DESIGN AND CONSTRUCTION OF A PROTOTYPE OF AN ULTRASONIC APPLICATOR FOR ULTRASONIC SOLDERING, CUTTING AND DRILLING

A Master's Thesis
Submitted to the Faculty of
Electrical Engineering of Prague
Czech Technical University
and
Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya
by
Ferran Casanovas Permañé

In partial fulfilment
of the requirements for the degree of
MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Pavel Zahradník
Co-Advisor: Ramon Bragós

Prague, June 2019
Abstract
This project proposes a design of an ultrasonic generator oriented to industrial applications like ultrasonic soldering, cutting and drilling. For this, it has been developed a first design of the system using some recent techniques in order to obtain a generator with a variable auto-tuning network to cancel the imaginary impedance of the transducer and a feedback stage to find automatically the resonance frequency. Finally, a prototype has been constructed and a first evaluation of the different parts of the device has been done in order to obtain the first results of the design.
Dedication: “I dedicate this work to my family that has always been there and believed in me, in the good and the hardest moments.”
Acknowledgements

First, I would like to thank the director of my project, Prof. Pavel Zahradník for giving me the opportunity to be part of this project and for his guidance along the work. I would also thank my co-advisor at the UPC Ramon Bragós for accept to supervise the project in the distance.

I would also like to express my sincere thanks to my family for the support they have given me throughout this process because without them it has not been possible, as well as my friends and colleagues who have also been there.

On the other hand, I would also like to thank the CTU institution to accept myself in this incredible experience.
Revision history and approval record

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20/03/2019</td>
<td>Document creation</td>
</tr>
<tr>
<td>1</td>
<td>03/06/2019</td>
<td>Document revision</td>
</tr>
<tr>
<td>2</td>
<td>10/06/2019</td>
<td>Document revision</td>
</tr>
</tbody>
</table>

Written by: Ferran Casanovas
Reviewed and approved by: Pavel Zahradník and Ramon Bragós

<table>
<thead>
<tr>
<th>Written by:</th>
<th>Reviewed and approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 08/06/2019</td>
<td>Date 14/06/2019</td>
</tr>
<tr>
<td>Name Ferran Casanovas</td>
<td>Name Pavel Zahradník and Ramon Bragós</td>
</tr>
<tr>
<td>Position Project Author</td>
<td>Position Project Supervisors</td>
</tr>
</tbody>
</table>
Table of contents

Abstract ... 1
Acknowledgements ... 3
Revision history and approval record ... 4
Table of contents ... 5
List of Figures .. 7
List of Tables ... 9

1. Introduction .. 10
 1.1. Work plan .. 11

2. State of the art of the technology used or applied in this thesis 12
 2.1. Introduction ... 12
 2.2. Ultrasonic transducer modelling ... 12
 2.3. Transducer impedance variation .. 13
 2.4. Power amplification techniques .. 14
 2.4.1. Controlled conduction angle amplifiers ... 15
 2.4.2. Switching amplifiers ... 16
 2.4.3. Proposed power amplifier .. 17
 2.5. Impedance matching techniques .. 18
 2.5.1. Static impedance matching networks ... 18
 2.5.2. Dynamic impedance networks ... 20

3. Methodology / project development ... 24
 3.1. Hardware Design .. 24
 3.1.1. Display control ... 25
 3.1.2. Development board (MCU) ... 26
 3.1.3. Power supply .. 27
 3.1.4. Power stage .. 30
 3.1.5. Impedance study .. 31
 3.1.6. Impedance matching network .. 34
 3.1.7. Prototype assembly ... 38
 3.2. Firmware design .. 39
 3.2.1. Frequency selection .. 40
 3.2.2. Frequency display .. 41
 3.2.3. Signal generation .. 42
 3.2.4. Feedback signals .. 43

4. Results .. 46
List of Figures

Figure 1.1: Gant diagram of the project ... 11
Figure 2.1: Transducer equivalent circuit .. 12
Figure 2.2: Transducer impedance vs temperature ... 13
Figure 2.3: Amplifier classes efficiency diagram .. 14
Figure 2.4: Class D amplifier configurations ... 16
Figure 2.5: Class E amplifier structure ... 16
Figure 2.6: Proposed power amplifier diagram ... 17
Figure 2.7: Power amplifier switching states ... 18
Figure 2.8: Static matching network configuration .. 19
Figure 2.9: L-type matching network .. 19
Figure 2.10: Bypassed capacitors diagram ... 21
Figure 2.11: Proposed auto-tuning network ... 22
Figure 2.12: Switching capacitor signals description ... 23
Figure 3.1: System block diagram .. 24
Figure 3.2: System circuit diagram ... 25
Figure 3.3: Rotary encoder configuration ... 25
Figure 3.4: OLED display ... 26
Figure 3.5: LAUNCHXL-F28379D pin description ... 26
Figure 3.6: MCU schematic ... 27
Figure 3.7: Power supply block diagram ... 28
Figure 3.8: Power supply schematic ... 29
Figure 3.9: Power supply board ... 29
Figure 3.10: Power stage schematic .. 30
Figure 3.11: Transducers options ... 31
Figure 3.12: AD5933 configuration .. 32
Figure 3.13: AD5933 software configuration .. 33
Figure 3.14: Transducers impedance vs frequency ... 34
Figure 3.15: Matching network schematic .. 35
Figure 3.16: Series/Parallel transducer impedance .. 36
Figure 3.17: Matching network circuit description ... 36
Figure 3.18: Prototype boards .. 38
Figure 3.19: Firmware block diagram ... 39
Figure 3.20: Firmware flow chart description ... 40
Figure 3.21: Rotary encoder signals description .. 41
Figure 3.22: Display and rotary encoders .. 42
Figure 3.23: Ultrasonic complementary signals description 43
Figure 3.24: Ultrasonic signal and control signal description 43
Figure 3.25: Feedback algorithm example .. 44
Figure 4.1: Micro-controller ultrasonic pulses .. 46
Figure 4.2: Micro-controller ultrasonic and control pulses 46
Figure 4.3: Ultrasonic pulses at 3V3 isolators output .. 47
Figure 4.4: Ultrasonic pulses and control pulses at the output of 5V isolators 47
Figure 4.5: Ultrasonic and control signals at the gate drivers output 48
Figure 4.6: Falling edge ringing noise .. 48
Figure 4.7: Gate driver supply and output with noisy presence 49
Figure 4.8: Test circuit block diagram and gate drivers output 49
Figure 4.9: Power stage output with high noisy ringing 50
Figure 4.10: Half bridge Snubber circuit topologies .. 50
Figure 4.11: Power stage output with the Snubber circuit 52
List of Tables

Table 3.1: Voltage converters features ...28
Table 3.2: Transducers impedance results ..33
Table 3.3: Theoretical filter values ...35
Table 3.4: Theoretical filter components values ..38
Table 3.5: Real filter components values ...38
Table 3.6: Rotary encoder logic table ...41
Table 4.1: Frequency adjustment algorithm iterations52
Table 5.1: Prototype components costs ..55
Table 5.2: Instruments and software costs ...55
Table 5.3: Working costs ...55
1. **Introduction**

The ultrasonic technology is nowadays a growing area in many fields, for example in medical applications or for industrial purposes. This technology can be used in sensors to acquire data, in applicators to transmit ultrasonic waves or in both ways. This project is centred in the devices for the transmission of ultrasonic waves, more known as ultrasonic generators. Therefore, the goal of this project will be the study of ultrasonic generators oriented to industrial purposes like ultrasonic soldering, drilling or cutting.

An ultrasonic generator is the device that provides the electrical energy to power the ultrasonic transducers. It basically generates the ultrasonic signal with the proper frequency, voltage and amperage to drive the ultrasonic transducer. In the past, ultrasonic generators consists on converting the AC power line energy to the desired signal to supply the transducer, but nowadays with the introduction of micro-controllers this kind of devices has improved a lot his features. The most recent designs provide features like the setup of the ultrasonic frequency, feedback from the transducer to improve the efficiency, varying the output voltage to maximize the power… Going a little bit deeper, this project pretends to create a device with a selectable output frequency in the range of 15-100 kHz which are the frequencies that normally work the transducer for the commented area of application. Apart from that, a study of the behaviour of transducers will be needed in order to understand which requirements would be necessary in the prototype design.

This project has been implemented in a research laboratory at the Czech Technical University in Prague. The project consists on a first version of the designs and the prototype starting from zero. Taking into account what has been explained above, it is intended to construct a prototype which allows the frequency setup, an accurate tuning of the matching network and a some feedback control to improve as much the efficiency of the ultrasonic generator. To achieve this goal, the project has been organized in the following sections:

- Section 2 - State of the art: there are explained the different technologies and methods that are suitable for the study of the transducers and the different techniques available for the design of each stage of the prototype.
- Section 3 - Methodology/Project development: in this section the prototype designs are presented including the methodology that has been followed to achieve it and how has been implemented.
- Section 4 - Results: it is a description of the experiments carried out and the results obtained.
- Section 5 - Budget: this part intends to make an approximation of the costs that can have a project like this.
- Section 6 - Conclusions and future work: there is a reflexion of all the work done and its results, in addition to proposing future tasks to improve some parts.

1.1. Work plan

In this section there is a description of the tasks that has been done during the project and the time that has been devoted to each one. Mainly, the task has been divided in four groups, the theoretical study, the design implementation, the evaluation tests and the deliverables. In the Figure 1.1, it can be seen how the different tasks have been organized during the project.

![Gantt diagram of the project](image-url)
2. **State of the art of the technology used or applied in this thesis**

2.1. **Introduction**

In this section will be a description of the study done of the different techniques for the implementation of the project. The study will contain the analysis of the transducers behaviour and the consequent study of the methods for the design of an ultrasonic generator in order to obtain a functional prototype.

2.2. **Ultrasonic transducer modelling**

Understanding the characteristics of piezoelectric transducers enables to improve the performance of ultrasonic systems. In this section, it is intended to explain the modelling done in this project to ultrasonic transducers in order to obtain a good characterization for the later designs.

The transducer study can be done based on the Butterworth-Van Dyke, which is very useful to evaluate overall performances of the ultrasonic transducers. In the Figure 2.1, it can be seen the equivalent circuit of the model where the mechanical parameters has been changed to equivalent electrical parameters. R1 reflects the mechanical dissipations, L1 the mass and C1 the flexibility [1].

![Figure 2.1: Transducer equivalent circuit](image)

The impedance of the circuit above is given by:

\[
Z_T = R_1 + j\omega L_1 - j\frac{1}{\omega C_1} = \cdots = \frac{(L_1 C_1 \omega^2 - 1) - j(R_1 C_1 \omega)}{R_1 C_p C_1 \omega^2 + j[L_1 C_p C_1 \omega^3 - \omega(C_p + C_1)]]
\]

eq. 2.1
If the input signal to the transducer is working at the mechanical resonance frequency of the piezoelectric element, then the branch formed by R1,L1 and C1 behaves as a purely resistive load R1.

\[f_m = \frac{1}{2\pi\sqrt{L_1C_1}} \]
\[Z_T|_{\omega=\omega_m} = \frac{R_1}{1 + j\omega_m R_1 C_p} \]

From the equations 2.4 and 2.5, it can be extracted the values of R1 and Cp by:

\[R_1 = \frac{|Z_T|_{\omega=\omega_m}|^2}{Re\{Z_T|_{\omega=\omega_m}\}} \]
\[C_p = \frac{-Im\{Z_T|_{\omega=\omega_m}\}}{2\pi f_m |Z_T|_{\omega=\omega_m}|^2} \]

So giving values to the components of the impedance finally the circuit can be simplified as a resistance and a reactance at the resonance frequency.

2.3. Transducer impedance variation

The impedance of transducers is sensitive to variations caused by temperature, manufacturing, ageing, working mediums... One of the most important causes for the variation of the impedance is the temperature, recent studies show that the imaginary part can change around \(\sim 5\%\) [2]. These changes on the temperature can be caused by the medium or because of the mechanical operation of the piezoelectric element at high power.

![Figure 2.2: Transducer impedance vs temperature](image-url)
Another cause of variation of the dispersions caused in the manufacturing process or the ageing of the transducers. These variations can reach values about 25-35% of the imaginary part. These changes in the impedance can produce a detuning of the matching network that will become in a deterioration of the output power efficiency. In the next section will be analysed different impedance matching techniques in order to tune the transducer and maximize the output power.

2.4. **Power amplification techniques**

One of the most important parts when designing this type of devices is the amplification stage in order to transfer the desired amount of power to the transducer. In this section a review of some different power amplification techniques will be done and the selected one for the project will be explained more accurately.

There are two main groups of power amplifiers. The first one is the controlled conducted angle amplifier classes where we can find the classes A, B and AB based on the length of their conduction angle. The second group is the switching amplifier classes where there are the classes D, E, F, G… This group is based on switching techniques rather than using analogue approaches.

The Figure 2.3 shows a comparison of the different classes in terms of conduction angle and output efficiency. As it can be seen, the efficiencies of the first group are much lower than the efficiencies of the switching techniques, which are near to the 100%.

Figure 2.3: Amplifier classes efficiency diagram
2.4.1. Controlled conduction angle amplifiers

Class A amplifier

The class A amplifier is the simpler implementation. It has a very good linearity but a very low power efficiency. In this method, the current flows over the transistor in the whole waveform cycle. It produces a loss of power and overheating which can be dangerous for the circuits. One advantage of this amplifier is that it has not crossover distortion problems like as it could be seen in classes B and AB [3].

The efficiency of this type of amplifiers is about 25-30%, which makes this option not very attractive, apart from the heating problems, which demands for some cooling facility in order to not damage the circuits.

Class B amplifier

The class B amplifier is conducting a half of the cycle. It uses two complementary transistors in order to amplify the opposite halves of the input signal, which is then recombined at the output. This method achieves an improvement of the efficiency but it has a drawback that happens in the join of the two halves, where a small mismatch in the crossover region creates a distortion in the output signal.

This method can obtain a maximum efficiency of 78.5% reducing the heating problem of the class A amplifier, but the crossover distortion that appears in the output signal makes this option maybe not the best one.

Class AB

The class AB amplifier, as its name says, has a conduction angle between the class A and the class B amplifiers. It is a variation of the class B amplifier allowing the two transistors to conduct at the same time around the crossover point in order to minimize or eliminate the crossover distortion [3].

This amplifier sacrifices some efficiency in order to obtain a greater linearity in the output signal. The efficiencies that can be obtained with this kind of amplifier are below the efficiencies of class B amplifiers, typically values between 60-65%.
2.4.2. Switching amplifiers

Class D
The class D the amplifier is a non-linear switching amplifier, which uses electronic switches (normally MOSFET’s) as amplifying elements. It uses as input two complementary trains of pulses, which turn on alternately the switches at a half duty cycle generating at the output a single amplified train of pulses. Passing it through a LC low-pass filter acting as a matching network results in an amplified sinusoidal waveform. There are different configurations for the class the amplifier, but the most typical are the half bridge and full bridge configurations [4].

![Half Bridge and Full Bridge configurations](image)

This type of amplifier can reach theoretically efficiencies about 100%, but the MOSFET’s cannot act as ideal switches so the real efficiency is lower. Another advantage of this type of amplifiers is that can work with digital signals without the need of DAC’s to convert the signal to analogue.

Class E
The class E amplifier is another type of switching-mode amplifier, which only uses one transistor as power element and a tuned reactive network. The major condition is that the MOSFET is only closed when there is no voltage neither current and it is only opened when there is no voltage across the device [5].

![Class E amplifier structure](image)
Analysing the circuit in the Figure 2.5 it can be seen that the current will flow from the resonator to the ground through the switch when it is closed, then during the negative cycle a sine wave could be created due to the discharge current of the shunt capacitor when the switch is open.

2.4.3. Proposed power amplifier

In this section, there is an explanation of the proposed structure for the power amplifier. After the analysis of the different options, it has been chosen a structure based on the class D amplifier. The Figure 2.6 shows a block diagram with the different parts of the power stage with an anti-cross conduction circuit, the gate driver and the MOSFET’s acting as switches. The purpose of the anti-cross conduction circuit is to avoid the simultaneous turn on of the switches due to a phase error in the complementary train of pulses. The gate driver is needed to obtain a high current source able to drive the MOSFET’s the desired ultrasonic frequency.

The type of MOSFET’s selected is an N-channel because of their lower threshold voltage than the P-channel type that makes the switching time faster. It is also important to choose MOSFET’s with lower Rdson value in order to obtain a very low output impedance in the power stage. Thanks to the anti-cross conduction circuit and the gate driver the two switches will never be turn on at the same time and will be able to drive the necessary current.

The Figure 2.7 shows a diagram with the two switch states and the corresponding signal values at the gate driver outputs \(V_{G1}\) and \(V_{G2}\) and the resulting signal in the MOSFET’s output \(V_o\).
Finally, as it can be seen, the signal at the output of the power stage is an amplified train of pulses at the desired frequency. In order to obtain a sinusoidal signal a low pass filter must be added, but this will be studied in the next section where different matching networks will be analysed and the one that fits the requirements for our design will be selected.

2.5. **Impedance matching techniques**

The goal of the matching network is to reduce the output impedance to be purely resistive in order to maximize the output power. The ultrasonic transducers are reactive components so it is necessary to implement a matching network in order to correct it. There are different ways to create a matching network, in this section some of them will be presented and the selected one will be explained more accurately.

2.5.1. **Static impedance matching networks**

There are different static matching impedance structures in order to create matching network. Tuning networks use sometimes only an inductor or capacitor in order to compensate the susceptance or reactance of the transducer, but with this structure the
resistance part cannot be matched, so it is mandatory to include more components to achieve it. In the Figure 2.8 are represented the most typical matching network configurations.

Figure 2.8: Static matching network configuration

These structures need to fulfill different characteristics to work. As in our project, the output impedance of the generator is pretended to be very low of the order of mΩ and the impedance of the transducer will be higher the matching network structure that will fit properly is the L-type.

L-type:
Looking at the diagram below it can be seen the description of the L-type impedance matching network, so the next step is calculate the values of its components.

Figure 2.9: L-type matching network

To ensure that the impedance of the transducer will be matched to the input impedance of the ultrasonic supply it is necessary to meet the equation 2.6 below.
\[Z_0 = jX_L + \frac{Z_{tr}}{jB_C \cdot Z_{tr} + 1} = jX_L + \frac{(R_{tr} + jX_{tr})}{jB_C \cdot (R_{tr} + jX_{tr}) + 1} \quad \text{eq. 2.6} \]

As the parameters of the transducer will be known, it is needed to find the proper values for \(B_C\) and \(X_L\). These values can be obtained following the equations 2.7 and 2.8 that returns two possible solutions for \(B_C\) and \(X_L\).

\[
B_C = \frac{X_{tr} \pm \sqrt{\frac{R_{tr}}{Z_0} \cdot \sqrt{\frac{R_{tr}^2}{Z_0^2} + X_{tr}^2} - Z_0 \cdot R_{tr}}}{R_{tr}^2 + X_{tr}^2} \quad \text{eq. 2.7}
\]

\[
X_L = \frac{1}{B_C} + \frac{Z_0 \cdot X_{tr}}{R_{tr}} - \frac{Z_0}{B_C \cdot R_{tr}} \quad \text{eq. 2.8}
\]

Once obtained the two possible solutions we can decide which is more appropriate regarding the necessary component to be used:

\[
B = \begin{cases}
2\pi f_0 C & \text{if } B > 0 \\
-1 & \text{if } B < 0
\end{cases} \quad \text{eq. 2.9}
\]

\[
X = \begin{cases}
2\pi f_0 L & \text{if } X > 0 \\
-1 & \text{if } X < 0
\end{cases} \quad \text{eq. 2.10}
\]

Taking into account that in this application the output waveform will be rectangular it is needed a low-pass filter in order to compensate the higher harmonics. Therefore, the unique solution that is suitable for the application is to take \(B_C > 0\) and \(X_L > 0\).

2.5.2. Dynamic impedance networks

As it has been seen in the section 2.3, the imaginary part of the transducer impedance may change its value due some factors. It means that the resonance frequency should also vary, so in the static impedance matching methods explained before will not match perfectly the transducer impedance due these variations. In this section, some dynamic impedance
networks will be explained in order to match accurately the resonance frequency in the different conditions.

The first possibility could be the usage of an L-type structure with a variable capacitor in order to compensate the changes in the imaginary part of the transducer. The capacitance may be modified changing the distance between the capacitor plates or also changing the superficial area percentage between them. The problem of this method is that the capacitance accuracy is very bad because of the mechanical control. The usage of varactors could be also an option but it has the limitation that the output power would be limited by the break down voltage of the varactor diode [6].

Another method could be the usage of a set of series/parallel capacitors bypassed by switches in order to control the necessary filter configuration. It needs some controller in order to obtain feedback measurements to see if the matching network is fine or must be modified and also to control the bypass switches. This technique allows obtaining different filter configurations in order to be as close as possible to the resonance frequency of the transducer. The technique has the same accuracy problems in the capacitance adjustment due to the multiple but fixed configurations [7].

![Bypassed capacitors diagram](image)

Figure 2.10: Bypassed capacitors diagram
The proposed auto-tuning technique in this project is also based on a variable capacitance method. It consists on the parallel combination of two capacitors. The capacitance of one of these capacitors will be fixed \(C_{\text{fix}} \) and the other will be controlled with a signal of a certain frequency \(C_s \). The variable capacitor will be controlled with a switch that will be opened/closed following the control signal, so the capacitance values will vary between 0 and \(C_s \) [8]. In the Figure 2.11 there is a diagram of the mentioned method.

![Figure 2.11: Proposed auto-tuning network](image)

This technique needs to follow a synchronization condition in order to work properly. The synchronization condition consists on that the values of \(V_{C_{\text{fix}}} \) and \(V_{Cs} \) must match in the switching on/off intervals. When the switch is closed the capacitor \(C_s \) is connected to the output signal \(V_{C_{\text{fix}}} \). If the charged value of \(V_{Cs} \) differs from the output value at that moment, it will produce a physical impossibility traduced in current spikes, which will cause the detuning of the circuit and may damage the circuits. So regarding the switch control signal, it must have its centre aligned with the zero crossing points of the output signal. The equations 2.11 and 2.12 gives the synchronization condition that must be followed and in the Figure 2.12 there is a diagram showing the sequence described above.

\[
V_{Cs}(T_1) = \text{Max}(V_{C_{\text{fix}}}) \cdot \sin(\omega T_1) \quad \text{eq. 2.11}
\]

\[
V_{C_{\text{fix}}}(T_2) = \text{Max}(V_{C_{\text{fix}}}) \cdot \sin \left(\omega \left(\frac{T}{2} - T_2 \right) \right) \quad \text{eq. 2.12}
\]

Following the condition commented above we know:

\[
V_{Cs}(T_1) = V_{C_{\text{fix}}}(T_2) \quad \text{eq. 2.13}
\]
So finally, we obtain the condition:

\[T_1 = \frac{T}{2} - T_2 \] \hspace{1cm} eq. 2.14

Finally, the equivalent capacitance of the switched capacitor will be determined by the following equation:

\[C_{eq} = \frac{\Delta Q}{\Delta V_{Cs}} \] \hspace{1cm} eq. 2.15

Where \(\Delta Q \) is the electrical charge transferred to Cs during the conduction time of the switch and \(\Delta V_{Cs} \) is the voltage during the same period.
3. **Methodology / project development**

In the previous sections, the project has been placed in context and the theoretical information needed has been explained. This section will explain the methodology that has been followed to design and assemble the prototype. The section will be divided mainly in two parts, hardware and firmware, that will be explained accurately to understand the techniques used to achieve the project goals.

3.1. **Hardware Design**

In this section, there are explained the different parts of the hardware design of the prototype. Using the selected design techniques explained in the section 2, the circuit designs for each part of the prototype have been done. The prototype has been divided in the following different blocks: MCU, display control, power supply, power stage and matching network. Each block will be explained in detail in the following subsections.

In the Figure 3.1 there is block diagram of the prototype with the different blocks commented before and the relations between them.

![Figure 3.1: System block diagram](image1)

Then, the Figure 3.2 shows a more detailed circuit diagram of the system where can be seen the connections between the blocks in order to understand better which are the inputs and outputs of each one.
3.1.1. Display control

The user interface will be controlled with this block. It is in charge of the ultrasonic frequency set up, using two rotary encoders the frequency digit and value can be selected. Then by pressing the pushbutton the frequency value can be introduced. All this process can be supervised with the OLED that shows the frequency value and cursor position that is selected instantly.

The rotary encoders have five pins, three of them are for the rotary switch and the two others for the pushbutton. The rotary encoders and his configuration with the required pull-up resistors can be seen in the Figure 3.3.
The OLED display selected in this project is the *OLED UG-2864HLBEG01*, which uses an I2C interface for the communication with the MCU [9]. The display has a resolution of 128x64 pixels with different operation modes available by changing the set up configuration. In the Figure 3.4 it can be seen the OLED display and his pin distribution that will match with the commented I2C bus used in the MCU section.

![Figure 3.4: OLED display](image)

3.1.2. Development board (MCU)

The MCU block contains the micro-controller which is the one in charge to configure the different peripherals and control the development of the application. The chosen MCU for this project is the development board LAUNCHXL-F28379D from Texas Instruments. This DSP board has been chosen because of its features that fit the requirements needed for the project. The supply of the board is done via a USB connector, which is used also for programming/debugging using a JTAG interface. The system has two cores to work in parallel with a system clock for each one that works at 20 MHz, more than sufficient for our application. The requirements for the project are the generation of PWM’s with frequencies up to 100 kHz, I2C bus interface to control some peripherals, ADC inputs for the feedback signals, GPIO inputs and interruption control. The selected development board has all these features to achieve this goal, it provides three dual PWM ports, four ADC’s, two I2C’s buses and five external interrupt sources, apart from other peripherals which are not interesting for this application [10]. In the Figure 3.5, it can be seen the description of the board peripherals.

![Figure 3.5: LAUNCHXL-F28379D pin description](image)
The peripherals that will be used in the project are the following ones: for the generation of the ultrasonic signals ePWM1A and ePWM2A; for the control switching capacitor signal ePWM3A; for the feedback signals ADCINB2 and ADCINC3; for the rotary encoders GPIO10, GPIO26, GPIO27, GPIO63 and GPIO64; finally for the OLED display the I2C bus SCLA and SDAA. In the Figure 3.6, it can be seen the schematic with the input and output signals described above.

3.1.3. Power supply

The power supply part is the one in charge of providing the different supplies that the rest of the design needs. Due to the power amplification stage, the feedback and the isolation circuits, there are needed some different power supplies domains in order to obtain the requested voltage values in each domain. It will be achieved by using an external input voltage to derivate from it the rest of domains. In the Figure 3.7 it can be seen the configuration of these supply values generated.
As it has been said above the power supply stage has two different voltages as inputs, the 15V input voltage is used to derivate the different necessary voltages for the design and the Vp high voltage is used for the power stage to amplify the ultrasonic signal. To obtain the different voltages from the 15V input voltage some DC/DC converters and voltage regulators have been used.

It has been used four types of DC/DC converters and one type of voltage regulator to provide the voltages and output currents necessary for the design. The components used to achieve this goal can be seen in the Table 3.1:

<table>
<thead>
<tr>
<th>Component</th>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDQE10-Q24-S15 [12]</td>
<td>15</td>
<td>667</td>
</tr>
<tr>
<td>RKZE-1515D [13]</td>
<td>±15</td>
<td>± 66</td>
</tr>
<tr>
<td>L7805 [14]</td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>RE-153.3S [15]</td>
<td>3.3</td>
<td>303</td>
</tr>
</tbody>
</table>

Table 3.1: Voltage converters features
The Figure 3.8 shows the circuit design of the power supply stage containing the different components named above with their recommended filters and decoupling capacitors.

Finally, the Figure 3.9 shows the power input supplies used and the board design implemented to achieve the different necessary voltages. As it can be seen in the image the board is supplied using an external power supply.
3.1.4. Power stage

The power supply stage is the part in charge of amplification the ultrasonic signal provided by the micro-controller in order to provide the desired amount of power to the transducer. As it has been seen in the section 2.4.3, the chosen structure is a class D amplifier type with an anti-cross conduction circuit, a gate driver and using MOSFET’s as switching elements. In the Figure 3.10 there is a detailed description of the circuitry designed for the power stage.

![Power stage schematic](image)

Looking at the schematic, it can be seen that the input signals are connected to the digital isolator ADUM1400 which is used to isolate the digital input signals from the rest of the circuit [16]. This component is a multichannel isolator providing high speed performances in order to not distort the input signals. Next, there is the anti-cross conduction circuit that uses the two input signals to generate an enable signal that will be used in the gate driver to control that the two input signals are perfectly complementary one to each other. Before the drivers, there is another isolator supply because of the domain changes and also a voltage level translator in order to traduce the enable signal to the required voltage for the driver. The chosen gate driver is the IXDD430, which is designed to drive MOSFET’s with very high switching speeds [17]. These gate drivers have as inputs one ultrasonic signal and the enable signal commented before to finally obtain at his output the two complementary ultrasonic signals perfectly synchronized and amplified to 15V, which is the supply domain for these drivers.
Finally, the last step is connect the two signals to the MOSFET’s acting as switches. As the required output impedance of power stage must be very low in order to improve the power efficiency, it has been chosen to connect three N-channel type MOSFET’s in parallel to implement every switch. The chosen MOSFET is the STP13NK60Z which has a Rdson equal to 0.48Ω, but with the parallel configuration the output impedance of the power stage is reduced to 0.16Ω [18]. At the output of the switches, it is obtained an amplified train of pulses at the ultrasonic frequency selected by the micro-controller with a gain selected by the voltage Vp which is provided by an external supply.

3.1.5. Impedance study

In this section, it is explained the impedance study done for four transducers that may be used in the prototype. These transducers have different resonant frequencies and configurations. First of all, there are two transducers based on one piezoelectric element with resonant frequencies of 30.4 kHz and 40 kHz. Then, the two last transducers have two piezoelectric elements connected in parallel with the frequencies of 19 kHz and 29.7 kHz.

![Figure 3.11: Transducers options](image)

In order to do the impedance study of these transducers it has been used the AD5933 evaluation board that allows the complex impedance study with the software AD5933 EVAL, this board is used due to the lack of an impedance analizer. The Figure 3.12 shows the configuration needed for the impedance study of the transducers. The first step is the calibration of the evaluation board, to do it properly it is needed a resistance R_{FB} with a value in the order of the transducer impedance and a resistance value known to put in the measurement pins Z_{UNKNOWN} [19]. In this project, it has been used the following values for the calibration, $R_{FB} = 1.5\,\Omega$ and $Z_{\text{UNKNOWN}} = 10\,k\Omega$.
Next, in the software tool, some configuration values must be introduced in order to perform the calibration. The first parameters corresponds to the sweep, it is necessary to indicate the starting frequency, the delta increment of the sweep and the number of increments. In this case, for an accurate measurement is recommended to introduce a little delta increment with the theoretical resonance frequency in the centre of the sweep to obtain a high-resolution measurement. In the next block of parameters it must be set the system clock as external, the output range excitation to 2Vpp, the PGA control gain to X1 and the calibration impedance to “Resistor only R1” with the value of the known resistor, in this case 1.5kΩ. Once these values are properly chosen, click the button “Program Device Registers” to program the sweep parameters into the appropriate on-board registers of the AD5933 through the I2C interface. Then chose “Multi-Point Frequency Calibration” in the “Calibration Gain Factor” section and click on the button “Calculate Gain Factor”. After that,
by clicking the button start sweep the board starts the impedance measurement in the frequency range selected. When it finishes it must be checked if the results matches with the known resistance value with real part equals to the resistance value and imaginary part equals to zero. If the calibration goes properly, the known resistor must be substituted by the transducer and a new sweep measurement can be done. Finally, by clicking the button “Download Impedance Data”, the measurements can be saved in “csv” format to carry out further studies [20]. In order to verify the results, some iterations of the measurements have been done for each transducer to see that the impedance measurements are very close in each iteration. In the Figure 3.13 it can be seen an example of the configuration explained above for the transducer of 19 kHz.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Frequency (kHz)</th>
<th>Re{Z_r}</th>
<th>Im{Z_r}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>400</td>
<td>-20322</td>
</tr>
<tr>
<td>2</td>
<td>29.7</td>
<td>3246</td>
<td>-20041</td>
</tr>
<tr>
<td>3</td>
<td>30.4</td>
<td>2303</td>
<td>-19243</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>504</td>
<td>-20262</td>
</tr>
</tbody>
</table>

Table 3.2: Transducers impedance results

Figure 3.13: AD5933 software configuration

After doing the impedance study for the four transducers, in the Table 3.2 it can be seen the results obtained at the resonant frequency for each one and the Figure 3.14 shows a zoom of the impedance results along the resonant frequency of each transducer.
3.1.6. Impedance matching network

In this section it is explained the configuration and the selected values for the components of the matching network. In the Figure 3.15 it can be seen the proposed strategy structure explained in the section 2.5.2, which contains a variable capacitor controlled by a switching signal, a fixed capacitor and an inductor. For the switching capacitor signal, it has been used and isolator like in the power stage to isolate the digital signal from the rest of the circuit and also the gate driver IXDD430. In this case, the switching element is composed by connecting four N-channel type MOSFET's forming a Totem-Pole configuration. In the schematic it can also be seen two feedback signals coming from the output of the power stage and from the transducer, and then going to the ADC’s of the MCU, passing first through two ADC, to adjust the resonant frequency as it has been explained.
Using the impedance study done for the different transducers, the next step is calculate
the necessary values for the matching network. Using the impedance values of the
transducers it can be calculated the inductance and capacitance necessaries in the low-
pass filter as it has been explained in the section 2.5.1, taking into account that the output
impedance of the power stage is 0.16Ω. In the Table 3.3 it can be seen the theoretical low-
pass filter values obtained.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>B_C</th>
<th>X_L</th>
<th>C (nF)</th>
<th>L (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.37·10^{-3}</td>
<td>704.12</td>
<td>11.50</td>
<td>5.90</td>
</tr>
<tr>
<td>2</td>
<td>4.00·10^{-3}</td>
<td>246.88</td>
<td>21.45</td>
<td>1.32</td>
</tr>
<tr>
<td>3</td>
<td>3.52·10^{-3}</td>
<td>279.79</td>
<td>18.44</td>
<td>1.46</td>
</tr>
<tr>
<td>4</td>
<td>1.55·10^{-3}</td>
<td>625.49</td>
<td>6.16</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Table 3.3: Theoretical filter values

Then, the obtained values can be used to adjust the proposed approach. First, the series
impedances values obtained from the transducers have to be converted and represented
in their parallel form.
In the Figure 3.17, it can be seen the description of the matching network to analyse, the parts marked with discontinuous lines refers to the switch and transducer equivalent circuits. In the capacitance of the transducer, it is taken into account the variation ΔC (40% of the transducer capacitance) commented in the section 2.3. Then, the next step is calculate the values for the L, C_{fix} and C_s.

The equivalent capacitor C_{var} obtained from the combination of C_s and C_{sw} will be between the following values depending on the state of the switch.
\[
\frac{C_s \cdot C_{sw}}{C_s + C_{sw}} \leq C_{\text{var}} \leq C_s \quad \text{eq. 3.4}
\]

The Cvar capacitance has to compensate the deviations of the transducer capacitance \(\Delta C \). So, it must follow the next equation.

\[
C_s - \frac{C_s \cdot C_{sw}}{C_s + C_{sw}} = \Delta C \quad \text{eq. 3.5}
\]

Solving the equation 3.5 it can be found the value of \(C_s \), taking as \(C_{sw} \) the output capacitance of the switch formed by the 4 NMOS, which have the equivalent capacitance of one NMOS, \(C_{sw} = C_{oss} = 210 \mu F \) [18].

\[
C_s^2 - \Delta C \cdot C_s - C_{sw} \cdot \Delta C = 0 \quad \text{eq. 3.6}
\]

The next step is to obtain the value of \(C_{fix} \) from the equivalent capacitance and substituting it into the resonant frequency condition. To obtain a result, would be necessary to use the inductance value obtained in the impedance study.

\[
C_{eq} = \frac{1}{2} \left[C_s + \frac{C_s \cdot C_{sw}}{C_s + C_{sw}} \right] + C_{fix} + C_p \quad \text{eq. 3.7}
\]

\[
f_o = \frac{1}{2 \pi \sqrt{L \cdot C_{eq}}} \quad \text{eq. 3.8}
\]

Substituting the equation 3.7 into the equation 3.8 it is obtain the value of \(C_{fix} \).

\[
C_{fix} = \frac{1}{(2 \pi f_o)^2 L} - \frac{1}{2} \left[C_s + \frac{C_s \cdot C_{sw}}{C_s + C_{sw}} \right] - C_p \quad \text{eq. 3.9}
\]

Therefore, following the procedure explained in this section and using the impedance values of the Table 3.2. It has been calculated the theoretical and real values of the matching network for the different transducers. In the Table 3.4 and Table 3.5 there are the different values obtained for the different variables of the analysis.
Finally, as it has been said at the beginning of this section, there are two feedback signals that will be used for controlling the resonance frequency of the transducer. To acquire these signals, it can be seen in the schematic that a potentiometer will be used to attenuate the output signals and then an isolated amplifier AD215 is used before connecting the signals with the required voltage range to the ADC’s inputs of the micro-controller [21]. This feedback control is added because the resonance frequency may not be exactly the ideal one and can vary due the comment factors.

3.1.7. Prototype assembly

Once the different parts of the circuit have been designed and described, the next step is the assembly of them. As this is first version of the prototype, it has been decided to use fiberglass prototype boards to assemble the different blocks of the design. In the Figure 3.18 it can be seen the different boards assembled to obtain the different stages of the design.
The assembly of the different components has been done using connectors in order to allow the fast change of the components in case of damage. It is also very useful for the matching network stage the easy change of the components of the filter to adapt it to the required values.

3.2. Firmware design

This section explains which methodology has been followed to design the firmware and how has been structured.

The firmware design has been done using the C language, which is used with the development board LAUNCHXL-F28379D from Texas Instruments [22]. As it has been said in the hardware design, this development board is a very good choice for DSP applications and allows many configurations on the input and output pins that make it very versatile. To achieve the desired configuration, the Code Composer Studio tool based on Eclipse has been used in order to implement, compile and program the firmware. It is a professional tool with advanced compiler and debugging options, which are useful for the development part [23].

The firmware of the application consists on implement the frequency selection, the signal generation and the frequency control. To achieve it, the firmware starts a main application, which is in charge to initialize all the peripherals that would be used and to control the progress of the application in every moment. Below the main application, there are the following different functionalities: frequency selection, frequency display, signal generation and frequency adjustment.

![Figure 3.19: Firmware block diagram](image-url)
In order to understand better the progress of the application from the power on and the different cases that could happen during the progress of it, in the Figure 3.20 there is a description of the application operation. In this flow chart diagram appears some external and internal changes that may affect the progress of the application.

3.2.1. Frequency selection

In this section, there is a description of how has been implemented the frequency selection firmware using the rotary encoders. As it has been said in the hardware description, the rotary encoders have three input signals, two signals to control the rotary switch and one for the pushbutton. In this application will be used two rotary switches and one pushbutton. The rotary switches are used for the digit selection and the number selection, and after that, the pushbutton will be used to set up the selected frequency to the output and control signals.
The application has been designed so that you can change the frequency at any time, so one of the input pins of each rotary switch and the pushbutton input pin have been configured as interrupt GPIO’s with falling edge. The Figure 3.21 and Table 3.6 shows the truth table to interpret the two input signals of the rotary switches when a falling edge is triggered.

![Rotary encoder signals description](image)

<table>
<thead>
<tr>
<th>PIN A</th>
<th>PIN B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.6: Rotary encoder logic table

It is also necessary that every time the digit cursor or frequency number is changed the display update it. Therefore, this block is going to call the frequency display block every time it happens.

3.2.2. Frequency display

The display control block contains the different methods to use the display. It has implemented the initialization configuration and the methods for displaying text and forms. As the display used in the design works with an I2C bus, below this service there is also an I2C driver for the interaction between the display and the microcontroller.
As it has been said in the hardware section, the display used is the **OLED UG-2864HLBEG01**, which works with the **SSD1306** driver. In this project, the display is used for showing the frequency of the ultrasonic signal, so the following functionalities has been done in order to achieve it: the initialization for a resolution of 128x64 dot matrix, reset, clear, display On/Off, “go to XY” and display text [24]. The display is divided in 4 lines, in the first line appears the text “Frequency:”, the second line is not used, the third line shows the frequency value and the last line contains a cursor which indicates the digit selected. As the maximum frequency to set up would be 100 kHz the display will shows 6 digits for the frequency value. In the Figure 3.22 it can be seen an example of the display output.

![Figure 3.22: Display and rotary encoders](image)

3.2.3. Signal generation

The signal generation block will be in charge of the generation of the ultrasonic signals and the control signal for the variable capacitor. The ePWM outputs of the Launchpad F28379D has been used to fulfil this purpose. The board can generate six ePWM signals with two inverted outputs each one, so in this application ePWM1 and ePWM2 are used for the ultrasonic signal generation and ePWM3 is used for the variable capacitor control signal. The two signals must be synchronized between them so they are derived from the system clock and it is possible to control the phase offset.

In the Figure 3.23 it can be seen the ultrasonic square signal generated for the ePWM1 and the complementary signal generated by the ePWM2. As it can be seen the phase difference is $T/2$ and the duty cycle is 50%.
In the Figure 3.24 it can be seen on top the one of the ultrasonic pulses and below the variable capacitor control pulses with twice the frequency and required phase offset of T/8.

3.2.4. Feedback signals

In this section will be explained the algorithm implemented to do the frequency control using the input feedback signals coming from the matching network stage. As it can be seen in the section 3.1.6 the feedback signals comes from the output of the power stage and from the transducer. Therefore, after adapting this signals to be acquired by the ADC’s of the micro-controller, it is obtained a train of pulses and a sinusoidal signal after the acquisition. What pretends the algorithm is to ensure that the resonant frequency point is achieved, so as it has been commented above, the matching network plus de transducer must behave as a purely resistive load in the resonance frequency. It means that the phase difference between these two signals must be zero.
First of all, the algorithm will acquire the two signals precisely at the same time instance using the ADC’s synchronized with the micro-controller system clock. Then, it will determine the period of the two feedback signals that must be the same. The phase difference of the signals will be computed and a percentage with the signal period will be extracted following the equation 2.13:

\[
\theta_{diff}(\%) = \frac{|\theta_{diff}|}{T_{period}}
\]

eq. 2.13

If the phase difference percentage is greater than the 5%, it will be considered that the resonance frequency point it is not achieved. Then, the algorithm will increase the output frequency with an offset value \(\Delta f\) (for example the starting point of this increment can be around 50Hz) and after that, it will repeat the acquisition process and the phase difference calculation. If the new phase difference is lower, this process will be repeated again with the same frequency offset increment until it is obtained a greater phase difference reading regarding the last measurement. Then, the frequency offset will be divided by two \(\Delta f/2\) and subtracted instead of added. The same process as before will be done with the subtraction of the frequency offset until it is obtained again a greater phase difference. This process is a converging algorithm that will end when the difference percentage belongs below the 5%. Then, it will be considered that the frequency resonance has achieved its resonance frequency point. In the Figure 3.25 there is a graphical description of the algorithm until it reaches convergence, the frequency changes between each iteration are not illustrated in the diagram because will be very small, but they are present.

Figure 3.25: Feedback algorithm example
As it can be seen in the diagram above, the first iteration computes a phase difference out of the 5% region allowed, so in the next iteration a Δf increment is applied. As the phase difference is reduced in the iteration 2, a new increment with the same frequency offset is applied. Looking at the iteration 3 it can be seen that now the phase difference has been incremented, so the algorithm will subtract this time a frequency offset of $\Delta f/2$ as it has been explained. Finally, in the last iteration it can be seen that the phase difference is between 5% range so the algorithm converges.

During each iteration of the algorithm, if there is a change in the frequency of the output signal it is reflected instantaneously to the display to make the user able to supervise the frequency changes until the convergence. Apart from that, the user will be able to change manually the frequency using the rotary encoders. If it happens all the process explained above will start again around the new frequency value.
4. **Results**

4.1. **Hardware tests**

In this section there are shown the first experiments once the prototype has been manufactured. It will be shown the signals obtained in the different stages and the problems that have appeared during the tests. First of all, it will be analysed the signals at the output of the micro-controller which are the ultrasonic pulses and the control pulses for the switched capacitor. In the Figure 4.1, it can be seen the commented ultrasonic signals from the micro-controller with an amplitude of 3.3V and a frequency of 30.4 kHz.

![Figure 4.1: Micro-controller ultrasonic pulses](image1)

Next, Figure 4.2 shows one of the ultrasonic pulses with the control signal synchronized as has been said in the section 3.2.3 with the offset of T/8.

![Figure 4.2: Micro-controller ultrasonic and control pulses](image2)
Looking at the schematics the next step for the signals are the digital isolators in order to separate the digital part from the analogue one. These isolators are supplied from a DC/DC converter of 3.3V so the outputs of these signals should be the same as the previous ones. In the Figure 4.3 there are the resulting signals at the output of the isolators.

![Figure 4.3: Ultrasonic pulses at 3V3 isolators output](image)

Following with the schematic the next step is the anti-cross conduction circuit and another step of isolators in order to change the voltage domains to 5V. The signals at the output of the isolators must maintain its frequency and should have an amplitude of 5V in order to be in the input voltage range for the gate drivers. In the Figure 4.4, it can be seen the ultrasonic signals and the control signals amplified to 5V with the same frequency.

![Figure 4.4: Ultrasonic pulses and control pulses at the output of 5V isolators](image)

The next part consists on the gate drivers, which are supplied with 15V each one from a different power domain. Each gate driver takes as input one of the three signals commented above and in the case of the ultrasonic signals, it also takes as input the enable signal provided by the anti-cross conduction circuit in order to avoid the overlapping of the pulses. Looking at the output of each gate driver it can be seen, in the Figure 4.5, the signals amplified prepared to control the N-channel MOSFET’s.
The next part will consist on connect the ultrasonic signals from the output of the gate drivers to the MOSFET’s which have to act as switches to obtain a final single train of pulses amplified to the voltage Vp. At this part it has been seen that the MOSFET’s do not act as it was expected so after analysing the circuit and signals, it has been realized that the input train of pulses from the drivers had noisy oscillations in both edges of the pulses. It supposes a problem because these oscillations provokes that the MOSFET’s are closed at the same time for a few moments. This fact provokes a short circuit in the Vp power supply traduced in very high current spikes which may damage the circuits. In the Figure 4.6, it can be seen the noisy oscillations at the falling edge of the pulses that cause the malfunction of the MOSFET’s.

At this point, the next step has been trying to identify from where come the oscillations and try to eliminate it in order to obtain clean train of pulses at the output of the gate drivers. First, the power supplies of the gate drivers has been analysed and it has been seen that the oscillations appears also there. The Figure 4.7 shows one output of the gate driver and its supply where can be seen the noisy effect in both signals at the same moment. The first
Modification done in order to eliminate this effect was to add capacitors with higher values at the outputs of the power supplies in order to make it more stable. As the solution commented before does not work it has been tried to change the DC/DC switched power supplies for linear supplies in order to see if providing a more stable supply to the gate driver helps in the elimination of noise.

![Figure 4.7: Gate driver supply and output with noisy presence](image)

As these solutions make no change it has been analyzed again the noisy effect and it has been concluded that this oscillations could be provoked by some second order circuit, so in order to reduce the inductance effect of the wiring, it has been reduced their length in order to obtain cleaner output signals. To achieve it, a new board containing a simplified power stage has been constructed. In this board the anti-cross conduction circuit has been deleted and it only contains the isolators, the gate drivers, and the MOSFET’s [25]. In order to control the overlap of the signals it has been increased the dead band between them by the firmware of the micro-controller, because in this test circuit there is no anti-cross conduction circuit. In the Figure 4.8, it can be seen a block diagram description of the new test circuit and the obtained signals at the output of the gate drivers.

![Figure 4.8: Test circuit block diagram and gate drivers output](image)
As it can be seen, the problem with the noise at the output of the gate drivers has been solved by reducing the distances of the wiring and placing the bypassing capacitors of the gate drivers as close as possible to their pins. The next step is connect the voltage Vp and look at the output of the MOSFET’s in order to see the amplified output signal. It has been connected a supply of 37V as Vp and it has been looked the behaviour of the output signal. At the output it is obtained a very noisy train of pulses mostly affected by ringing noise at their rising and falling edges.

![Figure 4.9: Power stage output with high noisy ringing](image)

At this point, after doing some research it has been found a strategy in order to supress this ringing effect. This ringing effect is again caused by the parasitic inductances and capacitances of the circuit, so it has been added to the circuit a RC or RCD Snubber configuration that is used in this kind of circuits to supress the high frequency oscillations. A resistor, a capacitor and a diode form this type of circuits as each name indicates. In the Figure 4.10 there is a description of some different circuit topologies.

![Figure 4.10: Half bridge Snubber circuit topologies](image)
Before adding this circuit configuration to the N-channel MOSFET’s is necessary to compute the necessary component values to supress the obtained ringing. In order to do that in the following equations there are some calculations to obtain these values [26]. First of all, it is necessary to know the parasitic values Lp and Cp. It has been taken the output capacitance of the MOSFET as the parasitic capacitance $C_p = 1360 \text{ pF}$. Then, it can be obtained the parasitic inductance of the wires if the ringing frequency is known $f_{RING} = 6.67\text{MHz}$:

$$f_{RING} = \frac{1}{2\pi \sqrt{L_p \cdot C_p}} \quad \text{eq. 4.1}$$

$$L_p = \frac{1}{(2\pi f_{RING})^2 \cdot C_p} = 418.64 \text{ nH} \quad \text{eq. 4.2}$$

From these results, it is obtained the value of R_S:

$$R_S = \frac{1}{2 \sqrt{C_p}} = 8.77 \Omega \quad \text{eq. 4.3}$$

The last step is compute de Cs value, taking as cut off frequency f_{RING}:

$$C_s = \frac{1}{2\pi \cdot R_s \cdot f_{RING}} = 2.72 \text{ nF} \quad \text{eq. 4.4}$$

Once this values has been calculated it has been chosen some real values in order to implement it. It has been done some tests with the RC simple topology with a resistor of 8Ω and different capacitor values like 2.2nF, 3.3nF… The best results has been obtained with the 3.3nF capacitor, which has the following cut off frequency:

$$f_c = \frac{1}{2\pi \cdot R_s \cdot C_s} \approx 6 \text{ MHz} \quad \text{eq. 4.5}$$

In the Figure 4.11, it can be seen the resulting signal obtained at the output of the power stage with the Snubber circuit. It is visible that the ringing has decreased so much but there is still a noisy oscillation with a period of 240ns. It can be seen also that there are still some noisy impulses between the train of pulses.
At this stage due the lack of time, no more test could be performed, but finding a good combination of component values of the Snubber circuit seems to be a good way to continue with the tests.

4.2. Software tests

Finally, as the matching network stage has not been tested due to the problems appeared in the power stage, it has been prepared a functional program using the ePWM outputs of the microcontroller in order to test the frequency adjustment algorithm. This test consists on putting two rectangular pulses with an initial offset of $T/2$ at the ADC inputs. Then, in every iteration of the algorithm change the offset between signals simulating the phase difference that will be different every time the frequency is changed. In order to test properly the algorithm the phase difference will be the following in each iteration:

| ITERATION | $|\Delta \theta_{\text{diff}}|$ | $\Delta \theta_{\text{diff}}$(%) < 5% | Δf |
|-----------|------------------|-------------------------------|--------|
| 1 | 0.5T | No | +50Hz |
| 2 | 0.25T | No | +50Hz |
| 3 | 0.3T | No | -25Hz |
| 4 | 0.2T | No | -25Hz |
| 5 | 0.25T | No | +12Hz |
| 6 | 0.04T | Yes | - |

Table 4.1: Frequency adjustment algorithm iterations
As it can be seen in the Table 4.1, the first iteration starts with a phase difference of 0.5T, so it is added a frequency adjustment offset of 50Hz. In the next iteration, the phase difference has been reduced so it is added again the same frequency offset. Following with the next iteration it can be seen that now the phase difference has incremented respect the last one, so next the frequency offset will be the half than before and subtracted to the frequency. The next iteration shows again lower phase difference, so it will continue being subtracted the 25Hz. Following, in the next one, it can be seen again an increment of the phase difference, then the frequency offset will be divided again by two and added to the frequency. Finally, in the last iteration it can be seen that the phase difference in percentage accomplish the 5% range, so it means that the algorithm has converged.

By forcing the commented phase differences in each iteration, it has been checked that the frequency offset values follow the same logic that has been seen in the table and the algorithm converges at the expected iteration.
5. **Budget**

In this section there is a small economic balance on the cost trying to illustrate how difficult can be to assume a project without the help of any organization or company. All projects, although the final result it is not a physical device, have a cost. In this case, it can be seen that this project would be difficult to afford without the help of the CTU, who has carried out with the material costs.

In order to understand better how the costs are broken down, they have been separated into the prototype, the instrumentation and the working costs. The following tables will show the description of each part and its corresponding total cost. First of all, the Table 5.1 shows the cost of the prototype materials that has been used. As it can be seen the components that raise the price are the micro-controller evaluation board and the isolated amplifiers which are used for the sampling of the feedback signals. There are also some DC/DC converters with higher prices, but apart from that, the other components used are affordable with low prices.

<table>
<thead>
<tr>
<th>PROTOTYPE COMPONENTS</th>
<th>Name</th>
<th>Component</th>
<th>Price x unit(Kč)</th>
<th>Price x unit(€)</th>
<th>Units</th>
<th>Total(Kč)</th>
<th>Total(€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Stage</td>
<td>DC/DC converter SCW20A-15</td>
<td>566,61 Kč</td>
<td>22,22 €</td>
<td>1</td>
<td>566,61 Kč</td>
<td>22,22 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC/DC converter PDQE10-Q24-S15-D</td>
<td>359,30 Kč</td>
<td>14,09 €</td>
<td>1</td>
<td>359,30 Kč</td>
<td>14,09 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC/DC converter RE153,3S</td>
<td>132,09 Kč</td>
<td>5,18 €</td>
<td>1</td>
<td>132,09 Kč</td>
<td>5,18 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC/DC converter dual RKZE-1515D</td>
<td>151,98 Kč</td>
<td>5,96 €</td>
<td>1</td>
<td>151,98 Kč</td>
<td>5,96 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage regulator L7805</td>
<td>10,71 Kč</td>
<td>0,42 €</td>
<td>3</td>
<td>32,13 Kč</td>
<td>1,26 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toggle switch 100SP1T2B1M1QE</td>
<td>49,98 Kč</td>
<td>1,96 €</td>
<td>1</td>
<td>49,98 Kč</td>
<td>1,96 €</td>
<td></td>
</tr>
<tr>
<td>Power Stage</td>
<td>Digital isolator ADUM1400</td>
<td>101,75 Kč</td>
<td>3,99 €</td>
<td>4</td>
<td>406,98 Kč</td>
<td>15,96 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schottky diode BAT43</td>
<td>11,22 Kč</td>
<td>0,44 €</td>
<td>2</td>
<td>22,44 Kč</td>
<td>0,88 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BJT transistor BC547</td>
<td>5,10 Kč</td>
<td>0,20 €</td>
<td>1</td>
<td>5,10 Kč</td>
<td>0,20 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BJT transistor 2N3904</td>
<td>9,69 Kč</td>
<td>0,38 €</td>
<td>2</td>
<td>19,38 Kč</td>
<td>0,76 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate driver IXDD430</td>
<td>272,34 Kč</td>
<td>10,68 €</td>
<td>2</td>
<td>544,68 Kč</td>
<td>21,36 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOSFET N-ch SPT13NK60Z</td>
<td>60,44 Kč</td>
<td>2,37 €</td>
<td>6</td>
<td>362,61 Kč</td>
<td>14,22 €</td>
<td></td>
</tr>
<tr>
<td>Matching Network Stage</td>
<td>Digital isolator ADUM1400</td>
<td>101,75 Kč</td>
<td>3,99 €</td>
<td>1</td>
<td>101,75 Kč</td>
<td>3,99 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolated amplifier AD215</td>
<td>1.802,85 Kč</td>
<td>70,70 €</td>
<td>2</td>
<td>3.605,70 Kč</td>
<td>141,40 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate driver IXDD430</td>
<td>272,34 Kč</td>
<td>10,68 €</td>
<td>1</td>
<td>272,34 Kč</td>
<td>10,68 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOSFET N-ch SPT13NK60Z</td>
<td>60,44 Kč</td>
<td>2,37 €</td>
<td>4</td>
<td>241,74 Kč</td>
<td>9,48 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter inductor Coil</td>
<td>130,56 Kč</td>
<td>5,12 €</td>
<td>1</td>
<td>130,56 Kč</td>
<td>5,12 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter capacitors Ceramic capacitor</td>
<td>78,03 Kč</td>
<td>3,06 €</td>
<td>1</td>
<td>78,03 Kč</td>
<td>3,06 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transducer Transducer 30,4kHz</td>
<td>265,20 Kč</td>
<td>10,40 €</td>
<td>1</td>
<td>265,20 Kč</td>
<td>10,40 €</td>
<td></td>
</tr>
</tbody>
</table>
The table that follows pretends to illustrate that when constructing a prototype there are not only the materials, there are needed also instruments in order to implement it. In the Table 5.2 there is a description of the main instruments and software tools used during the implementation of the project.

<table>
<thead>
<tr>
<th>INSTRUMENTS AND SOFTWARE</th>
<th>Name</th>
<th>Price (Kč)</th>
<th>Price (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware IDE</td>
<td>Code Composer Studio</td>
<td>0,00 Kč</td>
<td>0,00 €</td>
</tr>
<tr>
<td>Impedance calculator</td>
<td>AD5933 Eval Software</td>
<td>0,00 Kč</td>
<td>0,00 €</td>
</tr>
<tr>
<td>Instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance calculator</td>
<td>AD5933 Eval Board</td>
<td>1.319,63 Kč</td>
<td>51,75 €</td>
</tr>
</tbody>
</table>

TOTAL COSTS: 1.319,63 Kč 51,75 €

Finally, the Table 5.3 shows a fictitious estimation of the working costs during the whole project. In this case, it obvious that these expenses are not real, but it is important to look at it very carefully in all the project planning’s because in most of the cases it supposes the most expensive part.

<table>
<thead>
<tr>
<th>WORKING COSTS</th>
<th>Tasks</th>
<th>Hours</th>
<th>Price x hour(Kč)</th>
<th>Price x hour(€)</th>
<th>Total(Kč)</th>
<th>Total(€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Circuit design</td>
<td>60</td>
<td>229,50 Kč</td>
<td>9,00 €</td>
<td>13.770,00 Kč</td>
<td>540,00 €</td>
</tr>
<tr>
<td></td>
<td>Prototype assembly</td>
<td>20</td>
<td>229,50 Kč</td>
<td>9,00 €</td>
<td>4.590,00 Kč</td>
<td>180,00 €</td>
</tr>
<tr>
<td></td>
<td>Prototype tests</td>
<td>30</td>
<td>229,50 Kč</td>
<td>9,00 €</td>
<td>6.885,00 Kč</td>
<td>270,00 €</td>
</tr>
</tbody>
</table>

TOTAL COSTS: 25.245,00 Kč 990,00 €
6. **Conclusions and future development**

In this section, it is intended to make an assessment of the results obtained during the development of the project, in addition to propose some future steps in order continue improving the prototype. So, in this part the procedures used will be evaluated taking into account the main goals.

The main goal of this project has always been to obtain a functional prototype from which the ultrasonic signal was generated using a micro-controller and then amplified using some analogue circuits. The importance of using a micro-controller was to provide a range between 15-100 kHz to set up the output frequency and to provide some feedback analysis technique in order to obtain an algorithm, which automatically find the resonant frequency of the transducer. As it has been a first version of the prototype design, it has appeared some problems during the development of it. The main problems appeared in the power stage where some noise damaged the output signals. Some of these problems has been solved by reducing the parasitic inductances of the circuits, by adding some capacitors and by using techniques like RCD Snubber circuits as it has been explained in the section 4. It has been done a test in order check the feedback algorithm but it has not been tested using the transducers in a real context with the full circuitry. So looking at the results it can be said that some goals has been achieved like the creation of user interface in order to select the desired output frequency, the isolation between the digital and the analogue part of the circuit, and the different steps of amplification until the high voltage.

The last parts to be checked are the dynamic matching network and the feedback algorithm using real signals, so in the following list it will be proposed some future lines of progress in order to achieve it:

- First of all, it is important to continue the investigation with the Snubber topologies to reduce to the maximum the ringing noise in the edges and obtain a clear train of pulses at the output stage and then connect it to the matching network with the transducer.
- Test the feedback algorithm and check if the resonance frequency is adjusted correctly in order to obtain the maximum power efficiency.
- Improve the firmware to make it more optimal and do some research to add more functionalities with the micro-controller.
- Implement a PCB design of the circuit in order to reduce the parasitic inductances of the wiring and avoid some problems encountered in the first prototype, apart from obtaining a more robust design.
• Design the encapsulation of the prototype in order to obtain a user-friendly final device that must be functional.

Finally, it can be seen that in this project it has been used different skills during the development, like the firmware/hardware design techniques, the assembly procedure, which as it can be seen, it is very important, and the testing part of the prototype. In conclusion, some design modifications has been extracted using the results which is very important in order to follow with the second version of the prototype.
Bibliography

[9] OLED display datasheet

[10] LaunchXL-F28379D datasheet

[12] PDQE10-Q24-S15-D datasheet

[14] LM7805 datasheet

[15] RE-153.3S datasheet

[16] ADUM1400 datasheet

[17] IXDD430 driver datasheet

[18] STPK13NK60Z N-MOSFET datasheet

[19] AD5933 evaluation board datasheet

[21] AD215 datasheet

[22] LaunchXL-F28379D evaluation board user guide
[23] Code Composer Studio user guide

[24] SSD1306 driver user guide

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>CTU</td>
<td>Czech Technical University</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DC/DC</td>
<td>Direct Current to Direct Current</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>JTAG</td>
<td>Join Test Action Group</td>
</tr>
<tr>
<td>MCU</td>
<td>Micro-Controller Unit</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic Light Emitting Diode</td>
</tr>
<tr>
<td>PGA</td>
<td>Programmable Gain Amplifier</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>UPC</td>
<td>Universitat Politècnica de Catalunya</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>