~
+
[

¥
@l
=
o~

t+s+1 ifs>tii>tors<tii<t
1+ s ifs>ti<tors<t,i>t

s,t

O¢q = ls,t + lt,i +1 =(mod 2) {

i+s+1 ifs>ti>tors<tii<t

it
=1 1= . . . .
Ops = lip +les + (mo‘”){z+s ifs>ti<tors<ti>t

which leads to O'f”it = ozi mod 2 and, therefore: D, = 0 for 2 | n.

e 2/n:

S
[l
NgE

=
<53

((_1)oi:f i (_1)0iii) bi by, det Ct

¥l
W
=

(—1)7+ b, by, det O

+
SNl
=3
£

(—=1)705 b, by, det (o

J’_
NgE

S.
W
=
w®
W
RSN
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Now we take a look at the first summation and observe that

T 4l = i+r+1 ifr>ti>torr<ti<t
tii T T (mod 2) 7 4 4 pr ifr>ti<torr<ti>t
1 ifr>tii>torr<ti<t

Tt
Vo= 1= . . .
L + b + (’n‘)dz){ 0 ifr>tii<torr<t,i>t

Ot

Therefore, (—1)7¢i *1+=" 4 (~1)7%% = 0 for all (4, 7) such that ¢ ¢ {i,}.
Now, using some simple changes of variables:

S

Il
=
=

(—1)7is (busbm‘ det Cj7f + by ¢b ¢ det CZﬁ)

Il
~+ =
PO
-3
e
=l
=

I
=

(_1)a;;§+1+i+s+1 (bt,sbt,i det C;:i + bs ¢b; ¢ det C’Z,it)

..

Wl
=
w ®
W
B

+
=

=
V)

(1755 (b by et CL + b by det G

b
%

ol
w |
\H\~.
~+

Il
=
=

((71)azli+i+s n (71)aiji+1> (bt,sbt,i det C’ff + b 1bi . det C’ZZ)

=
V)
<
+
[u

0
o |
‘H~ N
s

ol 1= i+t+1 ifs>ti>tors<t,i<t
sit T it AT R = (med 2) gy g ifs>ti<tors<ti>t
t+s+1 ifs>ti>tors<ti<t

i7t—, —
Ut’s_lz’t+lt’3+1_(m°d2){ t+s ifs>ti<tors<t,i>t

Hence,

(71)02’}'#2#5 + (71)0i:i+1 =0
so Dy = 0 for all n. O

Note on this result

Once we know the underlying scheme is irreducible of dimension n? + n it is
immediate that all the minors strictly bigger than n? — n must vanish. In
particular, all the ones that solely contain b; ;’s or a;;’s must be identically
zero in the polynomial ring. Therefore, this last corollary brings nothing new.
However, we consider that the relation between the minors of order n? —n — 1
could be useful to prove or disprove regularity in codimension 2 and 3.
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4 New results concerning related schemes

4.1 Variety of pairs of matrices with zero diagonal

The main result of this section is:

Theorem 4.1. Given F a field, the scheme associated to
X = {(4, B) € Mat(n, F)X2 | dlag([AaB]) =0}

where diag(M) applied to a matriz M is the projection onto the diagonal el-
ements, (i.e., M = (m;;)i<ij<n — diag(M) = (mii)i<i<n), is a complete
intersection normal integral scheme over F.

Hsu-Wen Young in his PhD dissertation [YoulQ] posed this as an open prob-
lem. He proved it to be a reduced complete intersection for general m and
checked it to be irreducible for n < 3. Our proof is more elementary than his,
only making use of elementary results. As a matter of fact, we proved it before
noticing he had studied it before.

Our motivation was mainly to attempt a proof of Conjecture [I.I] by using
the Lemma [2.8] and Lemma [2.9 or, at least, find a more efficient algorithm or,
at least, some partial results.

His motivation was mainly as a counterpart to the diagonal commutator
scheme, which is the scheme:

D,, = {(A, B) € Mat(n, F)*? | [A, B] = diag([A, B])}

that is, the pairs of matrices whose commutator is diagonal.
This scheme has some interesting properties and might hold the clue to solve
the conjecture.

Theorem 4.2. [Youll] The scheme defined by
D, = {(A, B) € Mat(n, F)** | [4, B] = diag([A, B)}

is a complete intersection scheme of dimension n® + n with two components,
one of which is the commuting variety (this holds for any algebraically closed
field F'). Furthermore, for characteristic zero it is reduced.

Proof of Theorem (1st part: integral scheme). The ideal that we want to

n
prove to be prime is J = | f; := > (a; xbi,i — ak,ibi k)
k=1
k#1 2<i<n
Since the elements of the diagonal of a commutator of two matrices are
linearly dependent, n — 1 generators are enough. Now consider the following
ideals:
Ji = (fili<isy
Since each of the f;’s is irreducible, we get that Jo = (f3) is prime.
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We will argue by induction. Assume that all J; have been proven to be
prime for all j <.
We will first prove that, in this case, (J; : (a;,1)) = Ji:

-1
Suppose that a; 1 f € J; for some f. That means that a;1f = >} ¢;f; + g fi.
j=2
We want to prove that f € I;. For that, we can assume that a;; does not appear
in any of the g;’s (i.e. such that all the monomials that contain a; 1 raised to a

non-zero power have a zero coeflicient). Now we have:
-1
arif =X gifj + aigbry — arigibiy + gi(fi — (@11 — aibiy))
i=2
-1

Consequently, f = g;by; and Y} g;f;i—arigibiy+gi(fi—(arbig—ai b)) =
i=2
0.

m
If we write g; = > h;raj ;, we get the following equations for 0 <r <m+1
r=0
(considering h; , = 0 for all r > m or r < 0):

-1
Z hj,rfj - hl,r—lbl,l + hl,r(fl — (ahlbl,l — a17lb171)) = 0 Which is equivalent
=2
to: 1
hir—1bin = 2 hjrfi + b (fi — (@b — a1,b1))
j=2

For the case » = m + 1 we get that h; b1 = 0, and so hy,, = 0. Con-
sequently, for the case » = m we get that h;,,—1b;,1 € Ji—1. It can easily be
deduced that hy b, € Ji—1. Therefore, g;b7", € J;—1. Given that I; ; is prime
by the induction hypothesis and that b;; ¢ J;—; since all the non-zero elements
in that ideal have at least degree 2 and degb;; = 1, we get that g; € J;—1, and
thus, f =a;191 € I;_1 < J;. Hence (J; : (a1)) = Ji.

Now if we remember the propositions that allowed us to prove the primality
for the variety of commuting 2 x 2 matrices, we can consider the ideal over the
ring Ry, , (the localisation of the ring R at the ideal (a;1)). In this ring, the
ideal takes the following shape:

n
Jp=Ji—1+ (b + alfll(*aubl,l + 20 (@i rbr,i — ak,ibik)))
Wi
So now we can consider the F-algebra automorphism:

¢ Ral,l - Ral,l
n
biy — by — al_,ll(*al,zbl,l + > (a; kbri — ak,ibik))
K=1
kzi

So the image ideal is J;_1 + (b1 ;). Since by ; does not appear in the generators
of the ideal J;_1, we can apply the other proposition that says that if I < R is
an ideal, it is prime or radical if and only if IR[X]| < R[X] is so. Therefore, J;
is prime if and only if J;_; is prime in R/(by;), which it is by thhe induction
hypothesis and the proposition.
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Consequently, we have proven that all the ideals J; are prime and, in partic-
ular, the ideal J,, = J is prime, which is the ideal corresponding to the matrices
whose commutator has zero diagonal. O

Even though it was already proven by Young, we provide another proof of
complete intersection.

Proof of Theorem (2nd part: complete intersection). We will obtain this proof
through computation of the dimension of the scheme. To do so, we will use the
Jacobian ideal.
Using the same convention as we did for Theorem [3.1] we name the partial
derivative of f,, by a;; (i.e. gﬁ:;) as c:; and of f,, by b; ; (ie. g{:J) as d:;
Then we have:

bjr fi=rj#r
o oo .
Cli = ~bri Hi#Frj=r
0 otherwise
—aj, ifi=mrj#r
T

ij = 4 Qri ifi£r,j=r

0 otherwise

If we take submatrix (cf”i)lqu" of the Jacobian matrix, taking the same
order in 7 and ¢ we obtain a diagonal matrix with the monomials b , along the

diagonal. Its determinant is [] b1, ¢ J, where J is the defining ideal of the

e
scheme. Therefore, the codimension of the scheme is n — 1, as we wanted to
prove. O

Proof of Theorem (8rd part: normal). Since it is a complete intersection it
is Cohen-Macaulay and, therefore, if we prove that the singular locus has codi-
mension at least 2, by Serre’s criteria, it will imply normality.

We will proof smoothness to codimension 1 through the Jacobian of the
ideal. We already saw the Jacobian matrix associated to the ideal in the pre-
vious part of the proof. Now take the following two matrices: (c{"})i1<ri<n =
diag(bl,r)1<r<na (C:j:n)lgr,i<n = diag(bn,r)1<r<n-

n n—1
The determinant of the first is [] b1, and of the second [] b,,. we will
r=2 r=1

n n—1
try to prove that the reduced associated scheme to J + ([] b1, [ bnr) has
r=2 r=1
codimension 2 in VD,,.

We will denote the reduced scheme associated to the ideal I as V(I).
n
First of all, we will decompose V (J+ ([] b1,r)) into irreducible varieties. we
r=2

claim that
n

v+ (o) = ) Ve + (00
2 2

rT= r=
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and the reduced schemes V(J + (b1,)) are irreducible (we will actually prove
that the ideal J + (by,,) is prime).

The method of proof of the primality of J + (b1,) is the same as the one we
used for the primality of J.

First we consider the following morphism:

¢ :Fl{aij,bijhi<ijen] —F[{aij, bijhicij<n\{b1r}] =~ F[{aij, bij}1<ij<nl/(b1r)

Since ¢ is surjective and ker(¢) < J + (b1 ), if we prove that the image of
J+ (biy), J < Fl{aij, bij}1<ij<n\{b1,-}] is prime, we have that J + (b1 ) is
prime.

To prove the primality of J we will use the same method that we used for

J.

n
J=|gii:= Z (@i kbr,i — ak,ibik)
k

i

i 1<i<n—1
R i# ()
n
g1,1 = a1,bp1 + Z (a1,15bk1 — ak1bi k)
k=1
k¢{1,r}
n
+ Grpr = *al,rbr,l + Z (ar,kbk,r - ak,rbr,k)
k=1
k¢{1,r}

Now, we consider the ideals J; = (g;;)1<i<j for j < n — 1. Notice that
Jpno1=1J.

It is immediate that, if n > 2, then J; = (g1) is prime, since g, is irreducible
for all n > 2.

Next, assume that J; is prime for all j < k.

Since by, only appears in gy, if we prove that (Ji : (by)) = J, we will
have that Ji is prime if and only if Ji_; is, which is true by the induction
hypothesis.

The proof of (Jj, : (by,k)) = Ji is identical as the one we used in the proof of
primality of J, so we think it does not have any interest to reproduce it again.

Furthermore, dim V' (J + (b1 ,)) = dim J — 1, that is, V/(J + (b1,-)) ~ V(J) is

a complete intersection. We will prove this through the Jacobian matrix of J.

. . . . Gr,r —r,r
We name the partial derivative of g, , by a;; (ie. m) as ¢;’; and of gy,
—r,r

. Ofr.s
by b; ; (i.e. 0?:”) as d; ;.
If one takes (é€77;1)1<r7i<n = diag(bn,r)i<r<n, we see that the determinant

n—1 — _
is ] b, ¢ VJ = J. This implies that dimV (J + (b1,,)) = dim.J — 1 and,
r=1

furtﬁermore
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dim (V(J+ (b1,)) NV <J+ (H by, ﬁbn>)> — dim V(J) —

r=2 =

Thus

dlmU( (J+( blr))mV<J+ (Hb”,ﬂbnr»

r=2

)
= dim ((TUZV(J+ (bw))> ( (ﬁ ﬁ )))
—dlmV<J+<Hb1r,nbnr>>: mV(J) -2

So we have proven smoothness to codimension 1, which, together with com-
plete intersection and Serre’s criteria, implies normality. O

4.2 Other schemes of pairs of matrices with vanishing of
some entries of their commutator

In an analogous manner as we proved the previous result, there are some other
schemes that can be proven to be reduced irreducible complete intersections.

Definition 4.3. Given Z < {(4,)}1<i,j<n, the scheme X7 associated to the
following set:

{(A, B) € Mat(n, F) | V(i,j) € T, [A, Bli; = 0}
where [A, B]; ; is the (4, j)-th entry of the commutator [A, B].

Theorem 4.4. For any J < {(4,§)}1<ij<n Such that J = {(i,9)}1<i<n Y
{Grdi)heizn o0 T = () h<izn U {(ijs )} 1<jen for a specific choice of ji + i
or i; # j, and for any T < J, then Xz is a reduced irreducible complete
intersection scheme for any field F.

Proof. The proof follows the same structure as the one of Theorem It
consists on finding a pair of monomials that only appear in one polynomial, see
that we can localise at one of the four appearing variables and apply induction.

O

Based on these cases and the work and computations that we have done
surrounding these schemes, we conjecture the following;:

Conjecture 4.5. For any Z < {(4,j)}1<i,j<n and any field F', Xz is reduced.
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This can be checked to be true for n < 2.

However, not all of them are irreducible. For example, when J = {(7,7)}ix;
it is the diagonal commutator variety, which has two components (see [Youl0]).
For specific cases we have checked computationally that there are others which
are not irreducible.

5 Final remarks

After the results that we have obtained, some questions have been left open and
might be fruitful if pursued in future research. Among them:

e Try to use or use the method of Hreindéttir with the slight improvement
that we have introduced with a more powerful computer (the last results
are from 2006, so proving or rejecting the conjecture for n = 5 might be
in the reach of computation).

e Try to obtain bounds on the log-canonical threshold and more information
on the jet schemes.

e Try to prove (or disprove) Ry and Rs.

e Try to find conditions on the jet schemes for reducedness of the base
scheme.

e Try to generalise the étale slices machinery to be able to apply it to our
case in order to attempt to prove the conjecture.

6 Appendix

Most of the definitions and properties to be found in standard textbooks such
as [Har06],[AMO94], |[BHOS], [Shal3]. We have also used [Stal9]. When other
sources are used, they are referenced specifically.

6.1 General algebra definitions and properties

We will assume all rings to be commutative and unital.

6.1.1 Serre criteria

In this subsection, we introduce Serre’s criteria and the definitions needed to
understand them. We have extensively used them in the main text as a way to
relate diferent parts of the conjecture.

Definition 6.1. Let R be a ring and M and R-module. A sequence of elements
fi,--., fr € Ris called an M-reqular sequence if:

1. f; is a non-zerodivisor in M /(f1,..., fi—1) for each i € {1,...,7}, and
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2. the module M/M(f1,..., fr) # 0.

If I € Ris an ideal and f1,..., f. € I is an M-regular sequence, we call it
an M -reqular sequence in I. If M = R and fi, ..., f, is an M-regular sequence,
we call it simply a regular sequence (in I).

Definition 6.2. Let R be a ring and I < R an ideal. Given M a finite R-
module, the I-depth of M, denoted by depth;M, is defined as follows:

1. if IM # M, then depth; M is the supremum in {0, 1,..., o0} of the lengths
of M-regular sequences in I,

2. if IM = M, then depth; M = 0.
If (R,m) is a local ring, we call depth,, M = depthM the depth of M.

Definition 6.3. Let R be a ring and I < R be an ideal. The height of I is the
Krull dimension of Ry, the localisation of R at I.

Definition 6.4. Given A a Noetherian commutative ring and an integer k > 0,
A is said to fulfil Serre’s condition

- Ry if A, is a regular local ring for any prime ideal p — A such that
height(p) < &,

- S if depthA, > inf{k, height(p)} for any prime p.

Theorem 6.5 (Theorem (Serre’s criteria)). Given A a Noetherian commutative
ring, then

- A is reduced iff A satisfies Ry and S,
- A is normal iff A satisfies Ry and Ss,
- A is Cohen-Macauly iff A satisfies Sy for all k =0

6.1.2 Some types of rings

Different kinds of rings correspond to different kinds of singularities. In this
sense, regular rings correspond to smooth schemes and complete intersection,
Gorenstein and Cohen-Macaulay rings correspond, in some specific sense, to
mild singularities. Specifically, Cohen-Macaulay and Gorenstein rings arise be-
cause of their nice duality theories. In what follows we present the definitions
of the objects mentioned in the text.

Definition 6.6. Let R be a Noetherian local ring, we say that R is a local
Cohen-Macaulay ring if depthR = dim R, where dim R is its Krull dimension.

For an arbitrary ring R, we say that it is a Cohen-Macaulay ring if it is
Noetherian and its localisation to every prime ideal is a local Cohen-Macaulay
ring.
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Definition 6.7. (JBH9S8|) Let R be a Noetherian local ring, we say that R is a
local Gorenstein ring if it has finite injective dimension over itself.

For an arbitrary ring R, we say that it is a Gorenstein ring if it is Noetherian
and its localisation to every prime ideal is a local Gorenstein ring.

Definition 6.8. Let F' be a field and S a finite type F-algebra.

1. We say that S is a global complete intersection over F if there exists a
presentation S = F[x1,...,2,]/(f1,..., fc) such that dim S =n — c.

2. We say that S is a local complete intersection over F' if there exists a
covering of Spec(S) = | JD(g;) by principal open sets, such that each of
the rings S, is a global complete intersection over F'.

Definition 6.9. Let (R,m) be a Noetherian local ring, we say that R is a
reqular local ring if the minimal number of generators of m is equal to the Krull
dimension of R.

Let R be an arbitrary ring, we say that R is a reqular ring if it is Noetherian
and the localisation at each prime ideal is a regular local ring.

Proposition 6.10. Local regular ring = Local complete intersection = Goren-
stein = Cohen-Macaulay

Definition 6.11. Let R be a ring, we say that R is a reduced ring if nilradR = 0,
where nilrad is the nilradical of R.

Definition 6.12. Let R be a ring, we say that it is a normal domain if it is an
integral domain and it is integrally closed in its field of fractions.

The main result used to prove Cohen-Macaulayness in [Hre94] makes use of
the following definitions:

Definition 6.13. ([Shal3|) Let F' be a field and I ¢ R = Flx1,...,2,] a
homogeneous ideal of the polynomial ring. Name I®) the set of forms of degree
kin I. Name R®) the set of forms of degree k in R. Set ay(R/I) = dim R*) /T(F),
Then, there exists a polynomial Pg/;(T) € Q[T] such that Pg/;(k) = ap(R/I)
for sufficiently large k. This polynomial is unique and we call it the Hilbert
polynomial of the ring R/I.

If e = deg Pr/;(T), then there is an integer d such that the leading term of

P (T) is %Te. We call d the multiplicity or degree of R/I.

Definition 6.14. Given (R, m) a local ring of Krull dimension m, given a set
of elements {x1,...,2z4}, we say that it is a system of parameters if any of the
following equivalent conditions is fulfilled:

1. m is a minimal prime over (z1,...,2q),
2. (Il,...,.Td):m,
3. 3r = 1 such that m" < (z1,...,2zq),

4. (x1,...,x4) is m-primary.
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6.1.3 Lie algebras

Our problem can be seen as a part of a broader conjecture on some schemes over
a certain type of Lie algebras. In that sense, the following definitions are meant
to be a reference for the types of Lie algrebras mentioned in the main text. Our
studied case corresponds to g = gl,,, which is reductive but not semisimple or
abelian.

n?

Definition 6.15. Let g be a Lie algebra, we say that it is simple if it is a
non-abelian Lie algebra whose single proper ideal is (0).

Let g be a Lie algebra, we say that it is semisimple if it is a direct sum of
simple Lie algebras.

Let g be a Lie algebra, we say that it is abelina if the Lie bracket vanishes
for all pairs of elements (that is, Vz,y € g, [x,y] = 0).

Let g be a Lie algebra, we say that it is reductive if it is a direct sum of a
semisimple Lie algebra and an abelian Lie algebra.

6.2 Algebraic Geometry

It is maybe remarkable that during the main text we work with affine schemes
of finite type over a field F, that is, if I < F[z1,...,2,] is an ideal, we work
with schemes of the type Spec(F[x1,...,2,]/I). In this case, reducedness is
equivalent to the ideal I being radical and irreducibility to the radical of I
being prime.

6.2.1 General scheme properties

In what follows, there are the scheme counterparts of many of the properties
that we stated over rings in the previous section.

Definition 6.16. Let X be a scheme, we say that it is Cohen-Macaulay (resp.
Gorenstein, resp. regular) if it is locally Noetherian and for every z € X, the
local ring Ox , is Cohen-Macaulay (resp. Gorenstein, resp. regular).

Definition 6.17. Let X be a scheme of finite type over a field F', we say that
it is a local complete intersection if for every x € X there exists an affine open
neighbourhood U < X of x such that Ox(U) is a local complete intersection
over F.

Let X = Spec(A) be an affine scheme of finite type over a field F, we say
that it is a (global) complete intersection if A is a global complete intersection
over F.

Definition 6.18. Let X be a scheme, we say that it is reduced (resp. normal)
if for every x € X, the local ring Ox , is reduced (resp. a normal domain).

Lemma 6.19. For every scheme X there is an associated reduced scheme X"¢¢
with the same topological space.
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Definition 6.20. Let X be a scheme, we say that it is generically reduced if
for every z € X, there exists an open neighbourhood U 5 x such that Ox (U)
fulfils Serre’s condition Rg.

Given an integer d > 0, we say that X is reduced to codimension d if all the
components of codimension at most d are reduced.

Lemma 6.21. Generically reduced is equivalent to reduced to codimension 0.

6.2.2 Singularities and invariants

When studying singularities one is usually interested in studying mild types
of singularities such as rational singularities and one usually studies certain
invariants. In our case, we got interested in three tightly related invariants: the
jet schemes, the log-canonical threshold and the Bernstein-Sato polynomials.
In what follows we introduce the definitions of the properties and objects that
are used or mentioned in the main text in what refers to singularities and their
study.

Definition 6.22. Let X be a scheme, we say that it has rational singularities
if it is normal, of finite type over a field of characteristic 0 and there exists a
regular scheme Y and a proper birational map

f:Y->X
such that
Rf.Oy =0 Vi>0
where R'f, stands for the i-th higher direct image of fs.
Proposition 6.23. Rational singularities implies Cohen-Macaulayness.

Definition 6.24. Let F be a field and X an F-scheme. For m > 0, set theo-
retically, the m-th jet scheme over X is

X0 — Hom(Spec(F[t]/(t™1)), X)
and the space of arcs,

X~ Hom(Spec(F|[1]]), X)
There is a natural structure sheaf that makes it into a scheme.

Definition 6.25. ([BMS06]) Let Z be a complex algebraic scheme embedded
in a smooth affine variety X. Let f1,..., f. be non-zero generators of the ideal
of Z. Let Dx be the sheaf of linear differential operators on X. It acts naturally
on Ox[[1, £t s1,---,8:]11; %, where the s; are independent variables. Let
us define a Dx-linear action ¢; on it by ¢;(s;) = s; + 1if i = j and t;(s;) = s,
otherwise. In particular, t; [ [, f7* = f; [ [, f;7, and the action of ¢; is bijective.
Let Si,j = Sitfltj and s = Zz S;.
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The Bernstein-Sato polynomial (also called the b-function) bs(s) of
f:=(f1,..., fr) is defined to be monic polynomial of the lowest degree in s
satisfying the relation

() [ [ =X Bt [ [ 1
% k=1 7

where P, € Dx[{s; ;}i ;]

Definition 6.26. (cf. [Musi2]) Let X be a non-singular irreducible complex

variety and a € Ox a nonzero (coherent) ideal sheaf. Let f: W — X be a log
N

resolution of a, and consider a divisor with simple normal crossings >, on W

i=1
such that if aOw = Ow (—D), then we may write

N N
D = Z aiDi and FW/X = Z ]fiEi,

i=1 i=1
where Ky x is the relative canonical bundle.
Then the log-canonical threshold at a point P € X, Ictp is

letp(a) = min kit 1
{ilPef(E:)} a4

The (global) log-canonical threshold is

let(a) = {;reli}lctp(a).

Remark. The infimum in the definition of the (global) log-canonical threshold
is actually a minimum and, therefore, it is a rational number.

6.2.3 Etale slices

One of the tools used in [Budl8| to study a similar problem to ours are the
étale slices. Even though they are not directly applicable to our case, because
we do not know our scheme to be a variety, it might be possible to construct an
analogous machinery for more general schemes. Some basic definitions follow.

Definition 6.27. Given X = Spec(R) an affine scheme and G a group scheme
acting on it, the affine quotient X /G is Spec(R%), where R denotes the fixed
elements by the action of G.

The following two definitions belong more appropriately to the Commutative
Algebra section but we deemed it better to mention them here.

Definition 6.28. A module N over a ring R is said to be flat if the functor
M — M ®pg N is an exact functor on the category of R-modules. If it is also a
faithful functor, then we say that it is faithfully flat.
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Definition 6.29. Let f : A — B be a ring morphism. We say that it is G-
unramified if it is of finite presentation and Q25,4 = 0. Where Qp,4 = 0 is the
module of differentials of B over A.

Definition 6.30. Let f: X — S be a morphism of schemes.

1. We say that it is flat if, for every z € X, the local ring Ox , is flat over
the local ring Og f(y)-

2. We say that it is G-unramified if, for every x € X, there exists an affine
open neighbourhood Spec(A4) = U < X of x and an affine open Spec(R) =
V < S with f(U) < V such that the induced ring map R — A is G-
unramified.

3. We say that it is étale if it is flat and G-unramified.

Definition 6.31. ([Budif]) Let G be a reductive group acting on affine varieties
X and Y, and let f : X — Y be a G-equivariant morphism.We say that f is
strongly étale if

- f/G:X )G —Y |G is étale, and
- f, f/G and the quotient morphisms induce a G-isomorphism X ~ Y xy ¢
(X /G).

Definition 6.32. ([Budl§]) Let G be a reductive group acting on an affine
variety X. Let z € X be a point with closed orbit. An étale slice is a G-
invariant locally closed affine subvariety S of X containing x such that the
induced G-equivariant morphism

V:Gxg, S— X

is strongly étale onto a G-saturated affine open subset U of X.
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