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Abstract

This Bachelor thesis revolves around the scheme of pairs of matrices with vanish-
ing commutator. It is conjectured to be reduced, irreducible, Cohen-Macaulay
and normal. Some known results are overviewed and some new results are pre-
sented. Among them, generic reducedness and regularity in codimension one,
some results for the jet schemes over our scheme of interest, results on simple
and semi-simple quiver representations, small computations on the Bernstein-
Sato polynomials and results on related schemes including the solution to a
small open problem.
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Disclaimer:
I would like to remark that to simply understand the posed question required
a lot of prior work. In fact, most of the time was actually invested in just
understanding it, since I had to learn all the background knowledge by myself.
The main reason is that I did not course neither the Algebraic Geometry elective
course in the bachelor’s degree nor the Algebraic Geometry and Commutative
Algebra lectures from the master’s degree.

Even though there is a lot of work and results that I studied (including a
lot topics that at the end have not been used), presenting it all here probably
would simply bother the reader. In this sense, I have tried to present the new
results that have been obtained in the main body of the text, being concise with
the general knowledge, and including in an appendix a basic compendium of the
definitions and statements that are used in the main text.

1 Introduction
We will use the convention of defining a variety over an algebraically closed field
as a finite type, reduced and irreducible (integral) scheme over it.

Sometimes in the definition of a scheme not necessarily reduced we just
mention the associated set of closed points. Hopefully, the intended scheme
structure will always be clear.

The purpose of this thesis is to present some results that we have obtained
surrounding a long studied affine scheme. For n ą 0, consider the scheme
(associated to the following set with the natural scheme structure, which we
also name Xn):

Xn “ tpA,Bq P Matpn,Cqˆ2 | rA,Bs “ 0u

where rA,Bs “ AB ´ BA, and we consider Matpn,Cqˆ2 as an affine 2n2-
dimensional space, where A and B are generic matrices. Throughout the text,
we refer to this scheme by the commuting scheme or Xn. Its reduced associated
scheme is usually referred to as the commuting variety.

Conjecture 1.1. Xn is reduced, irreducible, Cohen-Macaulay and normal for
all n ą 0.

Presumably1, it is a long standing conjecture (reduced and Cohen-Macaulay
(cf. [Kad18], [Ngo14], [Knu03], [Bud18]), normal (cf. [Pop08], [Pre03])). In
addition, it is thought to have rational singularities2. This conjecture is actually
a specific case of a bigger one:

1It is cited as being posed by M.Artin and M.Hochster in 1982 ([Kad18], [Ngo14], [Knu03]),
but none of the references cites those two authors directly and we have not been able to find
a direct source that supports it.

2The statement of rational singularities is not a published conjecture or open problem, but
it would fit in the behaviour of a more general family of schemes that are closely related to
it, studied in [Bud18]
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Conjecture 1.2. Let g be a reductive Lie algebra, then the associated scheme
to

Cpgq “ tpa, bq P g | ra, bs “ 0u

is reduced, irreducible, Cohen-Macaulay and normal.

Conjecture 1.1 is a particular case of it considering g “ gln. Even though we
know of the existence of this wider conjecture, we will only focus on the specific
case of Xn.

A long known important result relating to Xn, first proven by Motzkin and
Taussky [MT55] (as well as a bit later by Gerstenhaber [Ger61]), is the following
theorem:

Theorem 1.3. Xn is irreducible and of dimension n2 ` n for all n ě 1.

We will reproduce a proof of this fact extracted from [Gur92], since his
methods relate to some results over the jet schemes (which, as we discuss further
on, are of our interest).

This result is a concrete case of a theorem later proven:

Theorem 1.4. (Richardson [Ric79]) Let g be a reductive Lie algebra over an
algebraically closed field F of characteristic zero and let

Credpgq “ tpa, bq P g | ra, bs “ 0u

be the reduced scheme of pairs of commuting elements. Then Credpgq is irre-
ducible.

Even though the following statement does not apply to our case, it is, nev-
ertheless, somehow motivating for the conjecture being about Cohen-Macaulay
and not Gorenstein:

Theorem 1.5. (Corollary 9.3.18 [Vas94]) Let g be a semi-simple Lie algebra
over an algebraically closed field F of characteristic zero and let

Cpgq “ tpa, bq P g | ra, bs “ 0u

be the scheme of pairs of commuting elements. Then Cpgq is not Gorenstein.

On the other hand, for small n, the following is known:

Proposition 1.6. (see [Hre94], [Hre06b]) Xn is reduced, irreducible and Cohen-
Macaulay but not Gorenstein for n ă 5.

Even though it is a well known result, we present a proof by ourselves of
the case n “ 2 and we check, using Macaulay2 [GS], the cases n “ 3 and
n “ 4, as well as we try to implement the ideas in [Hre06a] to the case n “ 5.
Furthermore, although it is, in a sense, a trivial result, we introduce a small
improvement in performance reducing the number of variable of the polynomial
ring we are working on:
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Proposition 1.7. OXn is Cohen-Macaulay (respectively reduced) iff, for any
1 ď i, j ď n, the quotient OXn{pai,i, bj,jq is Cohen-Macaulay (respectively re-
duced). Where pai,i, bj,jq is the ideal (sheaf) generated by the pi, iq-th entry of
the matrix A and the pj, jq-th entry of the matrix B.

On another direction, one of the main new results that we present here is
the following:

Theorem 1.8. Xn is generically reduced for all n ě 1.

In particular, this implies the following proposition:

Proposition 1.9. If Xn is Cohen-Macaulay, then it is reduced.

This implication was known previously (cf. [Hre94]), but, naturally, the
argumentation was different (see Problem 2.7.1 [Vas98]).

This result can actually be improved by the following theorem:

Theorem 1.10. ([Pop08])
Given g a connected non-commutative reductive lie algebra over an alge-

braically close field F of characteristic 0, let

Credpgq “ tpa, bq P g | ra, bs “ 0u

be the reduced scheme of pairs of commuting elements. Then
codimgˆgpCredpgqqsing ě 2, where pCredpgqqsing stands for the singular lo-
cus of Credpgq.

This implies:

Proposition 1.11. If Xn is Cohen-Macaulay, then it is reduced and normal.

Even though this proposition comes from results that were already known,
its implications to Xn for n ă 5 do not seem to be recorded in the literature.
In any case, we have:

Proposition 1.12. Xn is reduced, irreducible, Cohen-Macaulay and normal for
n ă 5.

On the other hand, relating to the singularities of a variety, there is the
following results by Mustat,ă [Mus01] on jet schemes over complete intersection
varieties:

Theorem 1.13. ([Mus01]) Let X be a locally complete intersection variety.
The following are equivalent for m ě 1:

(i) Xm is irreducible,

(ii) dimπ´1
m pXsingq ă pdimXqpm` 1q,

(iii) Xm is a locally complete intersection variety of dimension
ď pdimXqpm` 1q.
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Theorem 1.14. ([Mus01]) Let X be a locally complete intersection variety.
The following are also equivalent:

(a) The conditions (i)-(iii) are fulfilled for all m,

(b) X has rational singularities,

(c) X has canonical singularities.

These, in conjunction with another result by Crawley-Boevey [CB01] on
simple quiver representations and reducedness (which we will describe later on)
where applied by N. Budur [Bud18] on a set of schemes related toXn to establish
reducedness and rational singularities:

Theorem 1.15. ([Bud18]) Let g ě 2. The scheme

X “ tpx1, y1, . . . , xg, ygq P Matpn,Cqˆ2g | rx1, y1s ` ¨ ¨ ¨ ` rxg, ygs “ 0u

is a variety with rational singularities for all n ě 1.

These schemes relate to ours through the fact that they can all be constructed
as the zero loci of a specific moment map on the representations of the doubles
of the quivers with a single vertex and g loops (in his case, for g ě 2, and in
our case, g “ 1). Since his results arouse from the study of the semi-simple
and simple representations of the quivers and some results relating to them, we
studied these in our case, leading to the following proposition:

Proposition 1.16. If L is the loop quiver (single vertex, single loop) and L its
double (in this case, obtained adjoining another loop), then Xred

n Ă ReppL, nq
(where Xred

n is the associated reduced scheme) and

(i) The only simple representations intersecting Xn occur for n “ 1.

(ii) The semi-simple representations in Xn are pairs of simultaneously diago-
nalisable matrices.

Furthermore, there was another result by Mustat,ă:

Theorem 1.17. ([Mus02]) If X is a smooth variety and Y Ă X is a closed
sub-scheme, then the log canonical threshold of the pair pX,Y q is given by

lctpX,Y q “ dimX ´ sup
mě0

dimY pmq

m` 1

where Y pmq represents the m-th jet scheme over Y .

All these results motivated the study of the jet schemes over our scheme,
because on the one hand we have these promising results for complete intersec-
tion varieties and, in a more general sense, they relate to the singularities of
the scheme. On the other hand, we thought that imposing a bound on the log-
canonical threshold or imposing some conditions on the jet schemes themselves
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could imply reducedness. We have explored it for the case of the log-canonical
threshold and found counterexamples to some statements of this kind. For the
conditions on the jet schemes for them to imply reducedness, we have not ex-
plored it enough for us to obtain any result.

About the jet schemes over our schemes, the main results known prior to
our work were:

Theorem 1.18. ([Sv09]) For n ď 3 and for all m ě 0, the m-th jet scheme
over Xn is irreducible and of dimension pn2 ` nqpm` 1q.

Theorem 1.19. ([Sv09]) For all m ą 0 exists an integer Npmq such that for
all n ě Npmq the m-th jet scheme over Xn is reducible.

Even though it is not mentioned in that paper, the following corollary is
immediate:

Corollary 1.19.1. For all m ą 0 exists an integer Npmq such that for all
n ě Npmq the m-th jet scheme over Xn is not equidimensional and of dimension
ą pn2 ` nqpm` 1q.

Joining these results with the results by Mustat,ă from Theorem 1.17, we
obtain the following proposition:

Proposition 1.20. For n ď 3, lctpMatpn,Cqˆ2, Xnq “ n2 ´ n “ codimXn.

Proposition 1.21. For n ě 30, lctpMatpn,Cqˆ2, Xnq ă n2 ´ n “ codimXn.

The main results by Sethuraman and Šivic comes from the existence of an
specific irreducible open set of dimension pn2`nqpm`1q on the m-th jet scheme
over Xn. We prove the existence of another open set of such dimension.

We have mainly worked on m “ 1, i.e., the first jet scheme. Using similar
techniques, we have proven the belonging of certain matrices to the closure of
the open set from Sethuraman and Šivic, which has led to the following results:

Proposition 1.22. The first jet scheme over X4 is irreducible of dimension
2p42 ` 4q “ pm` 1qpn2 ` nq

Proposition 1.23. The first jet scheme over X5 has dimension 2p52 ` 5q “
pm` 1qpn2 ` nq

These results on the jet schemes have implications on another open problem
(see [Sv09]), that deals with the dimension of the krA1, . . . , Ams, the algebra
generated by m square nˆn commuting matrices over a field k. The question is
whether it is bound by n or not. The answer is positive for m “ 2 and negative
for m ě 4 (cf. [Sv09]).

Specifically, Sethuraman and Šivic introduce a relation between the jet schemes
over Xn with algebras generated by three commuting matrices:

Proposition 1.24. ([Sv09]) Given F an algebraically closed field and k ě 0
an integer, if Jk`1 is the nilpotent Jordan block of dimension k ` 1, C is a
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block diagonal matrix in Matpnpk ` 1q, F q consisting of n copies of Jk`1 along
the diagonal upto addition of scalars and A,B two matrices commuting with C,
then if Xpkqn is irreducible

dimF rA,B,Cs ď npk ` 1q

In particular, if we combine this proposition with the results that we obtain
on the jet schemes, we obtain the following new result:

Corollary 1.24.1. Given F and algebraically closed field, if J2 is the nilpotent
Jordan block of dimension 2, C is a block diagonal matrix in Matp8, F q consist-
ing of 4 copies of J2 along the diagonal upto addition of scalars and A,B two
matrices commuting with C:

dimF rA,B,Cs ď 8

This is a direct implication of our result on the first jet scheme on X4 and
another result by [Sv09]. We will present the whole reasoning in a later section.

Furthermore, to study the singularities of our scheme, we have attempted
at the computation of the Bernstein-Sato polynomial associeted to it, as well
as the multiplier ideal of the pair pMatpn,Cqˆ2, Xnq. We have not spent much
time on this and, consequently, the results are rather minor and coming from
simple computations.

Finally, we have worked with some related schemes, which has lead to the
solution of an small open problem:

Theorem 1.25. Given F a field, the scheme associated to

X “ tpa, bq P Matpn, F q | diagpra, bsq “ 0u

where diagpMq applied to a matrix M is the projection onto the diagonal el-
ements, (i.e., M “ pmi,jq1ďi,jďn ÞÑ diagpMq “ pmi,iq1ďiďn), is a complete
intersection integral normal scheme over F .

This actually fits in a bigger result that we have proven concerning schemes
of pairs of matrices with some entries of their commutator vanishing. For ease
of lecture, we will present it in the corresponding section.

2 Some known results
We will start by proving some relevant known results related to some aspects
of the problem. All the results presented here concern the scheme

Xn “ tpA,Bq P Matpn,Cqˆ2 | rA,Bs “ 0u

or, in some cases, more general results are presented, e.g. with the analogue
construction over an arbitrary algebraically closed field F .
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2.1 Generators of the defining ideal
Proposition 2.1. If we name the defining ideal of Xn as In and the pr, sq-th
entry of rA,Bs as fr,s, we get:

fi,j “

$

’

’

’

’

&

’

’

’

’

%

n
ř

k“0
k‰i

pai,kbk,i ´ ak,ibi,kq if i “ j

n
ř

k“0
k‰i

pai,kbk,j ´ ak,jbi,kq ` xi,jpyj,j ´ yi,iq ´ yi,jpxj,j ´ xi,iq if i ‰ j

and tfi,jui‰j Ytfi,iui‰k is a generating set of In for any k which has a minimal
number of generators.

Proof. First, we want to remark that
n
ř

i“0

fi,i “ TrprA,Bsq “ 0, which is a direct

consequence of the properties of the trace.
Therefore, tfi,jui‰j Y tfi,iui‰k for any k is a generating set of In.
Finally, we notice that each of the monomials appearing in the fi,j for i ‰ j

appear only in that polynomial of the set tfi,jui‰j Ytfi,iui‰k for any k. On the
other hand, if we consider the set tfi,jui‰j Y tfi,iui‰k for a specific k, we get
that the monomial ai,kbk,i only appears in the polynomial fi,i. This observation,
together with the fact that all these polynomials are of degree 2, we get that
this set has the minimal number of defining elements for the ideal.

2.2 Irreducibility and dimension of Xn

Theorem 2.2. (Motzkin-Taussky [MT55]) Given F and algebraically closed
field, the following scheme:

Xn “ tpA,Bq P MatnˆnpF q ˆMatnˆnpF q|rA,Bs “ 0u

is irreducible and of dimension n2 ` n.

We will give a short proof following the one that R.M.Guralnick gives in
[Gur92].

First of all recall the following definition:

Definition 2.3. A matrix A P MatnˆnpF q is called regular or non-derogatory
if it fulfils any of the following equivalent conditions:

(i) All its eigenspaces have dimension one.

(ii) The geometric multiplicity of each eigenvalue is one.

(iii) Its minimal polynomial is of degree n.

(iv) A0, A1, . . . , An´1 are linearly independent matrices.

(v) All matrices commuting with A are a polynomial evaluated on A (i.e.
tfpAq | deg f ă nu “ CpAq “ tB P Matpn, F q | rA,Bs “ 0uq.
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Let us notice that the condition piiiq implies that regularity is an open
condition.

In this proof we will make use of the following lemma:

Lemma 2.4. For every matrix A, there exists a regular matrix R that commutes
with it.

Proof. Consider A in Jordan canonical form: A “ diagpJ1, . . . , Jrq where the
eigenvalue ai corresponds to the i-th block. The matrix is regular if and only if
all the ai’s are different. For given b1, . . . , br, take the matrix R “ diagppb1 ´
a1qI ` J1, . . . , pbr ´ arqI ` Jrq (where I denotes the identity matrix of the
appropriate size). This matrix is in Jordan canonical form and the i-th block
has bi as the associated eigenvalue. A and R commute if and only if each block
commutes, i.e. if Ji and pbi ´ aiqI ` Ji commute, which is trivial. For every set
of bi’s where all of them are different, R is regular.

Proof of Theorem 2.2. Consider a commuting pair of matrices pA,Bq. If we
take a regular matrix R commuting with A, we have that pA,B ` xRq is a
commuting pair for all x P F . Since the regularity condition is open (and the
set tB`xRuxPF is irreducible, of dimension 1 intersecting non-emptily with the
set of regular matrices), we have that B ` xR is a regular matrix for all but
finitely many values of x. Therefore, the closure of the set of pairs of commuting
matrices pA,Bq where B is regular, is dense in the commuting variety.

Finally, consider the following morphism:

φ : Pn´1 ˆMatnˆnpF q Ñ C
pf,Bq ÞÑ pfpBq, Bq

Where Pn´1 is the set of polynomials of degree at most n ´ 1. The domain is
irreducible and, therefore, the image is irreducible. Since the image contains
the dense set where the second component is regular, we have that the image is
dense. Consequently, the commuting variety is irreducible.

On the other hand, since the regularity of a matrix B is equivalent to
B0, B1, . . . , Bn´1 being linearly independent. We have that the restriction of φ
to the Pn´1ˆRnpF q, where RnpF q is the set of regular nˆn matrices, is injec-
tive. Since regularity is open, we get that dimRnpF q “ n2, and dimPn´1 “ n.
Thus dimC “ n2 ` n.

We have stated the proof here because, even though it is well known, it has
applications to some proofs concerning the dimension of the jet schemes.

We should notice, as we mentioned in the introduction, that it is a concrete
case of a more general result that we announce without proof:

Theorem 2.5. (Richardson [Ric79]) Let g be a reductive Lie algebra over an
algebraically closed field F of characteristic zero and let

Credpgq “ tpa, bq P g | ra, bs “ 0u

be the reduced scheme of pairs of commuting elements. Then Credpgq is irre-
ducible.
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2.3 Proof of conjecture for n ă 5

This section move around the following theorem:

Theorem 2.6. Xn is reduced, Cohen-Macaulay and normal for n ă 5.

This is a well known result (cf. [MZS11], [Hre94]), but we present a new
proof for the case n “ 2 for reducedness, and in all three cases we use algebraic
computation tools (such as Macaulay2 [GS]) to check the results, applying some
of the methods by Hreinsdóttir [Hre94][Hre06a].

2.3.1 Reducedness n “ 2

The specific result we will prove here is the following:

Proposition 2.7. X2 is a reduced scheme.

First of all, let’s make some observations that will help us during the proof.

Lemma 2.8. If R is a ring, and a P R is not a zero-divisor, then R is a domain
(respectively reduced) if and only if Ra is a domain (respectively reduced).

Proof for the domain case. pñq: Assume that D xan ,
y
am P Ra (with x, y P R)

such that x
an

y
am “ 0. This is equivalent to Dl ě 0 such that alxy “ 0 in R. If

R is a domain, we have that xy “ 0 and, therefore, that either x “ 0 or y “ 0,
which implies x

an “ 0 or y
am “ 0.

pðq: Assume Dx, y P R such that xy “ 0, then we have that x
1
y
1 “ 0 in Ra.

If Ra is a domain, without lost of generality, we can assume that x
1 “ 0 in Ra,

which is equivalent to Dl ě 0 such that alx “ 0. Since a is not a zero-divisor,
we get that x “ 0.

Proof for the reduced case. pñq: Assume that D xan P Ra (with x P R) and Dm ě

1 such that
`

x
an

˘m
“ 0. This is equivalent to Dl ě 0 such that alxm “ 0 in

R, which implies, if R a reduced ring and since a is not a zero-divisor, that
x “ 0 ñ x

an “ 0.
pðq: Assume Dx P R and Dn ě 1 such that xn “ 0, then we have that

`

x
1

˘n
“ 0 in Ra. If Ra is reduced, we get that x

1 “ 0 in Ra, which is equivalent
to Dl ě 0 such that alx “ 0. Since a is not a zero-divisor, we get that x “ 0.

Remark : This implies that if we have an element a P R and an ideal such
that pI : paqq “ I, I is prime (resp. radical) iff it is prime (resp. radical) in Ra
(thanks to the localisation at a multiplicative set S being an exact functor from
R-modules to S´1R-modules).

Lemma 2.9. Given a ring R, it is a domain (respectively reduced) iff the poly-
nomial ring RrXs is a domain (respectively reduced).

Proof. The implication to the left is trivial.
For the implication to the right, assume that RrXs is not a domain and take

f, g P RrXszt0u such that fg “ 0. Now, there exist f̃ “ a0 ` a1X ` ¨ ¨ ¨ `

12



anX
n, g̃ “ b0 ` b1X ` ¨ ¨ ¨ ` bmX

m such that a0 ‰ 0, b0 ‰ 0 and f “ f̃Xr, g “
g̃Xs. Therefore, fg “ 0 ô f̃ g̃ “ a0b0 ` p¨ ¨ ¨ qX “ 0 ñ a0b0 “ 0. Consequently,
R is not a domain.

Analogously, assume that RrXs is not reduced and take f P RrXszt0u such
that Dm ą 0 such that fm “ 0. Now, there exists f̃ “ a0 ` a1X ` ¨ ¨ ¨ ` anX

n

such that a0 ‰ 0 and f “ f̃Xr. Therefore, fm “ 0 ô f̃m “ am0 ` p¨ ¨ ¨ qX “

0 ñ am0 “ 0. Consequently, R is not reduced.

Proof of Proposition 2.7. Given F an algebraically closed field, consider the fol-
lowing matrices over F rtai,j , bi,ju1ďi,jď2s:

A “

ˆ

a1,1 a1,2
a2,1 a2,2

˙

B “

ˆ

b1,1 b1,2
b2,1 b2,2

˙

Then we evaluate their commutator:

rA,Bs “

ˆ

a1,2b2,1 ´ a2,1b1,2 a1,2pb2,2 ´ b1,1q ´ b1,2pa2,2 ´ a1,1q
´a2,1pb2,2 ´ b1,1q ` b2,1pa2,2 ´ a1,1q ´a1,2b2,1 ` a2,1b1,2

˙

The ideal defining X2 is generated by the entries of that commutator and,
hence, the following:

I2 “

¨

˝

a1,2b2,1 ´ a2,1b1,2
a1,2pb2,2 ´ b1,1q ´ b1,2pa2,2 ´ a1,1q
a2,1pb2,2 ´ b1,1q ´ b2,1pa2,2 ´ a1,1q

˛

‚

Now, consider the following F -algebra automorphism:

φ : F rtai,j , bi,ju1ďi,jď2s Ñ F rtai,j , bi,ju1ďi,jď2s

ai,j ÞÑ

"

ai,j if pi, jq ‰ p2, 2q
a2,2 ` a1,1 if pi, jq “ p2, 2q

bi,j ÞÑ

"

bi,j if pi, jq ‰ p2, 2q
b2,2 ` b1,1 if pi, jq “ p2, 2q

Our ideal is prime (respectively radical) if and only if its image is so. And
its image is:

J “

¨

˝

a1,2b2,1 ´ a2,1b1,2
a1,2b2,2 ´ b1,2a2,2
a2,1b2,2 ´ b2,1a2,2

˛

‚

Which, by Lemma 2.9, is prime or radical if the ideal generated by the same
elements over F rtai,j , bi,ju 1ďi,jď2

pi,jq‰p1,1q

s is so.

Renaming a1 :“ a1,2, a2 :“ a2,1, a3 :“ a2,2, b1 :“ b1,2, b2 :“ b2,1, b3 :“ b2,2
and calling F ra1, a2, a3, b1, b2, b3s “ R. And we get the following ideal:

J 1 “

¨

˝

f1 :“ a1b2 ´ b1a2
f2 :“ a1b3 ´ b1a3
f3 :“ a2b3 ´ b2a3

˛

‚

In the next step we need to prove the following lemma:

13



Lemma 2.10.
pI : pa1qq “ I

Proof. Take f P R such that a1f P J 1, which means that Dg1, g2, g3 P R such
that a1f “ g1f1 ` g2f2 ` g3f3.

We can assume that a1 does not appear in any of the gi’s (i.e. all the
monomials that contain a1 to a non-zero power have a zero coefficient).

In this situation, a1f “ a1pg1b2`g2b3q`b1pg1a2`g2a3q`g3f3, f “ g1b2`g2b3
and b1pg1a2 ` g2a3q ` g3f3 “ 0. Since f3 is an irreducible polynomial and a
polynomial ring over a UFD is a UFD and a field is a UFD, we get that the ideal
generated by f3 is prime. Thus, since b1 R pf3q because all non-zero elements in
the ideal pf3q have at least degree 2, we have that pg1a2 ` g2a3q P pf3q. That
is, Dg̃3 such that pg1a2 ` g2a3q ` g̃3f3 “ pg1 ` g̃3b3qa2 ` pg2 ´ g̃3b2qa3 “ 0.
Consequently, a3 � pg1 ` g̃3b3q, a2 � pg2 ´ g̃3b2q and there exists h P R such
that ha3 “ pg1 ` g̃3b3q and ha2 “ ´pg2 ´ g̃3b2q. That is, f “ g1b2 ` g2b3 “
hpa3b2 ´ a2b3q ` g̃3pb3b2 ´ b3b2q “ hf3 P pf3q Ă I.

Therefore, by Lemma 2.8, it is equivalent to check the primality over R as
over Ra1 , where the ideal is:

J2 “

¨

˝

b2 ´ a
´1
1 b1a2

b3 ´ a
´1
1 b1a3

a2b3 ´ b2a3

˛

‚

Taking the following algebra automorphism:

ψ : F ra1, a2, a3, b1, b2, b3s Ñ F ra1, a2, a3, b1, b2, b3s
b2 ÞÑ b2 ` a

´1
1 b1a2

b3 ÞÑ b3 ` a
´1
1 b1a3

The image ideal is

J3 “

¨

˝

b2
b3

a2pb3 ` a
´1
1 b1a3q ´ pb2 ` a

´1
1 b1a2qa3 “ a2b3 ´ b2a2 P pb2, b3q

˛

‚“

ˆ

b2
b3

˙

,

which is clearly prime.

2.3.2 n P t3, 4u

For this two cases, at the moment of writing, there are no proof that does not use
algebraic computation tools. However, the tool that we have access to, and that
we want to use to check these results, can only do computations over finite type
Q-algebras. Consequently, our question is whether given I Ă QrX1, . . . , Xns

a radical ideal, i.e. an ideal such that it is its own radical, its extension into
CrX1, . . . , Xns is a radical ideal or not. The answer is positive. In fact, there is
a more general result:
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Proposition 2.11. Given a perfect field k, A a finite type k-algebra and K a
k field extension, then, if A is a reduced algebra, B “ A bK is also a reduced
algebra.

It can be seen that this implies the result we want to prove:
Obviously, Q is of characteristic 0 and, therefore, perfect.
If we take A “ QrX1, . . . , Xns{I, we get a finite type Q-algebra, and A is

reduced if and only if I is radical (as a reminder, a reduced algebra is an algebra
such that its nilradical is 0).

Furthermore, C is a field extension of Q, and, if J “ ICrX1, . . . , Xns is the
extension ideal of I Ă QrX1, . . . , Xns, then B “ Ab C “ pQrX1, . . . , Xns{Iq b
C – CrX1, . . . , Xns{J . Therefore, since B is reduced if and only if J is a radical
ideal, we get the implication we want.

We are going to piece the proof in different steps, based on the proof of the
same statement in [hR].

First of all, we will actually prove the following statement:

Proposition 2.12. Given a perfect field k, A a finite type k-algebra and K a
k field extension, then, if A is a domain, B “ AbK is a reduced algebra.

That is, we have reduced to the case of A a domain. It is actually not a lost
of generality:

Lemma 2.13. Proposition 2.12 implies Proposition 2.11.

First of all, let us recall the following proposition:

Proposition 2.14. If R is a Noetherian reduced ring with the minimal prime

ideals p1, . . . , pn , then QpRq –
n
À

i“1

QpR{piq. Where, for a ring S we write QpSq

for the total ring of fractions.

Proof of Lemma 2.13. Since A is Noetherian (since it is a finite type algebra
over a field) and reduced, from the proposition 2.14 in the appendix, we have
that it injects into a direct sum of finitely many fields. Next, we have that
there is a natural algebra isomorphism pM ‘M 1q bN – pM bNq ‘ pM 1 bNq
for M,M 1, N algebras over a certain ring. Since any field extension K over
k is a flat module over the base field (since it is faithfully flat, what can be
checked by noticing that the induced map f˚ : SpecpKq Ñ Specpkq is surjective
since it maps the single point at the domain to the single point at the image),
which means that tensoring with it preserves injections. Finally, we have that
a subring of (or a ring that injects in) a direct sum of reduced rings is reduced.
Therefore, if it enough to prove the result for A a field, and, in particular, a
domain.

Lemma 2.15. Let K be a finite separable extension over k. Let A be a domain
and a k-algebra. Then B “ AbK is reduced (though not necessarily a domain).
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Proof. Since K is finite and separable, the Primitive Element Theorem applies
and we have that K “ kpαq “ krXs{f , where α P K and f P krXs. A bK “

Ab krXs{f – ArXs{f Ă pFracpAqqrXs{f . If K is a separable extension, f has
no multiple roots and, therefore, pFracpAqqrXs{f is reduced. Finally, since a
ring that injects into a reduced ring, is reduced, B is reduced.

Corollary 2.15.1. Let K be an algebraic separable extension over k. Let A be
a domain and a k-algebra. Then B “ AbK is reduced.

Proof. If there exists x “
m
ř

i“1

ai b ki P B such that xn “ 0 for a certain n ą 0,

we can consider x P A b kpk1,b, kmq. Since kpk1,b, kmq is a finite separable
extension of k, we get that x “ 0.

Lemma 2.16. Let K be a purely transcendental extension over k. Let A be a
domain and a k-algebra. Then B “ AbK is reduced.

Proof. First, take a transcendence base of the extension, tXiuiPI , then K “

kptXiuiPIq. Now we have that B “ AbK “ AbkptXiuiPIq. Since kptXiuiPIq “

S´1krtXiuiPIs with S the set of all non-zero elements and, since A is a k-
algebra, we have that A b krtXiuiPIs – ArtXiuiPIs and A b S´1krtXiuiPIs –

S´1ArtXiuiPIs. Since A is reduced, any localisation is reduced, so B is reduced.

Corollary 2.16.1. Let K be a separably generated extension over k. Let A be
a domain and a k-algebra. Then B “ AbK is reduced.

Proof. It is a combination of the previous lemma and the corollary to the one
before last lemma.

Corollary 2.16.2. Let K be a separable extension over k. Let A be a domain
and a k-algebra. Then B “ AbK is reduced.

Proof. If there exists x “
m
ř

i“1

aibki P B such that xn “ 0 for a certain n ą 0, we

can consider x P Abkpk1,b, kmq. Since kpk1,b, kmq is a finitely generated over
k, we get that it is separably generated and, therefore, reduced, which implies
that x “ 0.

Finally, we recall that any field extension over a perfect field is separable,
which proves the Proposition 2.11.

In this way, if we check that our ideals of interest are radical over Q, we
know that they are radical over C. And this can be done with a simple code
such as the following (for Macaulay2 [GS]):

n = 3;
R = QQ[a_(1,1) .. a_(n,n), b_(1,1) .. b_(n,n)];
A = transpose genericMatrix(R, a_(1,1), n, n);
B = transpose genericMatrix(R, b_(1,1), n, n);
I = ideal(A*B-B*A);
time print(I == radical I);
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A small improvement through Proposition 2.18 can be immediately imple-
mented:

n = 3;
R = QQ[a_(1,1) .. a_(n-1,n),a_(n,1) .. a_(n,n-1),

b_(1,1) .. b_(n-1,n),b_(n,1) .. b_(n,n-1)];
A = {};
B = {};
for i from 1 to n do (

c = {};
d = {};
for j from 1 to n do (

if (i,j)!=(n,n) then (
c = append(c, a_(i,j));
d = append(d, b_(i,j));

)
else (

c = append(c, 0);
d = append(d, 0);

);
);
A = append(A,c);
B = append(B,d);

);
A = matrix A;
B = matrix B;
M = A*B-B*A;
I = ideal()
for i from 0 to n-1 do

for j from 0 to n-1 do
if (i,j)!=(n-1,n-1) then I = I + ideal(M_(i,j));

time print(I == radical I);

However, it is worth noticing that this is quite computation intensive (in
fact, we have only been able to use it for n “ 3) and, actually, was not the
method used by rHre94s. She proved that it is Cohen-Macaulay, which implies
reducedness and normality. In the next subsection we present a sketch of her
method and we apply it.

2.3.3 Cohen-Macauly for n ă 5

To check Cohen-Macaulayness, all the results to the moment use the following
proposition:

Proposition 2.17. (see [Hre94]) Let S “ F rx1, . . . , xns be a polynomial ring
over a field F , let I Ă S be a homogeneous ideal, and let d “ dimS{I. Then
S{I is Cohen-Macaulay if and only if degS{I “ degS{pI, f1, . . . , fdq for some
(and hence all) system of parameters tf1, . . . , fdu.
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Here, the degree of a polynomial ring modulo a homogeneous ideal, makes
reference to its multiplicity, that is, the leading coefficient of the Hilber polyno-
mial multiplied by e!, where e is the degree of the Hilber polynomial.

Therefore, it is enough to compute two Groebner basis to determine Cohen-
Macaulayness.

In her first paper [Hre94], Hreinsdóttir uses random numbers to generate a
system of parameters, while in [Hre06b] she uses "extensive guessing to find a
regular sequence that can be checked by a computer".

The main point of her early work was finding an efficient monomial ordering
(see [Hre94], [Hre06a]) such that the computation of the Groebner basis becomes
more efficient.

She also found Groebner basis with 11 elements for the case 3 ˆ 3 and 51
elements for the case 4ˆ 4. It is still an open problem whether or not these are
minimal.

Even though it is a new result (though elementary), we deemed it more
appropriate to mention and prove it here:

Proposition 2.18. OXn is Cohen-Macaulay (respectively reduced) iff, for any
1 ď i, j ď n the quotient OXn{pai,i, bj,jq is Cohen-Macaulay (respectively re-
duced). Where pai,i, bj,jq is the ideal (sheaf) generated by the pi, iq-th entry of
the matrix A and the pj, jq-th entry of the matrix B.

Proof. It is immediate if we consider the following algebra automorphism:

Crtar,s, br,su1ďr,sďns ÝÑ Crtar,s, br,su1ďr,sďns
ar,r ÞÑ ar,r ` ai,i
bs,s ÞÑ bs,s ` bj,j
ar,s ÞÑ ar,s if r ‰ s
br,s ÞÑ br,s if r ‰ s

And remember:

Lemma 2.19. A ring R is Cohen-Macaulay (respectively reduced) if and only
if Rrxs is Cohen-Macaulay (respectively reduced).

The result follows.

In what follows, we have adapted into Macaulay2 ([GS]) the code that she
originally used with Macaulay ([BS]) to test Cohen-Macaulayness. The main
point of her work was to introduce better monomial orderings, however, not to
bother the reader with cumbersome code, we only introduce a functional though
not optimal code:

n = 2;

R = QQ[a_(1,1) .. a_(n,n), b_(1,1) .. b_(n,n)]

A = transpose genericMatrix(R,a_(1,1),n,n);
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B = transpose genericMatrix(R,b_(1,1),n,n);

I = ideal(A*B-B*A);

time degI = degree I;

lin = ideal();

for i from 1 to n^2+n do (
p = 0;
for j from 1 to n do (

for k from 1 to n do (
r1 = random QQ;
r2 = random QQ;
p = p + r1*a_(j,k) + r2*b_(j,k);

);
);
lin = lin + ideal p;

);

J = I+lin;

time degLin = degree(J);

print (degLin == degI);

A word of caution should be taken since a negative answer by the program
does not imply the refutation of Cohen-Macaulayness, since the ideal lin does
not need to be a system of parameters.

We have used this code with the ideas on more efficient monomial orderings
by Hreinsdóttir and the small improvement of Proposition 2.18 to check Cohen-
Macaulayness for n ď 4 and attempt the case n “ 5.

2.4 Jet schemes
Recall that the m-th jet scheme over a scheme X over a field F is the set
XpmqpF q “ HomF pSpecpF rts{tm`1q, Xq with a natural scheme structure. Its
construction and basic properties can be found in any introductory notes on jet
schemes.

2.4.1 Defining equations

It is a well known result that the jet schemes over an affine scheme are again
affine. Furthermore, there is the following result:

Theorem 2.20. Given F a field and X “ SpecpF rx1, . . . , xns{Iq an affine
scheme over it, where I “ pf1, . . . , frq Ă F rx1, . . . , xns is an ideal, we have
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that the defining equations for the m-th jet scheme over the polynomial ring
F rtx1,k, . . . , xn,ku0ďkďms are:

f1px̃1ptq, . . . , x̃nptqq – 0 mod tm`1

...
frpx̃1ptq, . . . , x̃nptqq – 0 mod tm`1

where x̃iptq “ xi,0 ` xi,1t` ¨ ¨ ¨ ` xi,mt
m.

Equivalently, given the derivation D over that polynomial ring such that
Dpxi,kq “ xi,k`1, the defining equations are:

f1px1,0, . . . , xn,0q “ 0
...

frpx1,0, . . . , xn,0q “ 0
Dpf1px1,0, . . . , xn,0qq “ 0

...
Dpfrpx1,0, . . . , xn,0qq “ 0
D2pf1px1,0, . . . , xn,0qq “ 0

...
Dmpfrpx1,0, . . . , xn,0qq “ 0

The proof of this result is quite immediate and can be found in any intro-
ductory material to jet schemes.

Given that, we have:

Proposition 2.21. Over the ring C
„

tai,j,k, bi,j,ku0ďkďm
1ďi,jďn



, we define the ma-

trices Ak “ pai,j,kq1ďi,jďn, Bk “ pbi,j,kq1ďi,jďn. In this situation, the elements
generating the ideal that defines the m-th jet scheme, which we name Xpmqn are
the entries of the following matrices:

rA0, B0s

rA0, B1s ` rA1, B0s

rA0, B2s ` rA1, B1s ` rA2, B0s

¨ ¨ ¨

rA0, Bms ` rA1, Bm´1s ` ¨ ¨ ¨ ` rAm´1, B1s ` rAm, B0s

Or, equivalently:

rAptq “ A0`A1t`¨ ¨ ¨`Amt
m, Bptq “ B0`B1t`¨ ¨ ¨`Bmt

ms ” 0 pmod tm`1q

It is worth noticing that the group GLnpCq acts on the scheme by simulta-
neous conjugation on all the matrices X0, . . . , Xm, Y0, . . . , Ym.
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2.4.2 Distinguished open set

The following statement is weaker than the one proven in [Sv09] but it is enough
to understand the whole reasoning:

Proposition 2.22. Given a matrix Aptq “ A0 ` A1t ` ¨ ¨ ¨ ` Amt
m. A0 is a

regular (or non-derogatory) matrix if and only if the matrices that commute with
Aptq and with t, (mod tm`1), can be described by m ` 1 polynomials of degree
at most n´ 1.

This implies the result that will be the base for our own ones:

Proposition 2.23. The open set on Xpmqn where A0 is non-derogatory, is irre-
ducible and of dimension pm` 1qpn2 ` nq. We call it the distinguished open set
of the scheme and denote it by U pmqn .

This follows a similar proof as the proof of the irreducibility of Xn.

2.4.3 Irreducibility of the jet schemes for n “ 2

Proposition 2.24. The m-th jet scheme over X2 is irreducible and of dimen-
sion 6pm` 1q for all m ě 0.

We have not found an explicit proof of this result, but it is immediate from
Proposition 2.23 and a simple induction argument.

Proof. The only possibility for a pair o matrices not to be in the distinguished
open set is if A0 is a scalar matrix. In this case, we have that if m “ 0 it belongs
to the closure of the distinguished open set. Assume that it happens for all
m ă k. The equations describing the closed subset where A0 is a scalar matrix
is described by the equations of the pk ´ 1q-th jet, whose reduced subscheme
we know to be irreducible. Therefore, since this closed irreducible set intersects
with the open set where B0 is regular, we get that it is included in the closure
of this set. So now we know that the closure of the open set where A0 is regular
and the closure of the open set where B0 is regular cover the whole reduced
scheme. Since both of them are irreducible and the open sets intersect, we get
that the closures are equal among them and to the whole reduced scheme, which
is irreducible.

2.4.4 Irreducibility of the reduced jet schemes for n “ 3

Here we will present an outline of the proof found in the already mentioned
paper by Sethuraman and Šiviv [Sv09].

Proposition 2.25. The m-th jet scheme over X3 is irreducible and of dimen-
sion 12pm` 1q for all m ě 0.

The proof of this proposition is based on a series of lemmata which we will
announce next.
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Lemma 2.26. If for all n ă N , Xpmqn has been proven to be irreducible, then
for any point pA “ Aptq, B “ Bptqq P X

pmq
N such that A0 or B0 have two distinct

eigenvalues, pA,Bq P U
pmq

N , where U
pmq

N denotes the closure of the distinguished
open set.

Let us define U 1pmqn as the open set on Xpmqn where B0 is non-derogatory.

Lemma 2.27. Let f be an automorphism of Xpmqn such that fpU pmqn q “ U
pmq
n

or fpU 1pmqn q “ U
1pmq
n or fpU pmqn X U

1pmq
n q “ U

pmq
n X U

1pmq
n . Then pA,Bq P U

pmq

n

iff fpA,Bq P U
pmq

n .

We can observe that f : pA,Bq ÞÑ pA´ λI,B ´ µIq fulfils the hypothesis of
this lemma for any λ, µ, therefore:

Corollary 2.27.1. Let pA,Bq P Xpmqn such that A has a unique eigenvalue λ
and B has a unique eigenvalue µ, then pA,Bq P U

pmq

n iff pA´λI,B´µIq P U
pmq

n .

As a consequence of this last corollary and of Lemma 2.26 and of the fact
that the eigenvalues of A and A0 and of B and B0 are the same, when checking
if pA,Bq belongs to U

pmq

n we may assume that A0 and B0 are nilpotent.

Corollary 2.27.2. Let pptq and qptq be polynomials in F rts of degree at most
m, and assume that qp0q “ 0. Then pAptq, Bptqq P U

pmq

n iff the following occur:

(i) pBptq, Aptqq P U
pmq

n

(ii) pAptq ` pptqI,Bptqq P U
pmq

n

(iii) pAptq, Bptq ` pptqIq P U
pmq

n

(iv) pAptq, Bptq ` pptqAptqq P U
pmq

n

(v) pAptqp1` qptqq, Bptqq P U
pmq

n

Corollary 2.27.3. If pAptq, Bptqq P U
pmq

n whenever A0 or B0 is non-zero, then
U
pmq

n “ X
pmq
n

All these lemmata are used to reduce the problem to only checking for when
A0 and B0 are nilpotent and A0 has two jordan blocks, one of order 2 and the
other one of order 1. Furthermore, we can also consider A0 in Jordan canonical
form.

We will use some of these results to prove the irreducibility of Xp1q4 and to
compute the dimension of Xp1q5 .
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2.4.5 Reducibility of the reduced jet schemes for big n

Theorem 2.28. ([Sv09]) For all m ą 0 exists an integer Npmq such that for
all n ě Npmq the m-th jet scheme over Xn is reducible.

We will reproduce the proof here since it has guided our attempts to obtain
a better lower bound.

The basic idea is that if we find a proper closed subset of dimension at least
pm` 1qpn2 ` nq we get that the scheme is not irreducible. The proof will be a
parafrasis of the one found in [Sv09].

Proof. First, let n “ 3a` b for a, b ě 0 and write nˆ n matrices as 4ˆ 4 block
matrices. Next, consider W , the closed set of matrices in the m-th jet scheme
defined by:

A0 “

¨

˚

˚

˝

0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

B0 “

¨

˚

˚

˝

0 B0
1 B0

2 B0
3

0 0 B0
1 0

0 0 0 0
0 0 B0

4 0

˛

‹

‹

‚

A1 “

¨

˚

˚

˚

˝

A
p1q
1,1 A

p1q
1,2 A

p1q
1,3 A

p1q
1,4

A
p1q
2,1 A

p1q
2,2 A

p1q
2,3 A

p1q
2,4

0 A
p1q
3,2 A

p1q
3,3 A

p1q
3,4

A
p1q
4,1 A

p1q
4,2 A

p1q
4,3 A

p1q
4,4

˛

‹

‹

‹

‚

B1 “

¨

˚

˚

˚

˝

B
p1q
1,1 B

p1q
1,2 B

p1q
1,3 B

p1q
1,4

B
p1q
2,1 B

p1q
2,2 B

p1q
2,3 B

p1q
2,4

0 B
p1q
3,2 B

p1q
3,3 B

p1q
3,4

B
p1q
4,1 B

p1q
4,2 B

p1q
4,3 B

p1q
4,4

˛

‹

‹

‹

‚

and A2, . . . , Am, B2, . . . , Bm are arbitrary as long as they fulfil the equations

rA0, B0s “ 0

rA0, B1s ` rA1, B0s “ 0

rA0, B2s ` rA1, B1s ` rA2, B0s “ 0

¨ ¨ ¨

rA0, Bms ` rA1, Bm´1s ` ¨ ¨ ¨ ` rAm´1, B1s ` rAm, B0s “ 0

The first equation is already fulfilled by construction and we observe that
there are already some entries in the second one that already fulfil the equation,
in particular, p2, 1q, p3, 1q, p4, 1q, p3, 2q, p3, 4q. Furthermore, if we remember that
the commutator of two matrices always has trace zero, we get that from the
second block of equations we get at most n2´3a2´2ab´1 “ 6a2`4ab`b2´1.
The other blocks give at most n2 ´ 1 independent equations each.

In this way:

dimW ě2a2 ` 2ab` 2p8a2 ` 6ab` b2q ` 2pm´ 1qn2

´ p6a2 ` 4ab` b2 ´ 1q ´ pm´ 1qpn2 ´ 1q “

“12a2 ` 10ab` b2 ` pm´ 1qn2 `m
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Considering the conjugation action by GLnpF q on the scheme, name V all
the pairs pA1ptq, B1ptqq where A10 is similar to λI `A0 for certain λ P F . V con-
tains S “

 

pλI `GAptqG´1, µI `GBptqG´1
ˇ

ˇλ, µ P F,G P GLnpF q, pAptq, Bptqq PW
(

.
Hence:

dimV ědimS “ n2 ´ dimCpA0q ` dimW ` 2

ě18a2 ` 14ab` b2 `m` 2` pm´ 1qn2

Next, we can write pm ` 1qpn2 ` nq “ 18a2 ` 12ab ` 2b2 ` 6a ` 2b ` pm ´
1qn2 ` pm´ 1qp3a` bq.

Since V (the closure of V ) is a proper subvariety, if we determine that
dimV ě pm` 1qpn2`nq, we get that the m-th jet scheme over Xn is reducible.

Consequently, if pm` 1qpn2`nq ď 18a2` 14ab` b2`m` 2`pm´ 1qn2 we
have that it is reducible.

This is equivalent to b2 ` pm` 1´ 2aqb` 3pm` 1qa´m´ 2 ď 0.
After some computations, the result is obtained.

On the other hand even though it is not mentioned in that paper, the fol-
lowing corollary can be deduced from their proof and it brings information on
the log-canonical threshold:

Corollary 2.28.1. For all m ą 0 exists an integer Npmq such that for all
n ě Npmq the m-th jet scheme over Xn is not equidimensional and of dimension
ą pn2 ` nqpm` 1q.

Proof. In an obvious way, if we prove that there is a set with dimension strictly
greater than pm ` 1qpn2 ` nq, we get that it is not equidimensional, and this
comes immediately by inspecting the proof of Theorem 2.28:

It is equivalent at finding a, b such that b2`pm`1´2aqb`3pm`1qa´m´2 ă 0
and checking that if there exist a, b fulfilling it such that 3a ` b “ n, then for
all n1 ě n there exist a1, b1 fulfilling it.

Remark. Actually, the result is stronger, that is, there is a lower bound Dpn,mq
for the dimension of m-th jet scheme over Xn, such that, for all n ě N 1pmq,
dimX

pmq
m ě Dpn,mq ą pm`1qpn2`nq and Dpn,mq´pm`1qpn2`nq

nÑ8
ÝÑ `8.

3 New results concerning Xn

3.1 Generic reducedness
In this section we will prove the following theorem:

Theorem 3.1. Xn is generically reduced for all n ě 1.

Remembering the defining polynomials of In Ă Cra1,1, . . . , an,n, b1,1, . . . , bn,ns
(the ideal associated to Xn) computed in Proposition 2.1, we observe the fol-
lowing:
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Lemma 3.2. Given a polynomial g P Cra1,1, . . . , an,n, b1,1, . . . , bn,nszt0u, such
that contains, with a non-zero coefficient, a monomial not divisible by any mono-
mial of the type ai,kbk,j or ak,jbi,k, then g R

?
In.

Proof. It is an immediate consequence of all the monomials in the defining ideal
only containing monomials of the form ai,kbk,j or ak,jbi,k.

The following corollaries can be immediately deduced:

Corollary 3.2.1. Given a polynomial g P Cra1,1, . . . , an,nszt0u or g P Crb1,1, . . . , bn,nszt0u,
then g R

?
In.

Corollary 3.2.2. Given a polynomial g P Cra1,1, . . . , an,n, b1,1, . . . , bn,nszt0u
such that deg g ď 1, then g R

?
In.

Combining Corollary 3.2.1 with Theorem 2.2 leads to the following:

Corollary 3.2.3. Given a polynomial g P Cra1,1, ..., an,nszt0u and a polynomial
h P Crb1,1, ..., bn,nszt0u, then gh R

?
In.

Proof. It is an immediate consequence of the primality of the ideal
?
In and

Corollary 3.2.1. It can as well be deduced without a reference to Theorem 2.2,
simply from the equations, but it does not provide much to do so.

Now we will take a look at the Jacobian matrix of the ideal. We name the
partial derivative of fr,s by ai,j (i.e. Bfr,s

Bai,j
) as cr,si,j and of fr,s by bi,j (i.e. Bfr,s

Bbi,j
)

as dr,si,j .
Then we have:

cr,si,j “

$

’

’

’

&

’

’

’

%

br,r ´ bs,s if pi, jq “ pr, sq
bj,s if i “ r, j ‰ s

´br,i if i ‰ r, j “ s

0 otherwise

dr,si,j “

$

’

’

’

&

’

’

’

%

´par,r ´ as,sq if pi, jq “ pr, sq
´aj,s if i “ r, j ‰ s

ar,i if i ‰ r, j “ s

0 otherwise

Definition 3.3. Given a monomial g P Crb1,1, ..., bn,nszt0u, we define

degeq “
ÿ

0ďiďn

degi,i g

where degi,j g is defined as the degree of the polynomial respect to the variable
bi,j . This can obviously be extended to a general polynomial in that ring,
assigning the maximal degree for all the monomials with non-zero coefficients.
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Lemma 3.4.
det

ˆ

`

cr,si,j
˘

r‰s
i‰j

˙

R
a

In

Proof. First of all, take the matrix
`

cr,si,j
˘

r‰s
i‰j

with the lexicographical order in

both pairs of indices, pi, jq and pr, sq. In this matrix, we observe that out-
side the diagonal, degeqc

r,s
i,j “ 0, and for the elements of the diagonal we have

degeq c
i,j
i,j “ 1.

Therefore, we have that the product of the elements of the diagonal (which
is non-zero) has degeq

ś

i‰j

ci,ji,j “ n, which is strictly greater than for any other

permutation in the determinant.
Thus, det

`

cr,si,j
˘

r‰s
i‰j

P Crb1,1, ..., bn,nszt0u, and, consequently by Corollary 3.2.1,

det

ˆ

`

cr,si,j
˘

r‰s
i‰j

˙

R
?
In.

Proof of Theorem 3.1. By Lemma 3.4 and given that Xn is irreducible of di-

mension n2`n by Theorem 2.2, we have that codim

ˆ

In `

ˆ

det
`

cr,si,j
˘

r‰s
i‰j

˙˙

ą

n2 ´ n. Which implies that Xn is generically reduced.

There is actually a better result:

Proposition 3.5. The dense open set containing all closed points where B has
distinct eigenvalues is reduced.

Proof. Let us consider B with distinct eigenvalues λ1, . . . , λn and in diagonal

form. We see that if we evaluate det

ˆ

`

cr,si,j
˘

r‰s
i‰j

˙

ś

i‰j

pλi ´ λjq, so the Jacobian

has rank n2´n on those points. The rank of the Jacobian is not changed under
an scheme isomorphism, therefore, considering the action by GLnpCq, we get
the proposition.

In particular, this implies generic reducedness as well.

Proposition 3.6. The dense open set containing all closed points where B is
non-derogatory is regular and, therefore, reduced.

Proof. Let us consider A in Jordan Canonical form. If we name Jk the nilpotent
Jordan block of size k, then there exist λ1, . . . , λr P C pairwise different elements
and a1, . . . , ar ą 0 integers such that a1 ` ¨ ¨ ¨ ` ar “ n, such that B is a
block diagonal matrix of the form B “ diagpλ1Ia1 ` Ja1 , . . . , λrIar ` Jar q “
pbi,jq1ďi,jďn.

In this situation:

cr,si,j “

$

’

’

&

’

’

%

1 if i “ r, s “ j ` 1 ď n and bj,j “ bj`1,j`1

´1 if j “ s, r “ i´ 1 ě 0 and bi´1,i´1 “ bi,i
bj,j ´ bi,i if pi, jq “ pr, sq and bj,j ‰ bi,i
0 otherwise
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First, we will prove that det
`

cr,si,j
˘

br,r‰bs,s
bi,i‰bj,j

‰ 0, where the columns of the

matrix are indexed by the pi, jq and the rows by pr, sq, both with the same
ordering.

We observe that the diagonal is
ś

tpi,jq|bi,i‰bj,ju

pbj,j ´ bi,iq ‰ 0.

We will prove that all the other products in the determinant vanish.
Let us pick the column pi, jq. If j ` 1 ď n and bj,j “ bj`1,j`1, then bi,i ‰

bj`1,j`1, so for the pi, jq column, we can get the entry of the pi, j`1q row which
has a value of 1. In this case, for the pi, j`1q column we cannot get the diagonal
element. If i ´ 1 ě 0 and bi´1,i´1 “ bi,i, then bi´1,i´1 ‰ bj,j and for the pi, jq
column we can get the entry of the pi ´ 1, jq entry that has a value of ´1. In
this case, for the pi´ 1, jq column we cannot get the diagonal element.

A non-vanishing product would be equivalent to this process having a cycle,
but either the i decreases or the j increases, so we can never have a cycle and
all products, apart from the diagonal one, vanish, as we wanted to show.

Now, given pk, lq such that bk,k “ bl,l, l ` 1 ď n and bj,j “ bj`1,j`1, assume
that all the columns with indexes in

S “ tpi, jq | bi,i ‰ bj,juYtpi, jq | bi,i “ bj,j , j`1 ď n, bj,j “ bj`1,j`1 and pi, jq ă pk, lqu,

where the ordering is the lexicographic order, are linearly independent.
ck,l`1
k,l “ 1 and for all pi, jq P S, ck,l`1

i,j “ 0. This proves that the columns
with indexes in S Y tpk, lqu are linearly independent.

In this way, we have proven that the columns with indexes in

I “ tpi, jq | bi,i ‰ bj,ju Y tpi, jq | bi,i “ bj,j , j ` 1 ď n, bj,j “ bj`1,j`1u

are linearly independent.
Since the cardinality of I is n2 ´ n, we get that this closed point is reduced.
Through the action ofGLnpCq we get that the open set that includes all

closed points where B is non-derogatory is reduced.

Corollary 3.6.1. Xn is regular in codimension 1.

Proof. The result will follow from the fact that the complementary of the set of
closed points where A and B are non-derogatory has codimension at least 2.

We will do this working on reduced associated schemes, since the dimension
does not change.

This subvariety is a finite union of sets of the following form:
B derogatory commuting with A, which is derogatory, has 0 ď r ď n differ-

ent eigenvalues and has a concrete Jordan Canonical form. That is, there exists
g P GLnpCq such that:
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gAg´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ1 ε1,2 0 0 ¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨ 0 0
0 λ1 ε2,3 0 ¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ λ1 εa1´1,a1 0 0 0 ¨ ¨ ¨ 0 0
0 0 0 0 ¨ ¨ ¨ 0 λ1 0 0 0 ¨ ¨ ¨ 0 0
0 0 0 0 ¨ ¨ ¨ 0 0 λ2 εa1`1,a1`2 0 ¨ ¨ ¨ 0 0
0 0 0 0 ¨ ¨ ¨ 0 0 0 λ2 εa1`2,a1`3 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨ λr εn´1,n

0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨ 0 λr

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for arbitrary distinct λ1, . . . , λr specific εi,j P t0, 1u that make it derogatory.
If there are strictly less than n´ 1 distinct eigenvalues, the set smaller than

n2 ´ n´ 2, so we are done with it.
If we consider A in the Jordan Canonical form, the case of n ´ 1 distinct

eigenvalues λ2, . . . , λn gives us the following:

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

λ2 0 0 0 ¨ ¨ ¨ 0
0 λ2 0 0 ¨ ¨ ¨ 0
0 0 λ3 0 ¨ ¨ ¨ 0
0 0 0 λ4 ¨ ¨ ¨ 0
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ λn

˛

‹

‹

‹

‹

‹

‹

‹

‚

Which means that a generic rB commuting with A has the form

rB “

¨

˚

˚

˚

˚

˚

˚

˚

˝

b1,1 b1,2 0 0 ¨ ¨ ¨ 0
b2,1 b2,2 0 0 ¨ ¨ ¨ 0
0 0 b3,3 0 ¨ ¨ ¨ 0
0 0 0 b4,4 ¨ ¨ ¨ 0
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ bn,n

˛

‹

‹

‹

‹

‹

‹

‹

‚

If B is derogatory and commuting with a matrix similar to A, the dimension
of this set is n2 ´ n´ 2. Which proves the corollary.

Remark. When considering the associated reduced scheme, regular in codimen-
sion one was already known for the commuting variety of a reductive Lie algebra
as we exposed in the introduction, Theorem 1.10 [Pop08]. When considering
the associated reduced scheme of Xn, there is a simpler prove of this result.

Lemma 3.7. Xred
n , the associated reduced scheme to Xn, fulfils R1.
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Proof. As we saw in the proof of Theorem 2.2, there is a morphism

φ : Pn´1 ˆRnpCq Ñ Xred
n

pf,Bq ÞÑ pfpBq, Bq

where RnpCq is the variety of non-derogatory square nˆn matrices over C and
Pn´1 is the set of polynomials of degree at most n´ 1 over C.

This is injective. So the points of the image, which are the ones where B is
non-derogatory, are smooth.

We know that the complementary of the subvariety where A or B is non-
derogatory has dimension at most n2 ´ n´ 2. Which proves the result.

It is interesting to notice that Corollary 3.6.1 provides another proof of the
reducedness of X2:

Corollary 3.7.1 (Corollary to Corollary 3.6.1). X2 is reduced.

To prove this, let us remember Krull’s height theorem:

Theorem 3.8 (Krull’s height theorem). (see [AM94]) Let A be a Noetherian
ring, x1, . . . , xr P A. Then any minimal prime p belonging to px1, . . . , xrq has
height ď r.

Proof. It is immediate from the fact that the defining ideal has a minimal set
of generators of size n2 ` n´ 1 “ n2 ` 1 “ 5 so by Krull’s height theorem, the
result follows.

Remark. Analogously, if we proved regularity in codimension n, the reducedness
of Xn`1 would follow. However, there is another remarkable result that stops
us from following this way:

Proposition 3.9. Xn is not regular in codimension 4.

Proof. Take the closed points of the form pA,Bq where A and B are both di-
agonalisable and they both have n ´ 1 distinct eigenvalues. It is immediate to
check that the Jacobian matrix has rank at most n2 ´ n ´ 2, so these are all
non-regular points and the codimension is 4.

Remark. This bound is reached for X2 and the reduced singular locus is exactly
the one used in the proof, that is, in the case of n “ 2, the pairs of scalar
matrices (this can easily be checked using computational algebra programs such
as Macaulay2 [GS]). For X3, the singular locus has codimension 4 as well
([Hre06b]).

Remark. It is just speculation, but this result might hint to Xn for n ě 5
behaving in a fundamentally different way than for n ď 4.
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Comment on the conjecture

A direct consequence of the Theorem 3.1 that we already announced in the
introduction is the following proposition:

Proposition 3.10. If Xn is Cohen-Macaulay, then it is reduced.

This implication comes from Serre’s criteria:

Theorem 3.11. Given A a Noetherian commutative ring, Serre’s conditions
for it are:

• Rk: Ap is a regular local ring for any prime ideal p Ă A such that
heightppq ď k.

• Sk: depthAp ě inftk,heightppqu for any prime p.

Then:

• A is reduced iff A satisfies R0 and S1.

• A is normal iff A satisfies R1 and S2.

• A is Cohen-Macauly iff A satisfies Sk for all k ě 0

Proof of Proposition 3.10. It is immediate from Theorem 3.11: R0 is generic
reducedness and Cohen-Macaulay is equivalent to Sk for all k.

Proposition 3.10 was a previously known result (see Problem 2.7.1 [Vas98]),
however, the argumentation was different.

R1 was already known for the reduced associated scheme (Theorem 1.10),
which already enabled us to assert the following proposition:

Proposition 3.12. If Xn is Cohen-Macaulay, then it is reduced and normal.

Proof. We have that, by Proposition 3.10, if Xn is Cohen-Macaulay, then it
is reduced and, therefore by Theorem 1.10 satisfies Serre’s condition R1 and,
consequently, it is normal.

Remark. We have also proven Theorem 1.10 in our specific case (Lemma 3.7) but
we have further proven a better result for Xn which implies it (Corollary 3.6.1).

3.2 Jet schemes
Let us think about the m-th jet scheme over Xn, that is X

pmq
n .

We know, as we explained in the section of known results (Proposition 2.23)
and as Sethuraman and Šivic showed in [Sv09], that the open set where A0

is regular, which we have been calling U pmqn is irreducible of dimension pm `

1qpn2 ` nq.
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Therefore, as they did with Xpmq3 , the main idea is to reduced the problem
of irreducibility of Xpmqn to check the belonging of some pAptq, Bptqq, with a
concrete description, to the closure of U pmqn .

Thanks to Lemma 2.26 and Corollary 2.27.1, for the case n “ 4 it is enough
to check when A0 is nilpotent (it can be reduced to A0 and B0 both nilpotent,
but we do not make use of it). Despite the fact that we cannot apply those results
to n ě 5 yet, they point towards the fact that studying the belonging or not of
the elements where A0 is nilpotent entails some interest towards understanding
the jet schemes.

Our main method consists in proving that the closed subvariety where A0

is in a specific nilpotent Jordan Canonical form is irreducible. In this case, the
set

SA0
“ tpA1ptq, B1ptqq | Dg P GLnpF q, λ P F such that A10 “ gA0g

´1 ` λIu

is irreducible. Finally, we have, as can be seen in the proof of Theorem 2.2,
that there is a non-derogatory matrix B0 commuting with A0. Taking Aptq “
A0 ` 0t ` ¨ ¨ ¨ ` 0tm and Bptq “ B0 ` 0t ` ¨ ¨ ¨ ` 0tm, we have that this pair
belongs to U pmqn and, therefore, SA0 X U

pmq
n ‰ ∅. Which, by the irreducibility

of SA0 , implies SA0 Ă U
pmq
n .

We also use similar methods to set bounds on the dimension of the jet
schemes.

3.2.1 1st jet scheme

Since the first jet scheme only involves four matrices it is much easier to treat
than the other jet schemes. As we have explained, we will try to prove the
irreducibility of the closed subvarieties where A0 is in Jordan Canonical Form,
is nilpotent and has a specific Jordan structure. We have named each subsection
with the partition of n that corresponds to the Jordan structure studied in that
subsection.

We adopt the convention that Jpa1,...,arq where a1`¨ ¨ ¨`ar “ n is the Jordan
Canonical nilpotent matrix with r blocks of size a1, . . . , ar.

3.2.1.1 Case p1, . . . , 1q

Proposition 3.13. The reduced scheme associated to

tpAptq, Bptqq P Xp1qn | A0 “ 0u

is irreducible.

To prove this, we will first notice the following lemma:

Lemma 3.14. As reduced schemes:

tpAptq, Bptqq P Xpmqn | A0 “ 0u » Xpm´1q
n ˆMatpn, F q
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Proof. This follows immediately from the defining equations of Xpmqn .

Proof of Proposition 3.13. By Theorem 2.2 Xp0qn “ Xn is irreducible and, there-
fore, Xpm´1q

n ˆMatpn, F q is as well.

Corollary 3.14.1 (Corollary of Proposition 3.13). For all n ě 1

tpAptq, Bptqq P Xp1qn | A0 “ 0u Ă U
p1q

n

3.2.1.2 Case p2, 1, n´2. . . , 1q

Proposition 3.15. The reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jp2,1,...,1qu

is irreducible for n “ 4 and given

S “ tpAptq, Bptqq P Xp1qn | Dg P GLnpF q, λ P F s.t. gA0g
´1 ` λF “ Jp2,1,...,1qu

dimS ď 2pn2 ` nq.

For the proof of this proposition we have used the computation engine
Macaulay2 [GS]. However, it can only do computations over the base field
Q. Therefore we need to prove the following:

Lemma 3.16. Given an ideal I Ă Qrx1, . . . , xns then pI : px1qq “ I implies
that, if J “ ICrx1, . . . , xns, pJ : px1qq “ J .

There are obviously more general results related to this one, but we do not
need them.

Proof. First of all, let us notice that, considering the ideal pIt ` x1p1 ´ tqq Ă
Qrx1, . . . , xn, ts, then pI : px1qq “

1
x1
ppIt`x1p1´tqqXQrx1, . . . , xnsq. This is the

basis of the algorithm that computes the quotient ideal. Given a Gröbner basis
of pIt`x1p1´tqq with a monomial order such that any monomial with t raised to
a positive power is greater than any with t0, then pIt`x1p1´tqqXQrx1, . . . , xns
is generated by the elements of the Gröbner basis that do not contain t (whose
monomials with t to a positive power have a zero coefficient).

Finally, we use the fact that Gröbner basis are preserved under scalar ex-
tension between fields, i.e. the inclusion of a Gröbner basis of pIt`x1p1´ tqq Ă
Qrx1, . . . , xn, ts with a certain monomial odering into Crx1, . . . , xn, ts is a Gröb-
ner basis of pIt`x1p1´ tqqCrx1, . . . , xn, ts with the same monomial ordering on
Crx1, . . . , xn, ts.

This last statement comes from the fact that a field extension is a faithfully
flat (and therefore flat) module over the base field (which can be seen since the
morphism between the prime spectra is bijective and, in particular, surjective,
a condition for faithful flatness). This, combined with the following theorem:
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Theorem 3.17. ([BGS91]) A Gröbner basis over a polynomial ring Arx1, . . . , xns
is preserved under the scalar extension to Brx1, . . . , xns, where B is an A-
algebra, if and only if B is a flat A-algebra.

Proof of Proposition 3.15: irreducibility for n “ 4. Even though the actual proof
is only for n “ 4, we work with general n, given that we will use it to prove a
bound on the dimension for arbitrary n. It is equivalent to check for A0 with
the following shape:

A0 “

¨

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 1
0 ¨ ¨ ¨ 0 0
...

...
...

...
0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

Now we compute the commutator of A0 with a generic matrix pbi,jq1ďi,jďn:

rA0, pbi,jqs “

¨

˚

˚

˚

˝

bn,1 ¨ ¨ ¨ bn,n´1 bn,n ´ b1,1
0 ¨ ¨ ¨ 0 ´b2,1
...

...
...

...
0 ¨ ¨ ¨ 0 ´bn,1

˛

‹

‹

‹

‚

This means that B0 must have the following form for some values bi,j :

B0 “

¨

˚

˚

˚

˚

˚

˝

b1,1 b1,2 ¨ ¨ ¨ b1,n´1 b1,n
0 b2,2 ¨ ¨ ¨ b2,n´1 b2,n
...

...
...

...
0 bn´1,2 ¨ ¨ ¨ bn´1,n´1 bn´1,n

0 0 ¨ ¨ ¨ 0 b1,1

˛

‹

‹

‹

‹

‹

‚

“

¨

˝

B1,1 B1,2 B1,3

0 B2,2 B2,3

0 0 B1,1

˛

‚

We see that it is convenient to work with block matrices.
Now we consider two generic matrices A1 and B1 as block matrices

p1` pn´ 2q ` 1q ˆ p1` pn´ 2q ` 1q:

A1 “

¨

˝

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

˛

‚ B1 “

¨

˝

B11,1 B11,2 B11,3
B12,1 B12,2 B12,3
B13,1 B13,2 B13,3

˛

‚

33



Now we compute the second matrix of equations (rA1, B0s ` rA0, B1s):

rA1, B0s`rA0, B1s “

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rA1,1, B1,1s

´B1,2A2,1 ´B1,3A3,1

A1,1B1,2 `A1,2B2,2

´B1,1A1,2 ´B1,2A2,2

´B1,3A3,2

A1,1B1,3 `A1,2B2,3

`rA1,3, B1,1s ´B1,2A2,3

´B1,3A3,3

A2,1B1,1 ´B2,2A2,1

´B2,3A3,1

A2,1B1,2 `A2,2B2,2

´B2,2A2,2 ´B2,3A3,2

A2,1B1,3 `A2,2B2,3

`A2,3B1,1 ´B2,2A2,3

´B2,3A3,3

rA3,1, B1,1s
A3,1B1,2 `A3,2B2,2

´B1,1A3,2

A3,1B1,3 `A3,2B2,3

`rA3,3, B1,1s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˝

B13,1 B13,2 B13,3 ´B
1
1,1

0 0 ´B12,1
0 0 ´B13,1

˛

‚

Where we can deduce that B13,1 “ ´rA1, B0s1,1, B13,2 “ ´rA1, B0s1,2, B12,1 “
rA1, B0s2,3 and B13,3 “ B11,1 ´ rA1, B0s1,2. Where, given a (block) matrix M ,
Mi,j represents the pi, jq-th entry (block).

Which leaves us with the following equations:
$

’

’

’

’

&

’

’

’

’

%

rA1, B0s1,1 ` rA1, B0s3,3 “ 0
rA1, B0s2,1 “ 0
rA1, B0s2,2 “ 0
rA1, B0s3,1 “ 0
rA1, B0s3,2 “ 0

Now we notice that the trace of a commutator always vanishes, which means
that if the third equation is fulfilled, then the first is. Furthermore, we observe
that B1,1, A3,1 P C, which means that they commute, and the fourth equation
is always fulfilled.

Renaming B̃2,2 :“ B1,1I´B2,2 we obtain that the defining equations are:
$

’

&

’

%

B̃2,2A2,1 `A3,1B2,3

A3,2B̃2,2 `A3,1B1,2
”

A2,2, B̃2,2

ı

`A2,1B1,2 ´B2,3A3,2

If we rename again A “ A2,2, B “ B̃2,2, α “ A2,1, β “ B2,3, α
1 “ A3,2, β

1 “

B1,2, a “ A3,1:
$

&

%

Bα` aβ “ 0
α1B ` aβ1 “ 0
rA,Bs ` αβ1 ´ βα1 “ 0

Therefore, proving the irreducibility of the variety defined by this equations
is equivalent at proving the primality of the ideal

I “

¨

˝

Bα` aβ
α1B ` aβ1

rA,Bs ` αβ1 ´ βα1

˛

‚Ă Cra, tαi, α1i, βi, β1iui, tbi,j , ai,jui,js
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If pI : aq “ I, then we can localise at a using Proposition 2.8, which leaves
us with the following equations:

$

’

’

&

’

’

%

β “ ´ 1
aBα

β1 “ ´ 1
aα
1B

rA,Bs ´ 1
aαα

1B ` 1
aBαα

1 “
“

A´ 1
aαα

1, B
‰

“ 0
a ‰ 0

Renaming rA “ A ´ 1
aαα

1, we get that the resultant equations are the ones
of the commuting variety:

r rA,Bs “ 0

which is irreducible.
Furthermore, looking carefully, it can be noticed that the dimension is

m2 ` 3m` 1 (where m “ n´ 2).
The only thing that remains to be checked is that pI : aq “ I. This can be

done for m “ 2 using Macaulay2 [GS] and a code such as the following:

n=4;
m = n-2;
R = QQ[a_(1,1) .. a_(m,m), b_(1,1) .. b_(m,m),

al_1 .. al_m, alp_1 .. alp_m, be_1 .. be_m,
bep_1 .. bep_m, c];

A = transpose genericMatrix(R, a_(1,1), m, m);
B = transpose genericMatrix(R, b_(1,1), m, m);
alpha = genericMatrix(R, al_1, m, 1);
alphap = genericMatrix(R, alp_1, 1, m);
beta = genericMatrix(R, be_1, m, 1);
betap = genericMatrix(R, bep_1, 1, m);

I = ideal(A*B-B*A + alpha*betap - beta*alphap,
B*alpha + c*beta, alphap*B + c*betap);

time J = quotient(I, ideal(c));

time J == I

On the other hand, even though we do not have irreducibility results for
higher n, we can obtain bounds on its dimension.

To prove this, we will need another known result:

Theorem 3.18. (combination of [Hul81] and [Neu89]) Given an algebraically
closed field F and two integers n ě r ě 0, the scheme defined by

Z “ tpA,Bq P Matpn, F qˆ2 | rankrA,Bs ď ru
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is irreducible for r ‰ 1 and r “ 1, n “ 2, for r “ 1 it has n ´ 1 irreducible
components and its dimension is

dimZ “

"

n2 ` n if r “ 0
n2 ` 2rn´ r2 if r ě 1

We also need to prove the following lemma:

Lemma 3.19. Given an algebraically closed field F , the dimension of the
scheme

!

pA,B, α, α1T , β, β1T q P Matpn, F qˆ2 pFmq
4
ˇ

ˇ

ˇ
βα1 ´ αβ1 “ rA,Bs

)

is at most m2 ` 4m` 1.

Proof. Using Theorem 3.18 we divide the associated reduced scheme in three
subschemes:

If rankrA,Bs “ 2, we get that dim ImrA,Bs “ dim ImrA,BsT “ 2 and and
ImrA,Bs “ xα, βy (that is, the image of the automorphism described by rA,Bs
is generated by α and β), and ImrA,BsT “ xα1T , β1T y. Consider the projection
from this scheme to pA,B, α, α1T q. We will bound the dimension of the fibres.
Now, consider a concrete 0 ‰ α P ImrA,Bs and a concrete 0 ‰ α1T P ImrA,BsT .
Then, βα1´αβ1 “ rβα1´αrβ1 iff prβ´ βqα1 “ αprβ1´ βq iff exists λ P F such that
rβ “ β`λα and rβ1 “ β1`λα1. Consequently, the fibers have dimension at most
1, and we can bound the dimension of this subscheme by m2 ` 4m` 1.

If rankrA,Bs “ 1. A rank one matrix is a matrix of the type uvT ‰ 0
for some vectors u, v, both non-zero. If we have uvT “ u1v1T , then there is a
constant λ P F z0 such that u1 “ λu and v “ λv1. Therefore, the dimension can
be bounded by pm2 ` 2m´ 1q ` p2m` 1q “ m2 ` 4m.

If rankrA,Bs “ 0, the dimension can be bounded by pm2`mq` p2m` 1q “
m2 ` 3m` 1.

Corollary 3.19.1. Given an algebraically closed field F , the dimension of the
scheme
!

pA,B, α, α1T , β, β1T q P Matpn, F qˆ2 pFmq
4
ˇ

ˇ

ˇ
βα1 ´ αβ1 “ rA,Bs,detB “ 0

)

is at most m2 ` 4m.

Proof. A parallel proof to the one from Lemma 3.19.

Proof of Proposition 3.15: dimension bound. Given the equations expression that
we reached in the previous proof:

$

&

%

Bα` aβ “ 0
α1B ` aβ1 “ 0
rA,Bs ` αβ1 ´ βα1 “ 0
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We can consider that a “ 0, if a ‰ 0 the elements belong to U
pmq

n , which
leaves us with the following equations:

$

&

%

Bα “ 0
α1B “ 0
rA,Bs “ βα1 ´ αβ1

If B is invertible: Let us take: B̃ “ I, α̃ “ ´B´1pβ ´ αq, α̃1 “ ´pβ1 ´
α1qB´1, Ã “ α̃α̃1

pA,B, α, α1, β, β1, a “ 0q ÞÑ pA` xÃ,B ` xB̃, α` xα̃, α1 ` xα̃1, β, β1, x2q

”

A` xÃ,B ` xB̃
ı

“ βpα1 ` xα̃1q ´ pα` xα̃qβ1

pB ` xB̃qpα` xα̃q “ x2β

pα1 ` xα̃1qpB ` xB̃q “ x2β1

Consequently, this points belong to the closure of the points where a ‰ 0.
Now we can consider detB “ 0, which leaves us with:

$

’

’

&

’

’

%

Bα “ 0
α1B “ 0
rA,Bs “ βα1 ´ αβ1

detB “ 0

We name as ĂW the associated scheme.
By Corollary 3.19.1, dim ĂW ď m2 ` 4m.
Therefore the dimension of the closed subscheme of the 1st jet scheme where

A0 is in the predefined Jordan Canonical Form and ap1qn,1 “ 0 (the pn, 1q-th entry

of the matrix A1, which we renamed a) and det
´

pb
p0q
i,j q1ăi,jăn ´ b

p0q
1,1

¯

“ 0 (which
is the determinant of the matrix that we named B), which we name W , can be
bounded in the following manner:

dimW “ pdimCpA0qq ` p2m` 3q ` p2q ` dim W̃
Where CpA0q is the centraliser of A0. The first summand comes from B1, the

second from A1 (the elements that are free and do not appear in the generators
of the defining ideal of W̃ ) and the third from B0 (analogously the elements
that do not appear in the generators of the defining ideal of W̃ ).

If now we consider the image of the following morphism, which we name V :

φ : W ˆGLnpCq ˆ C Ñ V
ppAptq, Bptqq, g, λq ÞÑ pgAptqg´1 ` λI, gBptqg´1q

dimV “ dimW ` n2 ` 1 ´ dimCpA0q “ n2 ` 2m ` 3 ` 2 ` dim W̃ ď

n2 ` 2m` 5`m2 ` 4m “ 2n2 ` 2n´ 3 “ 2pn2 ` nq ´ 3 ă 2pn2 ` nq.

3.2.1.3 Case (even n) pn{2, n{2q

Proposition 3.20. For even n, the reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn{2,n{2qu
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is irreducible if and only if Xp1qn{2 is irreducible.

In particular, it is irreducible for n ď 6 (and with a later result, for n ď 8).

Proof. It is equivalent if we check that for A0 with the following form:

A0 “

ˆ

0n{2 In{2
0n{2 0n{2

˙

Now we compute the commutator with a generic block matrix pBi,jq (with
the same block dimensions as A0):

rA0, pBi,jqs “

ˆ

B2,1 B2,2 ´B1,1

0n{2 ´B2,1

˙

Equating this to zero, leads to B0 having the following form:

B0 “

ˆ

B1,1 B1,2

0n{2 B1,1

˙

Next, if we compute rA1, B0s ` rA0, B1s for generic matrices A1, B1, we get
the following:

rA1, B0s ` rA0, B1s “

¨

˝

rA1,1, B1,1s

´B1,2A2,1 `B
1
2,1

A1,1B1,2 ` rA1,2, B1,1s

´B1,2A2,2 `B
1
2,2 ´B

1
1,1

rA2,1, B1,1s A2,1B1,2 ` rA2,2, B1,1s ´B
1
2,1

˛

‚

Hence, it is irreducible iff the following is irreducible:
"

rA2,1, B1,1s “ 0
rA1,1 `A2,2, B1,1s ` rA2,1, B1,2s “ 0

Which is irreducible iff the following is irreducible:
"

rA10, B
1
0s “ 0

rA11, B
1
0s ` rA

1
0, B

1
1s “ 0

3.2.1.4 Case r � n, pn{r, r. . ., n{rq

It can be realised that the result in the previous section fits into a more general
one:

Proposition 3.21. For r � n, the reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn{r,...,n{rqu

is irreducible if and only if Xpr´1q
n{r is irreducible.
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Proof. We will work again with block matrices and the proof is really similar to
the previous one. It is equivalent to consider A0 with the following shape:

A0 “

¨

˚

˚

˚

˚

˚

˝

0n{r In{r 0n{r ¨ ¨ ¨ 0n{r
0n{r 0n{r In{r ¨ ¨ ¨ 0n{r
...

...
...

...
...

0n{r 0n{r 0n{r ¨ ¨ ¨ In{r
0n{r 0n{r 0n{r ¨ ¨ ¨ 0n{r

˛

‹

‹

‹

‹

‹

‚

Now, we compute the commutator with a generic block matrix pBi,jq (with
the same block structure as A0):

rA0, pBi,jqs “

¨

˚

˚

˚

˝

B2,1 B2,2 ´B1,1 B2,3 ´B1,2 ¨ ¨ ¨ B2,r ´B1,r´1

...
...

...
...

...
Br,1 Br,2 ´Br´1,1 Br,3 ´Br´1,2 ¨ ¨ ¨ Br,r ´Br´1,r´1

0n{r ´Br,1 ´Br,2 ¨ ¨ ¨ ´Br,r´1

˛

‹

‹

‹

‚

From where we can deduce B0 has the following form:

B0 “

¨

˚

˚

˚

˚

˚

˝

B1,1 B1,2 ¨ ¨ ¨ B1,r´1 B1,r

0n{r B1,1 ¨ ¨ ¨ B1,r´2 B1,r´1

...
...

...
...

...
0n{r 0n{r ¨ ¨ ¨ B1,1 B1,2

0n{r 0n{r ¨ ¨ ¨ 0n{r B1,1

˛

‹

‹

‹

‹

‹

‚

Now we take a look at the other set of equations and we name them:
rA1, B0s ` rA0, B1s “M “ pMi,jq.

It is easy to check that

Mi,j “

j
ÿ

k“1

Ai,kB1,j´k`1 ´

n
ÿ

k“i

B1,k´i`1Ak,j
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Now we operate with the equations:

t
ÿ

l“1

Mn´t`l,l “

t
ÿ

l“1

˜

l
ÿ

k“1

An´t`l,kB1,l´k`1 ´

n
ÿ

k“n´t`l

B1,k´n`t´l`1Ak,l

¸

“

“

t
ÿ

l“1

˜

l
ÿ

k“1

An´t`l,l´k`1B1,k ´

t´l`1
ÿ

k“1

B1,kAk`n´t`l´1,l

¸

“

“

t
ÿ

k“1

˜

t
ÿ

l“k

An´t`l,l´k`1B1,k ´B1,k

t´k`1
ÿ

l“1

Ak`n´t`l´1,l

¸

“

“

t
ÿ

k“1

t´k`1
ÿ

l“1

pAn´t`l`k´1,lB1,k ´B1,kAk`n´t`l´1,lq “

“

t
ÿ

k“1

«˜

t´k`1
ÿ

l“1

An´t`l`k´1,l

¸

, B1,k

ff

where we have applied the corresponding index changes and the adequate for-
mula for the swapping of the summations.

Now, renaming:

Ai :“
i`1
ÿ

l“1

An´i`l´1,l Bj :“ B1,j`1

We obtain that the initial scheme is irreducible iff the one describe the fol-
lowing equations is:

rA0, B0s “ 0

rA1, B0s ` rA0, B1s “ 0

rA2, B0s ` rA1, B1s ` rA0, B2s “ 0

¨ ¨ ¨

rAr´1, B0s ` rAr´2, B1s ` ¨ ¨ ¨ ` rA1, Br´2s ` rA0, Br´1s “ 0

which are the same generators as the defining ideal for the r-th jet scheme for
n1 “ n{r.

3.2.1.5 Case pn´ 1, 1q

Proposition 3.22. The reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn´1,1qu

is irreducible for all n ą 1

Proof. A0 has the following form:

40



A0 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 1 0
0 0 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

Now, let us compute its commutator with a generic matrix pbi,jq:

rA0, pbi,jqs “

¨

˚

˚

˚

˚

˚

˚

˚

˝

b2,1 b2,2 ´ b1,1 b2,3 ´ b1,2 ¨ ¨ ¨ b2,n´1 ´ b1,n´2 b2,n
b3,1 b3,2 ´ b2,1 b3,3 ´ b2,2 ¨ ¨ ¨ b3,n´1 ´ b2,n´2 b3,n
...

...
...

...
...

...
bn´1,1 bn´1,2 ´ bn´2,1 bn´1,3 ´ bn´2,2 ¨ ¨ ¨ bn´1,n´1 ´ bn´2,n´2 bn´1,n

0 ´bn´1,1 ´bn´1,2 ¨ ¨ ¨ ´bn´1,n´2 0
0 ´bn,1 ´bn,2 ¨ ¨ ¨ ´bn,n´2 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

Which leads to:

B0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b1,1 b1,2 b1,3 ¨ ¨ ¨ b1,n´2 b1,n´1 b1,n
0 b1,1 b1,2 ¨ ¨ ¨ b1,n´3 b1,n´2 0
0 0 b1,1 ¨ ¨ ¨ b1,n´4 b1,n´3 0
...

...
...

...
...

...
...

0 0 0 ¨ ¨ ¨ b1,1 b1,2 0
0 0 0 ¨ ¨ ¨ 0 b1,1 0
0 0 0 ¨ ¨ ¨ 0 bn,n´1 bn,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

´

b
p0q
i,j

¯

1ďi,jďn

Which is equivalent to:

b
p0q
i,j “

$

&

%

0 if i “ n, j ă n´ 1 or i ă n, j ă i or 1 ă i ă n, j “ n
bi,j if i “ n, j ě n´ 1 or i “ 1, j “ n
b1,j´i`1 otherwise

If we write now M “ rA1, B0s “ pMi,jq, we want to prove that @k P
t1, . . . , n´ 2u:

k´1
ÿ

l“0

Mn´k`l,l`1 “ 0

Expanding each summand:

Mn´k`l,l`1 “

l`1
ÿ

h“1

an´k`l,hb1,l`2´h ´

n´1
ÿ

h“n´k`l

ah,l`1b1,h´n`k´l`1

If we now put that into the summation that we want to prove that vanishes:
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k´1
ÿ

l“0

Mn´k`l,l`1 “

k´1
ÿ

l“0

˜

l`1
ÿ

h“1

an´k`l,hb1,l`2´h ´

n´1
ÿ

h“n´k`l

ah,l`1b1,h´n`k´l`1

¸

“

k
ÿ

h“1

˜

k´1
ÿ

l“h´1

an´k`l,l`2´h ´

k´h
ÿ

l“0

an´k`l`h´1,l`1

¸

b1,h “ 0

Where we have used:
l`1
ÿ

h“1

an´k`l,hb1,l`2´h “

l`1
ÿ

h“1

an´k`l,l`2´hb1,h

n´1
ÿ

h“n´k`l

ah,l`1b1,h´n`k´l`1 “

k´l
ÿ

h“1

ah`n´k`l´1,l`1b1,h

k´1
ÿ

l“0

l`1
ÿ

h“1

“

k
ÿ

h“1

k´1
ÿ

l“h´1

k´1
ÿ

l“0

k´l
ÿ

h“1

“

k
ÿ

h“1

k´h
ÿ

l“0

k´1
ÿ

l“h´1

an´k`l,l`2´h “

k´h
ÿ

l“0

an´k`l`h´1,l`1

This implies that the scheme is irreducible iff the following ideal is prime.

I “

¨

˝

fn,1 “ an,1pb1,1 ´ bn,nq ´ bn,n´1an´1,1

fn´1,n “ an´1,1b1,n ` an´1,npbn,n ´ b1,1q
fn,n “ an,1b1,n ´ bn,n´1an´1,n

˛

‚

And I is prime in Cran,1, an´1,1, an´1,n, b1,n, bn,n´1, b1,1, bn,ns iff J is prime
in Cran,1, an´1,1, an´1,n, b1,n, bn,n´1, βs:

J “

¨

˚

˝

f1 “ an,1β ` bn,n´1an´1,1

f2 “ an´1,1b1,n ` an´1,nβ

f3 “ an,1b1,n ´ bn,n´1an´1,n

˛

‹

‚

Now, if we rename a1 :“ an,1, a2 :“ an´1,n, a3 :“ an´1,1, b1 :“ bn,n´1,
b2 :“ b1,n, b3 :“ ´β. We get the following ideal:

J “

¨

˚

˝

´a1b3 ` b1a3

a3b2 ´ a2b3

a1b2 ´ a2b1

˛

‹

‚

Which are the same generators as the ones for the defining ideal of X2, which
is prime (Proposition 2.7).
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3.2.1.6 Case pn´ r, 1, r. . ., 1q

While studying the case pn´2, 1, 1q we realised that that case and the case pn´
1, 1q fit into a major result. Even though we have omitted the case pn´ 2, 1, 1q
for this reason, we have kept the case pn´ 1, 1q as a reference for the process of
deduction of this proposition:

Proposition 3.23. Given r ě 0, the reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn´r,1, r...,1qu

is irreducible for all n ě r ` 2 if and only if it is for some n ě r ` 2.

Proof. A0 has the following shape:

A0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Where the first block is of dimension n´ r and the second, of dimension r.
Now we compute its commutator with a generic matrix pbi,jq:

rA0, pbi,jqs “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b2,1 b2,2 ´ b1,1 b2,3 ´ b1,2 ¨ ¨ ¨ b2,n´r ´ b1,n´r´1 b2,n´r`1 ¨ ¨ ¨ b2,n
b3,1 b3,2 ´ b2,1 b3,3 ´ b2,2 ¨ ¨ ¨ b3,n´r ´ b2,n´r´1 b3,n´r`1 ¨ ¨ ¨ b3,n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

bn´r,1 bn´r,2 ´ bn´r´1,1 bn´r,3 ´ bn´r´1,2 ¨ ¨ ¨ bn´r,n´r ´ bn´r´1,n´r´1 bn´r,n´r`1 ¨ ¨ ¨ bn´r,n
0 ´bn´r,1 ´bn´r,2 ¨ ¨ ¨ ´bn´r,n´r´1 0 ¨ ¨ ¨ 0

0 ´bn´r`1,1 ´bn´r`1,2 ¨ ¨ ¨ ´bn´r`1,n´r´1 0 ¨ ¨ ¨ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 ´bn,1 ´bn,2 ¨ ¨ ¨ ´bn,n´r´1 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Which tells us that B0 has the following shape:

B0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b1,1 b1,2 b1,3 ¨ ¨ ¨ b1,n´r´1 b1,n´r b1,n´r`1 ¨ ¨ ¨ b1,n
0 b1,1 b1,2 ¨ ¨ ¨ b1,n´r´2 b1,n´r´1 0 ¨ ¨ ¨ 0
0 0 b1,1 ¨ ¨ ¨ b1,n´r´3 b1,n´r´2 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

0 0 0 ¨ ¨ ¨ b1,1 b1,2 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0 b1,1 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0 bn´r`1,n´r bn´r`1,n´r`1 ¨ ¨ ¨ bn´r`1,n

...
...

...
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 0 bn,n´r bn,n´r`1 ¨ ¨ ¨ bn,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

´

b
p0q
i,j

¯
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Equivalently:

b
p0q
i,j “

$

&

%

0 if i ą n´ r, j ă n´ r or i ď n´ r, j ă i or 1 ă i ă n´ r, j ą n´ r
bi,j if i ą n´ r, j ě n´ r or i “ 1, j ą n´ r
b1,j´i`1 otherwise

We want to prove that @k P t1, . . . , n´ r ´ 1u:

k´1
ÿ

l“0

Mn´k`l´r`1,l`1 “ 0

Mn´k`l´r`1,l`1 “

l`1
ÿ

h“1

an´k`l´r`1,hb1,l`2´h ´

n´r
ÿ

h“n´k`l´r`1

ah,l`1b1,h´n`k´l`r

k´1
ÿ

l“0

Mn´k`l´r`1,l`1 “

k´1
ÿ

l“0

˜

l`1
ÿ

h“1

an´k`l´r`1,hb1,l`2´h ´

n´r
ÿ

h“n´k`l´r`1

ah,l`1b1,h´n`k´l`r

¸

“

k
ÿ

h“1

˜

k´1
ÿ

l“h´1

an´k`l´r`1,l`2´h ´

k´h
ÿ

l“0

an´k`l`h´r,l`1

¸

b1,h “ 0

Where we have used:

l`1
ÿ

h“1

an´k`l´r`1,hb1,l`2´h “

l`1
ÿ

h“1

an´k`l´r`1,l`2´hb1,h

n´1
ÿ

h“n´k`l´r`1

ah,l`1b1,h´n`k´l`r “
k´l
ÿ

h“1

ah`n´k`l´r,l`1b1,h

k´1
ÿ

l“0

l`1
ÿ

h“1

“

k
ÿ

h“1

k´1
ÿ

l“h´1

k´1
ÿ

l“0

k´l
ÿ

h“1

“

k
ÿ

h“1

k´h
ÿ

l“0

k´1
ÿ

l“h´1

an´k`l´r`1,l`2´h “

k´h
ÿ

l“0

an´k`l`h´r,l`1
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Finally, we observe that, for n ě r ` 2, the defining ideal is generated by:
#

an´r`s,1b1,n´r`t `
r
ÿ

h“1

an´r`s,n´r`hbn´r`h,n´r`t ´
r
ÿ

h“0

bn´r`s,n´r`han´r`h,n´r`t

+

1ďsďr
1ďtďr

Y

Y

#

an´r,1b1,n´r`t ´
r
ÿ

h“1

an´r,n´r`hbn´r`h,n´r`t ´ b1,1an´r,n´r`t

+

1ďtďr

Y

Y

#

an´r`s,1b1,1 ´
r
ÿ

h“0

bn´r`s,n´r`han´r`h,1

+

1ďsďr

Therefore, if it is prime for some n ě r` 2, it is prime for all n ě r` 2.

Corollary 3.23.1. The reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn´2,1,1qu

is irreducible for all n ě 4.

Proof. We have proved so for n “ 4 and, therefore, for all n ě 4.

Corollary 3.23.2. Given r ě 0, the reduced scheme associated to

Y “ tpAptq, Bptqq P Xp1qn | A0 “ Jpn´r,1, r...,1qu

has the same codimension for all n ě r ` 2.

Proof. It can easily be deduced from the proof of the proposition.

Corollary 3.23.3. Given r ě 0, the reduced scheme associated to

rY “ tpAptq, Bptqq P Xp1qn | Dg P GLnpF q, λ P F s.t. gA0g
´1 ` λI “ Jpn´r,1, r...,1qu

has dimension at most pm` 1qpn2 ` nq.

Proof. This is a direct consequence of Corollary 3.23.2 and Proposition 3.15.

3.2.1.7 Case odd n, ppn´ 1q{2, pn´ 1q{2, 1q

Note: I think this result can be improved with not much effort.

Proposition 3.24. Given an odd n ě 1, the reduced scheme associated to

S “ tpAptq, Bptqq P Xp1qn | Dg P GLnpF q, λ P F s.t. gA0g
´1`λF “ Jppn´1q{2,pn´1q{2,1qu

dimS ď 2pn2 ` nq for n “ 5.
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Proof. We work again with block matrices. This time, ppn ´ 1q{2 ` 1 ` pn ´
1q{2q ˆ ppn´ 1q{2` 1` pn´ 1q{2q. A0 takes the following shape (we name the
closed subscheme defined by this as W ):

A0 “

¨

˝

0 0 I
0 0 0
0 0 0

˛

‚

And the commutator with a generic matrix pBi,jq is:

rA0, pBi,jqs “

¨

˝

B3,1 B3,2 B3,3 ´B1,1

0 0 ´B2,1

0 0 ´B3,1

˛

‚

So B0 is of the following form:

B0 “

¨

˝

B1,1 B1,2 B1,3

0 B2,2 B2,3

0 0 B1,1

˛

‚

Which leads to the commutator of A1 with B0 to be:

rA1, B0s “

¨

˚

˚

˚

˚

˚

˚

˝

´B1,2A2,1 ´B1,3A3,1

`rA1,1, B1,1s
˚ ˚

A2,1pB1,1 ´B2,2Iq
´B2,3A3,1

A2,1 ´B2,3A3,2 ˚

rA3,1, B1,1s
A3,1B1,2

´pB1,1 ´B2,2IqA3,2

A3,1B1,3 `A3,2B2,3

`rA3,3, B1,1s

˛

‹

‹

‹

‹

‹

‹

‚

So the defining equations are:

$

’

’

&

’

’

%

rA1,1 `A3,3, B1,1s ` rA3,1, B1,3s `A3,2B2,3 ´B1,2A2,1 “ 0
rA3,1, B1,1s “ 0
A2,1B1,1 ´B2,3A3,1 “ 0
A3,1B1,2 ´B1,1A3,2 “ 0

Were we have used the fact that the trace of a commutator vanishes.
Renaming the variables we may obtain the following:

$

’

’

&

’

’

%

rA0, B0s “ 0
rA1, B0s ` rA0, B1s “ βα1 ´ αβ1

α1B0 “ β1A0

A0β “ B0α

Where A0, A1, B0, B1 P MatmpCq and α, α1T , β, β1T P AmC , where m “ n´1
2 . We

name the scheme defined so by ĂW .
For n “ 5, m “ 2, we will obtain a bound on the dimension of this scheme.
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If we consider the first equation, we obtain that if we project onto pA0, B0q

the dimension is at most m2 ` m. If we take a look at the second equation,
since m “ 2 we see that for any value of pA0, A1, B0, B1q, the left hand side
has always rank at most 2, so we will be able to find some pα, α1, β, β1q fulfilling
the equation. In this case, we see that given pα, α1q both different that zero, if
βα1 ´ αβ1 “ β̃α1 ´ αβ̃1, then there exists c P C such that ˜beta “ β ` cα and

˜beta
1
“ β1 ` cα1. So in this case the dimensio. is at most 2m ` 1. If α1 “ 0

and α ‰ 0, then β1 “ β̃1 and β̃ ´ β is free. So the dimension is at most 2m. If
both α “ 0 and α1 “ 0, then β̃ ´ β and β̃1 ´ β1 are free, so the dimension is at
most 2m. This implies that the scheme defined by the two first equations has
dimension at most 3m2 ` 3m` 1.

Consequently, dimW “ pdimCpA0qq`p2m
2`2m`1q`p1q`dim W̃ . Where

the first summand comes from B1, the second from the variables of A1 that do
not appear in the generators of the ideal of W̃ , and the third is the variable
B
p

2,20q.
Finally, if we name the subscheme of the jet scheme where A0 is simlar to

λI ` Ã0 for some λ P C, where Ã0 is the A0 that we have defined previously.
dimV “ n2´dimCpA0q`dimW`1 “ n2`p2m2`2m`1q`1`dim W̃`1 ď

n2 ` 2m2 ` 2m` 3` 3m2 ` 3m` 1 “ n2 ` 5m2 ` 5m` 4 “ 25` 20` 10` 4 “
59 ă 60 “ 2pn2 ` nq.

3.2.2 Irreducibility of the 1st jet scheme for n “ 4

Proposition 3.25. The first jet scheme over X4, X
p1q
4 , is irreducible of dimen-

sion 2p42 ` 4q “ pm` 1qpn2 ` nq.

Proof. The possible Jordan Canonical Forms of a nilpotent 4ˆ4 matrix are t4u,
t3, 1u, t2, 2u, t2, 1, 1u, t1, 1, 1, 1u. The first one is non-derogatory and all the
other ones have been checked to belong to U

pmq

n in the previous subsubsection.
Therefore, the 1st jet scheme over X4 is irreducible.

3.2.3 Dimension of the 1st jet scheme for n “ 5

Proposition 3.26. The first jet scheme over X5, X
p1q
5 , has dimension 2p52 `

5q “ pm` 1qpn2 ` nq.

Proof. Since the 1st jet scheme over X4 is irreducible, we get that, to obtain
the dimension of the 1st jet scheme over X5 it is enough to check the dimension
of the subscheme where A0 has a single eigenvalue and is derogatory.

This set can be covered by a finite closed sets where A0 has a single eigenvalue
and has a concrete Jordan canonical form. In the previous section we have
bounded the dimension of all this closed sets by 2p52 ` 5q “ pm ` 1qpn2 `
nq, except for the case p3, 2q, which we have checked with Macaulay2. The
proposition follows.
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3.2.4 Attempt at improving the lower bound for reducibility and
non-equidimensionality of the jet schemes

Remark. If we find a better bound on the dimension of 1st jet scheme, we
immediately obtain a better bound for all jet schemes. This can be done through
the closed subscheme where A0 is a scalar matrix. Since:

tpAptq, Bptqq P Xpmqn | A0 “ λIu » Xpm´1q
n ˆMatpn,Cq ˆ C,

so its dimension is n2 ` 1` dimX
pm´1q
n .

Furthermore, the bound obtained in [Sv09] for dimX
pmq
n , name it BSpn,mq,

is such that BSpn,m ` 1q “ BSpn,mq ` n2 ` 1. Thus if we obtain a better
bound for the first jet scheme, we obtain better bounds for all jet schemes.

Our attempts have consisted basically on trying to apply the same reasoning
done in the paper of reference to a certain kind of matrix. Specifically, matrices
with the following block form of size px` py ` zqq ˆ py ` x` zq:

A0 “

ˆ

0 I 0
0 0 0

˙

The one that is used in the proof by Sethuraman and Šivic is of this type
with y “ a, x “ 2a, z “ b.

In that case, the condition that had to be fulfilled was:

b2 ` pk ` 1´ 2aqb` 3pk ` 1qa´ k ´ 2 ď 0

For the case y “ a, x “ 3a, z “ b, applying the same reasoning we get the
following condition:

b2 ` pk ` 1´ 2aqb` 4pk ` 1qa´ k ´ 2 ď 0

Therefore, since some a, b satisfying it satisfy the one for y “ a, x “ 2a,
z “ b, we get that this bound is not better than the previous one.

When we take x “ y “ a and z “ b, applying the same kind of reasoning
as in the paper, we cannot obtain any bound neither for reducibility nor for
non-equidimensionality.

Taking this into consideration, we studied the case when y ď x ď 2y. And
we obtained the condition:

z2 ` pk ` 1´ spx´ yqqz ` pk ` 1qpx` yq ´ k ´ 2 ď 0

from which, for a given n and a given z, the best bound is obtained for x “ 2y,
which is the situation in [Sv09].

It is not easy to do a general study of all the possible A0 of this form. In
general, it can be studied for each m ě 0 for the interval my ď x ď pm ` 1qy
using block matrices of pm` 4 blocksq ˆ pm` 4 blocksq.

It is speculation, but given the situation, one might think that the best
bound that can be obtained with this kind of matrices and reasoning, is indeed
achieved for x “ 2y and, therefore, to improve it, new kinds of arguments should
be used.
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3.3 Log-canonical threshold
The (global) log-canonical threshold of the pair of a scheme and an ambient
variety is of interest since it relates to the type of singularities of that scheme.

For that goal, there is an interesting result by Mustat,ă:

Theorem 3.27. ([Mus02]) If X is a smooth variety and Y Ă X is a closed
sub-scheme, then the log canonical threshold of the pair pX,Y q is given by

lctpX,Y q “ dimX ´ sup
mě0

dimY pmq

m` 1

where Y pmq represents the m-th jet scheme over Y .

Observation. In particular, we have that lctpX,Y q ď codimXY , and, in our
case, we are interested in X “ Matpn,Cqˆ2 and Y “ Xn, so:

lctpMatpn,Cqˆ2, Xnq ď n2 ´ n

Proposition 3.28. For n ď 3

lctpMatpn,Cqˆ2, Xnq “ n2 ´ n “ codimMatpn,Cqˆ2Xn

Proposition 3.29. For n ě 30

lctpMatpn,Cqˆ2, Xnq ă n2 ´ n “ codimMatpn,Cqˆ2Xn

That is, the pair pMatpn,Cqˆ2, pcodimMatpn,Cqˆ2Xnq ¨Xnq is not log-canonical.

Remark. There is actually a better bound that comes from the remark to Corol-
lary 2.28.1. However, the interest of the proposition is to point at the general
fact that the log-canonical threshold and the jet schemes behave essentially dif-
ferent for small n and for big n, hinting at a possibly different behaviour of the
singularities for small and big n.

3.3.1 Relation between log-canonical threshold and reducedness

One of our interests on the log-canonical threshold was that bounds on it might
relate to reducedness. First, we thought that lct ě codim

2 or lct ą codim
2 might

imply reducedness. But this turned out to be false, even with the assumption
of generically reduced and even when lct “ codim:
Observation. Given F an algebraically closed field and the ideal
a “ px1, . . . , xn´1, x

2
nq Ă F rx1, . . . , xns, which is not radical,

lctpAnF , aq “ n´ 1{2 “ ´
1

2
` codimAn

F
SpecpF rx1, . . . , xns{aq.

Furhtermore, if we take a “ px1, x2q ¨ px1, . . . , x4, x
2
5q Ă F rx1, . . . , x5s, it is not

radical but is generically reduced, and

lctpF 5, aq “ 2 “ codimF 5SpecpF rx1, . . . , x5s{aq.
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Remark. The second counterexample fits into a more general set of ideals,
px1, . . . , xrqpx1, . . . , xpn´1q, x

2
nq Ă krx1, . . . , xns. A general formula for the lct of

these ideals can be obtained, since they are monomial ideals, but it does not
seem to be relevant.

However, the study of these conditions, sprouted the following open question:

Open problem 3.30. If lct=codim, does this imply Serre’s condition Rk for
some k ě 0 or reducedness to some codimension?

It seems to be the case at least for hypersurfaces and R0, i.e. generic re-
ducedness.

In the ring Crx1, x2s, the scheme X associated to the ideal px1x2, x31q “
px1q ¨ px2, x

2
1q has lctpA2

C, Xq “ 1 “ codimA2
C
X but it does not fulfil R1 and is

not reduced to codimension 1.
Therefore, conditions on the lct cannot give us any new information about

reducedness, reducedness to a certain codimension or any Serre condition Rk.
Even though the log-canonical threshold did not lead to any useful condi-

tion for reducedness, there is still another open question that might be more
promising:

Open problem 3.31. Is there any condition on the jet schemes that might
imply reducedness of the base scheme?

3.3.2 Bernstein-Sato Polynomials

It is known that the Bernstein-Sato polynomial of polynomial of a complex
scheme not necessary reduced or irreducible (introduced by Nero Budur, Mircea
Mustat,ă, and Morihiko Saito [BMS06]) is closely related to the multiplier ideals
of the pair of that scheme on an ambient smooth variety, as well as to its
singularities. For these reasons, it is of interest to study it.

We already have some information arising from the following theorem and
the knowledge that we have on the log-canonical threshold.

Theorem 3.32. ([BMS06]) Given Z a complex scheme embedded in a smooth
affine scheme X, naming bf psq the Bernstein-Sato polynomial of the ideal defin-
ing Z in X, then the log-canonical threshold of pX,Zq coincides with the smallest
root α1f of bf p´sq (in particular,α1f ą 0), and any jumping coefficients of pX,Zq
in rα1f , α

1
f ` 1q are roots of bf p´sq.

Some of the interest, even though not applicable to our case, comes as well
from a criterion for ration singularities for reduced complete intersections:

Theorem 3.33. ([BMS06]) Assume Z is a reduced complete intersection of
codimension r in X, a smooth affine scheme. Then Z has at most rational
singularities if and only if lctpX,Zq “ r and its multiplicity as a root of bf psq
(the Bernstein-Sato polynomial of the defining ideal of Z in X) is 1.
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Since already the attempts to compute the lct have not been really fruitful,
we have not invested much time in trying to obtain results on the Bernstein-Sato
polynomials. Appart from understanding them and the theoretical background
around them, we have computed some small cases with the computational al-
gebra system Macaulay2 ([GS]):

Proposition 3.34. The Bernstein-Sato polynomial for the defining ideal of X2

is bX2psq “ ps` 2qps` 3q, and bX2ps´ codimX2q “ sps` 1q.

The Bernstein-Sato polynomial for the defining ideal of

X2,2 “ tpA1, B1, A2, B2q P Matp2,Cqˆ4 | rA1, B1s ` rA2, B2s “ 0u

is bX2,2psq “ ps` 3qps` 4q, and bX2,2ps´ codimX2,2q “ sps` 1q.

The Bernstein-Sato polynomial for the defining ideal of

X3,2 “ tpA1, B1, . . . , A3, B3q P Matp2,Cqˆ6 | rA1, B1s ` ¨ ¨ ¨ ` rA3, B3s “ 0u

is bX2,3psq “ ps` 3qps` 6q, and bX2,3ps´ codimX2,3q “ sps` 3q.

It is worth noticing the following lemmata:

Lemma 3.35. Given a ring R “ CrX1, . . . , Xns and an ideal I Ă R, consider
the ideal J “ IRrY s Ă RrY s in the polynomial ring. Now, if we name their
Bernstein-Sato polynomials as bIpsq and bJpsq respectively, then bIpsq “ bJpsq.

Proof. This follows from the definition of Bernstein-Sato polynomial.

Lemma 3.36. Given a ring R “ CrX1, . . . , Xns, an ideal I Ă R and an auto-
mophism φ on R, consider the ideal J “ φpIq. Now, if we name their Bernstein-
Sato polynomials as bIpsq and bJpsq respectively, then bIpsq “ bJpsq.

Proof. This follows from the following theorem:

Theorem 3.37. ([BMS06]) Given a ring R “ CrX1, . . . , Xns and Z “ SpecpR{Iq Ă
X “ AnC and bIpsq the Bernstein-Sato polynomial of the ideal I Ă R, the poly-
nomial bIps´ codimXZq only depends on Z.

Since the codimension of Z in X does not change under the automorphism,
the lemma follows.

These two propositions enable us to perform the computations of the Bernstein-
Sato polynomials over smaller rings and, therefore, to reduce the computational
load.
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3.4 Quiver representations
Definition 3.38. A quiver Q is a quadruple pV,E, s, tq of two sets V (the set of
vertices) and E (the set of edges), and two maps s, t : E Ñ V which correspond
to the source and target of each edge.

That is, a quiver is a directed graph where loops and multple arrows between
two given vertices are allowed.

Definition 3.39. Given Q “ pI, E, s, tq a quiver and F a field, the representa-
tions of Q of dimension vector α P N|I| are the elements of:

ReppQ, αq “
à

aPE

Matpαspaq ˆ αtpaq, F q

Observe that the group

Gpαq “ p
ź

iPI

GLαi
pF qq{F˚

acts by conjugation on ReppQ, αq. F˚ represents the multiplicative group of
F .

Definition 3.40. A morphism between two representations of a quiver Q “

pI, E, s, tq, x P ReppQ, αq,y P ReppQ, βq is an element

f P
à

iPI

Matpαi ˆ βi, F q

such that the following diagram commutes:

xspaq xtpaq

yspaq ytpaq

xa

fspaq ftpaq

ya

Observation. Direct sums and exact sequences of representations have the nat-
ural definitions.

Definition 3.41. A quiver subrepresentation of a representation x P ReppQ, αq
is a representation y P ReppQ, βq together with an in injective quiver represen-
tation morphism into x.

Definition 3.42. The quiver algebra of a quiver Q over a field F is its path
algebra with coefficients in F and it is usually denoted as FQ.

We notice that it can naturally be associated a FQ-module to each quiver
representation of the quiver Q over F .

Definition 3.43. A quiver representation is said to be simple if its quiver
algebra is a simple algebra or, analogously, if it has no proper subrepresentation
apart from the trivial one.

A quiver representation is said to be semi-simple if it is a direct sum of
simple representations.
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Definition 3.44. When given a semi-simple representation x P ReppQ, αq, it
has a decomposition in simple representations

x » x‘e11 ‘ ¨ ¨ ¨ ‘ x‘err

where x1, . . . , xr are non-isomorphic simple representations. If βpiq is the di-
mension vector of xi, we say that x has representation type

τ “ pe1, β
p1q; . . . ; er, β

prqq

Given a semi-simple representation x P ReppQ, αq of type τ “ pe1, βp1q; . . . ; er, βprqq,
we name e “ pe1, . . . , erq and Gpeq is a conjugate of Gpαqx.

Definition 3.45. Given a quiver Q we construct its double Q by adjoining a
reverse arrow a˚ for each arrow a in Q.

Then there is a Gpαq-equivariant map

µQ,α : ReppQ, αq Ñ Endpαq “
À

iPI

Matpαi, F q

x ÞÑ
ř

aPE

rxa, xa˚s

where rxa, xa˚s “ xaxa˚ ´ xa˚xa represents the commutator.
We denote its zero locus by

XpQ, αq “ µ´1
Q,αp0q

and we consider it as a closed subscheme of ReppQ, αq. It can be noticed that
it does not depend on the orientation of the arrows of Q (see Lemma 2.2 in
[CBH98]).

Furthermore, given the action by conjugation of Gpαq, the affine quotient

MpQ, αq “ XpQ, αq {{Gpαq

parametrises the isomorphism classes of semi-simple representations in XpQ, αq
which are the closed orbits of Gpαq in XpQ, αq.

For a given quiver Q “ pI, E, s, tq define for any dimension vector α, pQ “
1 ´ xα, αyQ, where we define xα, βyQ “

ř

iPI

αiβi ´
ř

aPE

αspaqβtpaq. Furthermore,

define pα, βqQ “ xα, βyQ ` xβ, αyQ.
If Lg is the quiver with a single vertex and g loops, we notice that

Xn “ XpL1, nq and the schemes studied by Budur in [Bud18] are XpLg, nq for
g ě 2.

Given this, Theorem 2.2 about the irreducibility of Xn fits into a bigger
result:

Theorem 3.46. (see [CB03]) The underlying reduced scheme of

XpQ, αq

is irreducible but not always a normal variety.
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In the paper by Budur [Bud18], semi-simple representations and simple rep-
resentations contained in the scheme of interest were the key to control the jet
schemes and to obtain the results on reducedness and ration singularities. In this
sense, we thought that it might lead to something of interest if we understood
the simple and semi-simple representations of Xn.

The main results that he used are the theorems that we already announced
in the introduction by Mustat,ă (Theorem 1.13 and Theorem 1.14) and:

Theorem 3.47. ([CB01], cf. [Bud18]) If XpQ, αq contains a simple represen-
tation from ReppQ, αq then:

(a) XpQ, αq is a reduced and irreducible complete intersection of dimension
α ¨ α´ 1` 2pQpαq,

(b) the general element of XpQ, αq is a simple representation,

(c) the dimension of MpQ, αq is 2pQpαq,

(d) pQpαq ą 0 if and only if MpQ, αq contains an open dense subset of iso-
morphism classes of simple representations,

(e) the simple representations in MpQ, αq are smooth points.

In conjuction with Luna’s étale slices theory. Specifically, one of the results
of that theory that he uses and might be useful in our case is the following
theorem:

Theorem 3.48. ([Bud18]) Let x P XpQ, αq be a semi-simple representation of
type τ . Then there exists a morphism

f : S Ñ XpQτ , eq

from an étale slice S for XpQ, αq at x, sending x to 0, such that f is equivariant
via the canonical isomorphism Gpαqx » Gpeq, and the restriction of f is strongly
étale from a Gpαqx-saturated open neighbourhood of x onto a Gpeq-saturated
open neighbourhood of 0.

Where, given a semi-simple representation x P XpQ, αq of type
τ “ pe1, β

p1q; . . . ; er, β
prqq, we define Qτ as the quiver with r vertices whose

double Qτ has 2pQpeiq loops at vertex i and ´pβpiq, βpjqq arrows from i to j if
i ‰ j.

It might be interesting to introduce here the étale slices theory because it
might entail as in [Bud18] part of the solution to our problem. However, they
are not applicable to our case (yet) since they are only defined for varieties.
However, we think that there might be an analogue with similar behaviour for
more general schemes. We introduce some of the definitions in the Appendix.

All these results and their application in the case of [Bud18] motivated us
to compute the simple and semi-simple representations in Xn:

Proposition 3.49. Given the identification Xn “ XpL1, nq Ă ReppL1, nq:
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(i) The only simple representations intersecting Xn occur for n “ 1.

(ii) The semisimple representations in Xn are pairs of simultaneously diago-
nalisable matrices.

Proof. Since pL1
pnq “ 1, we have that α ¨α´1`2pQpαq “ n2`1, but dimXn “

n2 ` n. This proves that there are only simple representations for n “ 1 by
Theorem 3.47.

Another way of proving piq is to observe that if two matrices commute over
an algebraically closed field they are simultaneously triangularisable and, conse-
quently, they have a common eigenvector, which produces a subrepresentation
of dimension 1.

Therefore, since pA1 ‘ A2, B1 ‘ B2q are a commuting pair of matrices iff
pA1, B1q and pA2, B2q are, all semisimple representations are sums of represen-
tions of dimension 1. That is, all semisimple representations are the pairs of
matrices simultaneously diagonalisable.

Corollary 3.49.1. All the semi-simple representation types that occur in Xn

are of the form
τ “ pe1, 1; . . . ; er, 1q,

the quiver Qτ consists of r disconnected vertices with a single loop each:

‚ r. . . ‚

and the associated scheme XpQτ , eq “
r
ś

i“1

Xei , where Xei is the commuting

scheme of dimension ei.

Although we obtained all the semi-simple representations, it does not seem
as simple as in Budur’s case to apply these for our goal. In particular, because
in his paper he made an strong use of the fact that the underlying variety
was a complete intersection, which implied through previous results of Crawley-
Boevey ([CB03], cf. [Bud18]) the reducedness and irreducibility of his scheme,
which allowed for the application of Luna’s étale slices machinery.

3.5 Some determinants of the Jacobian matrix
If fi,j “ rA,Bsi,j is the pi, jq-th entry of the commutator of two generic matrices,
we define cr,si,j “

Bfr,s
Bai,j

and Ci,jr,s “
´

ck,lt,u

¯

k‰l,pk,lq‰pi,jq
t‰u,pt,uq‰pr,sq

. Then:

Proposition 3.50.

detCi,jr,s “

"

´detCs,ri,j if 2 � n or pr ´ sq ” pj ´ iq mod 2

detCs,ri,j if 2 ffl n and pr ´ sq ı pj ´ iq mod 2
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Proof. Notice that
ci,jr,s “ ´c

s,r
j,i

Which leads to the following identity:

detCi,jr,s “ ´sgnpσr,sqsgnpσi,jqdetCs,rj,i (1)

where σi,j corresponds to the permutation on tpr, sq|pr, sq ‰ pi, jqu that corre-
sponds to sending the k-th element in in this set with the lexicographic order to
the k-th element in the same set but considering the ordering where pi, jq ą pk, lq
iff j ą l or j “ l and i ą k.

This comes from the fact that applying the permutation σr,s to the columns
of Ci,jr,s, afterwards applying to its rows the permutation σi,j and, finally, trans-
posing the matrix, gives the matrix ´Cs,rj,i .

Taking the set tpr, sq|pr, sq ‰ pi, jqu considering the ordering where pi, jq ą
pk, lq iff j ą l or j “ l and i ą k and apply the order preserving bijection that
sends pr, sq to ps, rq, where the image lives in tps, rq|ps, rq ‰ pj, iqu with lexico-
graphic order. Now take the set tpr, sq|pr, sq ‰ pi, jqu with the lexicographical
order and apply the order preserving bijection pr, sq ÞÑ ps, rq where the image
set is tps, rq|ps, rq ‰ pj, iqu with the ordering pi, jq ą pk, lq iff j ą l or j “ l and
i ą k. If we consider now σj,i, we notice that, through the order preserving
bijections, it is equivalent to σ´1

i,j , so it has the same sign as σi,j .
Thus it is enough to compute sgnpσr,sq for r ą s.
The way we will go about this is by computing the cycle decomposition.
First we take a look at the 2-cycles. These occur when we have pi, jqmapping

to pj, iq and pj, iq mapping to pi, jq. And pi, jq maps to pj, iq iff pi, jq ą pr, sq or
pi, jq ă ps, rq in lexicographical order. We call that number, N . So we are going
to count all the possibilities:

If pi, jq ă ps, rq and pj, iq ă ps, rq, there are ps´ 1qs values of pi, jq that fulfil
this. If pi, jq ą ps, rq and pj, iq ą ps, rq, there are pn ´ r ` 1qpr ´ nq values of
pi, jq. If pi, jq ą pr, sq and pj, iq ă ps, rq, there are pn´ rqps´ 1q pairs. Finally,
the reversed case (pi, jq ă pr, sq and pj, iq ą ps, rq) has the same number of pairs.
We have counted every pair twice, so in total:

2N “ sps´ 1q ` pn´ r ` 1qpn´ rq ` 2ps´ 1qpn´ rq

Then, we take a distinguished element, ps, rq.
First, we will name the permutation σ to simplify the notation. Then, we

will denote σk to indicate
śk
i“1 σ, that is, σ composed k times with itself.

Now, for k ď n ´ r, σ2kpps, rqq “ ps, r ` kq, since, for 0 ď k ď n ´ r
σ2k´1pps, rqq “ pr ` k, sq ą pr, sq.

σ2pn´rqpps, rqq “ ps, nq

So, σ2pn´rq`1pps, rqq “ p1, s` 1q and, for all t ě 0 such that pt` 1, s` 1q ď
ps, rq, we have that σ2pn´rq`2t`1pps, rqq “ pt` 1, s` 1q.

Now, if r “ s` 1:
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σ2pn´s´1q`2s´1pps, s` 1qq “ ps, s` 1q

Otherwise, σ2pn´rq`2s´1pps, rqq “ ps, s` 1q ă ps, rq and σ2pn´rq`2spps, rqq “
ps`1, sq, and for all t ě 0 such that ps`1`t, s`tq ď pr, sq, σ2pn´rq`2s`tpps, rqq “
ps` 1` t, s` tq.

This leads to:

σ2pn´rq`2s`r´s´1pps, rqq “ pr, r ´ 1q ą pr, sq

and
σ2pn´rq`2s`r´spps, rqq “ pr ´ 1, rq ă pr, sq

Hence, for all t ď n´ r, σ2pn´rq`2s`r´s`2tpps, rqq “ pr ´ 1, r ` tq and

σ2pn´rq`2s`r´s`2pn´rqpps, rqq “ pr ´ 1, nq.

This implies that σ2pn´rq`2s`r´s`2pn´rq`1pps, rqq “ p1, rq, and for all t ď s,
σ2pn´rq`2s`r´s`2pn´rq`1`2pt´1qpps, rqq “ pt, rq. Leading finally to:

σ2pn´rq`2s`r´s`2pn´rq`1`2ps´1qpps, rqq “ ps, rq

So the cardinality m of its orbit is:

m “

"

2n´ 3 if r “ s` 1
4n` 3ps´ rq ´ 1 otherwise

Now, observe the elements of the form pk, s`i`1q for s ă k ă s`i`1 ă r´1.
We have that σppk, s` i`1qq “ ps` i`2, kq. Given that ps, rq ă ps` i`2, kq ă
pr, sq, σ2ppk, s` i` 1qq “ pk ` 1, s` i` 2q.

For k such that s ă k ă r´1 and t ď n´r`1, σ2tppk, r´1qq “ pk, r`t´1q.
This can be seen because, for 1 ď t ď n´r`1, σ2t´1ppk, r´1qq “ pr`t´1, kq ą
pr, sq. Following this, one arrives at:

σ2pn´r`1qppk, r ´ 1qq “ pk, nq

Next, σ2pn´r`1q`1ppk, r´1qq “ p1, k`1q and, for 0 ď t ď s, σ2pn´r`1q`1`2tppk, r´
1qq “ pt` 1, k ` 1q. Which implies:

σ2pn´r`1q`2s`1ppk, r ´ 1qq “ ps` 1, k ` 1q (2)

If we now take ps` 1, s` i` 1q for some i ě 0 such that s` i` 1 ă r ´ 1,
we get that σ2tpps ` 1, s ` i ` 1qq “ ps ` 1 ` t, s ` i ` 1 ` tq for t such that
s` i` 1` t ď r ´ 1, thus:

σ2pr´s´i´2qpps` 1, s` i` 1qq “ pr ´ i´ 1, r ´ 1q

We already know that, t ď n´r`1, σ2tppr´i´1, r´1qq “ pr´i´1, r`t´1q,
hence applying the equation 2:

σ2pr´s´i´2q`2pn´r`1q`2s`1pps` 1, s` i` 1qq “ ps` 1, r ´ iq
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If ps` 1, r´ iq “ ps` 1, s` i` 1q we have finished, 2 ffl r´ s, i “ r´s´1
2 and

the cardinality of the orbit is l “ 2n´ r ` s.
If not, then if we now consider ps` 1, s` 1` jq “ ps` 1, r´ iq, we get that

j “ r ´ s ´ i ´ 1, which still fulfils s ` 1 ă s ` j ` 1 ă r ´ 1, so we can apply
the same reasoning and we obtain:

σp2pr´s´i´2q`2pn´r`1q`2s`1q`p2pr´s´j´2q`2pn´r`1q`2s`1qpps`1, s`i`1qq “ ps`1, s`1`iq

Therefore, the cardinality of its orbit is 2p2n ´ r ` sq “ 2l, which does not
deppend on i.

So given l “ 2pn´ 1q ´ r´ s, the cardinality of the orbit of ps` 1, s` 1` iq
for s` 1 ă s` i` 1 ă r ´ 1 is:

"

l if 2 ffl r ´ s and i “ r´s´1
2 ě 1

2l otherwise

Now, we check that we have obtained the orbit for each element. We observe
that the orbits corresponding to 2-cycles, to ps, rq and to ps ` 1, s ` 1 ` iq for
i ď t r´s´1

2 u are disjoint and the cardinality of the union is:
"

2N `m “ n2 ´ n´ 1 if r ´ s “ 1
2N `m` pr ´ s´ 2ql “ n2 ´ n´ 1 otherwise

So in both cases it is equal to the total number of elements. Therefore, we
have the decomposition in disjoint cycles and we can compute its sign:

sgnσr,s “

$

&

%

p´1qN p´1qm`1p´1q
r´s´2

2 p2l`1q if r ´ s´ 2 ě 2, 2 � pr ´ sq

p´1qN p´1qm`1p´1q
r´s´2´1

2 p2l`1qp´1ql`1 if r ´ s´ 2 ě 2, 2 ffl pr ´ sq
p´1qN p´1qm`1 if r ´ s´ 2 ă 0 ô r ´ s “ 1

which working out through it leads to:

sgnσr,s “

#

p´1q
n2´n

2 ´1 if 2 � pr ´ sq

p´1q
n2´n

2 ´n`1 if 2 ffl pr ´ sq

This, together with equation 1 gets us to the desired result.

Corollary 3.50.1.
Dt “ det

`

cr,si,j
˘

r‰s or r“s“t
i‰j or i“j“t

“ 0

Proof. By the properties of the determinant, we get the following expression:
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Dt “

n
ÿ

j“1
j‰t

bt,j

¨

˚

˝

n
ÿ

s“1
s‰t

p´1qσ
t,j
t,sbs,t detCt,jt,s `

n
ÿ

r“1
r‰t

p´1qσ
t,j
r,t p´bt,rqdetCt,jr,t

˛

‹

‚

`

`

n
ÿ

i“1
i‰t

p´bi,tq

¨

˚

˝

n
ÿ

s“1
s‰t

p´1qσ
i,t
t,sbs,t detCi,tt,s `

n
ÿ

r“1
r‰t

p´1qσ
i,t
r,tp´bt,rqdetCi,tr,t

˛

‹

‚

where σi,jr,s is the sign that corresponds to the associated minor.

σi,jr,s “ li,j ` lr,s ` 1

where (noticing that i ‰ j and r ‰ s)

lr,s “

"

s` pr ´ 1qpn´ 1q if s ă r
s´ 1` pr ´ 1qpn´ 1q if s ą r

One thing that can be immediately noticed is that σi,jr,s “ σr,si,j .
We will divide the proof into two cases:
‚ 2 ��� n :
Notice that detCi,jj,i “ ´detCi,jj,i “ 0.

Dt “

n
ÿ

i“1
i‰t

n
ÿ

r“1
r‰t

´

p´1qσ
t,r
t,i`1

` p´1qσ
i,t
r,t

¯

bi,tbt,r detCi,tr,t

`

n
ÿ

j“1
j‰t

n
ÿ

r“1
rRtt,ju

p´1qσ
t,j
r,t`1bt,jbt,r detCt,jr,t

`

n
ÿ

i“1
i‰t

n
ÿ

s“1
sRtt,iu

p´1qσ
i,t
t,s`1bi,tbs,t detCi,tt,s

First we will take charge of the first summation:

σt,rt,i “ lt,r ` lt,i ` 1 ”pmod 2q

"

i` r ` 1 if r ą t, i ą t or r ă t, i ă t
i` r if r ą t, i ă t or r ă t, i ą t

σi,tr,t “ li,t ` lr,t ` 1 ”pmod 2q

"

i` r ` 1 if r ą t, i ą t or r ă t, i ă t
i` r if r ą t, i ă t or r ă t, i ą t

Therefore, we have that σt,rt,i ” σi,tr,t mod 2. Which implies that p´1qσ
t,r
t,i`1

`

p´1qσ
i,t
r,t “ 0 for all pi, rq such that t R ti, ru.
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Dt “

n
ÿ

i“1
i‰t

n
ÿ

s“1
sRtt,iu

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bi,tbs,t detCi,tt,s

¯

“

n
ÿ

i“1
i‰t

i´1
ÿ

s“1
s‰t

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

`

n
ÿ

i“1
i‰t

n
ÿ

s“i`1
s‰t

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

“

n
ÿ

i“1
i‰t

i´1
ÿ

s“1
s‰t

p´1qσ
i,t
t,s

´

bt,sbt,i detCt,is,t ` bs,tbi,t detCs,tt,i

¯

`

n
ÿ

i“1
i‰t

n
ÿ

s“i`1
s‰t

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

“

n
ÿ

i“1
i‰t

n
ÿ

s“i`1
s‰t

´

p´1qσ
s,t
t,i ` p´1qσ

i,t
t,s`1

¯´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

σs,tt,i “ ls,t ` lt,i ` 1 ”pmod 2q

"

i` s` 1 if s ą t, i ą t or s ă t, i ă t
i` s if s ą t, i ă t or s ă t, i ą t

σi,tt,s “ li,t ` lt,s ` 1 ”pmod 2q

"

i` s` 1 if s ą t, i ą t or s ă t, i ă t
i` s if s ą t, i ă t or s ă t, i ą t

which leads to σs,tt,i ” σi,tt,s mod 2 and, therefore: Dt “ 0 for 2 � n.

‚ 2 ffl n :

Dt “

n
ÿ

i“1
i‰t

n
ÿ

r“1
r‰t

´

p´1qσ
t,r
t,i`1`i´r

` p´1qσ
i,t
r,t

¯

bi,tbt,r detCi,tr,t

`

n
ÿ

j“1
j‰t

n
ÿ

r“1
r‰t

p´1qσ
t,j
r,t`1bt,jbt,r detCt,jr,t

`

n
ÿ

i“1
i‰t

n
ÿ

s“1
s‰t

p´1qσ
i,t
t,s`1bi,tbs,t detCi,tt,s
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Now we take a look at the first summation and observe that

σt,rt,i “ lt,r ` lt,i ` 1 ”pmod 2q

"

i` r ` 1 if r ą t, i ą t or r ă t, i ă t
i` r if r ą t, i ă t or r ă t, i ą t

σr,ti,t “ li,t ` lr,t ` 1 ”pmod 2q

"

1 if r ą t, i ą t or r ă t, i ă t
0 if r ą t, i ă t or r ă t, i ą t

Therefore, p´1qσ
t,r
t,i`1`i´r

` p´1qσ
i,t
r,t “ 0 for all pi, rq such that t R ti, ru.

Now, using some simple changes of variables:

Dt “

n
ÿ

i“1
i‰t

n
ÿ

s“1
sRtt,iu

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bi,tbs,t detCi,tt,s

¯

“

n
ÿ

i“1
i‰t

i´1
ÿ

s“1
s‰t

p´1qσ
i,t
t,s`1`i`s`1

´

bt,sbt,i detCt,is,t ` bs,tbi,t detCs,tt,i

¯

`

n
ÿ

i“1
i‰t

n
ÿ

s“i`1
s‰t

p´1qσ
i,t
t,s`1

´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

“

n
ÿ

i“1
i‰t

n
ÿ

s“i`1
s‰t

´

p´1qσ
t,i
s,t`i`s ` p´1qσ

i,t
t,s`1

¯´

bt,sbt,i detCt,si,t ` bs,tbi,t detCi,tt,s

¯

σt,is,t “ ls,t ` lt,i ` 1 ”pmod 2q

"

i` t` 1 if s ą t, i ą t or s ă t, i ă t
i` t if s ą t, i ă t or s ă t, i ą t

σi,tt,s “ li,t ` lt,s ` 1 ”pmod 2q

"

t` s` 1 if s ą t, i ą t or s ă t, i ă t
t` s if s ą t, i ă t or s ă t, i ą t

Hence,

p´1qσ
t,i
s,t`i`s ` p´1qσ

i,t
t,s`1 “ 0

so Dt “ 0 for all n.

Note on this result

Once we know the underlying scheme is irreducible of dimension n2 ` n it is
immediate that all the minors strictly bigger than n2 ´ n must vanish. In
particular, all the ones that solely contain bi,j ’s or ai,j ’s must be identically
zero in the polynomial ring. Therefore, this last corollary brings nothing new.
However, we consider that the relation between the minors of order n2 ´ n´ 1
could be useful to prove or disprove regularity in codimension 2 and 3.
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4 New results concerning related schemes

4.1 Variety of pairs of matrices with zero diagonal
The main result of this section is:

Theorem 4.1. Given F a field, the scheme associated to

X “ tpA,Bq P Matpn, F qˆ2 | diagprA,Bsq “ 0u

where diagpMq applied to a matrix M is the projection onto the diagonal el-
ements, (i.e., M “ pmi,jq1ďi,jďn ÞÑ diagpMq “ pmi,iq1ďiďn), is a complete
intersection normal integral scheme over F .

Hsu-Wen Young in his PhD dissertation [You10] posed this as an open prob-
lem. He proved it to be a reduced complete intersection for general n and
checked it to be irreducible for n ď 3. Our proof is more elementary than his,
only making use of elementary results. As a matter of fact, we proved it before
noticing he had studied it before.

Our motivation was mainly to attempt a proof of Conjecture 1.1 by using
the Lemma 2.8 and Lemma 2.9 or, at least, find a more efficient algorithm or,
at least, some partial results.

His motivation was mainly as a counterpart to the diagonal commutator
scheme, which is the scheme:

Dn “ tpA,Bq P Matpn, F qˆ2 | rA,Bs “ diagprA,Bsqu

that is, the pairs of matrices whose commutator is diagonal.
This scheme has some interesting properties and might hold the clue to solve

the conjecture.

Theorem 4.2. [You10] The scheme defined by

Dn “ tpA,Bq P Matpn, F qˆ2 | rA,Bs “ diagprA,Bsqu

is a complete intersection scheme of dimension n2 ` n with two components,
one of which is the commuting variety (this holds for any algebraically closed
field F ). Furthermore, for characteristic zero it is reduced.

Proof of Theorem 4.1 (1st part: integral scheme). The ideal that we want to

prove to be prime is J “

¨

˝fi :“
n
ř

k“1
k‰i

pai,kbk,i ´ ak,ibi,kq

˛

‚

2ďiďn

.

Since the elements of the diagonal of a commutator of two matrices are
linearly dependent, n ´ 1 generators are enough. Now consider the following
ideals:

Jj “ pfiq1ăiďj
Since each of the fi’s is irreducible, we get that J2 “ pf2q is prime.
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We will argue by induction. Assume that all Jj have been proven to be
prime for all j ă l.

We will first prove that, in this case, pJl : pal,1qq “ Jl:

Suppose that al,1f P Jl for some f . That means that al,1f “
l´1
ř

j“2

gjfj ` glfl.

We want to prove that f P Il. For that, we can assume that al,1 does not appear
in any of the gi’s (i.e. such that all the monomials that contain al,1 raised to a
non-zero power have a zero coefficient). Now we have:

al,1f “
l´1
ř

j“2

gjfj ` al,1glb1,l ´ a1,lglbl,1 ` glpfl ´ pal,1b1,l ´ a1,lbl,1qq

Consequently, f “ glb1,l and
l´1
ř

j“2

gjfj´a1,lglbl,1`glpfl´pal,1b1,l´a1,lbl,1qq “

0.
If we write gi “

m
ř

r“0
hi,ra

r
1,l, we get the following equations for 0 ď r ď m`1

(considering hi,r “ 0 for all r ą m or r ă 0):
l´1
ř

j“2

hj,rfj ´ hl,r´1bl,1 ` hl,rpfl ´ pal,1b1,l ´ a1,lbl,1qq “ 0 Which is equivalent

to:

hl,r´1bl,1 “
l´1
ř

j“2

hj,rfj ` hl,rpfl ´ pal,1b1,l ´ a1,lbl,1qq

For the case r “ m ` 1 we get that hl,mbl,1 “ 0, and so hl,m “ 0. Con-
sequently, for the case r “ m we get that hl,m´1bl,1 P Jl´1. It can easily be
deduced that hl,m´ibil,1 P Jl´1. Therefore, glbml,1 P Jl´1. Given that Il´1 is prime
by the induction hypothesis and that bl,1 R Jl´1 since all the non-zero elements
in that ideal have at least degree 2 and deg bl,1 “ 1, we get that gl P Jl´1, and
thus, f “ al,1gl P Il´1 Ă Jl. Hence pJl : pal,1qq “ Jl.

Now if we remember the propositions that allowed us to prove the primality
for the variety of commuting 2ˆ 2 matrices, we can consider the ideal over the
ring Ral,1 (the localisation of the ring R at the ideal pal,1q). In this ring, the
ideal takes the following shape:

Jl “ Jl´1 ` pb1,l ` a
´1
l,1 p´a1,lbl,1 `

n
ř

k“1
k‰i

pai,kbk,i ´ ak,ibi,kqqq

So now we can consider the F -algebra automorphism:

φ Ral,1 Ñ Ral,1

b1,l ÞÑ b1,l ´ a
´1
l,1 p´a1,lbl,1 `

n
ř

k“1
k‰i

pai,kbk,i ´ ak,ibi,kqq

So the image ideal is Jl´1`pb1,lq. Since b1,l does not appear in the generators
of the ideal Jl´1, we can apply the other proposition that says that if I Ă R is
an ideal, it is prime or radical if and only if IRrXs Ă RrXs is so. Therefore, Jl
is prime if and only if Jl´1 is prime in R{pb1,lq, which it is by thhe induction
hypothesis and the proposition.
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Consequently, we have proven that all the ideals Jl are prime and, in partic-
ular, the ideal Jn “ J is prime, which is the ideal corresponding to the matrices
whose commutator has zero diagonal.

Even though it was already proven by Young, we provide another proof of
complete intersection.

Proof of Theorem 4.1 (2nd part: complete intersection). We will obtain this proof
through computation of the dimension of the scheme. To do so, we will use the
Jacobian ideal.

Using the same convention as we did for Theorem 3.1, we name the partial
derivative of fr,r by ai,j (i.e.

Bfr,r
Bai,j

) as cr,ri,j and of fr,r by bi,j (i.e.
Bfr,s
Bbi,j

) as dr,ri,j .
Then we have:

cr,ri,j “

$

’

&

’

%

bj,r if i “ r, j ‰ r

´br,i if i ‰ r, j “ r

0 otherwise

dr,ri,j “

$

’

&

’

%

´aj,r if i “ r, j ‰ r

ar,i if i ‰ r, j “ r

0 otherwise

If we take submatrix pcrri,1q1ăr,iďn of the Jacobian matrix, taking the same
order in r and i we obtain a diagonal matrix with the monomials b1,r along the

diagonal. Its determinant is
n
ś

r“2
b1,r R J , where J is the defining ideal of the

scheme. Therefore, the codimension of the scheme is n ´ 1, as we wanted to
prove.

Proof of Theorem 4.1 (3rd part: normal). Since it is a complete intersection it
is Cohen-Macaulay and, therefore, if we prove that the singular locus has codi-
mension at least 2, by Serre’s criteria, it will imply normality.

We will proof smoothness to codimension 1 through the Jacobian of the
ideal. We already saw the Jacobian matrix associated to the ideal in the pre-
vious part of the proof. Now take the following two matrices: pcrri,1q1ăr,iďn “
diagpb1,rq1ărďn, pcrri,nq1ďr,iăn “ diagpbn,rq1ďrăn.

The determinant of the first is
n
ś

r“2
b1,r and of the second

n´1
ś

r“1
bn,r. we will

try to prove that the reduced associated scheme to J ` p
n
ś

r“2
b1,r,

n´1
ś

r“1
bn,rq has

codimension 2 in V Dn.
We will denote the reduced scheme associated to the ideal I as V pIq.

First of all, we will decompose V pJ`p
n
ś

r“2
b1,rqq into irreducible varieties. we

claim that

V pJ ` p
n
ź

r“2

b1,rqq “
n
ď

r“2

V pJ ` pb1,rqq
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and the reduced schemes V pJ ` pb1,rqq are irreducible (we will actually prove
that the ideal J ` pb1,rq is prime).

The method of proof of the primality of J ` pb1,rq is the same as the one we
used for the primality of J .

First we consider the following morphism:

φ :F rtai,j , bi,ju1ďi,jďns ÝÑF rtai,j , bi,ju1ďi,jďnztb1,rus » F rtai,j , bi,ju1ďi,jďns{pb1,rq

Since φ is surjective and kerpφq Ă J ` pb1,rq, if we prove that the image of
J ` pb1,rq, J Ă F rtai,j , bi,ju1ďi,jďnztb1,rus is prime, we have that J ` pb1,rq is
prime.

To prove the primality of J we will use the same method that we used for
J .

J “

¨

˚

˝

gi,i :“
n
ÿ

k“1
k‰i

pai,kbk,i ´ ak,ibi,kq

˛

‹

‚

1ďiďn´1
iRt1,ru

`

¨

˚

˝

g1,1 :“ a1,rbr,1 `
n
ÿ

k“1
kRt1,ru

pa1,kbk,1 ´ ak,1b1,kq

˛

‹

‚

`

¨

˚

˝

gr,r :“ ´a1,rbr,1 `
n
ÿ

k“1
kRt1,ru

par,kbk,r ´ ak,rbr,kq

˛

‹

‚

Now, we consider the ideals Jj “ pgi,iq1ďiďj for j ď n ´ 1. Notice that
Jn´1 “ J .

It is immediate that, if n ě 2, then J1 “ pg1q is prime, since g1 is irreducible
for all n ě 2.

Next, assume that Jj is prime for all j ă k.
Since bn,k only appears in gk, if we prove that pJk : pbn,kqq “ Jk, we will

have that Jk is prime if and only if Jk´1 is, which is true by the induction
hypothesis.

The proof of pJk : pbn,kqq “ Jk is identical as the one we used in the proof of
primality of J , so we think it does not have any interest to reproduce it again.

Furthermore, dimV pJ `pb1,rqq “ dim J ´ 1, that is, V pJ `pb1,rqq » V pJq is
a complete intersection. We will prove this through the Jacobian matrix of J .

We name the partial derivative of gr,r by ai,j (i.e. Bgr,r
Bai,j

) as cr,ri,j and of gr,r
by bi,j (i.e.

Bfr,s
Bbi,j

) as d
r,r

i,j .
If one takes pcrri,nq1ďr,iăn “ diagpbn,rq1ďrăn, we see that the determinant

is
n´1
ś

r“1
bn,r R

?
J “ J . This implies that dimV pJ ` pb1,rqq “ dim J ´ 1 and,

furthermore
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dim

˜

V pJ ` pb1,rqq X V

˜

J `

˜

n
ź

r“2

b1,r,
n´1
ź

r“1

bn,r

¸¸¸

“ dimV pJq ´ 2

Thus

dim
n
ď

r“2

˜

V pJ ` pb1,rqq X V

˜

J `

˜

n
ź

r“2

b1,r,
n´1
ź

r“1

bn,r

¸¸¸

“ dim

˜˜

n
ď

r“2

V pJ ` pb1,rqq

¸

X V

˜

J `

˜

n
ź

r“2

b1,r,
n´1
ź

r“1

bn,r

¸¸¸

“ dimV

˜

J `

˜

n
ź

r“2

b1,r,
n´1
ź

r“1

bn,r

¸¸

“ dimV pJq ´ 2

So we have proven smoothness to codimension 1, which, together with com-
plete intersection and Serre’s criteria, implies normality.

4.2 Other schemes of pairs of matrices with vanishing of
some entries of their commutator

In an analogous manner as we proved the previous result, there are some other
schemes that can be proven to be reduced irreducible complete intersections.

Definition 4.3. Given I Ă tpi, jqu1ďi,jďn, the scheme XI associated to the
following set:

tpA,Bq P Matpn, F q | @pi, jq P I, rA,Bsi,j “ 0u

where rA,Bsi,j is the pi, jq-th entry of the commutator rA,Bs.

Theorem 4.4. For any J Ă tpi, jqu1ďi,jďn such that J “ tpi, iqu1ďiďn Y
tpi, jiqu1ďiďn or J “ tpi, iqu1ďiďn Y tpij , jqu1ďjďn for a specific choice of ji ‰ i
or ij ‰ j, and for any I Ă J , then XI is a reduced irreducible complete
intersection scheme for any field F .

Proof. The proof follows the same structure as the one of Theorem 4.1. It
consists on finding a pair of monomials that only appear in one polynomial, see
that we can localise at one of the four appearing variables and apply induction.

Based on these cases and the work and computations that we have done
surrounding these schemes, we conjecture the following:

Conjecture 4.5. For any I Ă tpi, jqu1ďi,jďn and any field F , XI is reduced.
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This can be checked to be true for n ď 2.
However, not all of them are irreducible. For example, when J “ tpi, jqui‰j

it is the diagonal commutator variety, which has two components (see [You10]).
For specific cases we have checked computationally that there are others which
are not irreducible.

5 Final remarks
After the results that we have obtained, some questions have been left open and
might be fruitful if pursued in future research. Among them:

‚ Try to use or use the method of Hreindóttir with the slight improvement
that we have introduced with a more powerful computer (the last results
are from 2006, so proving or rejecting the conjecture for n “ 5 might be
in the reach of computation).

‚ Try to obtain bounds on the log-canonical threshold and more information
on the jet schemes.

‚ Try to prove (or disprove) R2 and R3.

‚ Try to find conditions on the jet schemes for reducedness of the base
scheme.

‚ Try to generalise the étale slices machinery to be able to apply it to our
case in order to attempt to prove the conjecture.

6 Appendix
Most of the definitions and properties to be found in standard textbooks such
as [Har06],[AM94], [BH98], [Sha13]. We have also used [Sta19]. When other
sources are used, they are referenced specifically.

6.1 General algebra definitions and properties
We will assume all rings to be commutative and unital.

6.1.1 Serre criteria

In this subsection, we introduce Serre’s criteria and the definitions needed to
understand them. We have extensively used them in the main text as a way to
relate diferent parts of the conjecture.

Definition 6.1. Let R be a ring andM and R-module. A sequence of elements
f1, . . . , fr P R is called an M -regular sequence if:

1. fi is a non-zerodivisor in M{pf1, . . . , fi´1q for each i P t1, . . . , ru, and
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2. the module M{Mpf1, . . . , frq ‰ 0.

If I Ă R is an ideal and f1, . . . , fr P I is an M -regular sequence, we call it
an M -regular sequence in I. If M “ R and f1, . . . , fr is an M -regular sequence,
we call it simply a regular sequence (in I).

Definition 6.2. Let R be a ring and I Ă R an ideal. Given M a finite R-
module, the I-depth of M , denoted by depthIM , is defined as follows:

1. if IM ‰M , then depthIM is the supremum in t0, 1, . . . ,8u of the lengths
of M -regular sequences in I,

2. if IM “M , then depthIM “ 8.

If pR,mq is a local ring, we call depthmM “ depthM the depth of M .

Definition 6.3. Let R be a ring and I Ă R be an ideal. The height of I is the
Krull dimension of RI , the localisation of R at I.

Definition 6.4. Given A a Noetherian commutative ring and an integer k ě 0,
A is said to fulfil Serre’s condition

- Rk if Ap is a regular local ring for any prime ideal p Ă A such that
heightppq ď k,

- Sk if depthAp ě inftk,heightppqu for any prime p.

Theorem 6.5 (Theorem (Serre’s criteria)). Given A a Noetherian commutative
ring, then

- A is reduced iff A satisfies R0 and S1,

- A is normal iff A satisfies R1 and S2,

- A is Cohen-Macauly iff A satisfies Sk for all k ě 0

6.1.2 Some types of rings

Different kinds of rings correspond to different kinds of singularities. In this
sense, regular rings correspond to smooth schemes and complete intersection,
Gorenstein and Cohen-Macaulay rings correspond, in some specific sense, to
mild singularities. Specifically, Cohen-Macaulay and Gorenstein rings arise be-
cause of their nice duality theories. In what follows we present the definitions
of the objects mentioned in the text.

Definition 6.6. Let R be a Noetherian local ring, we say that R is a local
Cohen-Macaulay ring if depthR “ dimR, where dimR is its Krull dimension.

For an arbitrary ring R, we say that it is a Cohen-Macaulay ring if it is
Noetherian and its localisation to every prime ideal is a local Cohen-Macaulay
ring.
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Definition 6.7. ([BH98]) Let R be a Noetherian local ring, we say that R is a
local Gorenstein ring if it has finite injective dimension over itself.

For an arbitrary ring R, we say that it is a Gorenstein ring if it is Noetherian
and its localisation to every prime ideal is a local Gorenstein ring.

Definition 6.8. Let F be a field and S a finite type F -algebra.

1. We say that S is a global complete intersection over F if there exists a
presentation S “ F rx1, . . . , xns{pf1, . . . , fcq such that dimS “ n´ c.

2. We say that S is a local complete intersection over F if there exists a
covering of SpecpSq “

Ť

Dpgiq by principal open sets, such that each of
the rings Sgi is a global complete intersection over F .

Definition 6.9. Let pR,mq be a Noetherian local ring, we say that R is a
regular local ring if the minimal number of generators of m is equal to the Krull
dimension of R.

Let R be an arbitrary ring, we say that R is a regular ring if it is Noetherian
and the localisation at each prime ideal is a regular local ring.

Proposition 6.10. Local regular ring ñ Local complete intersection ñ Goren-
stein ñ Cohen-Macaulay

Definition 6.11. Let R be a ring, we say that R is a reduced ring if nilradR “ 0,
where nilrad is the nilradical of R.

Definition 6.12. Let R be a ring, we say that it is a normal domain if it is an
integral domain and it is integrally closed in its field of fractions.

The main result used to prove Cohen-Macaulayness in [Hre94] makes use of
the following definitions:

Definition 6.13. ([Sha13]) Let F be a field and I Ă R “ F rx1, . . . , xns a
homogeneous ideal of the polynomial ring. Name Ipkq the set of forms of degree
k in I. NameRpkq the set of forms of degree k inR. Set akpR{Iq “ dimRpkq{Ipkq.
Then, there exists a polynomial PR{IpT q P QrT s such that PR{Ipkq “ akpR{Iq
for sufficiently large k. This polynomial is unique and we call it the Hilbert
polynomial of the ring R{I.

If e “ degPR{IpT q, then there is an integer d such that the leading term of
PR{IpT q is d

e!T
e. We call d the multiplicity or degree of R{I.

Definition 6.14. Given pR,mq a local ring of Krull dimension m, given a set
of elements tx1, . . . , xdu, we say that it is a system of parameters if any of the
following equivalent conditions is fulfilled:

1. m is a minimal prime over px1, . . . , xdq,

2.
a

px1, . . . , xdq “ m,

3. Dr ě 1 such that mr Ă px1, . . . , xdq,

4. px1, . . . , xdq is m-primary.
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6.1.3 Lie algebras

Our problem can be seen as a part of a broader conjecture on some schemes over
a certain type of Lie algebras. In that sense, the following definitions are meant
to be a reference for the types of Lie algrebras mentioned in the main text. Our
studied case corresponds to g “ gln, which is reductive but not semisimple or
abelian.

Definition 6.15. Let g be a Lie algebra, we say that it is simple if it is a
non-abelian Lie algebra whose single proper ideal is p0q.

Let g be a Lie algebra, we say that it is semisimple if it is a direct sum of
simple Lie algebras.

Let g be a Lie algebra, we say that it is abelina if the Lie bracket vanishes
for all pairs of elements (that is, @x, y P g, rx, ys “ 0).

Let g be a Lie algebra, we say that it is reductive if it is a direct sum of a
semisimple Lie algebra and an abelian Lie algebra.

6.2 Algebraic Geometry
It is maybe remarkable that during the main text we work with affine schemes
of finite type over a field F , that is, if I Ă F rx1, . . . , xns is an ideal, we work
with schemes of the type SpecpF rx1, . . . , xns{Iq. In this case, reducedness is
equivalent to the ideal I being radical and irreducibility to the radical of I
being prime.

6.2.1 General scheme properties

In what follows, there are the scheme counterparts of many of the properties
that we stated over rings in the previous section.

Definition 6.16. Let X be a scheme, we say that it is Cohen-Macaulay (resp.
Gorenstein, resp. regular) if it is locally Noetherian and for every x P X, the
local ring OX,x is Cohen-Macaulay (resp. Gorenstein, resp. regular).

Definition 6.17. Let X be a scheme of finite type over a field F , we say that
it is a local complete intersection if for every x P X there exists an affine open
neighbourhood U Ă X of x such that OXpUq is a local complete intersection
over F .

Let X “ SpecpAq be an affine scheme of finite type over a field F , we say
that it is a (global) complete intersection if A is a global complete intersection
over F .

Definition 6.18. Let X be a scheme, we say that it is reduced (resp. normal)
if for every x P X, the local ring OX,x is reduced (resp. a normal domain).

Lemma 6.19. For every scheme X there is an associated reduced scheme Xred

with the same topological space.
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Definition 6.20. Let X be a scheme, we say that it is generically reduced if
for every x P X, there exists an open neighbourhood U Q x such that OXpUq
fulfils Serre’s condition R0.

Given an integer d ě 0, we say that X is reduced to codimension d if all the
components of codimension at most d are reduced.

Lemma 6.21. Generically reduced is equivalent to reduced to codimension 0.

6.2.2 Singularities and invariants

When studying singularities one is usually interested in studying mild types
of singularities such as rational singularities and one usually studies certain
invariants. In our case, we got interested in three tightly related invariants: the
jet schemes, the log-canonical threshold and the Bernstein-Sato polynomials.
In what follows we introduce the definitions of the properties and objects that
are used or mentioned in the main text in what refers to singularities and their
study.

Definition 6.22. Let X be a scheme, we say that it has rational singularities
if it is normal, of finite type over a field of characteristic 0 and there exists a
regular scheme Y and a proper birational map

f : Y Ñ X

such that

Rif˚OY “ 0 @i ą 0

where Rif˚ stands for the i-th higher direct image of f˚.

Proposition 6.23. Rational singularities implies Cohen-Macaulayness.

Definition 6.24. Let F be a field and X an F -scheme. For m ě 0, set theo-
retically, the m-th jet scheme over X is

Xpmq “ HompSpecpF rts{ptm`1qq, Xq

and the space of arcs,

Xp8q “ HompSpecpF rrtssq, Xq

There is a natural structure sheaf that makes it into a scheme.

Definition 6.25. ([BMS06]) Let Z be a complex algebraic scheme embedded
in a smooth affine variety X. Let f1, . . . , fr be non-zero generators of the ideal
of Z. Let DX be the sheaf of linear differential operators on X. It acts naturally
on OX r

ś

i f
´1
i , s1, . . . , srs

ś

i f
si
i , where the si are independent variables. Let

us define a DX -linear action tj on it by tjpsiq “ si ` 1 if i “ j and tjpsiq “ si
otherwise. In particular, tj

ś

i f
si
i “ fj

ś

i f
si
i , and the action of tj is bijective.

Let si,j “ sit
´1
i tj and s “

ř

i si.
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The Bernstein-Sato polynomial (also called the b-function) bf psq of
f :“ pf1, . . . , frq is defined to be monic polynomial of the lowest degree in s
satisfying the relation

bf psq
ź

i

fsii “

r
ÿ

k“1

Pktk
ź

i

fsii

where Pk P DX rtsi,jui,js.

Definition 6.26. (cf. [Mus12]) Let X be a non-singular irreducible complex
variety and a Ă OX a nonzero (coherent) ideal sheaf. Let f : W Ñ X be a log

resolution of a, and consider a divisor with simple normal crossings
N
ř

i“1

on W

such that if aOW “ OW p´Dq, then we may write

D “
N
ÿ

i“1

aiDi and FW {X “
N
ÿ

i“1

kiEi,

where KW {X is the relative canonical bundle.
Then the log-canonical threshold at a point P P X, lctP is

lctP paq “ min
ti|PPfpEiqu

ki ` 1

ai
.

The (global) log-canonical threshold is

lctpaq “ inf
tPPXu

lctP paq.

Remark. The infimum in the definition of the (global) log-canonical threshold
is actually a minimum and, therefore, it is a rational number.

6.2.3 Étale slices

One of the tools used in [Bud18] to study a similar problem to ours are the
étale slices. Even though they are not directly applicable to our case, because
we do not know our scheme to be a variety, it might be possible to construct an
analogous machinery for more general schemes. Some basic definitions follow.

Definition 6.27. Given X “ SpecpRq an affine scheme and G a group scheme
acting on it, the affine quotient X {{G is SpecpRGq, where RG denotes the fixed
elements by the action of G.

The following two definitions belong more appropriately to the Commutative
Algebra section but we deemed it better to mention them here.

Definition 6.28. A module N over a ring R is said to be flat if the functor
M ÞÑM bR N is an exact functor on the category of R-modules. If it is also a
faithful functor, then we say that it is faithfully flat.
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Definition 6.29. Let f : A Ñ B be a ring morphism. We say that it is G-
unramified if it is of finite presentation and ΩB{A “ 0. Where ΩB{A “ 0 is the
module of differentials of B over A.

Definition 6.30. Let f : X Ñ S be a morphism of schemes.

1. We say that it is flat if, for every x P X, the local ring OX,x is flat over
the local ring OS,fpxq.

2. We say that it is G-unramified if, for every x P X, there exists an affine
open neighbourhood SpecpAq “ U Ă X of x and an affine open SpecpRq “
V Ă S with fpUq Ă V such that the induced ring map R Ñ A is G-
unramified.

3. We say that it is étale if it is flat and G-unramified.

Definition 6.31. ([Bud18]) Let G be a reductive group acting on affine varieties
X and Y , and let f : X Ñ Y be a G-equivariant morphism.We say that f is
strongly étale if

- f{G : X {{GÑ Y {{G is étale, and

- f , f{G and the quotient morphisms induce a G-isomorphism X » Y ˆY {{G
pX {{Gq.

Definition 6.32. ([Bud18]) Let G be a reductive group acting on an affine
variety X. Let x P X be a point with closed orbit. An étale slice is a Gx-
invariant locally closed affine subvariety S of X containing x such that the
induced G-equivariant morphism

ψ : GˆGx
S Ñ X

is strongly étale onto a G-saturated affine open subset U of X.
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