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Comparative studies of different discrete element models of a rock-type material are presented. The dis-
crete element formulation employs spherical particles with the cohesive interaction model combining
linear elastic behaviour with brittle failure. Numerical studies consisted in simulation of the uniaxial
compression test. Two cylindrical specimens with particle size distributions yielding different degree
of heterogeneity have been used. Macroscopic response produced by different discrete element models
has been compared. The main difference between the compared models consists in the evaluation of
micromechanical constitutive parameters. Two approaches are compared. In the first approach, the con-
tact stiffness and strength parameters depend on the local particle size, while in the second approach,
global uniform contact parameters are assumed for all the contacting pairs in function of average geo-
metric measures characterizing the particle assembly. The size dependent contact parameters are calcu-
lated as functions of geometric parameters characterizing each contacting particle pair. As geometric
scaling parameters, the arithmetic and harmonic means, as well as the minimum of the radii of two con-
tacting particles are considered. Two different models with size dependent contact parameters are for-
mulated. The performance of these models is compared with that of the discrete element model with
global uniform contact parameters. Equivalence between the models with size dependent and uniform
contact parameters has been checked. In search of this equivalence, different methods of evaluation of
global uniform parameters have been studied. The contact stiffness has been evaluated in terms of the
average radius of the particle assembly or in terms of the averages of the arithmetic and harmonic means
of the contact pair radii, the geometric parameters used in the evaluation of the contact stiffness in the
size-dependent models. The uniform contact strengths have been determined as functions of the aver-
ages of radii squares, squares of arithmetic radii means or squares of minimum radii of the contacting
pairs.

For the more homogenous specimen, the models with local size dependent parameters and models
with global uniform parameters give similar response. The models with uniform parameters evaluated
according to the averages of the geometric parameters used in the evaluation of local parameters ensure
better agreement with the respective models with size-dependent parameters than the models with uni-
form parameters evaluated according to the particle radii. Simulations using the more heterogenous
specimen reveal differences between the considered models. There are significant differences in
stress–strain curves as well as in the failure pattern. The models with local size-dependent parameters
are more sensitive to the change of heterogeneity than the model with global uniform parameters.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical programs employing the discrete element method
(DEM) have achieved a status of a standard analysis tool in geome-
chanics (Donze et al., 2009). However, it seems that there is a lack
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of full understanding of many micromechanical mechanisms
which are inherent in the DEM and influence macroscopic behav-
iour of DEM models. In the DEM, a material is represented by an
assembly of particles interacting among one another with contact
forces. Interparticle interaction models can be based on different
types of contact laws incorporating different physical effects such
as elasticity, viscosity, damage and friction (Donze et al., 2009;
Kruggel-Emden et al., 2008; Luding, 2008; Chang and Hicher,
2005). Constitutive models for rocks must also take into account
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cohesive interaction between particles. Even using a simple model
such as the linear elastic-perfectly brittle model employed in the
present work, a complex behaviour at the macroscopic scale can
be obtained. Depending on the set of local parameters a more brit-
tle or more ductile macroscopic behaviour can be obtained (Huang,
1999).

The main difficulty in using the DEM consists in adopting ade-
quate interparticle contact model and appropriate model parame-
ters which yield a required macroscopic behaviour. Many studies
have been carried out to investigate the effect of local (micro-
scopic) parameters in the discrete element method on macroscopic
mechanical properties (Hsieh et al., 2008; Cambou et al., 2000;
Kruyt and Rothenburg, 2004). The contact stiffness and bond
strength are usually taken as the most significant parameters influ-
encing precritical behaviour and failure of rock materials (Hsieh
et al., 2008; Fakhimi and Villegas, 2007; Potyondy and Cundall,
2004). Friction coefficient, which is an important factor in granular
materials, has small influence on the peak strength in the discrete
element models of rock materials (Fakhimi and Villegas, 2007).
Following these findings, our attention in this work will also be
concentrated on the effect of the contact stiffness and strength
parameters.

The main purpose of the present work is to study the influence
of the evaluation method of local stiffness and strength parameters
in the discrete element method on the macroscopic properties and
macroscopic behaviour of the material model. Two approaches are
compared. In the first approach, the stiffness and strength param-
eters of the contact model are assumed to depend on the size of
contacting particles and are evaluated locally as certain functions
of contacting pair radii (Potyondy and Cundall, 2004; PFC3D,
2006). In the second approach, uniform microscopic properties
are assumed in the whole discrete element assembly (Rojek
et al., 2001, 2008; Kruyt and Rothenburg, 2004; Tavarez and Ple-
sha, 2007). The values of the global microscopic parameters can
be evaluated taking into account some average particle size mea-
sure for the whole discrete element model (Agnolin and Roux,
2008; Huang and Detournay, 2008; Tavarez and Plesha, 2007).

There are no works showing the effect of the evaluation of local
parameters on macroscopic behaviour. The present work is in-
tended to fill this gap. The discrete element models, which will
be studied, have been implemented in the discrete element pro-
gram DEMPack (CIMNE, 2010). The numerical studies will consist
in simulation of the the unconfined compressive strength (UCS)
test of a rock-type material. The UCS test, which is used in engi-
neering practice as a standard test to determine mechanical prop-
erties of rocks (Price et al., 1994), is also commonly used in
calibration of discrete element models (D’Addetta et al., 2002;
Fakhimi and Villegas, 2007; Rojek et al., 2011; Ng, 2006; Huang,
1999; Potyondy and Cundall, 2004; Huang and Detournay, 2008).
The results obtained in our simulations using different discrete ele-
ment models will be compared with one another. The mechanical
response characterized by strength and elastic parameters as well
as by failure type will be investigated in order to determine simi-
larities and differences between the studied models.

The comparative studies presented in this work involve differ-
ent possibilities to calculate size dependent local stiffness and
strength parameters. Macroscopic behaviour obtained for different
local size scaling parameter is compared. Then, a possible equiva-
lence of these models and the model with uniform parameters will
be investigated. Different options to determine global parameters
equivalent to local size dependent parameters will be tested. It will
be investigated how strongly the method of evaluation of local
parameters affects macroscopic behaviour in the discrete element
model.

Rocks are heterogenous materials and their macroscopic prop-
erties are strongly influenced by their heterogeneity at microscale
(Blair and Cook, 1998). As is explained by Blair and Cook (1998),
increasing geometric heterogeneity in a material increases the
number and magnitude of local stress concentrations. Crack forma-
tion, growth and coalescence in more heterogenous material occur
at lower average stress levels. Within the discrete element method,
random packing of non-uniform size particles gives a non-homog-
enous geometric model. Packing and size distribution of discrete
elements greatly contribute to non-uniform distribution of the
interaction forces and their intensities, and in consequence influ-
ence the failure mode (Boutt and McPherson, 2002; Voivret et al.,
2009; Antonellini and Pollard, 1995; Madadi et al., 2004). The ef-
fect of particle packing and size distribution will be studied by
comparing the results obtained using two specimens characterized
by different particle packing and size distribution.

The heterogeneity of the discrete element material model can
be further contributed by the spatial distribution of local model
parameters, which can result from the method of evaluation of dis-
crete element parameters. In order to check this effect in the pres-
ent work much attention will be paid to the distributions of the
geometric parameters used in evaluation of the contact stiffness
and strength.

2. Discrete element method formulation

2.1. Basic assumptions

Within the discrete element method (DEM), it is assumed that a
material can be represented by an assembly of rigid particles inter-
acting with one another. In general, the shape of the particles can
be arbitrary, in this work spherical elements are employed. A dis-
crete element formulation using spherical or cylindrical particles
was first proposed by Cundall and Strack (1979) and Cundall
(1988a,b). A similar formulation has been developed and imple-
mented in the discrete and finite element code DEMPack (Rojek
and Oñate, 2004; Oñate and Rojek, 2004; CIMNE, 2010). Simulation
results presented in this work have been obtained using the DEM-
pack program.

2.2. Equations of motion

The translational and rotational motion of discrete elements
(particles) is described by means of the Newton–Euler equations
of rigid body dynamics. For the ith element we have

mi €ui ¼ Fi ð1Þ
Ji _xi ¼ Ti ð2Þ

where ui is the element centroid displacement in a fixed (inertial)
coordinate frame X, xi – the angular velocity, mi – the element
mass, Ji – the moment of inertia, Fi – the resultant force, and Ti –
the resultant moment about the central axes. The form of the rota-
tional Eq. (2), which is valid for spheres, is simplified with respect to
a general form for an arbitrary rigid body with the rotational inertial
properties represented by a second order tensor. Vectors Fi and Ti

are sums of: (i) all forces and moments applied to the ith element
due to external load, Fext

i and Text
i , respectively, (ii) contact interac-

tions with neighbouring spheres Fcont
ij ; j ¼ 1; . . . ;nc

i , where nc
i is the

number of elements being in contact with the ith discrete element,
(iii) forces and moments resulting from external damping, Fdamp

i and
Tdamp

i , respectively, which can be written as:

Fi ¼ Fext
i þ

Pnc
i

j¼1
Fcont

ij þ Fdamp
i ð3Þ

Ti ¼ Text
i þ

Pnc
i

j¼1
lc
ij � Fcont

ij þ Tdamp
i ð4Þ



Fig. 1. Contact interaction between two discrete elements.
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where lc
ij is the vector connecting the centre of mass of the ith ele-

ment with the contact point with the jth element (Fig. 1).
Similarly as in PFC3D (2006), the damping terms Fdamp

i and Tdamp
i

in Eqs. (3) and (4) in the present work are of non-viscous type and
are given by:

Fdamp
i ¼ �at Fext

i þ
Pnc

i

j¼1
Fcont

ij

�����

�����
_ui

k _uik
ð5Þ

Tdamp
i ¼ �ar Text

i þ
Pnc

i

j¼1
lc

ij � Fcont
ij

�����

�����
xi

kxik
ð6Þ

where at and ar, are respective damping factors for translational and
rotational motion.

2.3. Constitutive contact models

The overall behaviour of the system is determined by the con-
tact laws assumed for the particle interaction. The contact law
can be seen as the formulation of the material model on the micro-
scopic level. Contact models in the discrete element method can
include force and moment interaction between particles. In the
present work, contact moments are not considered.

Formulation of the constitutive model employs the decomposi-
tion of the contact force between two elements1 Fcont into normal
and tangential components, Fn and Fs, respectively:

Fcont ¼ Fn þ Fs ¼ Fnnþ Fs ð7Þ

where n is the unit vector along the line connecting the centroids of
two contacting particles. Modelling of rock or other cohesive mate-
rials requires contact models with cohesion allowing tensile inter-
action force between particles (Potyondy and Cundall, 2004; Choi,
1992; Rojek et al., 2001). In the present formulation, rock materials
are modelled using the elastic-perfectly brittle model of contact
interaction, in which initial bonding between neighbouring parti-
cles is assumed. These bonds can be broken under excessive load
which allows us to simulate initiation and propagation of material
fracture. Contact laws for the normal and tangential direction in
the elastic-perfectly brittle model are shown in Fig. 2. When two
particles are bonded the contact forces in both normal and tangen-
tial directions are calculated from the linear constitutive
relationships:

Fn ¼ Knun ð8Þ
kFsk ¼ Kskusk ð9Þ

where Kn – interface stiffness in the normal direction, Ks – interface
stiffness in the tangential direction, un – overlap (un 6 0) or gap
(un > 0) at the contact point, us – relative displacement at the con-
1 In the next part of this section indices denoting the elements will be omitted.
tact point in tangential direction. Consistently with the sign con-
vention for un and Eq. (8), the normal force Fn is negative in
compression and positive in tension. The particle gap/penetration
un is given in terms of the distance between the particle centroids
d and their radii ri and rj

un ¼ d� ri � rj ð10Þ

and the relative tangential displacement us is updated
incrementally

us ¼ uold
s þ Dus ð11Þ

where uold
s is the vector of the relative tangential displacement from

the previous time step rotated to the present contact plane and Dus

is the incremental relative tangential displacement

Dus ¼ vsDt ð12Þ

with vs being the relative tangential velocity at the contact point
determined as

vs ¼ vc
r � ðvc

r � nÞn ð13Þ

where vc
r is the relative velocity at the contact point

vc
r ¼ _uj þxj � lc

ji

� �
� _ui þxi � lc

ij

� �
ð14Þ

Cohesive bonds are broken instantaneously when the interface
strength is exceeded in the tangential direction by the tangential
contact force or in the normal direction by the tensile contact force

Fn P /n ð15Þ
kFskP /s ð16Þ

where /extsubscriptn – interface strength in the normal direction,
/s – interface strength in the tangential direction. After decohesion,
the contact is treated assuming a standard contact model with Cou-
lomb friction. The normal contact force can be compressive only
(Fn 6 0) and the tangential contact force is limited by ljFnj

kFsk 6 ljFnj ð17Þ

where l is the Coulomb friction coefficient.
Although the constitutive model adopted in this work is rela-

tively simple, numerical tests show that a macroscopic behaviour
of brittle rocks is represented properly. The deformation behaviour
of brittle rocks under uniaxial compression before fracture is pre-
dominantly linear and can be modelled correctly with the linear
elastic microscopic law. The perfectly brittle fracture criterion, em-
ployed in the microscopic model, reproduces well a brittle failure
of rocks. A known drawback associated with the failure criterion
defined by the Eqs. (15) and (16) is the difficulty with reproducing
a failure envelope for different confining pressures. Potyondy and
Cundall (2004) have shown, that the angle of internal friction ob-
tained using this type of failure criterion is smaller than the values
characterizing hard rocks. Employing a pressure dependent failure
criterion for the shear force (Hentz et al., 2004) allowed Wang and
Tonon (2009) to obtain appropriate failure envelope for granite. In
our work, we will investigate unconfined compression strength of
the rock material only. For this purpose, the model adopted is suf-
ficiently accurate.

3. Evaluation of stiffness and strength parameters of the
contact models

The constitutive contact model presented in Section 2.3 is de-
fined by the following set of parameters:

� Stiffness parameters, Kn and Ks.
� Strength parameters, /n and /s.
� Coulomb friction coefficient l.



Fig. 2. Force–displacement relationships for the elastic-perfectly brittle model: (a) in the normal direction, (b) in the tangential direction (for the tensile normal force).

Fig. 3. Schematic connection of two particles in the model 1.
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The formulation presented in Section 2.3 is employed in all the
discrete element models which are studied in this work. The main
difference between the compared models consists in the evalua-
tion of the stiffness and strength parameters, Kn, Ks, /n and /s. Basi-
cally, we can distinguish two approaches in evaluation of these
parameters. In the first approach the parameters Kn, Ks, /n and /s

are taken as uniform in the whole discrete element assembly (Ro-
jek et al., 2001; Rojek et al., 2008). The same value of these param-
eters is assumed for all the contacting pairs of particles. In the
other approach, these parameters are calculated locally, usually
assuming that they depend on the contacting particle size (Pot-
yondy and Cundall, 2004) and can be given by certain functions
of the particle radii ri and rj:

Kn ¼ fKn ðri; rjÞ; Ks ¼ fKs ðri; rjÞ; /n ¼ f/n
ðri; rjÞ; /s ¼ f/s

ðri; rjÞ
ð18Þ

It is worth noting that varying local properties can also be obtained
by introducing a spatial randomness of the parameters (Herrmann
and Roux, 1990), but in the present work, this type of randomness
is not considered.

There may be different assumptions about the form of the func-
tions fKn ðri; rjÞ; f Ks

ðri; rjÞ; f /n
ðri; rjÞ and f/s

ðri; rjÞ. In this work, two
different models using particle size dependent stiffness and
strength parameters are studied. The third model employs global
uniform constitutive parameters. The performance of the models
with locally scaled and global uniform parameters will be com-
pared, investigating possible equivalence and differences. Different
methodologies to estimate equivalent parameters for the models
employing the size dependent parameters and the model using
the uniform parameters will be studied.

3.1. Stiffness and strength parameters in model 1

Cohesive bonding between two particles can be treated as a bar
of length L and uniform cross-sectional area A (Potyondy and Cun-
dall, 2004). The schematic connection of a pair of particles by
means of a bar is shown in Fig. 3.

The axial force in a bar can be calculated from the following
formula:

Fn ¼
EcA

L
un ð19Þ

where Ec is the Young’s modulus of the bar material. Taking the
length

L ¼ ri þ rj ¼ 2�r ð20Þ

and the area
A ¼ ð2�rÞ2 ð21Þ

where ri and rj are the radii of the two contacting particles, �r is their
arithmetic mean

�r ¼ ri þ rj

2
ð22Þ

and substituting the above values into Eq. (19) we obtain

Fn ¼ 2Ec�run ð23Þ

Comparing Eqs. (23) and (8) we can see that the stiffness modulus
Kn is given by the following expression:

Kn ¼ 2Ec�r ð24Þ

In general, the parameter Ec cannot be identified with the Young’s
modulus of an equivalent continuum material E. With the above
assumptions, these two parameters are equivalent for a regular cu-
bic packing of equal particles, only. For an arbitrary packing of par-
ticles the contact stiffness modulus Ec is a certain scaling constant
correlated with the Young’s modulus of equivalent continuum
material E. It is strongly dependent on the density of contact con-
nections between particles. The shear stiffness of a bond between
two particles Ks is computed assuming a certain value for the ratio
of the normal and shear stiffness (Kn/Ks).

Assuming maximum tensile and shear stresses in the bar con-
necting a pair of particles, rc and sc, the respective strengths of
the bond, /n and /s, can be expressed in the following form:

/n ¼ rcA ¼ rcð2�rÞ2 ¼ 4rc�r2 ð25Þ
/s ¼ rsA ¼ scð2�rÞ2 ¼ 4sc�r2 ð26Þ

Eqs. (24)–(26) show that the stiffness and strength parameters of
the discrete element model evaluated locally are functions of the
mean arithmetic radius of two contacting particles.
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3.2. Stiffness and strength parameters in model 2

In this model, the cohesive bond connecting two particles of ra-
dii ri and rj is treated as a bar of non-uniform cross-sectional area
(Fig. 4), consisting of two segments, each having the cross-sec-
tional area and length proportional to the particle size

L ¼ Li þ Lj ð27Þ
Li ¼ ri; Lj ¼ rj ð28Þ
Ai ¼ ð2riÞ2; Aj ¼ ð2rjÞ2 ð29Þ

The system of the two bar segments can be treated as two springs
connected in series. The axial force Fn transferred by the whole sys-
tem is equal to the forces in the segments i and j, Fi

n and Fj
n:

Fn ¼ Fi
n ¼ Fj

n ð30Þ

The overall axial deformation of the system un is composed of the
deformations of both segments, ui

n and uj
n

un ¼ ui
n þ uj

n ð31Þ

The force–displacement relationships for the whole system and for
each bar can be written in the following form:

Fn ¼ Knun ð32Þ
Fi

n ¼ ki
nui

n ð33Þ
Fj

n ¼ kj
nuj

n ð34Þ

where Kn is the equivalent stiffness of the system of two bar seg-
ments, and ki

n and kj
n are stiffnesses of the segments i and j. Substi-

tuting Eqs. (31)–(33) into Eq. (31) and taking into account Eq. (30)
we obtain the following equation for the stiffness Kn:

1
Kn
¼ 1

ki
n

þ 1

kj
n

ð35Þ

which can be transformed to the form

Kn ¼
ki

nkj
n

ki
n þ kj

n

ð36Þ

Expression (36) is identical to that used by Potyondy and Cundall
(2004) to evaluate the contact stiffness. However, the physical
interpretation of the formula (36) was not given there.

Using the assumptions (28) and (29) the stiffness of the seg-
ments i and j can be expressed as follows:

ki
n ¼

Ei
cAi

Li
¼ 4Ei

cri ð37Þ

kj
n ¼

Ej
cAj

Lj
¼ 4Ej

crj ð38Þ
Fig. 4. Schematic connection of two particles in the model 2.
where Ei
c and Ej

c are the Young’s moduli of the materials of the seg-
ments i and j of the bar. Introducing the relationships (37) and (38)
into the formula (36) and assuming that the stiffness moduli Ei

c and
Ej

c are equal, we obtain the expression for the equivalent stiffness Kn

in the following form:

Kn ¼ 4Ec
rirj

ri þ rj
ð39Þ

It can be noticed that using the harmonic mean ~r of the radii ri and rj

~r ¼ 2rirj

ri þ rj
ð40Þ

the formula (39) can be written in the form

Kn ¼ 2Ec~r ð41Þ

analogical to Eq. (24) obtained in model 1. The difference consists in
using the harmonic mean instead of the arithmetic one. Except for
the case of equal particles, the harmonic mean is always smaller
than the arithmetic mean so the overall stiffness of the discrete ele-
ment model 2 should always be smaller than the stiffness of the dis-
crete element model 1 when both models are applied to the same
discrete element geometrical model.

Similarly as in model 1, the equivalent shear stiffness of the
bond, Ks in model 2 is computed by using the ratio of the normal
and shear stiffness (Kn/Ks). The normal and shear strengths of the
bond, /n and /s, are given in terms of the maximum tensile and
shear stresses, rc and sc, and a certain geometrical parameter. In
this model, consistently with the geometrical assumption for the
connecting bar, the strength is limited by the cross-section area
of the smaller segment, Am:

/n ¼ rcAm ¼ rcð2rmÞ2 ¼ 4rcr2
m ð42Þ

/s ¼ rsAm ¼ scð2rmÞ2 ¼ 4scr2
m ð43Þ

where

rm ¼minðri; rjÞ ð44Þ

Choosing the minimum of the radii in Eq. (44) as a scaling
parameter for the strength calculations in Eqs. (42) and (43) may
be looked upon as an analogy to the Weibull weakest link model
employed in the fracture analysis of brittle materials (Munkholm
and Perfect, 2005; Bažant et al., 2004). The weakest link concept
postulates that the failure load is governed by the statistically
weakest point in the structure. Within the framework of the dis-
crete element method, a similar assumption to that expressed by
Eq. (44), has been adopted by Potyondy and Cundall to determine
the maximum force transmitted by the cohesive parallel bond
(Potyondy and Cundall, 2004).

3.3. Stiffness and strength parameters in model 3

In contrast to the models 1 and 2, the contact parameters in the
model 3 are set equal for all the bonds (Rojek et al., 2001; Oñate
and Rojek, 2004). This approach has certain advantages since it al-
lows us to find analytical relationship between micro- and macro-
scopic constitutive parameters (Liao et al., 1997; Liao and Chan,
1997).

The contact stiffness Kn is prescribed directly in this model. This
corresponds to the assumption that we prescribe the stiffness of a
spring connecting two particles. Except for Kn, the ratio Kn/Ks and
the normal and shear bond strengths, /n and /s, are assumed con-
stant for all the contacting pairs and are given as input data in this
model. The influence of the particle size on the value of these
parameters can be taken into account globally, for instance, by con-
sidering an average particle size in the evaluation of the model
parameters.
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An advantage of such an approach consisting in the possibility
to use analytical averaging procedures in the evaluation of the
model parameters has already been mentioned above. This model
may produce mechanical behaviour which is different from those
obtained with the local size dependent parameters. This will be
shown later in this paper.

4. Determination of equivalent model parameters

The models 1 and 2, in which contact parameters are evaluated
locally according to the contacting particle size are defined by the
following set of parameters: the contact Young’s modulus Ec, the
ratio of the shear and normal stiffness Kn/Ks, normal and shear
strength parameters, rc and sc, respectively. It can be noticed that
the same parameters are used in the two considered models.

The set of parameters required to define the contact connection
in model 3 consists of the following parameters: the normal con-
Fig. 5. Distribution of the characteristic geometric parameters for the specimen 1: (a) dis
the contacting particle pairs, (c) distribution of the harmonic means ~r of the radii of th
particles rm.

Fig. 6. Polar distribution of contact
tact stiffness Kn, the ratio of normal and shear stiffness Kn/Ks, and
the normal and shear bond strengths, /n and /s, respectively.

The sets of the contact parameters in all the four models are
completed with the inter-particle friction coefficient l as well as
adequate damping coefficients, at and ar.

Comparative studies of the formulations employing locally
evaluated and global uniform parameters will require equivalent
contact model parameters ensuring similar macroscopic proper-
ties. Having assumed the contact parameters for the models 1
and 2, the parameters for the model 3 will be determined adapting
the formulae for the models 1 and 2 by the use of appropriate aver-
age measures obtained for the whole assembly instead of the radii
of individual particle pairs.

Using the average of the radii of all the particles in the specimen
hri in Eq. (24) instead of �r, or in Eq. (41) instead of ~r, the equivalent
normal contact stiffness in the model 3 is obtained in the following
form:
tribution of the particle radii, (b) distribution of the arithmetic means �r of the radii of
e contacting particle pairs, (d) distribution of the minimum radii of the contacting

directions for the specimen 1.



˜

Fig. 8. Distribution of the characteristic geometric parameters for the specimen 2: (a) distribution of the particle radii, (b) distribution of the arithmetic means of the radii of
the contacting particle pairs �r, (c) distribution of the harmonic means of the radii of the contacting particle pairs ~r, (d) distribution of the minimum radii of the contacting
particles rm.

Fig. 7. Distribution of the squares of the characteristic geometric parameters for the specimen 1: (a) distribution of the particle radius squares r2, (b) distribution of the
squares of the arithmetic means of the contacting particle radii �r2, (c) distribution of the squares of the minimum radii of the contacting particles r2

m .
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Table 1
Microscopic parameters of the models 1 and 2 for both specimens.

Parameter Description Value

q Density (kg/m3) 2650
Ec Young’s modulus of the bar material (GPa) 10.0
Kn/Ks Particle stiffness ratio 3.7
l Particle friction coefficient 0.50
rc Contact bond normal strength (MPa) 40
sc Contact bond shear strength (MPa) 40
at, ar Damping factors 0.7
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Kn ¼ 2Echri ð45Þ

The average radius is calculated considering all the particles in the
assembly by

hri ¼ 1
Np

PNp

i¼1
ri ð46Þ

where Np is the total number of particles. The equivalent shear stiff-
ness Ks in model 3 can be calculated in a straightforward way
assuming the ratio Kn/Ks equal to the ratio Kn/Ks taken in models
1 and 2.

Similarly to the stiffness calculation procedure, the normal and
shear strengths for the model are calculated using the averaging
procedure, but in this case the average of the squares of the radii
is used in the respective formulae

/n ¼ 4rchr2i ð47Þ
/s ¼ 4schr2i ð48Þ
Fig. 9. Distribution of the squares of the characteristic geometric parameters for the sp
squares of the arithmetic means of the contacting particle radii �r2, (c) distribution of th

Fig. 10. Polar distribution of contac
where hr2i is the average of radii squares, given by

hr2i ¼ 1
Np

PNp

i¼1
r2

i ð49Þ

The average radius hri and the average of radii squares hr2i do not
contain information about contacting pairs in the assembly. A bet-
ecimen 2: (a) distribution of the particle radius squares r2, (b) distribution of the
e squares of the minimum radii of the contacting particles r2

m .

t directions for the specimen 2.



Table 2
Microscopic parameters of the model 3 for the specimen 1.

Parameter Description Model 3a Model 3b Model 3c

q Density (kg/m3) 2650 2650 2650
Kn Contact bond normal stiffness (formula) 2Echri 2Ech�ri 2Ech~ri
Kn Contact bond normal stiffness (MN/m) 13.519 14.064 13.819
Kn/Ks Particle stiffness ratio 3.7 3.7 3.7
l Particle friction coefficient 0.50 0.50 0.50
/n Contact bond normal strength (formula) 4rchr2i 4rch�r2i 4rchr2

mi
/n Contact bond normal strength (N) 76.001 80.733 65.296
/s Contact bond shear strength (N) 76.001 80.733 65.296

Table 3
Microscopic parameters of the model 3 for the specimen 2.

Parameter Description Model 3a Model 3b Model 3c

q Density (kg/m3) 2650 2650 2650
Kn Contact bond normal stiffness (formula) 2Echri 2Ech�ri 2Ech~ri
Kn Contact bond normal stiffness (MN/m) 13.987 16.676 15.328
Kn/Ks Particle stiffness ratio 3.7 3.7 3.7
l Particle friction coefficient 0.50 0.50 0.50
/n Contact bond normal strength (formula) 4rchr2i 4rch�r2i 4rchr2

mi
/n Contact bond normal strength (N) 95.170 117.99 81.447
/s Contact bond shear strength (N) 95.170 117.99 81.447

Fig. 11. Damage in the models with local evaluation of the parameters – simulation results for the specimen 1.
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ter equivalence can be expected if instead of the average radius hri
we take appropriate averages of arithmetic or harmonic means of
all the contact pairs in the assembly

h�ri ¼ 1
Nc

PNc

i¼1

�ri ð50Þ

h~ri ¼ 1
Nc

PNc

i¼1

~ri ð51Þ

where Nc is the total number of contact pairs in the assembly, �ri is
the arithmetic mean and ~ri is the harmonic mean of the radii in the
ith contact pair.
Using the average of arithmetic means h�ri in Eq. (24) instead of
�r, the normal contact stiffness in the model 3 equivalent to the
stiffness of the model 1 is obtained

Kn ¼ 2Ech�ri ð52Þ

Analogously, using the average of harmonic means h~ri in Eq. (41) in-
stead of ~r, the equivalent normal contact stiffness in the model 3
equivalent to the stiffness of the model 2 is obtained

Kn ¼ 2Ech~ri ð53Þ

Equivalent normal and shear strengths will be calculated using
respective averages, the average of squares of arithmetic means,



Table 4
Results of the UCS test for the specimen 1 and models with local evaluation of the
parameters.

Effective mechanical property Model 1 Model 2

Uniaxial compressive strength, rc (MPa) 299.91 241.38
Young’s modulus, E (GPa) 20.32 20.13
Poisson’s ratio, m 0.16812 0.16801
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h�r2i ¼ 1
Nc

PNc

i¼1

�r2
i ð54Þ

or the average of squares of minimum radii

hr2
mi ¼

1
Nc

PNc

i¼1
r2

mi
ð55Þ

Using the average of squares of arithmetic means in Eqs. (25) and
(26) we obtain the strengths equivalent to the model 1

/n ¼ 4rch�r2i ð56Þ
/s ¼ 4sch�r2i ð57Þ

Using the average of squares of minimum radii in Eqs. (42) and (43)
we obtain the strengths equivalent to the model 2

/n ¼ 4rchr2
mi ð58Þ

/s ¼ 4schr2
mi ð59Þ

Taking as a criterion different assumptions in calculation of the
global uniform parameters we will distinguish the following cases
within the model 3:

(a) The normal contact stiffness is calculated according to Eq.
(45), and the contact strengths are calculated according to
Eqs. (47) and (48). Equivalence with all the other models will
be checked.

(b) The normal contact stiffness is calculated according to Eq.
(52), and the contact strengths are calculated according to
Eqs. (56) and (57). Equivalence with the model 1 is assumed
and will be checked.

(c) The normal contact stiffness is calculated according to Eq.
(53), and the contact strengths are calculated according to
Eqs. (58) and (59). Equivalence with the model 2 is assumed
and will be checked.

The above cases a–c will be later referred to as models 3a–3c.

5. Numerical comparative studies

Comparative studies will be performed carrying out simulation
of the uniaxial compression test of a rock-type material using two
cylindrical specimens with different particle size distribution. Dif-
ferent models, both with local size dependent and global uniform
constitutive parameters, will be compared. Certain values of micro-
scopic parameters will be assumed for the models with size depen-
dent parameters and appropriate equivalent constant parameters
Fig. 12. Axial stress–strain curves for the models with local evaluat
for the model 3 will be calculated. Macroscopic behaviour obtained
in numerical simulations will be studied by comparing stress–
strain curves and macroscopic parameters: the Young’s modulus,
Poisson’s ratio and compressive strength. Possible equivalence of
the investigated models will be verified. The best method to eval-
uate global uniform constitutive parameters ensuring equivalence
with a given model with local size dependent parameters will be
identified.

The comparative studies for each specimen will be carried out
according to the following plan:

1. Comparison of the models with local size dependent stiffness
and strength parameters (models 1 and 2).

2. Comparison of each of the models with local size dependent
parameters with appropriate models with global uniform
parameters:
(a) Comparison of the model 1 with the models 3a and 3b.
(b) Comparison of the model 2 with the models 3a and 3c.

In the present work, the effect of the friction coefficient and
damping will not be studied. All the cases will be calculated using
the same value of the damping and friction. The value of the
damping chosen for all the models will ensure quasi-static
conditions.
5.1. Geometrical models

Two cylindrical specimens of diameter 23 mm and length
46 mm have been investigated. The first particle assembly has
been generated using a special algorithm developed by Labra and
Oñate (2009) and the second one has been obtained using a collec-
tive rearrangement algorithm with an imposed uniform particle
size distribution, similar to the algorithm of Lubachevsky and Stil-
linger (1990). The specimens are characterized by different degree
of geometric heterogeneity.
ion of the parameters – simulation results for the specimen 1.
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5.1.1. Specimen 1
The first specimen, which will be later called the specimen 1, is

more homogenous. It is formed by 10225 particles. The particle
assembly is characterized by the particle size distribution shown
in Fig. 5(a), the particle radii being in the range 0.3123–
1.186 mm (the radius ratio rmax/rmin = 3.8). The porosity of the gen-
erated model is 23%.
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Fig. 13. Damage evolution for the models with local evaluation
The initial number of established contact bonds in the specimen
1 is 60809, with the coordination number nc = 11.89. The histo-
grams showing the distributions of the contact bond geometric
parameters: of the arithmetic means of the radii of the contacting
particle pairs, of the harmonic means of the radii of the contacting
particle pairs and of the minimum radii of the contacting particle
pairs are given in Fig. 5(b)–(d), respectively. It can be seen that
0.02 0.025 0.03 0.035
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model 1
model 2

of the parameters – simulation results for the specimen 1.



Fig. 14. Damage in the model with global uniform parameters – simulation results for the specimen 1.
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the distributions shown in Fig. 5 are bounded, bell-shaped and
nearly symmetrical. The statistics of the four distributions is sum-
marized in Table A.1 in Appendix. The distribution of the particle
radii in Fig. 5(a) can be treated as the parent distribution for the
distributions in Fig. 5(b)–(d). In accordance with statistical rules
the distributions in Fig. 5(b) and (c), obtained by averaging of ran-
domly drawn samples from the parent distributions, are closer to
the normal distribution in comparison with the parent distribution
(Harnett, 1980; Kleijnen, 1987). The distribution of the minimum
radii in Fig. 5(d) resembles the parent distribution.

Fig. 6 presents the polar distribution of the contact directions
for the specimen 1 at the initial configuration. The histograms
show fractions of contacts in assumed polar intervals. A uniform
Table 5
Results of the unconfined compressive strength test for the model 3 and specimen 1.

Effective mechanical property Model 3a Model 3b Model 3c

Uniaxial compressive strength, rc

(MPa)
269.89 292.59 232.14

Young’s modulus, E (GPa) 18.90 19.31 19.16
Poisson’s ratio, m 0.16823 0.16830 0.16858

Fig. 15. Axial stress–strain curves – comparison of the mo
distribution of contacts, which can be seen, shows the isotropy of
the particle assembly. The isotropy is also confirmed by the values
of the diagonal components of the normalized fabric tensor:
{0.33168,0.33142,0.33689}, cf. Bathurst and Rothenburg (1988),
Madadi et al. (2004).

Fig. 7 presents distributions of the squares of the geometric
parameters. It can be noticed the three distributions of the squares
are slightly positively skewed. Table A.1 gives the statistics charac-
terizing quantitatively the distributions of the squares. The squares
of the characteristic local dimensions scale the strength of the con-
tact bonds so their distributions can be treated as distributions of
local strength in the model. The mean values of the distributions
given in Table A.1 are equivalent to average parameters introduced
in Section 4 which are used in the determination of equivalent con-
tact stiffness and strength parameters.
5.1.2. Specimen 2
The specimen 2 is modelled with 5868 particles. Particle size

distribution is shown in Fig. 8(a). It can be regarded as approxi-
mately uniform. The particle assembly is more heterogenous than
del 1 with the models 3a and 3b for the specimen 1.
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in the specimen 1. The particle radius range is 0.115–1.240 mm
(the radius ratio rmax/rmin = 10.8) and the porosity is equal 27.53%.

The initial number of established contact bonds in the specimen
2 is 31431 with the coordination number nc = 10.713. The distribu-
tion of contact bond geometric parameters: the arithmetic means
of the radii of contacting particle pairs, the harmonic means of
the radii of contacting particle pairs and the minimum radii of con-
tacting particle pairs are shown in Fig. 8(b), (c) and (d), respec-
tively. Statistical measures characterizing the distributions
shown in Fig. 8 are given in Table A.2 along with the statistics
for the distributions of the squares of the local size parameters
shown in Fig. 9. The shapes of the distributions of the squares in
Fig. 9 show significant asymmetry, which is confirmed by the sta-
tistical measures in Table A.2.

Isotropy of the particle assembly defining the specimen 2 is
proved by the uniformity of the polar distribution of the contact
directions given in Fig. 10. The diagonal components of the fabric
tensor are the following: {0.33108,0.33180,0.33712}.
5.2. Model parameters

The model parameters assumed for the model 1 and 2 are pre-
sented in Table 1. The model parameters have been taken such that
obtained macroscopic properties could characterize high strength
brittle rocks. Using the parameters given in Tables 1 and A.1, and
employing the methodology described in Section 4, the constitu-
tive parameters for the three cases of the model 3 have been calcu-
lated for the specimen 1. Analogously, using the parameters given
in Tables 1 and A.2, the constitutive parameters for the specimen 2
are calculated. The parameters for the specimens 1 and 2 are given
in Tables 2 and 3, respectively.

The particle–platen interaction was modelled using the friction-
less contact model with the penalty stiffness Kn = 15 MN/m. The
compressive loading was introduced under constant velocity
0.2 m/s prescribed to the loading platens. The resulting axial strain
rate is much higher than the loading strain rate in a quasi-static
laboratory tests. However, the computational cost required in the
discrete element simulations does not permit running simulations
with real loading velocities. The loading rate sensitivity studies
show that we can increase strain rate up to a certain level without
changing much the mechanical response and failure process (Ma
et al., 2011). With a proper damping coefficient, we have obtained
a response which can be regarded as close to the quasi-static one.
This is demonstrated below with the axial stress–strain curves
which show no oscillations caused by dynamic effects.
Fig. 16. Axial stress–strain curves – comparison of the mo
5.3. Numerical results

Under an increasing load the damage in the specimen is devel-
oping progressively by breakage of bonds due to excessive shear or
tensile forces until a complete failure is reached. The results of sim-
ulations are presented in the form of fractured specimens, axial
stress–strain curves and plots showing evolution of damage. The
specimens after failure are plotted with distribution of the damage
parameter D, which is defined for each particle as:

D ¼ 1� bt

b0 ð60Þ

where bt is the number of bonded contacts of a given particle at
time t, and b0 – its initial number of bonded contacts.

The axial stress–strain curves are plotted taking the axial com-
ponents of the average strain and stress tensors calculated for the
whole specimen. The average strains have been estimated using
the Bagi’s equivalent continuum strain (Bagi, 1996; Durán et al.,
2010). The stress is estimated using the averaging procedure of
the micromechanical stress tensor (Kruyt and Rothenburg, 1996;
Kruyt and Rothenburg, 2004). The slope of the stress–strain curves
in the elastic range yields the Young’s modulus, the peak point of
these curves is taken as the compressive strength. The Poisson’s ra-
tio is determined in terms of the components of the average strain:

m ¼ �0:5ðexx þ eyyÞ
ezz

ð61Þ

where ezz is the axial strain, and 0.5(exx + eyy) is the average trans-
verse strain.

5.4. Simulation results for specimen 1

The specimens after failure obtained in the simulations using
the models 1 and 2 are presented in Fig. 11 with the distribution
of the damage parameter. Failure pattern typical for brittle materi-
als in the two models can be observed.

The stress–strain curves for the models 1 and 2 are plotted in
Fig. 12 and the macroscopic properties are given in Table 4. The
slope of the curves in Fig. 12 in the elastic range is almost identical,
so the values of the Young’s modulus calculated for both models
are very similar, 20.32 GPa for the model 1 and 20.13 GPa for the
model 2. This can be expected since the arithmetic and harmonic
means used in the evaluation of contact stiffness in these models
have very similar distributions (cf. Fig. 5(b) and (c)). The Young’s
modulus determined in the model 1 is slightly higher than that ob-
del 2 with the models 3a and 3c for the specimen 1.
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tained in the model 2. This is understandable since the arithmetic
mean used in the model 1 to calculate the contact stiffness is al-
ways greater than the harmonic mean used in the model 2.

As it can be expected the failure load obtained using the model
2 is significantly lower than that obtained by the model 1. The
microscopic strength in the model 2 is scaled by the minimum of
the contacting particle radii which is the lower the arithmetic
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Fig. 17. Damage evolution for the models with global unifo
mean of the particle radii used for scaling in the model 2. Both
models yield similar post-critical behaviour. The stress–strain
curves in Fig. 12 drop immediately after the failure, which is typi-
cal for brittle materials. A similar softening rate is observed for
both models.

The evolution of the damage in the specimens for both models
is illustrated in Fig. 13 by the curves representing the number of
0.02 0.025 0.03 0.035
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rm parameters – simulation results for the specimen 1.



Table 6
Results of the UCS test for the specimen 2 and models with local evaluation of the
parameters.

Effective mechanical property Model 1 Model 2

Uniaxial compressive strength, rc (MPa) 289.06 207.36
Young’s modulus, E (GPa) 18.33 17.91
Poisson’s ratio, m 0.18565 0.18833
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bonds broken due to excessive tension and shear, and the global
damage parameter as functions of the axial strain. The number of
broken bonds in tension is slightly higher for both models. It is
interesting to note that the model 2, which gives the lowest mac-
roscopic strength, is characterized with the highest number of bro-
ken bonds. This can be attributed to the lowest microscopic
strength/stiffness ratio in the model 2. This tendency will be man-
ifested even more clearly for the more heterogenous specimen 2.
The global damage parameter is calculated as the ratio of the
number of broken bonds with respect to the initial number of
cohesive bonds. This is equivalent to the average damage para-
meter defined in Eq. (60). This is a good indicator of damage distri-
bution. The lower the global damage is, the more localized is the
failure. It can be seen in Fig. 13(c) that the model 2 gives a slightly
higher value of the damage parameter than the model 1. Difference
in the damage distribution for these models is not appreciable in
the failure patterns presented in Fig. 12, but the relationship be-
tween the global damage parameter and damage distribution will
be clearly seen for the more heterogenous specimen 2.

A typical brittle failure is also predicted using the model with
global uniform parameters. Fig. 14 shows the specimens after fail-
ure with the distribution of the damage parameter obtained for all
Fig. 18. Damage in the models with local evaluation of th

Fig. 19. Axial stress–strain curves for the models with local evaluat
the cases of the model 3. Quantitative results for all the cases of the
model 3 are given in Table 5.

Figs. 15 and 16 show comparison of the stress–strain curves for
the models with local size dependent contact parameters with the
curves corresponding to respective cases of the model with global
uniform parameters. Each of the two models with local size depen-
dent constitutive parameters is compared to the model 3a whose
parameters are evaluated according to the particle radius averages
and one of the two other cases of the model 3 whose parameters
are evaluated according to the respective averages of contact bond
geometric parameters. Thus, the model 1 is compared with the
models 3a and 3b in Fig. 15, and the model 2 is compared with
the models 3a and 3c in Fig. 16.
e parameters – simulation results for the specimen 2.

ion of the parameters – simulation results for the specimen 2.
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Fig. 15 shows quite a good agreement between the stress–strain
curves corresponding to the models 1 and 3b. The curve corre-
sponding to the model 3a diverges slightly more from the curve
corresponding to the model 1. This comparison shows that the
evaluation of the parameters of the model 3 according to the aver-
ages of the arithmetic means of the contacting particles radii en-
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Fig. 20. Damage evolution for the models with local evaluation
sures practical equivalence of the models 3 and 1 for the
specimen 1.

A very good agreement of the curves corresponding to the mod-
els 2 and 3c can be observed in Fig. 16. This indicates that the mod-
el 3 with uniform parameters calculated appropriately gives
equivalent results to those produced by the model 2. The reasons
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of the parameters – simulation results for the specimen 2.



Table 7
Results of the unconfined compressive strength test for the model 3 and specimen 2.

Effective mechanical property Model 3a Model 3b Model 3c

Uniaxial compressive strength, rc

(MPa)
193.85 313.41 187.06

Young’s modulus, E (GPa) 14.08 17.42 16.45
Poisson’s ratio, m 0.18580 0.18526 0.18573
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of an overestimation of the macroscopic strength by the model 3a,
which can be seen in Fig. 16, are obvious. The minimum of the con-
tacting particle radii gives much smaller bond strength than the
strength estimated according to the average particle radius.

Fig. 17 illustrates the evolution of broken bonds in shear and
tension, and the evolution of the global damage parameter for
the specimen 1 with the 3 cases of the model with uniform consti-
tutive parameters. The development of damage is similar for the 3
cases. In all the models the number of broken bonds in tension is
slightly higher than in shear, which indicates a brittle type of fail-
ure. The final value of the global damage parameter is similar to
the values obtained in the models with local evaluation of consti-
tutive parameters. This indicates that the damage distribution
should also be similar.

5.5. Simulation results for specimen 2

Fig. 18 shows failure modes obtained in the simulations using
the specimen 2 with the models with size dependent parameters.
The specimens after failure are presented with the distribution of
the damage parameter D. It can be seen that the models 1 and 2
have produced different failure modes. The model 1 has given a
more localized fracture while a distributed damage more typical
for a ductile failure has been obtained with the model 2.

The axial stress–strain curves obtained for the models 1 and 2
are plotted in Fig. 19. The slope of the curves in the initial elastic
range is similar. However, the slope of the curve corresponding
to the model 2 starts to decrease at low load levels due to an early
development of damage in the specimen. This can be attributed to
the lower local strength of the bonds in the model 2. The lower
bond strength also explains a lower failure load predicted by the
model 2. Macroscopic properties determined in the simulations
and given in Table 6 confirm observations made in the stress–
strain plots.

The curves plotted in Fig. 20 confirm the development of dam-
age in the model 2 from early stages of loading. It can also be ob-
served that more bonds in the model 2 are broken in shear than in
tension. Shear microfractures are typically associated with ductile
rocks (Katz and Reches, 2004). This observation is in agreement
with the failure mode presented in Fig. 18(b). The high value of
the global damage parameter at specimen failure obtained using
the model 2 suggests a significant damage distribution, which is
Fig. 21. Damage in the model with global uniform pa
again in agreement with Fig. 18(b). Comparing the plots for the
specimens 1 and 2, in Figs. 13 and 20, it can be noticed that the
geometric heterogeneity (the ratio rmax/rmin) has a smaller effect
in case of the model 1. It can be understood that by taking the
arithmetic mean of the particle radii to evaluate the bond strength
(model 1) the heterogeneities are smoothed, while taking the
smaller radius (model 2) allows the heterogeneities to manifest
themselves fully.

The results of the simulations using the specimen 2 with differ-
ent sets of equivalent parameters are shown in Fig. 21 in the form
of the specimens after failure with damage distribution. It can be
seen that a typical brittle failure characterized by localized fracture
has been predicted by the model with uniform constitutive param-
eters. Macroscopic properties calculated for all the cases of the
model 3 are summarized in Table 7.

Figs. 22 and 23 show comparison of the axial stress–strain
curves for the models with the local size dependent constitutive
parameters and respective cases of the model 3 with the global
uniform constitutive parameters. Similarly as for the specimen 1,
both models with the local size dependent contact parameters
are compared with the model 3a, whose parameters are evaluated
according to the particle radius averages and one of the two other
cases of the model 3, whose parameters are evaluated according to
the respective averages of contact bond geometric parameters.
Thus, the model 1 is compared with the models 3a and 3b in
Fig. 22, and the model 2 is compared with the models 3a and 3c
in Fig. 23. Noticeable differences between the compared curves
can be seen, which means that for the more heterogenous speci-
men the models produce different responses. The model 3a gives
a bigger difference in response with respect to the models 1 and
2, which means that evaluation of global uniform parameters for
the model 3 using the mean particle radius does not ensure equiv-
alent properties to those of the models 1 or 2. The difference is
rameters – simulation results for the specimen 2.



Fig. 22. Axial stress–strain curves – comparison of the model 1 with the models 3a and 3b for the specimen 2.

Fig. 23. Axial stress–strain curves – comparison of the model 2 with the models 3a and 3c for the specimen 2.
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smaller in case of comparison of the model with local evaluation of
constitutive parameters and the models, whose parameters are
evaluated according to the respective averages of contact bond
geometric parameters, namely between the models 1 and 3b, and
between the models 2 and 3c. This confirms that this method of
evaluation of the global uniform constitutive parameters ensures
a better equivalence with the respective models using local evalu-
ation of constitutive parameters.

The curves illustrating the damage evolution plotted in Fig. 24
confirm a brittle and localized failure of the specimen 2 with the
models employing uniform constitutive parameters. Tension dom-
inates over shear as a failure mechanism, which is associated with
a brittle failure. A small value of the global damage parameter indi-
cates a localized fracture.
6. Conclusions

The results of the comparative studies presented above provide
interesting observations on the effect of the evaluation method of
the contact parameters in the discrete element method. Compari-
son of qualitative and quantitative results shows some similarities
and differences.

The results are quite similar for the more homogenous speci-
men (specimen 1). The two models with local evaluation of the
constitutive parameters (models 1 and 2) predict very similar elas-
tic properties, which can be explained by a small difference in this
specimen between the arithmetic and harmonic means, the geo-
metric scaling parameters used in these models to calculate the
contact stiffness. Nevertheless, even for this specimen, the rela-
tionship between the scaling parameters are reflected correctly
in the values of macroscopic properties. The model with the con-
tact stiffness scaled according to the arithmetic mean of the con-
tacting particle radii (model 1) yields slightly higher values of
the Young’s modulus than the model with the contact stiffness
scaled according to the harmonic mean (model 2), which is under-
standable having in mind that the arithmetic mean is always great-
er than the harmonic mean. The difference in the macroscopic
stiffness manifests itself more clearly in the specimen with a high-
er radius ratio.

The compressive strength predicted by the model 2 for both
specimens is considerably smaller than that obtained using the
model 1. This could be expected, since the minimum radius of
the contact pair used as the scaling factor to determine the contact
bond strength in the model 2 is smaller than the arithmetic mean
of the radii of the contacting particle pair which is used to scale the
contact strength in the models 1.

It can be observed that damage in the specimens with the mod-
el 2 is initiated at lower loading levels than in the specimens with
the model 1. This can be explained by a lower bond strength in the
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model 2. This is also the reason, why the damage development is
more rapid and the damage is more distributed in the model 2 than
in the model 1. This is especially visible in the more heterogenous
specimen. The evolution of damage shows that the failure pre-
dicted by the model 2 is characterized by a greater number of bro-
ken bonds than in the case of the model 1. This indicates a more
distributed damage which is confirmed by the images of failed
specimens.
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Fig. 24. Damage evolution for the models with global unifo
In most cases, the failure of the specimens predicted by the
analysis can be regarded as brittle, only in case of the specimen
2 with the model 2 a distributed damage typical for a ductile fail-
ure is obtained. The ductile character of the failure is associated
with shear-dominant failure at the micromechanical level. The ef-
fect of the geometric heterogeneity (the ratio rmax/rmin) on the fail-
ure mechanism is especially appreciable for the model 2. It can be
understood that the evaluation of the strength parameters in the
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rm parameters – simulation results for the specimen 2.



Table A.1
Statistics summary of the distributions of the particle radii and contact bonds geometric parameters for the specimen 1.

Description r �r ~r rm r2 �r2 r2
m

Mean 0.6759350 0.7032214 0.6909727 0.6291815 0.4750058 0.5045808 0.4080978
Median 0.6714439 0.7001103 0.6882989 0.6290655 0.4508369 0.4901544 0.3957234
Std. deviation 0.1346085 0.1003028 0.1019053 0.1105832 0.1876938 0.1435643 0.1416917
Skewness 0.2241149 0.1806703 0.1839703 0.1245392 0.7833898 0.5884414 0.6298497
Kurtosis �0.0612598 �0.0532155 �0.0599418 �0.0681768 0.7989896 0.4346718 0.5643835
Minimum 0.3122622 0.3672905 0.3632630 0.3122622 0.0975077 0.1349023 0.0975077
Maximum 1.1861220 1.1141005 1.1136308 1.0926130 1.4068854 1.2412199 1.1938032

Table A.2
Statistics summary of the distributions of the particle radii and contact bonds geometric parameters for the specimen 2.

Description r �r ~r rm r2 �r2 r2
m

Mean 0.6993391 0.8338194 0.7664190 0.6556167 0.5948130 0.7374067 0.5090438
Median 0.7023354 0.8425944 0.7868309 0.6540944 0.4932754 0.7099654 0.4278394
Std. deviation 0.3252012 0.2053124 0.2536868 0.2814481 0.4625653 0.3329340 0.3789057
Skewness �0.0103777 �0.3161015 �0.2104510 0.0276287 0.4682580 0.1937488 0.5942279
Kurtosis �1.2784650 �0.4576297 �0.9823256 �1.0820407 �1.1066860 �0.8110736 �0.7152502
Minimum 0.1151885 0.1695048 0.1584173 0.1151884 0.0132684 0.0287318 0.0132683
Maximum 1.2399406 1.2358476 1.2358465 1.2346827 1.5374527 1.5273192 1.5244413
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model 2 increases heterogeneous nature of the model, while
the approach in the model 2 consisting in scaling of the bond
strength according to the particle radii leads to smoothing of
heterogeneities.

Similarly we can explain the failure mechanism observed in the
specimens with the all the cases of the model 3. Despite the geo-
metric heterogeneity, the uniform constitutive parameters result
in localized brittle-like fractures. The localized nature of the failure
predicted by the models 3 is confirmed by a lower level of global
damage parameter evaluated for the whole specimen. The differ-
ence of the failure mode obtained with the models 3 with respect
to other models is especially apparent for the specimen 2. The fail-
ure pattern predicted by the models 3 for the specimen 1 is similar
to those predicted by the models with local evaluation of constitu-
tive parameters.

For the specimen with a relatively low geometric heterogeneity,
the model with global uniform constitutive parameters can give
results similar to those produced by the models with locally eval-
uated size dependent contact parameters. In order to get equiva-
lent quantitative results using these two approaches, it is
desirable to determine equivalent global uniform parameters using
the distributions of the appropriate geometric parameters em-
ployed as scaling factors in respective models with local size
dependent constitutive parameters. The parameters evaluated in
this way give a better agreement than the parameters evaluated
according to the average particle size in the discrete element
assembly. The latter approach does not take into account
actual geometric parameters used in the evaluation of contact
parameters.

Appendix A. Statistics summary

Tables A.1 and A.2.
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