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ABSTRACT 

Mobile Edge Computing (MEC) is a new technology that facilitates low-latency cloud services 

to mobile devices (MDs) by pushing mobile computing, storage and network control to the 

network edge, thereby prolonging the battery lifetime of MDs. Besides, MEC aims to reduce 

latency and permit delay-sensitive applications in 4G communications. There is, therefore, a 

push to test MEC performance on existing cellular systems.  

With the recently available mobile platform for academia SINET, NII can now connect MDs to 

ESs through 4G. This project focuses on the implementation of a physical 4G-based MEC 

System for task offloading, in which with the goal of achieving face detection, MD partially 

offload tasks to the ES under the instructions dictated by the offloading algorithms. 

Accordingly, the objectives of this thesis are to prove the efficiency of LTE based MEC systems 

in the real world focusing  on its performance in terms of latency and battery consumption.  
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1 INTRODUCTION, OBJECTIVES, AND REQUIREMENTS 

1.1 BACKGROUND OF THE RESEARCH 

As part of undertaking my final year of the master’s degree in Telecommunications 

Engineering at the Polytechnic University of Catalonia (UPC) in Barcelona, I got the 

opportunity to participate in an International Internship[1] as a researcher at KLab[2]  at the 

National Institute of Informatics (NII) of Tokyo, Japan. 

This thesis is part of a collaboration project between the National Institute of Informatics and 

SINET-WADCI[3] (Wide Area Data Collection Infrastructure) platform. SINET is an academic 

information base that supports research activities of a wide range of universities and research 

centers throughout Japan establishing an academic information-sharing network nationwide. 

 
Figure 1 SINET network configuration. Source SINET. 

In 2018, a new access environment was added to SINET, a wide-area data collection base that 

uses the mobile network as a platform to connect to SINET that. on the other hand, allows in 

its wired section of speeds up to 100 Gbps. With this platform, mobile devices can reach our 

servers at NII through SINET and Softbank 3G/4G network, one of the largest 

telecommunications companies in Japan.  Besides, there is a high chance that by September of 

2019, they will gain access to a 5G network. 

At KLab, Professor Yusheng- Ji, Yi-Han Chiang, and Tianju Zhang are focusing their studies on 

Mobile Edge Computing (MEC). My role at NII was to join KLAB’s Mobile Edge Computing team 

and, by making use of the SINET-LTE link, implement a physical testing environment capable 

of testing offloading MEC algorithms. Moreover, this platform has been built to be scalable and 

to remain in KLAB for future experiments. 

1.2 INTRODUCTION  

Thanks to cloud computing, mobile applications can now offload their computation-intensive 
jobs to the cloud instead of relying on resource-limited mobile devices. However, sometimes 
offloading to the cloud can result in large delays which is a big problem for real-time-low-
latency applications. To solve this, Mobile Edge Computing aims to migrate this solution to 
smaller-scale servers at the edge of the network.  
 
MEC is an emerging technology that facilitates low-latency cloud services to mobile devices 
(MDs) by pushing mobile computing, storage and network control to the network edge, closer 
to mobile devices and thereby prolonging their battery lifetime. The key components of a MEC 
network include the mobile devices and MEC servers. Mobile devices and servers are 
separated by the air interface where reliable wireless links can be established using advanced 
wireless communications and networking technologies. 

[1]https://www.nii.ac.jp/en/about/international/mouresearch/internship2019-1/ 

[2] http://klab.nii.ac.jp/ 

[3] https://www.sinet.ad.jp/en/top-en 

https://www.nii.ac.jp/en/about/international/mouresearch/internship2019-1/
http://klab.nii.ac.jp/
https://www.sinet.ad.jp/en/top-en
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MEC servers are smaller size data centers deployed somewhere closer to the end-user, usually 
they are co-located with wireless Access Points (i.e. the base station in cellular networks or 
the WIFI APs). Through a gateway, these servers are connected to the data centers via the 
Internet.  
 
At KLab, thanks to the collaboration between NII and SINET-WADCI, Mobile Devices (MDs) 

can now through the LTE-SINET platform to Edge Servers (ESs) deployed on the SINET. 

Previously, other researchers in KLAB had centered their research in theoretical studies 

around MEC, and there was a motivation to also understand the performance of MEC in a real-

case scenario. For this matter, my role at NII was to develop a physical LTE-based MEC 

environment where several edge computers and mobile devices could coexist.  

As previously stated, one of the main objectives of MEC is to reduce latency and permit delay-

sensitive applications in 4G and in the future, 5G communications. Thus, it was key that the 

mobile devices overcame a computation-intensive challenge. With the goal of achieving face 

detection, mobile devices offload tasks to the edge servers, under the instructions dictated by 

the offloading algorithms, in this manner this project has been able to evaluate the 

performance of both the implemented MEC algorithms and LTE-based MEC systems. 

Accordingly, the objectives of this thesis are to create the test environment and to implement 

simple MEC offloading algorithms in the real world in order to have a better understanding of 

the benefits of using MEC technology on cellular networks.  

1.3 REQUIREMENTS AND SPECIFICATIONS  

In order to deploy, Mobile Edge Computing in the platform it was necessary to build two 

separated planes. On one hand, the control plane, used for signally, in which mobile devices 

would send some information to the controller in exchange for an offloading MEC decision. On 

the other hand, the data plane, in which tasks (pictures in this case) would be offloaded 

according to what was dictated by the controller in the control plane, to achieve face detection.  

 
Figure 2 Simple project schematics  

In consequence, the requirements for the project were:  

1. Build up a 4G-based MEC system where multiple MDs and ESs coexist. 

2. Measure the uplink/downlink delays in terms of varying data sizes. 

3. Implement the request and response messages network for signaling in the control 

phase. 
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4. Collect a library of images for processing. 

5. Achieve face detection in both mobile devices and edge servers.  

6. Implement simple MEC offloading algorithms. 
 

7. Study the data collected through the different tests and extract conclusions on MEC’s 
performance in LTE. 

Hence, the three key components of the testing network include:  

1. Mobile Devices equipped with SoftBank SIM cards that provide LTE connection. 

2. A controller in charge of running the offloading algorithms in the control phase and 

communicating the results to the mobile devices. 

3. “Edge Servers” located in the SINET Network (at NII) and in charge of performing 

computationally intensive operations according to the offloading and scheduling 

decisions. As it has been discussed,  MEC servers are typically co-located with wireless 

APs. However, because of the limitations in the collaboration between NII and SINET, 

in this project the edge servers have been placed in the laboratory and connected to 

the Base Station by a 100Gbps link though SINET.  

1.4 STATEMENT OF PURPOSE   

All of the facts stated in the introduction have set the reasoning on why this project was chosen 

to be developed. MEC is believed to be one of the technologies to be developed in the near 

future and even though initially it was thought to be only an only 5G feature, LTE-based MEC 

system is attracting considerable interest due to the widespread use of this cellular networks.  

Moreover, it is well known that the use of smartphones has changed the way we interact with 

the world and numerous mobile applications are emerging every day.  At the same time, these 

applications are becoming more battery and resource hungry and facing these two problems 

is set to become a vital factor in their growing evolution.  

This project is an implementation of an LTE-based MEC system that integrates MEC offloading 

algorithms to perform the battery and resource-hungry task of face to detection. The goal of 

the project was to use this platform to evaluate the performance in a real case scenario of the 

implemented MEC offloading algorithms and most importantly, 4G-based MEC networks.  

Accordingly, the objectives of this thesis are to: 

Objective 1. Build a network where multiple Mobile Devices and Edge Servers coexist.  

Objective 2. Test the network and measure the transmission delays. 

Objective 3. Implement a computation-intensive face detection application that motivates 

the use of MEC.  

Objective 4. Measure the processing time of the face detection application and evaluate its 

performance.  

Objective 5. Leverage the SINET-WADCI platform to evaluate the mobile-edge computing 

(MEC) offloading algorithms.  

Objective 6. Acquire insights into the performance of Mobile Edge Computing for Long Term 

Evolution cellular networks in terms of latency and battery consumption.  
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1.5 METHODS AND PROCEDURES  

This section moves on to present the software previously developed by other authors that are 
used to complete the project.  
 
In accordance with what was presented in the objectives and requirements of the project, this 
project consists of the creation of the test environment including both, the establishment of 
the communications and the implementation of the face recognition library in all network 
devices. As it will be later be explained in section 3.2 of this document for the face recognition 
applications in both the server and the phones Dlib is used. In particular, for Android, I have 
used as a baseline the Android application that was created by Tzutalin available on GitHub [1]. 
 
On the other hand, for the evaluation of the test consumption a free Android application, 
Simple Battery Graph, available in Google Store was used. This application measures the 
battery consumption over time and permits to export the data to handle it over Microsoft Excel.  

1.6 WORK PLAN WITH TASKS, MILESTONES AND GANTT DIAGRAM  

The next step was to subdivide the pending tasks into smaller work packages (WP) and to 
define a project planning strategy. Work packages form the lowest level of planning and 
consist of smaller activities that if well-structured, help to distribute the work over time and 
facilitate the completion of the project. Milestones, on the other hand, are smaller goals that 
show an important achievement in the project.  
 
This section moves on to describe the project execution divided into eight work packages and 
all the milestones that have set important accomplishments during these months.  

WP1. PROJECT KICK-OFF.  

This work package was essential for the correct development of the project since it set the 

requirements and objectives of the project and defined a work plan in order to achieve them 

within the available time. Moreover, it included taking an introductory Android course to get 

familiar with the platform and Java.  

▪ Study and understand the state of art of the current technology.  

▪ Understand the requirements of the project.  

▪ Set up the project objectives and plan.  

▪ Introductory Android course.  

Milestone 1. Project kick-off and project plan definition.  

WP2. NETWORK SET-UP 

The next step after the initialization of the project was the hardware implementation where 

all the devices required in the network were interconnected and evaluated for correct 

functioning.  

▪ Network implementation. 

▪ Routing table configuration and ping test. 

Milestone 2. Hardware set-up.  

[1]https://github.com/tzutalin/dlib-android-app 

 

https://github.com/tzutalin/dlib-android-app
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WP3. CLIENT-SERVER COMMUNICATIONS 

Once the checking that the network was correctly set-up, WP3  focused on developing the 
client/server software in order to send a larger amount of data. 

▪ Selection of the communication protocol.  

▪ Android Client implementation on Mobile Devices (MDs) 

▪ Node.js Server development on the Edge Servers (ESs) 

▪ Client-server communication and message exchange.  

▪ Network testing.  

Milestone 3. Successfully achieve client-server communications at an acceptable 

rate. 

WP4. FACIAL DETECTION IMPLEMENTATION 

Since it was required to equip MD and ES with facial detection capabilities, work package 4 is 

in charge of adding this feature. A computation-intensive application was needed in both the 

server and client in order to see the benefits that using edge computing could bring.  

▪ Mobile devices facial detector implementation. 

▪ Server facial detector implementation. 

▪ Test the performance and processing time in both mobile devices and servers.  

Milestone 4. Achieve face detection in all devices that form the network and evaluate 

the processing delays.  

WP5. ALGORITHM IMPLEMENTATION AND FINAL SET-UPS 

The next step was to implementation of very simple offloading algorithms in the controller 

which has a full view of all the devices in the network.  

Milestone 5. Implementation of MEC offloading algorithms.  

Finally, it was time to install the client application and server code in all the devices of the 

network, modify the message been sent and do final fixes to ensure the correct functioning of 

the project.  

▪ Install android code in MD  

▪ Install sever in both ES and controller  

Milestone 6. Integration of control and data plane and final set-ups.  

WP7. MEC TESTING  

WP7 consisted of performing the last tests, focusing on the evaluation of the MEC algorithms 

and LTE-MEC systems. One of the main steps of this work package was to obtain insights from 

the feedback in the final presentation at NII. This presentation was planned before the project 

finalization in order to do any possible improvement according to the comments.    

▪ Perform the tests of the MEC platform and conclusion extraction. 

▪ Present results at NII and obtain feedback.  

▪ Repeat any necessary test and do last improvements according to the feedback of the 

final presentation at NII. 

Milestone 7. Test LTE-MEC  platform and extract conclusions. 
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WP8. THESIS DOCUMENTATION 

Finally, WP8 constitutes all the presentations and papers needed to hand throughout the 

course of the project. Both UPC and NII required different documentation thus WP8 

encompasses all such procedures.  

Milestone 8. Initial presentation. Definition of the project and the objectives.  

Milestone 9. Mid presentation. Presentation of the progress half-way through.  

Milestone 10. Final presentation. Summarizing the work done, conclusions, possible 

improvements, and continuation.  

Milestone 11. Thesis document. 

Milestone 12. Presentation at UPC.  

 
Figure 3 Gantt Chart. Made with: https://prod.teamgantt.com. 

1.7 DESCRIPTION OF DEVIATION FROM THE INITIAL PLAN   

As presented, this master thesis is part of a collaboration project between SINET and KLAB’s 

MEC team. Even though the project plan was created to be quite flexible and it was open to 

deviations and changes there were some that were not taken into account.  

The main deviation of the plan that has the biggest influence in the outcome of the project was 

the change in the algorithms to be tested. Initially, this project was meant to be a collaboration 

project with another researcher at NII that was working in the design of offloading and 

scheduling algorithms. Unfortunately, due to circumstances that are out the scope of this 

project these algorithms were not ready during the development of the project and the project 

made a turn into another direction.  

The idea was to spend from week 14 to week 16 understanding and implementing the 

algorithms provided, however, this was postponed up to week 16 when I was informed that 

the algorithms were not going to be ready on time and had to reschedule other areas of the 

plan to fit this complication. In the end, the project finalization was possible by the 

implementation of the random and round-robin offloading algorithms and FIFO (First In First 

Out) as the scheduling policy.  
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Aside from the change in the algorithms to be implemented, no big issues or problems have 

occurred during the project. However,  and due to my inexperience in research and software 

development I think I have underestimated the many small deviations that could happen for 

very small things and I would have liked to plan this small deviation in my initial plan to avoid 

the high stressed level of the last two months of the project.  

After this experience, I have learned that in the same manner as the project plan was perfectly 

modeled with the objectives and requirements it would have been very useful to do a project 
risk study by identifying what could have gone wrong, characterization and prioritization of 

these risks and to create a handling and monitoring plan for each of these cases according to 

its possible repercussions.  

1.8 STRUCTURE OF THE DOCUMENT  

Overall this thesis summarizes from start to end the development of the 4G Based MEC 
platform and the testing of the different components focusing on the performance of Mobile 
Edge Computing for LTE for the special case of Face Detection in a network composed by two 
edge servers and two mobile devices. 
 
For this, this document is been divided into six chapters. In chapter 2, a brief introduction will 

cover the state of art of MEC technology and a small introduction of the theory behind the 
implemented face detection library. Next, chapter 3, will move on to present the development 

of the project that has been divided into three phases: control phase deployment, data phase 

implementation and offloading algorithms implementation and final setups.  

Afterwards, chapter 4, focuses on presenting the different tests performed during the 
development of the project. And, in the same manner, as the project development, it has 
divided into three parts: first, it focuses on the evaluation of the delay due to data transmission, 
next it puts its attention in the processing delays, finalizing with the study the behavior of 
Long-Term Evolution. LTE has been proposed as one of the cellular technologies that could 
benefit from Edge Computer, therefore there is a push to study its performance in a real case 
scenario. By the use of simple algorithms, insightful results about the two main focuses of MEC 
have been performed: latency and battery consumption.  
 
Finally, chapters 5 and 6 include the project’s budget and the conclusions and possible project 
continuation respectively.  
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2 STATE OF THE ART OF THE TECHNOLOGY  
Chapter 2 moves on to present the state of art of the technologies used in this investigation, it 

will be divided into two very well distinguished parts. 

First, this theoretical framework will explore the current state of Edge Computing. A historical 

background will present the evolution of cloud computing and its limitations, followed by a 

detail explanation of the role of Edge Computing in cellular networks. Next, edge computing 

will be presented, an overview of the importance of offloading and scheduling algorithms.  

To finalize, the technology behind the face detection library will be briefly introduced, focusing 

on the HoG and Support Vector Machine.  

2.1 EDGE COMPUTING  
The evolution of information technology has been accelerated by the growth and expansion of 
mobile devices. Smartphones have gained an important role in society and they are becoming 
more sophisticated. This evolution has been especially important in the areas of cloud 
computing and wireless communications. Mobile devices are equipped with various network 
interfaces, such as Long-Term Evolution (LTE) and Wi-Fi, and can connect to "the cloud" 
anytime and anywhere. At the same time, Cloud Computing has become a very important 
paradigm of computing delivering elastic computing power and storage to resource-
constrained end-user devices.  
 
As a result of all these technological breakthroughs, developers worldwide are building 
complex applications, such as face recognition, interactive gaming, natural language 
processing and virtual reality to augment even more the capabilities of these gadgets. 
However, all these emerging applications are usually resourced hungry and require high 
amounts of computational power and energy which is an immense challenge for resource-
constrained mobile phones. At the same time, 5G has brought the concept of ultra-low latency 
to the table, and it is widely agreed that relying on cloud computing is inadequate to realize 
the ambitious millisecond-scale latency for computing and communications.  
 
For all of that, a new concept known as Mobile Edge Computing is emerging. The main feature 
of MEC is to push mobile computing, network control, and storage to the edge of the network, 
reducing the latency that usually involves using a centralized cloud.  By offloading the 
computation partially or totally to the cloud infrastructure, MEC is envisioned as the most 
promising to technology to overcome these challenges. 

2.1.1 From Cloud to Edge Computing 

Cloud computing is currently one of the fastest-growing sectors of the IT industry. It is a 
general term that refers to anything that involves delivering hosted services over the Internet 
or in other words, it is the practice of storing and processing information in remote servers on 
the Internet instead of locally.  
 
Cloud services differ from traditional local servers in two main aspects: its scalability and the 
easiness in deployment for the service’s consumer. The ability to scale computing capacity up 
or down on-demand basis gives the opportunity to share the resources according to the real 
demand. On the other hand, that the service is fully managed by the provider, gives the 
opportunity to any kind of enterprise, big or small, to deploy these services according to their 
necessities without the initial investment that buying the infrastructure requires. Companies 
are increasingly aware of the business value that cloud computing brings and have already 
taken steps towards the transition to the cloud. 
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Although there have been massive improvements and development around cloud computing, 
this technology still faces the challenge of delivering reliable and available services [1]. An 
evident weakness is the long data-exchange latency that mobile users’ experiment which 
makes cloud computing inadequate for a wide range of emerging mobile applications that are 
latency-critical. Although this long latency may seem irrelevant for applications like emails or 
web browsing, it becomes critical for others such as video streaming or gaming, in which long 
delays would hurt the interactive response because of human’s sensitivity to delay and jitter.  
 
To overcome these limitations, over the last few years cloud computing is going throw a 
fundamental shift in which the traditional highly centralized model [2] would be replaced by 
a distributed decentralized one, with the function of the clouds being moved towards the 
network edges.  This new concept is known as edge cloud computing and aims to bring closer 
to the user, cloud capabilities such as computing, networking, and storage, reducing 
significantly the latency roundtrip to the cloud. The concept of MEC was first defined by the 
European Telecommunications Standard Institute and was defined as “a new platform that 
provides IT and cloud computing capabilities within the radio access network (RAN) in close 
proximity to mobile subscribers”. [2] 
 
Since Edge Computing is still an emerging technology some of its characteristics are to be 
defined but for simplicity, edge cloud computing could be subdivided into two types: FoG, that 
pushes technology down to the local area network, and Edge Computing, that as the name 
suggests, pushes it to an edge gateway or access point.    
 
In terms of applications, a wide range of new applications and services are emerging with the 
Internet of Things and 5G. Edge computing has already been proven to be beneficial for many 
computationally intensive applications such as gaming, healthcare, Internet of Things or video 
streaming [4] Edge servers allow for delay-sensitive applications to be executed externally but 
closer to the end-users. This paradigm is crucial for enabling low-latency, high-bandwidth, and 
agile mobile services. [5] This technology is an important target for the business since it will 
give mobile phones higher computational power, with a reduction in battery consumption and 
without the need for any extra hardware within the devices.   
 
Some of the benefits of adopting MEC will bring include:   

1. Low latency. Compare to cloud services approaching the servers closer to the end-
user at the edge of the network would result in a huge enhancement regarding latency 
and will allow for new latency concerned applications.  

2. Mobile energy savings. By transferring computation to the network, it is expected 
that mobile devices will significantly reduce battery consumption when using these 
computation-intensive applications.  

3. Context-awareness. By tracking user real-time information such as behavior and 
location, more accurate context-aware services could be delivered to the end-users.  

4. Privacy enhancement, by distributing the information from big unique data centers 
to smaller distributed ones.  

 
For all these reasons, edge computing technologies have attracted much attention to cellular 
networks.  

2.1.2 Edge computing for Cellular Communications  

In the pre-smartphone era, before IP communications, when voice quality was the highest 
necessity, the edge of mobile networks was a place for only specialist processing and that was 
designed to perform a specific function. The complete network, from the edge to the core, was 
optimized for an only purpose resulting in equipment very little scalable. With the widespread 
adoption of over IP technologies such as LTE, new applications have emerged, and the industry 
has seen a whole transformation in the network design. Single vendor radio network solutions 
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are evolving into modular open solutions capable of being integrated into a changing 
environment. [2] Mobile-access edge computing is seen as a key technology to be incorporated 
into these new more flexible networks in order to bring application-oriented capabilities to 
the heart of carrier’s networks to broad the horizons of what we now know as cellular network 
and, in order to explore a wide range of new use cases, especially those with low latency 
requirements. 
 
Sometimes MEC is considered a 5G only feature, nevertheless, since 4G is still far from 
disappearing, research is being done towards adding MEC to existent 4G networks. Actually, 
according to the ETSI [1], the defined MEC reference architecture is independent of whichever 
cellular network it is deployed in. Products based on current MEC specifications can be 
smoothly migrated to support 5G networks through a software update. This way, flexibility in 
the deployment architecture allows planning for the introduction of MEC services as the 
milestone to build the edge cloud, which is key for the success of 5G services. In this manner, 
MEC for LTE would not only improve the current network but it will act as a driver to motivate 
5G adoption. [6] 
 

There are a few potential deployment options available for operational 4G systems explored 
by ETSI. However, the requirements for deployment of MEC in LTE are clear: it must suppose 
the minimum investment, it must be standard-compliant, and it must not introduce any 
modifications on eNB or the core network. The key idea is that the MEC platform sits within 
the eNB architecture and some traffic is routed to the MEC and others pass through the MEC 
to reach the Internet. Edge servers act as a middlebox transparent to the network architecture. 
 

 
Figure 4 MEC Network concept. 

Besides the challenges that deploying MEC in LTE supposes, also the wireless nature of the 
channels could be a big challenge. [7] The wireless channel condition plays a big part in the 
performance of MEC: bad channel conditions increment battery consumption and latency and 
could make the use of MEC disadvantageous. For that is very important to build efficient MEC 
algorithms and use advanced techniques such as interference cancelation and adaptive power 
control.  

2.1.3 MEC: offloading and scheduling algorithms  

Two of the biggest issues in the spotlight of the academic MEC researches are task offloading 
and scheduling. The former means transferring resource-intensive computational tasks to an 
external platform, the edge server. The latter refers to the order the server decides to process 
the arriving tasks. 
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Figure 5 Offloading and scheduling in MEC 

Task offloading incurs extra overheads in terms of delay and energy consumption due to the 
communication required between the devices and the MEC server in the uplink wireless 
channels. Because of this time-varying channel condition, it is not necessarily optimal to 
always offload the tasks to the server, for example when the channel is in deep facing 
conditions. This hence can lead to low energy efficiency and long data transmission time and 
offloading would result detrimental.  
 
Additionally, in a system with a large number of offloading users, the finite computing 
resources at the MEC servers considerably affect the task execution delay. How the tasks are 
prioritized within the server would be crucial to minimize the processing time of the overall 
system.  
 
Therefore, offloading and scheduling decisions become a critical problem toward enabling 
efficient computation. Thus, the two main goals in MEC are: 

1. For the mobile users to determine whether or not to offload, select an edge server 
and the amount of the computation to offload  

2. For the servers to dynamically schedule the offloaded tasks to optimize the network 
performance. 

As it will later be presented in section 3, this project focuses on the performance of multi-user 
multi-server MEC systems and low-complexity offloading algorithms (Round Robin and 
random) are implemented to minimize the average total task time. Concerning scheduling on 
edge-clouds, an online scheduling scheme without any assumption about the distribution of 
the job releases is desired. First-Come-First-Serve scheme has been selected as the server’s 
strategy to perform the tasks.  

2.2 FACE DETECTION  
There is an increasing number of emerging mobile applications that could benefit from MEC 
one of them is face detection.  An image detection algorithm is a computer vision-based 
algorithm that is capable of detection because it has been trained to learn the difference 
between different elements. Therefore, a face detection algorithm takes images as input and 
after some computation, outputs whether a face is present or not. The method of face detection 
in pictures is complicated because of the high variability in human faces including expression, 
hair, facial hair, skin color, lighting conditions…  
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The library that has been used for this experiment is called Dlib and works by computing HOG 
features and classifying them with an SVM (Support-Vector Machines). This section moves on 
to describe an overview of these theoretical concepts to have a better understanding of the 
detection library.   

2.2.1 Histogram of Oriented Gradients (HOG)  

As it has been presented Dlib and uses a concept called Histogram of Oriented Gradients (HOG) 
which is an implementation of the original paper by Dalal and Triggs [11] 
 
HOG extracts feature into a vector which is then classified by Support Vector Machine (SVM). 
The features that are extracted are histograms of directions of gradients of the image that 
indicate where the edges and corners are in each picture region. [12] [13] [14] This feature 
descriptor is obtained in 5 simple steps:  

1. Pre-processing to normalize gamma and the color of the input image.  
2. Gradient calculation. Calculate the x and y gradient images from the original image. 

The gradient image removes a lot of non-essential information (e.g. constant colored 
background) and highlights outlines. 

3. Divide the image into cells. Then, for each of these cells, compute the HoG directions 
or edge orientations for the pixels within the cell. 

4. Grouping and normalization of histograms. Grouping the cells into blocks according to 
their weighted gradients.  

5. Descriptor or feature vector. A normalized group of histograms represents the block 

histogram. The set of these block histograms represents the descriptor. 

 
Figure 6 Histogram of Oriented Gradients working scheme. [15] 

2.2.2 Support Vector Machine (SVM) 

DLIB uses Linear SVM and is been trained with a dataset of 2825 images. This algorithm 

performs a simple supervised binary classification. [16] 

To simply understand the basic concept of the algorithm we can simplify by thinking of a result 

feature vector from HOG of just two dimensions, which can be represented as the two colors 

(black and white) in Figure 7. These two features could be, faces and background.  

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
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Figure 7 Support Vector Machine for two dimensions 

 

Then, we provide the algorithm with examples of the two classes and then we tell the 

algorithm to organize the dots as black or white. Different learning algorithms separate these 

two classes in different ways, in the case of Linear SVM tries to find the best line that separates 

the two classes. As we can see in Figure 7, the best line would be H3, as it perfectly separates 

the members of the two classes and it is at maximum distance from both types.  

In the same manner, if the feature vectors are in 3D, SVM will find the appropriate plane that 

maximally separates the two classes. And in the case of DLIB, where the feature vector is in a 

3780-dimensional space, SVM will find the appropriate hyperplane. 
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3 METHODOLOGY PROJECT DEVELOPMENT 

The present chapter aims to explain the methodology followed during the thesis development. 

The projects prime objectives were to leverage the SINET-WADCI platform to evaluate the 

benefits of mobile-edge computing (MEC) through the implementation of Round Robin and 

Random MEC-offloading algorithms. Thus, the first step is to construct a practical MEC system 

which ultimately, would allow the MDs and ESs to realize the missions of face detection, 

following the offloading decisions dictated by the controller, and the computational results 

would finally be sent to hosting MDs through result messages.  

As reported in the work plan presented in the first chapter of this document, the development 

of the project was divided into three phases: 

- Phase one main focus was to initiate the development of the Control Plane. The 

objectives or this phase were to set up a simple network environment that connects 

mobile devices and the controller and enabled the exchange of request and response 

messages between them.  

 

- Phase two consisted of the deployment of the Data plane. As previously presented, 

in order to prove the efficiency of the algorithms, both edge servers and mobile 

devices need to be equipped with computationally intensive applications. Bearing this 

in mind, a face detection application was deployed in both MD and ESs.  

 

- Then, phase three consists of the deployment of the algorithms in the platform the 

final setups.  This last phase of the project will be complemented with Chapter 4 and 

the evaluation of the applicability and effectiveness of MEC by summiting the 

simplistic designed solution through extensive experiments on the SINET-WADCI 

platform. 

 

Therefore, the project is clearly been divided into three phases. First, the implementation and 

testing of the network and control plane. Second, the implementation and testing of the data 

plane and lastly, the deployment and evaluation of simple MEC offloading algorithms to extract 

insightful conclusions.  

3.1 PHASE 1: IMPLEMENTATION AND TESTING OF THE NETWORK AND CONTROL PLANE.  
The initial step in the development of the project was to build the network, including the 

hardware configuration and the software implementation. 

3.1.1 Hardware configuration: Set-up of the network environment  

The very first step to take was to interconnect and properly install the main components of 

the network. The system comes complete with the use of the following devices:  

• Two PCs, Lenovo Legion T730 with Intel Core i9-9900K processor. These PCs are 

used as the Controller (which also hosts Edge Server 1) and Edge Server 2.   

• Two mobile devices (MD), Samsung Galaxy S9 with Exynos 9810 processor, equipped 

with LTE Softbank SIM cards that connect to the SINET-WADCI network.  

• NII Ethernet cable[13B-OL-008], connected to the SINET-WADCI network. It is 

important to note that this cable is the connection between the NII laboratory and 
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SINET and therefore it had already assigned an IP address and a gateway within 

the SINET network.  

- IP address: 10.1.1.17. 
- Netmask: 255.255.255.252. 
- Gateway: 10.1.1.18. 

• CE Router, AirMac Extreme A1408. Connects to the Ethernet cable and creates 

a private local network within the laboratory.  

Thanks to Softbank SIM cards, the mobile devices can connect through LTE to the SINET-

WADCI network. On the other hand, the Controller and ESs, located in the laboratory are 

connect to the network through CE router which is the laboratory’s gateway to the SINET 

network. Figure 8 is a schematic representation of the network configuration end to end.  

 
Figure 8 Network configuration  

The procedure followed to interconnect the network elements consisted of three simple steps: 

1.  Installation of Ubuntu 16.04 in the PCs: T730 (1) which acts as edge server 1 and the 

controller and T730 (2) which is the edge server 2.  

2. Plug the NII ethernet cable [13B-OL-008] into the router [AirMac Extreme A1408]  and 
ping from the Mobile Devices to the PE and CE routers to ensure the connection 
worked smoothly. 
 

3. Since KLAB was provided with only one IP from SINET, the final steps consisted of 
using CE router to set up a Local Network (LAN) and to configure the routing tables to 
let any information from outside the LAN reach our PCs.  CE router is connected to the 
ethernet cable 10.1.1.17 and creates a LAN for the controller (also hosting ES1) and 
the ES2 in the domain 192.168.1.x. CE router receives the information sent by the 
phones towards a specific port of 10.1.1.17 and then, thanks to routing configuration, 
that information is redirected towards the corresponding device. The routing tables 
were configured as represented in table 1.  
 

Thus, T730(1) hosts the controller and the ES1 at 192.168.10.4 and T730(2) serves as 
ES2 at 192.168.10.5.  
 

Table 1 Routing table configuration 

Packets sent 

to Address 

Redirected to 

Address 

Network 

element 

Device 

10.1.1.17:8004 192.168.10.4:8004 Controller/Edge 

Server 1 

T730 

(1) 

10.1.1.17:8005 192.168.10.5:8005 Edge Server 2 T730 

(2) 
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As can be seen in Figure 8, this is not a pure edge computing deployment. In a real future MEC 
scenario, the edge servers would be deployed within the eNB (as explained in section 2), 
however, due to the limitations of NII agreement with SoftNET the Edge Servers are deployed 
within the SINET network. Still, this positioning of the edge servers is considered to be in a 
much closer location than a Cloud Server, which could be hundreds of kilometers away from 
the end-user. To have a better understanding of all the hops the message goes through from 
the devices to the edge servers we can look to a traceroute of a simple ping message. 
 

 
Figure 9 Ping Traceroute from 10.10.10.10 (MD) to 10.1.1.17 (CE Router) 

3.1.2 Software implementation: Client-server communications 

The experiment proceeds with the software implementation that was required to achieve 

client-server communications. Before taking the decision of what technology would be used 

as the communication protocol it was important to understand the network’s main 

characteristics and requirements: 

- The network is formed by edge servers acting as servers and mobile devices, acting as 

clients.  

- Both, the mobile devices and the edge servers must be able to send information at any 

time.  

- One of the key objectives of mobile edge computing is to reduce latency, therefore, the 

link must allow real-time communications.  

As can be seen the software implementation had to be split into two parts, an Android app 

hosted by the Mobile Devices and Servers, hosted by the PCs. These components must had 

been able to communicate real-time at any time. To achieve this feat, Socket.io was chosen and 

the following subsection moves on to present the motives behind this decision.  

3.1.2.1 Socket.IO vs HTTP 

Socket.IO is a library that enables real-time, bidirectional and event-based communication 
between the client and the server. One of the main goals of Socket.IO is reliability for this aim 
it first establishes a long-polling connection, then tries to upgrade to better transports, usually 
WebSocket. Socket.IO allows using WebSockets very easily, making real-time, bi-directional 
communication between clients and server possible. [17] The main characteristics of 
Socket.IO are:  
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1. Multiplatform. Same as HTTP, Socket IO has two parts: a client-side library that runs 
in the Android phone, and a server-side library for Node.js. 

 

2. Bilateral communications. Socket.io also provides the benefit that both the server and 
client can push messages to the other at any given time, allowing for full duplex client-
server communication. This protocol goes beyond the typical HTTP request/response 
paradigm. Unlike HTTP, Socket.io allows a sort of communication that remains open 
between the client and the server. They stay connected to each other and can exchange 
messages from any side node at any time. 

 
Figure 10 HTTP request-response vs Socket.io bidirectional communications 

3. Event-driven model. Socket.io has the ability to work with an event-driven model: both 
the server and the client can react to events and messages.  

4. Lower overhead. Excluding this initial connection setup (over HTTP), a Socket.io 
connection does not have to send headers with every message resulting in lower 
overhead.  

5. Transfer speed. Due to all of the previously stated characteristics Socket.io allows for 
a faster transmission rate. 

These characteristics have been summarized in the following table:  

 HTTP SOCKET.IO 

Client/server Supported. Android and Node.js libraries. 

Communication 
Unsynchronized. Client request-

server response. 

Full duplex synchronized bilateral 

exchange. Event-driven comm. 

Connection 
TCP connection. New connection 

every new message (open/close). 

Single TCP connection for each 

client.  

Data transfer 
Data attached to every packet 

(headers). 

Lean protocol after the HTTP 

establishes the connection.  
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An easy way to understand the performance difference between HTTP and Socket.io is by 
measuring the Round-Trip Time over time when using Socket.io. As it has just been explained 
Socket.io initiates the communication with HTTP moving on to an open bidirectional 
WebSocket communication afterward. Figure 11 shows how the RTT using HTTP reaches 300 
ms while the rest of the time this latency is below 100 ms.  

 
Figure 11 Socket.io performance. HTTP vs Socket.io  

3.1.2.2 Socket.IO for Node.JS and Android.  

Once the decision of using Socket.IO as the communication protocol was made, the next step 
was its implementation. As it has been stated, Socket.IO is available for both Node.js and 
Android. Communications are possible following two simple steps:  

1. Establishing communications: connect/disconnect. 

▪ Node.js Multi-client server, the server in Node.js is written in JavaScript. Figure 
12 shows how Socket.io is initiated.  

 
Figure 12 Node.js Socket.io Server connection establishment 

Socket.IO servers are initiated listening to the port 8004 (for ES1) and 8003 (for ES2) , 
which is where all the packets directed to PC1 and PC2 will be redirected. Socket.IO 
has some reserve events. 

• Io.sockets.on (‘connection’, … ) is used to establish the connection. Every 
time a new user connects the server will show a message of the number of 
users connected. Within this connection, every user name is assigned with an 
ID.  

Transfer speed Slow.  
Created to support real-time over 

TCP applications.  

Table 2 Summary of the differences between HTTP and Socket.io 

B 

 

u  
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All the events that we need to emit are going to be inside this function. 

• Socket.on (‘disconnect’, …). Every time a socket is disconnected this event 
would be called.  

▪ Android Client. Socket.io client will connect to 10.1.1.17 and to the port we want 
to redirect the information to.  

 
Figure 13 Android Socket.io Client connection establishment 

2. Sending and receiving events. The main idea behind Socket.IO is that it is event-driven 
communications, so any device can send and receive any events at any time. Any objects 
and data that can be encoded as JSON can be sent over Socket.IO.  

▪ Node.js Multi-client server. Node.js server receives information through Socket.on 
(‘event’, …). It is important to understand that there are two ways of sending 
information from the server.  

• Io.emit (‘event’, … ). This event and its information will be sent to every connected 
client.  

• Socket.emit (‘event’, …). This will be sent to a specific socket, it can also be done 
by using io.to(#socketID). emit (‘event’, …). 

 

 
Figure 14 Receive and send the same message to the device that sent it. Server side. 

 
Figure 15 Receive and send the same message to the device specified by the id. Server side. 

▪ Android Client The client event emission and reception have the same structure as in 
the server, however, it can seem a little bit more complex due to the nature of Java 
itself.[18] 

• Socket.emit (‘event’, … ) is used to send information from the client. In the case 
of the control plane, it would be a JSON object containing all the necessary 
information for the controller to make the offloading decisions.  

• Socket.on (‘event’, EmitterListener). As it has been constantly stressed, Socket.IO 
permits bidirectional communications and thus, every time the server sends an 
even to the client, the second must be listening. In Java this can be implemented 
through an event listener. An event listener is designed to processes an event and 
it is always listening waiting for this event to respond accordingly.  

//Connect to 17 and the port that redirects to the 

local network 

{ try { mSocket = IO.socket("http://10.1.1.17:8004"); 

    connected= true; 

} catch (URISyntaxException e) { 

    Log.d("myTag", e.getMessage());}     

//TEXT MSG (RECEIVED AND RESEND) TO TEST THE CONNECTION 

socket.on(‘send message’, function(data){ 

    socket.emit(‘new message’, {msg:data});}); 
 

//TEXT MSG (RECEIVED AND RESEND) TO TEST THE CONNECTION 

socket.on(‘send message’, function(data){ 

  var id= socket.id; 

  io.to(id).emit(‘new message’, {msg:data});}); 
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Figure 16 Send and receive a message. Client side. 

Once communications were achieved and before the moving on to the implementation of the 
data plane, some tests were performed to understand the performance of the implementation. 
Once, it was proved that the round-trip values were within the acceptable delays for the 
application, the next phase’s implementation could start. These results will be presented in 
Section 4 of the document with all the tests related to the experiment. 

3.2 PHASE 2. IMPLEMENTATION AND TESTING OF THE DATA PLANE  

The goal of this thesis is to understand the performance of Edge Computing for LTE 

communications. One of the candidate applications to be suitable for this type of platform is 

Face Detection. Accordingly, phase two consists of the implementation, as part of the data 

plane, of the face detection in both servers and clients.   

3.2.1 Face-detection  implementation  

Face Detection is a computer vision application that consists of spotting the number of faces 

present in a photo. Picture processing is usually slow and computationally intensive and 

therefore, it makes sense to offload some or all of the tasks to the edge servers in order to 

reduce latency and improve the overall performance.  

There are a few libraries available that can implement face detection however the criteria for 

selecting which one was more suitable for this experiment was based in  three essential 

requirements:  

- The processing delay has to be as little as possible.  

- It must be able to efficiently detect faces with a relatively low error rate.  

- It must be able to implement in both the Android phones and the Edge Servers.  

One algorithm that suited all these requirements was DLIB’s HOG face detection model.[19] 

As stated in [20] it is one of the fastest open library methods on CPU and works very well in 

frontal and slightly non-frontal faces.  

The ultimate reason for DLIB being chosen as the Face Detector library was its availability for 

both Python and Android. Having the same library in both smartphones and servers removes 

the uncertainty on whether or not the difference in performance in-between libraries has an 

influence on the overall system behavior and allows a more accurate and easier analysis of the 

difference between using or not using MEC.  

Face detection in DLIB is a model, based on HoG features and SVM. This model was built out 

of 5 HOG filters ( front, left  and right looking, front looking but rotated left, and a front looking 

but rotated right) and it was trained by his author with a dataset of 2825 images.[20] 

//Send message where send text is an JSON object  

mSocket.emit("send message", sendText);  

... 

//Receive a message through a listener  

mSocket.on("new message",handleIncomingMessages); 

... 

private Emitter.Listener handleIncomingMessage = new 

Emitter.Listener(){ 

    @Override 

    public void call(final Object... args){ 

        runOnUiThread(new Runnable() { 

            @Override 

            public void run() { 

             JSONObject data = (JSONObject) args[0]; 

             try { 

      String result = data.getString("msg")}  

catch (JSONException e){ return;}});}}; 
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3.2.1.1  Edge Servers.  

First, when it comes to the deployment of Face Detection on the Edge Computers the solution 

was to implement Dlib in Python. Following the principles dictated by the example 

“FaceExample.py” provided by Dlib (Figure 17), face detection was achieved. 

 
Figure 17 FaceRecognition.py [21] and an  example of a detection 

However, it is important to notice that since the servers were deployed in JavaScript some 

type of communication protocol was needed to connect the back and front end within the edge 

servers and the immediate solution was to call the Python program with a child process. 

Nevertheless, this solution was lowering the performance of the library resulting in delays of 

over a second.  

This processing delay was unacceptable and after some investigations, the problem was 

spotted. Since, Dlib is a quite large library, loading it every time a picture is processed would 

increase the overall delay significantly. To overcome this issue, the solution was to run the 

Python program independently and call it every time that a face recognition it was needed 

without the need to restart it.  

As it was explained in Section 3.1, the real-time communications between the mobile devices 

and the edge servers are possible thanks to Socket.IO. Since the same kind of bidirectional 

connection was needed between the Node.js fronted and the Python Face Detector backend, 

using Socket.IO seemed like the best manner to achieve real-time data transfer between the 

programs. As it is represented in Figure 18, thanks to Socket.IO every time the Node.js frontend 

receives a new picture over Socket.IO, it redirects the picture to the Face Recognition Python 

client (also over Socket.IO) , which after doing the detection responds with the amount of faces 

detected and the name of the picture it detected them from. 

Furthermore, by using Socket.IO, the problem of loading the library every time the program is 

called is solved since the python backend is continuously running from the program’s start-

up. 

 
Figure 18 Communications within ES between server.js and FaceDetection.PY application 

3.2.1.2 Android client   

On the other hand, as explained in Section 1.5 of this document, to achieve Face detection in 

the Android devices the application of Face Detection Android created by Tzutalin was 

selected [1]. This application is a simple implementation of the C++ Dlib library which is the 

same one used in the Edge Servers.  
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Figure 19 Tzutalin Phone face detection detecting an image with two faces.  

This application was combined with the client explained in Section 3.1 and the face detection 

software is called in the background every time the offloading decision dictates that the 

picture needs to be processed internally by the mobile device.  

For this project, it was very important to test every part before moving on to the next to avoid 

any unforeseen consequences of an inefficient implementation. Thus, as it will later be 

presented in Section 4, experiments were run to understand the processing delay profile.  

3.3 PHASE 3. MEC AND FINAL SETUPS  

Finally, once communications and computationally-intensive task of face detection were 

achieved, phase three oversees the deployment of the MEC algorithms and  the final setups.  

3.3.1 Mobile Edge Computing  

In Mobile Edge Computing tasks are released by the phone to be computed by the edge servers. 

In order to understand the offloading process some things must be considered:  

- Independently on from which mobile device a task is released from, it goes throw 

two phases, the control and the data phase.  

- In this experiment, there are 3 devices that can process the tasks: the mobile device 

itself MD, edge server one, ES1 or edge server two, ES2.  

- Two tasks cannot be processed in parallel within a device. Therefore, the waiting 

time of a task depends on the number of tasks queued in that processing device. 

As introduced in Section 1.6 of this document there were some modifications from the initial 

plan that caused the modification of the final approach to the project. In the end Mobile Edge 

Computing has been deployed using the following scheduling and offloading algorithms:  

- First, as the scheduling policy, FIFO (first in first out) was considered.  

- On the other hand, when it comes to offloading two low-complexity sub-optimal 

solutions have been used:  

▪ Round robin. That assigns the task to one of the devices of the network 

respectively. So, first ES1, second ES2, third on-device processing and then 

again to ES1, etc.  

▪ Random. Randomly assigns which device process each picture. 

[1]https://github.com/tzutalin/dlib-android-app 

 

https://github.com/tzutalin/dlib-android-app


 

 22 

Finally, it is important to remember that this platform was built from the start of the project 

to be scalable so that any kind of algorithm could be deployed with little modifications. For 

some very simplistic algorithms, the control phase may not be necessary, however, bearing in 

mind this platform has the intention to remain in the laboratory and be used for other future 

algorithms and even 5G cellular networks. it makes sense, therefore, to build the 

infrastructure in a scalable manner.  

3.3.2 Final set-up and scale up 

When it comes to the final set up and the scale up some things were considered.  

▪ Since, Socket.io is present for Android, Node.js, and Python all the elements of the 

network can be interconnected through sockets.  

▪ The two PC needs to be equipped with the Node.js Server to be able to redirect the 

images to Python and handle several users (MDs).  

▪ Socket.io is an event-oriented platform therefore for each of the “conversations” an 

event will be in charge of handling each type of information. 

▪ Each socket has a specific socket ID and each connection between a client and a server 

will have its specific socket identified by its ID. There are two servers, one deployed on 

each PC. And 6 clients: the two mobile devices in Android and the three python clients.  

 As a summary Figure 20,  presents a schematic of the main message exchange between the 

Mobile devices’ application and the Node.js ES and the Python applications.  

 
Figure 20 Summary of the application and servers’ communications 

There are two phases, first the control phase and then the data phase.   

▪ CONTROL PHASE. There are four main events: 

1. Start. Mobile devices indicate with start the name of the image they want to upload, 

its size and the socket ID that characterizes the connection between the MD and 

the CNTR. This socket ID would be useful for later redirect the offloading decision 

to this mobile device. 

2.  Offl. The server redirects to Python offloading program the information it needs 

to make the offloading decision.  
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3. OfflDec. Depending on the offloading algorithm, the offloading decision will be 

made in different ways. However, this event will always respond with the name of 

the image and with:  

▪ 0: If the decision is that the task must be processed by the MD.  

▪ 1: When it must be processed by ES1. 

▪ 2: If, on the other hand, ES2 has to process it.  

Again, it redirects the socket ID for the server to know who sent the request.  

4. ResultOff. through this event, the offloading decision is redirected to the MD.  

Figure 21 represents Example 1. The mobile device [1] sends the control information which is 

received by the controller (also hosting ES1). The JavaScript front end (server.js) is in charge 

of resending this information to the back end[2]. The python offloading program (MECRR.py) 

makes the offloading decision [3] and then sends back this information to the front end that 

redirects the information again back to the mobile devices. [4] 

  
Figure 21 Example 1. Simple demonstration with 3 pictures: Control phase. 

 

▪ DATA PHASE. The data in this phase can go through three different actions according to the 

decision dictated by the controller. As stated, the controller indicates with a 0,1 or 2 

whether the picture needs to be processed internally, by edge server one or two 

respectively.  

Whenever the decision is to offload whether it is to ES1 and ES2, four events dictate the 

message exchange to share the information:  

5. SendImage. According to the offloading decision, MD sends the image to the 

corresponding server (1 or 2) through this event.  

6. Detect. Mobile devices redirect the picture and the Socket ID for the Python 

program to detect the faces.  

7. Detected. Once the detection is completed the Python program sends back the 

name of the image and the number of faces in each picture.  

8. ResultFD, the face detection result is redirected to the MD.  

2

4 

3 

1 
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Figure 22 Example 1.  Simple demonstration with 3 pictures: Data phase. 

Continuing with the example represented in Figure 21 in which the mobile device wanted to 

offload 3 images, Figure 22 represents the data phase. According to the offloading decision 

MD1 processes image 1 internally and sends the picture 2 to ES1 and picture 3 to ES2. [5] The 

python backends in both computers process it [6] and finally, the result is redirected to the 

MD [7]  that shows the result on screen[8].   
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4 RESULTS 
Focusing now on the project’s outcome, Chapter 4 of this thesis centers its attention on 

carrying out experiments and retrieving results. For this section, it is essential to have in mind 

the motivations of adopting Mobile Edge Computing.  

Particularly, for computational-intensive battery hungry applications, the main aspects for 

which MEC could be especially beneficial are task processing time and mobile device battery 

consumption. This experiment focuses on evaluating these two main concerns that the face 

detection application has to overcome: latency and battery consumption. 

As it has been stressed during chapter three, this project’s development was divided into three 

phases, each of which, had to be tested prior to continuing with the next. It is very important 

to understand, that each of these tests were not only to ensure the correct flow of the project 

and to avoid unexpected deviations but also, the former serves to supports the understanding 

of the latter. Consequently, chapter 4 is divided into three sections:  

1. Data transmission performance. This section focuses on the testing of the 

infrastructure built in phase one of the project development. The goal of these 

measurements is to estimate the communication delay linked to each data size.  

 

2. Face detection library performance. Within phase two of the development of the 

project, the work focused on achieving face detection. Before moving on to the 

implementation of MEC it was very important to understand what was the processing 

delay and the main factors that would increase this value. 

 

3. MEC performance. Since the ultimate goal of this project is to measure the 

performance of MEC in 4G systems, section 4.3 is dedicated to measuring the average 

total task time for the different algorithms and evaluating battery consumption. 

4.1 NET COMMUNICATIONS DELAY   
The system-level delay performance of our interests is composed of communication and 
computation aspects. In this stage, the testing was focused on the former one by measuring 
the round-trip time (RTT) of request-response (REQ-RESP) message exchanges in the Control 
and Data plane. To do this, an MD periodically sent a REQ message to CTRL, and on receiving 
the REQ message, CTRL can promptly respond to the MD via a RESP message. These tests 
consist in comparing the performance of using the SINET-LTE network to a small local WIFI 
network. 

 
Figure 23 LTE and WIFI network configurations. In the WIFI network, DHCP IP assignment has been used. 
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4.1.1 TEXT DATA TRANSMISSION  

The first network’s performance test consisted of sending a small text message of 132 bytes 

over the SINET-LTE network continuously every 100 ms. The two main insights to be taken 

from this test were to understand the time a short message would take to be sent from the 

client, resent from the server and received by the client.  

 
Figure 24 Testing message that resembles what the Control Message would look like. 

By looking at the networks’ performance in Figure 25, it can be observed how the LTE network 

presents sudden peaks during some time periods. It is important to remember, that even 

though, LTE communications aim to be very fast and reliable networks, the signal transmitted 

from MD to the base station has to travel a long distance, sometimes under congested or high 

fading situations and these peaks are normal. Moreover, since the ESs are located within the 

SINET network instead of the edge (eNB), an extra delay in the average RTT was expected.  

On the other hand,  it can be noted how WIFI communications are much more stable over time 

and have in lower average Round Trip Time, this result was expected due to the proximity of 

the mobile device to the router, the low congestion of the Access Point and the deployment of 

the Edge Servers in the Edge of the network.  

 
Figure 25 Small text performance LTE vs WIFI. 

Also, with the cumulative distribution function (CDF), that calculates the cumulative 
probability for a given x-value it is easy to understand the differences in performance between 
both networks. The WIFI network RTT is lower or equal than 20 ms for 60 percent of the 
samples taken. Whereas in the LTE network the same number of samples have a value of lower 
or equal than 50 ms.  

- Observation 1: The WIFI networks presents lower RTT and more stable connectivity. Since 
we can deploy the server closer to the access point, the WIFI link can be used as a lower bound 
of how the MEC system could perform in an ideal case scenario.  

- Observation 2: The overall performance of the 4G-based SINET-WADCI platform is good 

since it can mostly provide mean RTT below 100 ms, despite sometimes larger RTT. 

4.1.2 LARGER DATA, IMAGE TRANSMISSION  

Secondly, in order to have more insights on how the data plane’s transmission delay profile 

would behave and whether or not the built infrastructure during phase one was sufficient to 

support big data file transferring, the second set of tests measured the performance of sending 

round trip (client to server and server to client) three different-dimension images. These tests 

were performed for both WIFI and SINET-LTE network infrastructures.  

{"ID": "1",        //PHONE ID 

 "N": "2",         //NUMBER OF IMAGES  

 "size": "50,100", //SIZE OF THE IMAGES  

 "RTT": "50ms" }   //FROM HISTORICAL DATA  
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From Figure 26 it is easy to see how the round-trip delay has a maximum of 500 ms Round 

Trip Delay in LTE and 300 ms for WIFI, even for the large image. In the case of the medium 

image, the RTT is around 300 ms in LTE and 200 ms for WIFI. Finally, for the smaller image, 

the RTT has a minimum, being around 200ms for LTE and 50 ms for WIFI.  

 It is important to notice that both networks have the same behaviors as in  the test presented 

in Section 4.1.1, in which LTE presents sudden peaks in the RTT, with the only difference that 

the average round trip time increases for both of them for the obvious reason that the amount 

of data transmitted is larger.  

 
Figure 26Performance of the network sending round trip [640x426], [1280x853] and [1920x1280] images. 

- Observation 3: The 4G-based platform can mostly provide mean RTT : 

- Below 600 ms for large images (300ms for the WIFI case). 

- Below 300 ms for medium-size ones  (200 ms for WIFI ). 

-  As low as 200 ms for small dimension pictures (below 50ms for WIFI). 

RTT delay in WIFI  is approximately half than LTE. 

Just a side note, it is important to remember that in the case of this thesis face detection 

application, the delays related to the image transmission would be lower (around half of this 

value) due to the fact that the image only needs to be sent from client to server, and the server 

replies accordingly. These results lead to the next phase of the project which is the Data Plane 

implementation.  

4.2 COMPUTER VISION LIBRARY PERFORMANCE: PROCESSING DELAY 
The initial studies had proven that the platform’s performance was suitable or the experiment, 

this section moves on to perform some experiments to understand the overall performance of 

the implemented library. Hence, the following tests help to understand what the maximum 

and minimum picture processing times are, and what are the factors influencing these values.  
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4.2.1. FACTORS INFLUENCING THE PROCESSING TIME  

The following tests were made with 100 picture data set for each image size, i.e. a total of 300 

pictures from 1 to 14 faces within the pictures taken from Pexels Website [1].  

Two aspects were considered as the two main potential factors increasing processing time: 

face count and image size. 

 
Figure 27 Processing time vs the number of faces. 

By plotting the processing time vs, the number of faces (Figure 27) it can be seen that there is 
no direct correlation between a greater amount of people in a picture and greater processing 
time.  

This graph shows three different groups of image dimensions classified by color. Within these 
pictures, there are from one to fourteen people, however, comparing the processing time of 
the picture with fourteen people to the one with only one the processing time is equal.  

 
Figure 28 Processing time vs Image dimensions 

According to Figure 27,  it could already be seen that the image dimension actually plays a big 
role in the picture’s processing time. Thus, it made sense to study the average processing time 

per image size and its standard deviation (Figure 28). Thanks to both Fig.27 and Fig.28, it is 

very easy to see how all the images with the same size are processed in almost the same 

amount of time.  
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Thus, from these tests two observations can be extracted:  

- Observation 1: The greater the size of a picture, the larger the processing time. 

- Observation 2: There is no correlation between a greater amount of people in a picture and 

a larger processing time.  

Besides, these results can be combined with the ones extracted in the communication delay 

experiment in which it was proven how dimensions of the picture have an impact on the data 

transmission delay. Even though it is beyond the scope of this project, picture size could be 

used as an insightful input in an optimization offloading algorithm, that dictates which 

pictures are offloaded to the network, to minimize the total task processing time.   

4.2.2. PROCESSING TIME: MOBILE DEVICE VS SERVER  

Finally, the last performed before moving on to the last phase of the project was measuring 

the difference in performance between the servers and mobile devices when performing face 
detection.  This graph shows the difference in processing time between the mobile devices and 

the edge servers for the data set mentioned before.    

 
Figure 29 Processing time vs Image dimensions 

Figure 29 demonstrates that the edge servers have a better processing performance that the 

mobile device. ES performs the detection in less at most one second for the worst case, 

whereas the mobile device's delay can reach 2.5 seconds.  

- Observation 3: The overall performance of the Edge Servers is better. This difference in 

performance is especially important in medium-size and large images.  

This simple observation is in fact one of the most important findings of the project since it 

shows the motivation on why Edge Computing could be a good solution for this application, 

here we can see that actually the delays in the mobile phone could be reduced almost in half if 

the condition of the communication link is good.  

[1] https://www.pexels.com/ 
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4.3 MEC PERFORMANCE  
One of the main concerns of computationally intensive applications is that in order to perform 

each task and due to the limitation in phone’s processors, there is usually a considerable delay 

linked to every individual task. Just as it was introduced in Chapter 2, humans are very 

susceptible to glitter and reducing this delay would broaden the horizons on the kind of 

applications mobile devices can be equipped with. On the other hand, this kind of applications 

imply a rather high battery consumption.  

These two aspects are two of the main motivations behind using MEC and this section is going 

to focus on testing the performance of latency and battery life in a real MEC-LTE case scenario. 

For that, the experiments conducted in this part aim to measure the improvements Round 

Robin and random algorithms could bring just by partially offloading tasks to the network.    

4.3.1 Latency: Average Total Task Time  

The Total Task Time (TTT) is the total time, i.e. communication plus processing time, that 

takes a task to be finalized. The test has been performed in a dataset of 100 images that is sent 

repeatedly every 20 milliseconds and therefore the average TTT means what is the total time 

that takes in average for each task to obtain the result of how many faces it contains, whether 

it has been processed internally or offloaded.  

As it has been stressed the goal of this project was to test the advantages and disadvantages 

of using simple algorithms and edge computing itself by comparing the following cases:  

▪ Everything is processed by the mobile devices themselves. 

▪ Round Robin. 

▪ Random.  

Moreover, similarly to Section 4.1, when testing the communication delay these experiments 

have been conducted for WIFI and LTE, considering that in the case of WIFI the server is 

located in the real edge, its performance appears like a good reference value of what could 

potentially be attained when locating the servers in the core of the base station.  

4.3.1.1 Algorithm comparison  

This first test focuses on testing the differences between the deployed algorithms: Round 

Robin and random.  

 
Figure 30 Average Total Task Time for Round Robin and Random algorithms for both LTE and WIFI communications.  
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The first thing to look at when seeing these results is the huge improvement using two edge 

servers has on the average Total Task Time. By looking at the case when Edge Computing is 

not used, i.e. zero edge servers are used and the phone processes all internally, the average 

TTT is greater than 800ms. On the contrary, it can be seen how for the best-case scenario 

(Round Robin- WIFI), this value goes all the way down to 242.5 milliseconds, which is a 

reduction in more than half of the average TTT just by using a simple algorithm and two edge 

servers.   

It is very important to understand that the primary goal of the project was to have evidence of 

the benefits of MEC for cellular LTE networks. With this simple test we have proven the 

advantages Mobile Edge Computing could bring for latency concern applications.   

Moreover, as can be seen, WIFI outperforms LTE in both cases, the reason behind this appears 

to be because of the communication delay studied in Section 1.1. However, further sections are 

specifically dedicated to this study.  

Finally, it can be observed that Round Robin has a better overall performance than the random 

algorithm because it evenly distributes the tasks between the devices. Therefore, from these 

section three main observations can be highlighted:  

- Observation 1: By using MEC the average Total Task Time [ms] can be reduced more 

than to half in the best of the cases.  

- Observation 2: Round Robin has a better performance than the Random Algorithm 

because of the evenness in its task-sharing assignment.  

- Observation 3: WIFI presents slightly best performance than the LTE network due 

to lower transmission delays.  

In order to get more insights, the same data is being plotted in bar form including the error 

bar. This is very useful since it helps us see how diverse the data.  

 
Figure 31 Average TTT and standard deviation for RR and Random algorithms for Average Total for both LTE and WIFI 

communications. 

- Observation 4: Round Robin with WIFI presents a very stable performance because 

of both the stability of WIFI communication and the non-variability of the Round Robin 

offloading decision outcome.  
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- Observation 5: Both LTE, because of its transmission characteristics and the 

Random Algorithm because of its own nature introduce randomness to the Total Task 

Time. 

4.3.1.2 Average Total Task Time and Processing Time  

From the previous test, it was still unclear on what are the reasons for an increment in the 

average Total Task Time. Since Round Robin is been proved to be the most stable algorithm, 

this test measures how much of the total task time is due to the processing time. 

 
Figure 32 Average processing time with respect to average TTT [ms] 

This figure shows the average total task time composed by the average processing time and 

some additional delays. These other delays are in its great majority due to communication 

delays however, some other factors not considered could also take part in this extra delay. As 

it was expected the majority of the delays are caused by the processing time.  

Again, it can be observed how the two edge servers outperform, one and using MEC supposes 

a great advantage over on-device processing. Furthermore, some other conclusions can be 

drawn: 

- Observation 1: Processing time is quite stable but in case of slower performance, it 

increases the TTT.  

Processing time is a variable value, even though it is quite constant over time it can sometimes 

experiment a larger delay. This, therefore, is translated in larger average processing time, 

which affects the total task time. This is reflected more significantly for the case of one edge 

servers, in which the difference between WIFI and LTE has been reduced because of this 

increase in the processing delay, while the proportion of the communication delay remains 

the same from one to two servers.  

- Observation 2: The percentage of TTT required for transmission is higher for two 

edge servers, but the overall result is the best for this case.  

For obvious reasons when using Round Robin, the communication delay is higher for the case 

of two edge servers. Since the tasks are evenly distributed two every three tasks would be 

offloaded versus one every two in the case of one edge server, which in the end increases the 

communication delay.  
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Moreover, the transmission delay for the WIFI case is half of the transmission delay for LTE. 

This result goes in accordance with the conclusions extracted at the early stages of the project 

when testing the communication performance.  

4.3.2 Battery consumption  

Finally, the last parameter evaluated in the network was the battery consumption. It is 

important to remember that one of the biggest motives to use edge computing is the potential 

reduction in battery consumption for battery-hungry-computationally intensive applications. 

Since the mobile devices used for the experiment have the same characteristics and were 

purchased at the same time, it is quite easy to perform an accurate consumption test on what 

would be the difference between Round Robin with two Edge Servers and on-device-only 

processing with no MEC.  

For this test the app “Simple Battery Graph” that measures the battery consumption over time 

and permits to export the data to a computer to analyze the data.  

Therefore, the test environment: 

▪ Two phones Samsung S9. 

▪ Same characteristics 

▪ Starting from 100% charge. 

▪ Not connected to WIFI, but both connected to LTE (only one of them offloads the tasks 

but both have the data activated).  

▪ Same data set: 100 different medium-size pictures, sent at repeatedly over the 3 hours 

and 15 minutes.   

Moreover, the test was performed simultaneously, and the image was being processed 

continuously, the moment one is terminated (whether by the phone or the response is 

received from the edge server), the next image is sent or starts processing.  

 
 

Figure 33 Time consumption over time: LTE based MEC vs Internal Processing.  

For a three hour and fifteen-minutes test the phones with the same characteristics ended up 

with  16% for the internal processing vs 43% for the one using 4G based MEC with two servers.  

- Observation 1: Battery consumption can be reduced by using Mobile Edge 

Computing in computationally intensive-battery hungry applications. 



 

 34 

 

 

 
Figure 34 Screenshot of Simple Battery Graph for phone battery consumption (test duration: 3 hours and 15 minutes). 

Moreover, this test was repeated under the same conditions for comparing MEC for LTE and 

WIFI. After three hours and fifteen minutes, the battery of the phone offloading over WIFI to 

two Edge Servers was 45%, which is slightly higher than for LTE that resulted this time in 38%.  

 
Figure 35  Time consumption over time: LTE based MEC, WIFI based MEC and Internal Processing.  

Therefore,  an observation can be extracted:  

- Observation 2: Battery consumption has a better performance using Mobile Edge 

Computing on WIFI than in LTE but this difference in consumption it is no comparable 

with the differences between using or not MEC. 

This higher consumption in LTE is the same that us as mobile device consumers experience 

every day. It is very common as consumers to turn off the data to reduce battery consumption. 

This outperformance in the case of WIFI is due to the high battery consumption that implies 

the connection to different base stations and the long-distance data transmission in LTE. 

To sum up, this section has put its attention on testing, both the testing environment and the 

technology. First, by testing the communication delay, it has been understood what the 

maximum and minimum delays the application could suffer due to the task transmission. Later 

No MEC MEC LTE 
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on, this study has evaluated the performance of the deployed library to have a better 

understanding of what could be the potential benefits of using MEC.  

Finally, the last section of Chapter 4 has focused on the technology itself. Mobile Edge 

Computing, has been proved to be the promising technology that is said to be, reducing latency 

and improving battery performance in mobile devices hosting computationally intensive 

battery hungry applications.  
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5 BUDGET 

Since NII is a public administration and there was no government subvention particularly 

specific for my project there is no purchase, besides my salary, that was specifically made for 

the project, but I used the components that were already available, however, an approximate 

estimation of their value can easily be done. Therefore:  

1. Prototype component budget  

▪ 2 Samsung S9 with an approximate cost of ￥53,800 x 2 = ￥107600 

▪ 2 PC Lenovo Legion T730:  ￥264,708 x 2= ￥529416 

▪ Router Airport by Apple: ￥18,000 

 

2. Engineering budget: On the other hand, the designing and prototyping cost or 

personnel cost was of 151 days x ￥5,700 = ￥860700 (approximately 37000 euros).  

Besides, there could be some additional costs related to the collaboration between SiNet, NII 
and KLab however, that information was confidential. 
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6 CONCLUSIONS AND FUTURE DEVELOPMENT 

This thesis has centered its attention on the development of a task processing LTE based 

mobile edge computing platform. The goal of the experiment was to evaluate the performance 

of 4G-based MEC for task offloading in computationally intensive applications. Both the 

development of the project and the testing of the platform have been done progressively over 

time in order to understand the limitations and to avoid possible cumulative errors.  

In phase one, the initial set up was done by building a 4G-based system where multiple Mobile 

Devices and Edge Servers could coexist. Moreover, in this phase, some preliminary tests were 

performed to understand the uplink and downlink delays that different sizes of data sets 

would experience. It was concluded that the overall performance of the 4G-based SINET-

WADCI platform is good since it can mostly provide mean RTT below 100 ms for text messages 

and below 600 ms for any image size, despite sometimes larger RTT.   

Besides, the performance of the 4G-based SINET-WADCI platform was compared to WIFI 

which resulted in a reduction in half of the RTT delay.  Since we can deploy the server closer 

to the access point, the WIFI link is been used the whole project as a reference lower bound of 

how the MEC system could perform when locating the servers closer to the base station. 

Finally, in phase one, the request and response messages for the signally in the control plane 

were implemented.  

Next, phase two consisted of the deployment of the data plane, in which the mobile devices 

following the instructions of given in the control plane would or would not offload the pictures 

to be detected to the network. For that, it was necessary to achieve face detection in all the 

devices of the network, which was possible thanks to Dlib. In the same manner, as in phase 

one, this library was submitted to an evaluation in order to understand its performance.  

It was observed how the main factor increasing the processing time was image dimensions. 

Furthermore, this phase also included the comparison in performance between processing 

images internally  by the MD versus when these were processed in the ES. Figure 29 

demonstrated that the edge servers have a better processing performance that the mobile 

device. Outperforming mobile devices, the edge servers present processing delays lower than 

one second even for the largest images, whereas the mobile device's delay can reach 2.5 

seconds. This difference in performance was the ultimate motivation to continue with the  

project. 

Finally, the last step of the project included integrating all the components of the experiment 

and the deployment of Mobile Edge Computing offloading algorithms. Round Robin and 

random algorithms were deployed in the network dictating how to offload the task. Both of 

these algorithms were evaluated through multiple tests that compared its performance with 

the case where no MEC is possible, i.e. everything is processed internally on the device.  

After various latency and battery tests, MEC for LTE has been proven to give mobile phones 

higher computational power, with a reduction in battery consumption and without the need 

for any extra hardware within the devices, since all smartphones nowadays are equipped with 

LTE capabilities. Thus, two main aspects have been proven to be achievable:  

▪ Low latency.  By approaching the servers closer to the end-user, it results in a huge 

enhancement regarding latency. By using MEC the average Total Task Time [ms] can 

be reduced more than to half in the best of the cases being going from 843 ms when is 

processed internally to less than 300ms for round robin algorithm.  
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Moreover, because of the evenness in its task-sharing assignment Round Robin has a 

better performance than the Random Algorithm. Also, WIFI presents slightly best 

performance than the LTE network due to lower transmission delays.  

But most importantly MEC always outperforms internal processing, which will allow 

for new latency concerned applications such as the tested face detection, virtual reality 

or even other still to be discovered applications.  

▪ Mobile device energy savings. By transferring computation to the network mobile 

devices significantly reduce battery consumption when using these computation-

intensive applications.  

Even though the battery consumption in the LTE based MEC network is a slightly 

higher than in the WIFI based. MEC reduces in more than half the battery consumption.  

Ultimately, the experiment has achieved it is the goal of not only testing but proving the 

efficiency of LTE based MEC systems for the battery hungry latency concerned application of 

Face Detection.   

Notwithstanding, several future milestones have been left for the future. The immediate next 

step to be taken is to test optimization algorithms on the platform and in the 5G network that 

will be available from September. This would enable to see how MEC optimization algorithms 

could increase the overall performance of MEC systems and measure the range of 

improvement they could bring. Aside, it would be compelling to measure the performance of 

MEC in dense networks, test MEC under mobility and test the performance of Mobile Edge 

Computing in heterogeneous networks.  
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