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Abstract—Assuming that many physical models can be de-
coupled, an anti-windup control scheme for nonlinear cascade
systems is proposed. Taking into account that saturation appears
frequently, in order to overcome this difficulty, an efficient control
approach is developed. The paper is divided into two parts.
Firstly, the design of a cascade control system with dynamic
controllers in the inner and outer loops, considering the closed-
loop stability in the controllers design with a suitable anti-windup
compensator. Secondly, a PID cascade controller design in the
inner and outer loop is presented, when the parameter tuning
in both control schemes is done by particle swarm optimization
(PSO). However, in this case, the implementation of an anti-
windup compensator is not needed. Apart from the theoretical
background, two numerical examples are shown to corroborate
the provided results.

I. INTRODUCTION

Cascade control systems have been investigated since sev-
eral decades ago. In the SISO linear case, as it is known, the
controllers are tuned in sequence, first by tuning the inner
loop and then the outer loop. Usually, the kind of controllers
implemented are proportional-integral-derivative (PID). In re-
cent years, the research about cascade control systems has
been extended to the nonlinear case, considering that many
physical systems such as mechanical, electrical, power systems
and chemical systems can be controlled and stabilized by
means of this approach. The design is possible because a
decoupled system can be divided into an inner and an outer
loop, improving the performance in comparison with single
loop control techniques. In the literature, the research about
this topic is limited but an example can be found in [1] where
a cascade control system is designed for the stabilization of
underactuated mechanical systems. Although the anti-windup
control problem for cascade control systems has not been
investigated extensively, there are interesting results in single
loop anti-windup design. In [2], an anti-windup control design
is developed for the control of Takagi-Sugeno systems and a
reliable state feedback control of Takagi-Sugeno fuzzy systems
with sensor faults can be seen in [3]. A control scheme for
disturbance observer systems is provided in [4], dealing with
the saturation torque. Other theoretical and applied studies
have been presented in [5], where the results are implemented
in single loop linear systems and the gain matrices are
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computed by using linear matrix inequalities (LMI’s). Based
on a linear approach, an anti-windup control scheme for an
underwater vehicle is given in [6] and an anti-windup approach
for nonlinear systems can be found in [7]. Other interesting
works related to this topic are given in [8], [9], [10].

In this paper, an anti-windup control scheme is proposed
for the stabilization of cascade nonlinear systems, which is
developed in two parts. The first one is a dynamic controller
implemented in the inner and outer loop. The closed-loop
stability of the system is based on the theory stability of
Lyapunov [11]. An anti-windup compensator is designed in
order to reduce the unwanted effects of windup such as a poor
performance or even instability. The second part is done by
implementing PID controllers in the inner and outer loop but
now without anti-windup compensation. In the first and second
part of this study the gain matrices are tuned by particle swarm
optimization [12], [13], [14], [15].

The paper is organized as follows: In Section II, the design
of an anti-windup control scheme for cascade control systems,
implementing dynamic controllers in the inner and outer
loop, is developed. In Section III, a PID cascade control
system design is presented by considering the input saturation
but without anti-windup compensator. In Section IV, a PSO
algorithm is supplied in order to tune the gain matrices for
both approaches. Two numerical examples are given in Section
V and the conclusions can be found in Section VI

II. ANTI-WINDUP CASCADE DYNAMIC CONTROLLER
DESIGN

This section is devoted to design an anti-windup controller
for nonlinear cascade systems. This strategy implements dy-
namic controllers in the inner and outer loops with gain
matrices that help to improve the system performance. The
controllers are tuned, as explained in Section IV, by a particle
swarm optimization algorithm to reduce the integral square
error, i.e. the difference between the reference variable and
the output of the outer system. The same applies to the
inner system. The main idea of this first approach is to
design an appropriate anti-windup compensator to deal with
the unwanted effects when saturation appears in the inner loop.
Even when the gain matrices are tuned by a PSO algorithm,
the closed-loop stability of the inner and the overall systems
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Fig. 1. Cascade anti-windup dynamic control scheme

are proved by the method of Lyapunov [11]. The obtained
results are compared with the approaches given in [16], [17].

A. Inner loop dynamic controller design

Consider the cascade control dynamic scheme shown in
Fig. 1. The inner loop system (system 1) is formed by

i1(t) = Az (t) + fr(zi(t) + o(u(t)),
y1(t) = z1(t) = ue(?),

where AeR™*™ is an appropriate positive definite matrix due
to the inner loop system is minimum phase in order to facilitate
the particle swarm optimization parameter tuning; 1 (¢)ER™ is
the state vector; f1(z1(t)) a nonlinear vector function; ¢(-) the
saturation nonlinearity; u(f)eR™ the input vector; y; (t)eR"™
the controller output and u.(t)eR™ is the controller input
vector. The inner loop controller is given by

ey (1) = —Kae, (t) +r2(t) — [u(t) — ¢(u(t))] + uc(t),
yc(t) =Ty (t) = u(ﬂ?

where KeR™ ™ is a positive definite gain matrix with a
negative sign to make the closed-loop system of minimum
phase type; z., (t)€R™ is the controller state vector; o (t)€R"
the reference vector and u(t) — ¢(u(t)) is the compensation
term.

Before proving the closed-loop stability of the inner loop,
the definition of sector condition is needed [1].

Definition 1: The sector condition for the saturation nonlin-
earity is given by

u® ()[u(t) — d(u(t))] > 0. 3)

In the following theorem, the closed-loop stability of the
inner loop is proved in order to obtain a stable controller by
considering that the gain matrix K is tuned by means of a
PSO algorithm, which is detailed in Section IV.

Theorem 1: There exists a gain matrix K for the controller
(2) such that the closed-loop of the inner loop is stable.

(D

2)

Proof: Consider the following storage function [11]:

Vi1 (t), ze, (1)) = Vs(21(2) + 0Vie(ze, (1), (4)

with ¢ > 0 and where

Vi@ () = ~aT (1) 2 (1),

2 )
Vie(ze, (1) = 5*77?1 (t) e, (t)
and the auxiliary input variable
v(t) = = fr(z1(t)) — ¢(u(?)). (6)
Then, the system (1) becomes
1(t) = —Az(t) —v(t) @)

and defining the input variable
w(t) = —ra(t) — uc(t), (8)
the system (2) can be written as
ey (1) = =K xe, (t) —w(t) = [u(t) — o(u(t))]. )
Now, obtaining the first derivative of (4) along (7) and (9),
yields
V(@1(1), e, (8))= —i (t) Az (£) =271 (t)o(?)
— o [ Ko, (t) +al(Ow(t) + 2L, (O)]u(t) — o(u(t))]
From (1) and (2), z1(t)=y1(t) and ., (t)=u(t). Then, the
equation (10) becomes in
V(1 (t), e, (£)) = —yi (t)Ayi () — yi (£)o(?)
—0 [ye () Kye(t)+y. ()w(t)+u” (8) [u(t) —d(u(t))]]
and using Definition 1 in (11) and considering that the system

is zero state observable [7], i.e. y;(¢)=0 implies u.;(¢)=0 and
x;(t)=0, for ¢ = 1,2, we obtain

(10)

Y

V(1 (t), e, (1)) <0 (12)

and the theorem is proved [11].
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B. Outer loop and overall dynamic controller design with z2(t) = uc, (t)€R™ the controller input,

Before deriving the outer loop controller and proving the - [ —A 0, Om - fi(z1(2))
overall closed-loop stability, it is necessary to make the A=| 0, —K 0, |, f(2(t) = 0 ;
following change of variables: L 0, 0, —A fa(z2(1))

- [ 0 L 0 0n O
= T T T T T (13) On On On On Im
u(t) = [u (t)v ¢ (u(t))v To (t)v U (t)] : - (20)
The equivalent closed-loop system is and rewriting i () = ii () — B (t) 21
o(t) = Az(t) + f(2(t) + Bu(t), (14)  with ~ ]
o B(t) = —f(@(t) — Ba(t). (22)
wi
Consider the following outer loop dynamic controller:
- —A . . -
A- [ A } . Fa() = [ fiaa (1) } 7 ey (8)= — Kot (8) 1 (8) — g (1)37(0) [(8) — H(u(2))] ~t (1)
. (15) = — Koy (t) — va(t) = e, (2" (¢) [u(t) —d(u(?))],
I In In In where ., (t)eR™ is the dynamic controller state vector,

where [, and 0, are the identity and the zero matrix of
appropriate dimensions, respectively. Now, consider the outer
loop dynamic equation (system 2) given by

j?g(t) =—A, Z‘Q(f) + fg(.’L‘Q(t)) + Ug(t), (16)

where A;€R™*™ is a positive definite matrix; zo(t)eR™
is the state vector; fa(x2(t)) the nonlinearity vector and
uz(t)ER™ is the input vector. The overall closed-loop system
is obtained by selecting the augmented vectors

i(t) = 7). 67 (u(®), P10, @), ).
Then,
E(t) = AZ(t) + f(Z(t)) + Ba(t), as)
g(t = Z‘Q(t),
where the output is given by

xl(t)
Gt)=[0n 0n In || 2o (t) | =22(t) (19)

l‘g(t)

KoeR™*™ the controller gain matrix, r1(t)ER™ the refer-
ence vector and defining

v2(t) = 71(t) + uc, (),

Yes (1) = T, (1),

where y., (t)eR™ is the controller output, together with an
extra output

(24)

z1(t)
Ty (1)
za(t)
Then, the following theorem can be stated.

Theorem 2: There exists a gain matrix Ko for the controller
(23) such that the closed-loop of the outer loop (overall
system) is stable.

Proof: Consider the storage function for the overall closed-
loop system

Zt)=[0n I. Op | =z, (t). (25)

V(i(t), Ly (t)) =V (f(t)) + O'VSC(Z'CQ (t))a (26)
with 0>0 and where
Vi) = 53T (03(0),
27



Now, deriving (26) along the trajectory given in (21) and
(23), we obtain

V(@ (), wes () = F (O A&(E) — 27(1) Ba(t)

28

— (1) [ Kot () 0a(t) e (T (B)ult) — d(ue))]] . P

Then, from Definition 1, and considering that the system is
zero state observable,

V(&(t), 2, (1) <0 (29)

is obtained and the closed-loop stability of the outer loop is
ensured.

III. PID CASCADE CONTROL SYSTEM DESIGN

A PID cascade control system is formed by two parts: An
inner loop PID controller [13] and an outer loop PID controller
(see Fig.2). In this case, it is not necessary to implement an
anti-windup compensator because the gain matrices are tuned
by the particle swarm optimization routine shown in the next
section.

The PID controllers for the inner and outer loop are given
by the following equations:

t
1 (t) = Kpl €cy (t> + Kil / €cy (t)dt + Kd1 éCl (t)>
0 (30)

t
exlt) = Kppees (1) + K / en (D)t + K gy (1),
0

where c¢1(t)eR™ is the output controller 1; co(t)ER™ the
output controller 2; e, (t)=r1(t) — y2(t) the error variable for
the controller 1; e, (t)=ca(t) —y1(t) the error variable for the
controller 2; K, , K;,, K4, €R" are the proportional, integral
and derivative gain matrices, respectively, for the controller 1
and Kp,, K;,, Kq,eR™ for the controller 2.

29

IV. PARTICLE SWARM OPTIMIZATION ROUTINE FOR
CASCADE ANTI-WINDUP CONTROLLER DESIGN

Particle swarm optimization routines have been recently
implemented for the parameter tuning for PID’s and other
controllers [12]-[15], [18]. In this study, the first step is
to determine an anti-windup scheme for a cascade dynamic
controller in order to find an appropriate controller and com-
pensator ensuring the closed-loop overall stability. The gain
matrices are found by using a PSO algorithm to minimize the
integral squared error of the overall system [18], where

Fi(e)) =Y _€}()A; @31
j=1
is the objective function that minimizes the error

ei(n) = ri(n) —ya2(n) with the time difference A;. The PSO
algorithm that allows us to find the gain matrices K, Ky for
the dynamic controller and K, K;, , Ky, , K,,,, K;,, Kg, for
the PID controller scheme is given by

29

while (gbest > r1 and gbest < ro ... gbest < r,, and j<100000)
for (int i=0; i<paramnum; i++)

V[i]=V[i] + c1(rand()) (pbest[i]—cs(rand( )))(gbest — X[i]);

X[i]=X[i] + V[i];
F=0Objectivefunction(X)
if(F[i] < Fpbestl[i])
pbest[i]=X[i];
Fpbest[i]=F[i];
if(F[1] < Fgbest)
gbest=X[i];
Fgbest=F[1];

where X 1is the particle position for the gain matrices
component; V' is the particle velocity; pbest and gbest are the
best particle positions and Fgbest is the final result obtained
by the objective function.

V. NUMERICAL EXAMPLES
The following systems are implemented in two examples:

Z11(t) = —z11(t) —x12 (t)+93§1 (t)+z11(t) «T??(t)‘HU (1),

. 4 o 2 (32)
E12(t) = —z12(t) + 2211 (8) + 212(8) 211 () + ua(t),

9:321(75) = $§1(t) +ui (1), (33)
Bo2(t) = wop(t) — w21 (t) 22 (t) + u2(t),

where (32) and (33) will be the systems (1) and (2) for the
example 1, and

@11 (t) = —211(t) — 0.0001 2%, () + uy (t),

. 2 (34)
Ilg(t) = 7I12(t) — 00001 I12(t) + UQ(t),
Fo1(t) = —x91(t) — 0.0001 23, () + uy(t), 35)
jigz(t) = —IQQ(t) — 0.0001 I§2(t) + Ug(t),
— 19800 for r < —19800
o(x) = T for —19800 <x < 19800 36)
19800 for x> 19800

where (34) and (35) will be the systems (1) and (2) for the
example 2, with the saturation function given in (36).

A. Example 1: Dynamic controller experiment

In this subsection, a numerical example to test the dynamic
controller design is shown. The obtained results are compared
with the results presented in [16], [17], considering that
the strategies evinced in both studies are used in a cascade
controller configuration. Fig. 3 and Fig. 4 depict the trajectories
obtained by the variables 211 (¢) and xo;(t), where the latest
variable is the output of the overall closed-loop system when a
reference is used to reach the origin or the equilibrium point.
Note that these variables reach more efficiently the equilibrium
point in comparison with the strategies given in [16] and [17],
with less overshoot and faster response. The same occurs
for the variable x25(¢) shown in Fig.5. In Fig.6 and Fig.7
the controller inputs z.,, ;) and z,, () are presented and the
control effort generated by the control strategy is also smaller
than the obtained in [16] and [17].
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B. Example 2: PID controller experiment

In this example, the PID controller gains are tuned by a PSO
algorithm and the obtained results are compared with the ap-
proaches shown in [19], [20], with the origin as the equilibrium
point. The control approaches given in [19], [20] have been
modified to operate in a cascade closed-loop configuration.
The variable z22(t) is depicted in Fig. 8 and the desired final
value has less oscillations and faster response in our case.
Finally, in Fig.9 and Fig. 10 the respective PID controller
outputs ¢11(¢) and coo(t) are shown and the control effort
is smaller and with less oscillations, even when saturation is
found in the input.

VI. CONCLUSIONS

Two anti-windup schemes for nonlinear cascade systems
have been proposed and, when input saturation appears, the
system performance is improved. The results represent a
contribution in some physical systems such as mechanical,
aeronautical, electrical, power and energy systems, considering
that saturation is a common phenomenon affecting them.
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