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Abstract: We develop a numerical simulator to solve the time-dependent Schrödinger equation (TDSE) 

to simulate strong field ionization of a single electron under the influence of a one-dimensional separable 

potential. We use the split-step method to solve TDSE, obtain the ground state using the imaginary time 

method and benchmark it with the exact diagonalization of Hamiltonian. We perform the stability analysis 

in both real-time and imaginary-time propagation and obtain the fact that the usual model of separable 

orbital is not suitable in this method and demonstrate how a Gaussian model can solve this issue. Finally, 

we perform a comparative analysis between the analytical ground state and an adapted version of ground 

state adjusted according to the time-step of TDSE to justify the origin of the numerical error. 

This master’s thesis was written under the supervision of Prof. Dr. Maciej Lewenstein, and Dr. Emilio Pisanty. 
It is presented to opt for the title of Master in Photonics, Europhotonics.  
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1. Introduction 
Strong field ionization (SFI) [1, 2] is a highly nonlinear process where interesting quantum 

phenomena comes into play, because the strong laser field being comparable to the internal 

binding potential of atom breaks the perturbative approximation. There are different types of 

SFI, namely multiphoton ionization [3, 4], tunneling ionization [5], single electron ionization 

and multiple electron ionization. In case of double electron ionization, two electrons can be 

ionized either sequentially (without the help of the first ionized electron) or non-sequentially 

(with the impact of the first ionized electron).  The latter is known as nonsequential double 

ionization (NSDI), in which the ionized electrons are known to be classically correlated. [5-8]. 

However, questions remain about the quantum nature of those correlations, such as the presence 

of entanglement and nonlocality [9, 10], as well as about the full characterization of the 

quantum state in single ionization. 

      Multiple tools, both numerical and analytical, have been used, with the Strong-Field 

Approximation forming the workhorse method for analytical work [2]. One specific tool that 

has been useful for analytical treatments has been separable potentials [11-15; for a review see 

1], since rank-one separable potentials can be used to model quantum systems which have only 

one bound state, as used in the Strong-Field Approximation. Nevertheless, separable potentials 

remain relatively unexplored within numerical frameworks.  

      In this contribution, we develop numerical simulations to solve the time-dependent 

Schrödinger equation (TDSE) for single-electron strong-field ionization in the case of a 

separable potential of the form 𝑉̂ = −𝛾|𝜙⟩⟨𝜙|, with a view to analyzing the quantum state of a 

single electron and, eventually, the quantum nature of correlations in NSDI. Our approach is 

based on the split-step method to propagate the TDSE, as well as the imaginary-time method 

to find the ground state. We benchmark the ground state against the exact diagonalization of 

the Hamiltonian. Our results from the imaginary-time method show that the usual inverse-

square-root-based separable potential is not suitable for the split-step method. As a solution, 

we propose a Gaussian model for which the imaginary-time method does converge 

satisfactorily to the ground state, and we demonstrate analytically the reason of this 
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convergence. We analyze the convergence criteria in the case of real-time propagation of the 

TDSE, and our results confirm that the accuracy suffers from round-off error. In addition, we 

demonstrate the effects of time-discretization errors in real-time propagation by constructing 

adapted versions of the ground state for the different propagation schemes. Finally, we suggest 

some possible solutions to the remaining numerical inaccuracies, to be implemented as future 

work. 

 

2. An overview of Strong Field Ionization 

The ionization regime can be identified by the Keldysh parameter 𝛾 = √𝐼𝑝 2𝑈𝑝⁄ , where 𝐼𝑝 is 

the ionization potential and 𝑈𝑝 is the ponderomotive energy, that is, the average kinetic energy 

of the oscillations of a free electron in a laser field, which depends both on the intensity and 

wavelength of light as 𝑈𝑝 ∝ 𝐼0𝜆0
2. If the laser frequency 𝜔 is high (i.e. 𝜆0

  is short), ℏ𝜔 > 𝐼𝑝, one 

single photon can ionize the atom, and a strong field is not required. However, if the laser 

frequency is low enough to consider ℏ𝜔 < 𝐼𝑝  and the field is intense enough, multi-photon 

ionization can occur. For short intense pulses, the continuum energy gets shifted by 𝑈𝑝 and the 

kinetic energy of the emitted electron becomes 𝑛ℏω − 𝐼𝑝 − 𝑈𝑝  where 𝑛  is the number of 

photons absorbed by the electron. The value of 𝑈𝑝 can be varied by tuning the intensity 𝐼0 of 

the laser field. In the multiphoton ionization regime, where ponderomotive energy is smaller 

than the ionization potential, 𝛾 > 1. 

     There is an extension of multi-photon ionization called above-threshold ionization (ATI) 

[11-13, 16] where multiple photons are absorbed to not only access the ionization continuum 

but to surpass the 𝐼𝑝 by more than one photon. ATI will be observed if 𝑛 > 𝑛𝑚𝑖𝑛, where 𝑛𝑚𝑖𝑛 

is the minimum number of absorbed photons required for ionization. Hence, the kinetic energy 

of the electron in case of multiphoton ionization has the expression (𝑛𝑚𝑖𝑛 + 𝑛𝑒𝑥𝑡)ℏω − 𝐼𝑝 

where 𝑛𝑒𝑥𝑡 = 0,1,2, … and we observe spectra with peaks separated by ℏω. 

     If the intensity is increased in such a way that 𝑈𝑝  exceeds 𝐼𝑝 , making 𝛾 < 1, we are no 

longer in the multiphoton ionization regime. Rather, the high value of electric field distorts the 

Coulomb potential, and tunneling ionization takes place. In this case, the intense electric field 

distorts the potential barrier of an atom or molecule drastically. Therefore, the height of the 

barrier that electrons must pass decreases and electrons can escape from the potential more 

easily. If we increase the intensity even more such that 𝛾 ≪ 1 , we get over-the-barrier 

ionization regime. 

     We know that atomic potentials commute in position space but do not commute in 

momentum space. It is obviously interesting to investigate the SFI in the general case where 

[𝑉̂, 𝑝̂] ≠ 0 and [𝑉̂, 𝑥̂] ≠ 0 which we can find in case of the separable potentials. 

 

3. Methods 

In order to solve the time-dependent Schrödinger equation (TDSE), we have used the split-

step method, which is basically a pseudo-spectral differential equation solver i.e. it solves 

the time-dependent Schrödinger equation with Fourier transformation [17-20].  

3.1 The Split-step method 

The time evolution of the wavefunction of an electron under the influence of a one-

dimensional potential is governed by the Schrödinger equation, 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = [−

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉̂]𝜓(𝑥, 𝑡), (1) 



where 𝑚 is the mass of electron, ℏ is the Planck constant and 𝜓(𝑥, 𝑡) is the wavefunction at 

time 𝑡 and position 𝑥. In the Hamiltonian shown above, 𝑉̂ is the potential energy operator 

and −(ℏ2 2𝑚⁄ ) 𝜕2 𝜕𝑥2⁄  is the kinetic energy operator that will be denoted with 𝐾 later. If we 

consider simulating our system by a series of small timesteps (𝛥𝑡), after each time-step we 

get the time-evolved solution, based on the wave-function obtained in the last step, which 

can be described in the following way, 

𝜓(𝑟, 𝑡 + 𝛥𝑡) = 𝑒− 
𝑖
ℏ
(𝐾̂+𝑉)𝛥𝑡  𝜓(𝑟, 𝑡), (2) 

where the time-ordering operator is dropped considering small value of 𝛥𝑡. At this point, 

we can perform a splitting in the operator by using the Baker-Campbell-Hausdorff-Dynkin 

formula [21]: 

𝜓(𝑟, 𝑡 + 𝛥𝑡) = 𝑒− 
𝑖
ℏ
𝐾̂𝛥𝑡𝑒− 

𝑖
ℏ
𝑉𝛥𝑡𝑒− 

𝑖
ℏ
[𝐾̂,𝑉]𝛥𝑡2 𝜓(𝑟, 𝑡) = 𝑒− 

𝑖
ℏ
𝐾̂𝛥𝑡𝑒− 

𝑖
ℏ
𝑉𝛥𝑡𝜓(𝑟, 𝑡) + 𝑂(𝛥𝑡2), (3) 

This accrues a small amount of error (𝛥𝑡2) related to the commutation of the kinetic and 

potential parts of the Hamiltonian. We can further minimize the error from the order of  𝛥𝑡2 

to the order of 𝛥𝑡3 through the splitting of the system i.e. by performing a half-step in one 

operator before doing a full step in the other operator, 

𝜓(𝑟, 𝑡 + 𝛥𝑡) = 𝑒− 
𝑖
ℏ
𝐾̂
2
𝛥𝑡𝑒− 

𝑖
ℏ
𝑉𝛥𝑡𝑒− 

𝑖
ℏ
𝐾̂
2
𝛥𝑡𝜓(𝑟, 𝑡) + 𝑂(𝛥𝑡3), (4) 

in a process called Strang splitting [22]. 

     The fact that 𝐾 has simpler expression 𝑝̂2 2𝑚⁄  in momentum space and, that the atomic 

potential 𝑉̂ is usually expressed in position space, it is much simpler to work in momentum 

space with exp (−𝑖𝐾𝛥𝑡 ℏ⁄ ) and in position space with exp(−𝑖𝑉̂𝛥𝑡 ℏ⁄ ), because it facilitates us 

to work with diagonal matrices. We can address each part of this solution segment-wise: first 

in momentum space, then in position space, then back in momentum space, by using Fourier 

Transforms to switch between domains. This can be expressed mathematically in the form, 

𝜓(𝑟, 𝑡 + 𝛥𝑡) = 𝐹−1 [𝑒− 
𝑖
ℏ
𝐾̂
2
𝛥𝑡𝐹 [𝑒− 

𝑖
ℏ
𝑉𝛥𝑡𝐹−1 [𝑒− 

𝑖
ℏ
𝐾̂
2
𝛥𝑡𝐹[𝜓(𝑟, 𝑡)]]]] + 𝑂(𝛥𝑡3), (5) 

where 𝐹 and 𝐹−1 indicate forward and inverse Fourier Transforms. 

      In absence of laser field, we do not need to use back and forth Fourier operation in our 

simulation because the orbital of separable potential can be modeled in momentum space 

that makes it convenient to calculate the time evolution in one single space as follows: 

𝜓(𝑝, 𝑡 + 𝛥𝑡) = 𝑒− 
𝑖
ℏ
𝐾̂
2
𝛥𝑡𝑒− 

𝑖
ℏ
𝑉𝛥𝑡𝑒− 

𝑖
ℏ
𝐾̂
2
𝛥𝑡𝜓(𝑝, 𝑡) + 𝑂(𝛥𝑡3). (6) 

In Eq.6, the potential operator exp(−𝑖𝑉̂𝛥𝑡 ℏ⁄ )   can be significantly simplified by expanding 

into Taylor series and using ⟨𝜙|𝜙⟩ = 1 as follows: 

𝑒− 
𝑖
ℏ
𝑉𝑑𝑡

 =∑
1

𝑛!
(
𝑖

ℏ
𝛾 𝑑𝑡 |𝜙⟩⟨𝜙|)

𝑛∞

𝑛=0

= 𝕀 + |𝜙⟩⟨𝜙|∑
1

𝑛!
(
𝑖

ℏ
𝛾 𝑑𝑡)

𝑛∞

𝑛=1

  

 = 𝕀 + (𝑒  
𝑖
ℏ
𝛾 𝑑𝑡 − 1) |𝜙⟩⟨𝜙| (7) 



     In the previous discussions, we did not consider any laser field. The presence of laser field 

𝐹(𝑡) adds a separate interaction term 𝑈̂ to the Hamiltonian 𝐻̂ and makes it time-dependent i.e. 

𝐻̂(𝑡) = 𝐾 + 𝑉̂ + 𝑈̂(𝑡), where 𝑈̂(𝑡) = 𝑥̂ 𝐹(𝑡) in length gauge. The field has the expression: 

𝐹(𝑡) = 𝐹0 sin
2(𝜔𝑡 2𝑁𝐶⁄ ) cos𝜔𝑡, where 𝜔 and 𝐹0 are the frequency and the maximum value 

of the electric field respectively, and 𝑁𝐶  is the number of optical cycles in each laser pulse, 

and 𝐹0 sin
2(𝜔𝑡 2𝑁𝐶⁄ )  is the pulse envelope. As it is convenient to operate with 

exp(−𝑖𝑈̂𝛥𝑡 ℏ⁄ ) in position space, we need to transform the wavefunction obtained from Eq. 6 

into position space at first. After the laser operation is over, we need to transform the 

wavefunction back into momentum space to use Eq. 6 again. 

3.2 Other possible methods to solve TDSE 
 

The split-step method described earlier is one of the many methods to solve TDSE. Among the 

other possible methods, Runge-Kutta method, Krylov sub-space method and Crank-Nicolson 

method can be mentioned [23]. The Runge–Kutta method is a way to solve coupled partial 

differential equations. In the explicit version of the Runge-Kutta method, the solution is a linear 

combination of some vectors, if the Hamiltonian is considered time-independent. On the 

contrary, the implicit method requires the solution of a usually large linear system of equations. 

The Krylov subspace method is basically a polynomial approximation which has similarity with 

the explicit Runge-Kutta method.  Crank-Nicolson method is an implicit method but gives 

better accuracy compared to the implicit Runge-Kutta method. 

 

3.3 Imaginary Time method to find the ground state 

The same TDSE code can be used to obtain the ground state by using imaginary time [24]. 

TDSE (Eq. 1) can be written by expanding the initial state 𝜓(𝑟, 0) in the basis of the solutions 

of time independent Schrödinger equation, 

[−
ℏ2

2𝑚
𝛻2 + 𝑉̂]𝜓𝑛(𝑟) = 𝐸𝑛𝜓𝑛(𝑟), (8) 

and multiplying each term in the expansion by a complex-valued time-dependent phase factor: 

𝜓(𝑟, 𝑡) = ∑𝑐𝑛𝑒
− 
𝑖
ℏ
𝐸𝑛𝑡

∞

𝑛=0

𝜓𝑛(𝑟), (9) 

where 𝐸𝑛  is the eigenenergy. Now, replacing the variable 𝑡  with an imaginary time 

variable 𝑡 = −𝑖𝜏 , we obtain: 

𝜓(𝑟, 𝜏) = 𝑐0𝑒
− 
1
ℏ
𝐸0𝜏𝜓0(𝑟) +∑𝑐𝑛𝑒

− 
1
ℏ
𝐸𝑛𝜏

 

𝑛>0

𝜓𝑛(𝑟). (10) 

The ground state has the minimum energy among all the states i.e. 𝐸0 < 𝐸𝑛  for  𝑛 > 0 . 

Therefore, in case of large 𝜏, the first term associated to ground state will be much dominant 

compared to the rest of the terms. So, in the limit of large 𝜏, the wave function is, 

𝜓(𝑟, 𝜏) ≈ 𝑐0𝑒
− 
1
ℏ
𝐸0𝜏𝜓0(𝑟) (11) 

i.e. after normalization, it is approximately the same as the ground state 𝜓0(𝑟). We can also 

calculate the energy of ground state by considering 𝜓(𝑟, 𝜏 + 𝛥𝜏) as follows: 

𝐸0 ≈ −
ℏ

𝛥𝜏
[ln𝜓(𝑟, 𝜏 + 𝛥𝜏) − ln𝜓(𝑟, 𝜏)], (12) 

where 𝜏 is a large number. In imaginary time evolution, the norm of the wavefunction is not 

preserved. So, one needs to normalize the wavefunction in each TDSE step to prevent the 

norm from changing in an exponential way. 



 

3.4 Implementation 

If we discretize both spaces with 𝑁 number of points, the resolution in momentum and position 

space is ∆𝑝 = 𝑃0 (𝑁 − 1)⁄  and ∆𝑥 = 𝑋0 (𝑁 − 1)⁄  respectively, where, 𝑃0 and 𝑋0 are the range 

of momentum and position under calculation. The Fourier relation between two spaces being 

𝑃0 = 2𝜋 ∆𝑥⁄  gives the following expression connecting 𝑃0, 𝑋0 and 𝑁. 

𝑋0𝑃0 = 2𝜋(𝑁 − 1) (13) 

The number of points is taken in the format of 2𝑛, where 𝑛 is a positive integer, so that fast 

Fourier transform (FFT) can be applicable. From now on, we use all the values in atomic units 

unless specified where 𝑚 = 1, ℏ = 1, 𝑒 = 1 and 4𝜋𝜖0 = 1 are considered. 

     Our implementation of the TDSE code in MATLAB can be run both on desktop computers 

and, if higher speed and throughput is required on the ICFO computing cluster. Our 

implementation has been archived as [25]. 

 

4. Results and Discussion 

4.1 Comparison to the exact diagonalization of Hamiltonian 

In this section, we compare the analytical expression of ground state with the one obtained with 

exact diagonalization. The ground state |𝜓0⟩  of separable potential has the following 

expression in the momentum representation [2, 13]: 

𝜓0(𝑝) =  
𝑁 𝜙(𝑝)

1
2
𝑝2 + 𝐼𝑝

, (14) 

where 𝜙(𝑝) = ⟨𝑝|𝜙⟩ is the momentum-space representation of |𝜙⟩, 𝑁  is the normalization 

constant, 𝐼𝑝 is the ionization potential, 𝑝 is represents the momentum and  𝑚 is the mass of 

electron. The expression of the coupling constant 𝛾 is derived in the Appendix section A1.1. 

Here, we use the model [26]: 

𝜙(𝑝) = 𝑁 √𝑝2 + 𝛤2⁄ , (15) 

where 𝑁 is a normalization constant and 𝛤 is a potential softening parameter. 

     The elements of Hamiltonian matrix in momentum space is as follows: 

⟨𝑝𝑖|𝐻̂|𝑝𝑗⟩ =
1

2
𝑝𝑖
2𝛿𝑖𝑗 − 𝛾 𝜙

∗(𝑝𝑖)𝜙(𝑝𝑗). (16) 

After diagonalizing the Hamiltonian, we obtain the eigenvalues and corresponding 

eigenfunctions. The eigenfunction associated to the minimum energy eigenvalue is the ground 

state wave function. In case of separable potential of rank one, there is only one bound state i.e. 

it has only one negative eigenvalue, and the bound state is the ground state |𝜓0⟩ with the energy 

⟨𝜓0|𝐻̂|𝜓0⟩. In Fig.1 we plot the ground state in momentum space obtained from the exact 

diagonalization of the Hamiltonian (in red) and we compare it with the one obtained analytically 

(in blue) from Eq. 14. 

 

 



 

Fig. 1. log|𝜓0(𝑝)| versus momentum 𝑝 is shown here in this graph. The blue line corresponds 

to the ground state obtained from the exact diagonalization of Hamiltonian, while the red 
dashed line represents the ground state wavefunction in logarithmic scale calculated using 

analytical expression. 

 

4.2 Finding the ground state using the Imaginary Time method 
 

The imaginary-time method does not converge numerically at large momentum regions in the 

case of separable potential modeled with Eq. 15, which is demonstrated in Fig.2. 

 

 

Fig. 2. Failure of convergence in the large momentum region in case of 𝜙 = 𝑁 √𝑝2 + 𝛤2⁄ . Here, 

the analytical ground state is given as the initial state of imaginary-time TDSE simulation. 

As the wavefunction becomes extremely small at the high momentum region, log-lin. scale 

(left graph) and log-log scale (right graph) is shown to exhibit the precise details. 

From Eq. 14 and Eq. 15, we find that at large momentum (i.e. |𝑝| ≫ 𝛤,√2𝐼𝑝), the ground state 

and its expression after operating with the potential and the kinetic operator becomes: 

 



𝜓0 ≈ 2𝑁 𝑝3⁄  ~𝑝−3 (17) 

𝑒−𝑉|∆𝜏|𝜓0 ≈ (
2

𝑝2
+ |∆𝜏|)

𝑁

𝑝
 ~𝑝−1 (18) 

𝑒−𝐾̂|∆𝜏|𝜓0 ≈ 𝑒− 
𝑝2

2𝑚
|∆𝜏| 2𝑁

𝑝3
 ~ 𝑒− 

𝑝2

2𝑚
|∆𝜏| 𝑝−3, (19) 

 

respectively. From Eq.18 and Eq.19, we see that the potential and kinetic operator acting on 𝜓0 

makes the state converge to 𝜓0, if the following condition: 

|𝑝| ≪ √2 |∆𝜏|⁄ , (20) 

on momentum is true. This is the reason why the convergence towards ground state starts to 

fail for large momentum as shown in Fig. 2. Although the convergence of norm is obtained as 

the population is mostly occupied in the low momenta region, we need convergence in large 

momenta regime as well. Therefore, we conclude that this model of separable potential with 

orbital given in Eq. 15 is not a suitable choice to use in split-step method of TDSE. 

     We consider a Gaussian model of the orbital, 

𝜙(𝑝) = 𝑁 exp(−𝑝2 𝛤2⁄ ), (21) 

and show that the ground state converges satisfactorily even at large momenta regime. A 

comparison of these two models is shown graphically in the Appendix Section A2. 

 

Fig. 3. Convergence characteristics in case of 𝜙 = 𝑁 𝑒−𝑝
2 𝛤2⁄  with 𝛤 = 1. Here, the ground 

state wavefunction (represented in black continuous line) remains almost the same after 

operating with the kinetic operator (represented in red dashed line) and potential operator 

(represented in blue dashed line). 

The reason of this convergence can be understood by seeing the Eqs. 22-24 as compared to 

the Eqs. 17-19. In the case of Gaussian model,  

𝜓0 ≈ −(2 𝛤2⁄ )𝑁𝑒−𝑝
2 𝛤2⁄  ~𝑒−𝑝

2 𝛤2⁄  (22) 

𝑒−𝑉|∆𝜏|𝜓0 ≈ (−
2

𝛤2
+ |∆𝜏|)𝑁𝑒−𝑝

2 𝛤2⁄   ~𝑒−𝑝
2 𝛤2⁄  (23) 

𝑒−𝐾̂|∆𝜏|𝜓0 ≈ −
2

𝛤2
𝑁𝑒

−𝑝2(
1
𝛤2
 + 
|∆𝜏|
2
)
 ~ 𝑒

−𝑝2(
1
𝛤2
 + 
|∆𝜏|
2
)
, (24) 



which give the following condition of convergence: 

|∆𝜏| ≪ 2 𝛤2⁄ . (25) 

The fact that the momentum term is absent in the condition of Eq. 25, while it was present in 

Eq. 20, facilitates the convergence characteristics in this case. A comparison between these two 

models are given in the Annex section A2.1. 

 

Fig. 4. Convergence of an arbitrary state to the ground state of separable potential using the 

imaginary time method. In the simulation all the values are considered in atomic unit. The blue 

colored curve is the ground state calculated analytically and a shifted Gaussian is chosen as the 

arbitrary state (red curve at 𝜏 = 0). The time evolved states at 𝜏 = 0.1 and 𝜏 = 40 are shown 

in both momentum space (left ones) and position space (right ones).  

In Fig. 4 we demonstrate how the imaginary-time method makes an arbitrary initial state 

converge towards the ground state of the separable potential of orbital 𝜙(𝑝) = 𝑁 

exp(−𝑝2 𝛤2⁄ ) with 𝛤 = 1. We use a Gaussian state of the form 𝑁𝑒−𝑏(𝑝−𝑐)
2
 as an initial state, 

where 𝑁  is a normalization constant, 𝑏  and 𝑐  are the width-setting and center-locating 

parameters, respectively. In the simulation, we use 𝑏 = 0.05, 𝑐 = 20,   𝛥𝜏 = 10−4, position 

window-size 𝑋0 = 2
8
, and the number of points 𝑁 = 212. The window size in momentum 

space is automatically set as 𝑃0 = 2𝜋(𝑁−1) 𝑋0⁄ . From Fig. 4 we observe that the given 

state changes both its position and shape with the passage of time in order to have the 

position and shape of the ground state. We can characterize the convergence of an arbitrary 

state to the ground state by plotting the component orthogonal to the ground state i.e. |𝜓⟂(𝜏)⟩ 
expresses as, 

|𝜓⟂(𝜏)⟩ = |𝜓 (𝜏)⟩ − ⟨𝜓0|𝜓(𝜏)⟩ |𝜓 (𝜏)⟩. (26) 

Here, the norm of |𝜓⟂(𝜏)⟩ can be treated as the convergence error. This error is plotted both in 

linear scale and logarithmic scale in Fig. 5 for different times of TDSE simulation. We clearly 

see the error going down with the propagation of time. 



 

Fig. 5.  The magnitude of the component of 𝜓 (𝜏) orthogonal to the ground state as a function 

of 𝜏. Initially the norm of the orthogonal component is unity, and with the passage of time 

it decreases to zero as 𝜓 (𝜏)  changes to get aligned with the ground state. |𝜓⟂(𝜏)|  is 
represented both in linear scale (Fig. a) and  logarithmic scale (Fig. b). 

4.3 Real time TDSE 
In this section, we observe how stable the ground state remain under the imaginary-time 

propagation. We insert the ground state of the separable potential as express in Eq. 14 as an 

initial state of the TDSE code in real-time propagation. The derivation of Eq. 14 is provided in 

the Appendix section A1.1. In principle, the state being the ground state should remain 

unchanged. However, we observe that it changes at the tails because of numerical problem. 

 

 

Fig. 6. The comparison of the initial state and the stable state after real-time TDSE simulation is 
demonstrated here. In Fig.(a), logarithmic scale is used in wave-function to observe the precise 

details at its low value region while in Fig.(b), the log-scale in position enables the details in 

lower values of position.  In both figures, the blue curve corresponds to the ground state obtained 
analytically which is given as the initial state. With the passage of time, the wavefunction 

changes at tails. The red curve is the steady state obtained from TDSE simulation run with ∆𝑡 =
10−5. From the graphs of the wavefunction in position space, we see a clear noise in the tail 

region. These graphs are taken after 70 atomic unit time of propagation. 



In order to characterize this numerical error, we derive (cf. Appendix section A1.2) the adjusted 

ground state which is compatible with the TDSE time-step ∆𝑡, which is given as follows: 

𝜓0(𝑝) =
 𝑁𝑒+𝑖

𝑝2

4
∆𝑡

1 − 𝑒
𝑖(𝐼𝑝+

𝑝2

2
) ∆𝑡
𝜙(𝑝). (27) 

In the Appendix sections A1.1 and A1.2, the change of the coupling constant 𝛾 is demonstrated 

analytically. 

     This expression given in Eq. 27 corresponds to the operator sequence : 𝑒− 
𝑖

ℏ

𝐾̂

2
𝛥𝑡𝑒− 

𝑖

ℏ
𝑉𝛥𝑡𝑒− 

𝑖

ℏ

𝐾̂

2
𝛥𝑡

 

and it converges to Eq. 14 in the limit ∆𝑡 → 0. From the expression of Eq. 27 we clearly see 

a constraint: 

𝑝 < √2(2𝜋 ∆𝑡⁄ − 𝐼𝑝), (28) 

which means that the phase of the exponential term in the denominator must not be greater than 

2𝜋 . It is even better to keep the phase (𝐼𝑝 + 𝑝
2 2⁄ ) ∆𝑡  less than 𝜋 2⁄  by appropriately 

choosing the time-step and the momentum range. With this adjusted ground state, there is no 

significant noise at the tail region which is shown in Fig.7, as we already introduce the 

dicretized error in Eq. 27. 

 

 

Fig. 7. Initial and final steady state in case of adjusted ground state is shown in position space. 
The change in state after real-time TDSE being much smaller than that obtained in Fig.8, is a 

clear indication of discretization error. These graphs are taken after 70 atomic unit time of 

propagation. 

Although the adjusted ground state remains much more stable in real-time TDSE simulation 

than the original ground state, the final steady state in both cases (cf. the red curves of Fig. 6 

and Fig. 7) are almost similar. We get an intuition from Fig.6 and Fig.7 that, the numerical 

noise in real-time TDSE simulation changes the original ground state to an state which is close 

to the adjusted ground state. Therefore, we can conclude that, the noise observed in Fig. 6 

mostly comes from the discritization error. 

     To characterize the noise at tails, we calcutate the norm of the orthogonal component 
|𝜓⟂(𝑝)| and |𝜓⟂(𝑘)|, respectively. We run the simulation to understand the behavior of this 

noise level for different time-steps. The calculations are done for the analytical ground state 

as well as ∆𝑡-adjusted version of it, and the results are plotted in Fig. 8. 



 

Fig. 8. The component of wave-function orthogonal to the ground state is demonstrated at 

different times of TDSE simulation. In Fig.(a) log|𝜓⟂(𝑘)| and in Fig.(b) log|𝜓⟂(𝑥)| is plotted 

at different TDSE times 𝑡 starting from 0 to 100 atomic unit. In both graphs, continuous 

lines correspond to the simulations where analytical expression of ground state is used while 

the dashed lines are associated to the simulations with adjusted ground states. 

Observing the continuous lines in both Fig. 8(a) and Fig. 8(b) we find that the decrease of time-

step improves the steady state. The decrease of time-step as: ∆𝑡 = 10−3 (indicated in red), 

10−4 (indicated in black) and 10−5 (indicated in green) gives the levels of |𝜓⟂(𝑡)⟩ in steady 

state (for 𝑡 very large) closer to zero. This is expected because if ∆𝑡 → 0, so does the norm of 

orthogonal component i.e. |𝜓⟂| → 0. However, we observe that ∆𝑡 = 10−6 (indicated in blue) 

deviates from this trend, which is perhaps the limitation of numerical precision used by the 

simulator. Moreover, for ∆𝑡 = 10−5  a.u. and ∆𝑡 = 10−6  a.u. some oscillatory behavior is 

observed while ∆𝑡 = 10−3 a.u. and ∆𝑡 = 10−4 a.u. provides monotonic change. The red-dotted 

curve corresponding to ∆𝑡 = 10−3 violates the condition given in Eq. 28. We are not sure about 

the origin of the oscillatory behavior at some curves. 

The error characterized with |𝜓⟂| is plotted up to a greater larger range for analytical and 

adapted ground state in Fig. 9 and Fig. 10, respectively. An increase in the error is observed in 

Fig. 9 if Strang splitting is not used, which is expected. However, in the case of an adapted 

ground state, the error is almost same both with and without the use of Strang splitting of 

operator the reason of which is not clear yet. Moreover, in Fig. 9 we observe a clear saturation 

of |𝜓⟂|, but it keeps growing in Fig. 10. 

The error depends not only on the time resolution ∆𝑡 but also on the resolution in space 

variables ∆𝑥 and ∆𝑝. The error associated to these three variables is demonstrated in Fig. 11. 

The red colored continuous line corresponds to 𝑁 = 212, 𝑋0 = 256 and the associated value of 

𝑃0 ≈ 101. An increase of 𝑃0 decreases the error as shown with black colored line and vice 

versa is also true which is shown with blue line. Then, we changed 𝑁 from 212 to 211 and 213 

which is shown with broken line and dotted line, respectively. In each case, we changed either 

of the 𝑋0 and 𝑃0 fixed or changing both simultaneously. 

 



 

Fig. 9. Accumulation of numerical error is demonstrated up to 1100 atomic unit time for analytic 

ground state expressed in Eq. 14. In Fig.(a), the norm of |𝜓⟂(𝑡)⟩ is demonstrated in momentum 

space representation, and in Fig.(b) it is in position space representation, with the time-difference 

∆𝑡 = 10−4 atomic unit in both graphs. The error property is same for both sequence of operators 

: exp(− 𝑖𝑉̂𝛥𝑡) exp (− 𝑖𝐾𝛥𝑡) and exp(− 𝑖𝐾𝛥𝑡) exp (− 𝑖𝑉̂𝛥𝑡) indicated in red and blue colors, 

respectively. There is a clear improvement of error in case of Strang splitting of kinetic operator 

which is demonstrated in black color. The time-step ∆𝑡 = 10−4 is used in this simulation. 

 

 

Fig. 10. Accumulation of numerical error is demonstrated up to 1100 atomic unit time for 

adapted ground state expressed in Eq. 27. The parameters are exactly same as in Fig. 9 except 

the fact that adapted ground state is used as the initial state instead of the analytically obtain 

ground state. 



 

Fig. 11. Effect of different parameters: number of sampling points 𝑁 as well as the window-size 

𝑃0 and 𝑋0 in momentum space and position space, respectively is shown in this figure. In Fig.(a) 

the norm of 𝜓⟂(𝑘) and in Fig.(b) the norm of 𝜓⟂(𝑥) is plotted in log-scale at different times of 

TDSE propagation. The continuous lines correspond to 𝑁 = 212 = 4096, the broken lines are 

associated to 𝑁 = 211 = 2048 and the dotted lines indicate the data for 𝑁 = 213 = 8192. In 

each case (for a fixed 𝑁), three set of values of 𝑃0 and 𝑋0 are used. The blue line and black line 

are used to indicate the data for the lowest and highest value of 𝑃0 and red line for the value of 

𝑃0 in between these two values. 

From Fig. 11 we can conclude that larger number of points gives better accuracy. Moreover, 

an increase of window size in either space improves the accuracy in the corresponding space. 

In all calculations round-off error persists which might the prime reason for unusual noise 

characteristics. 

 

5. Conclusion 
In this work we present, thus, the initial stages of a workable numerical code of TDSE in order 

to simulate strong field ionization. In this regard, while the convergence of the wavefunction 

of the ground state in norm is acceptable, we also require good qualitative convergence over all 

regions of momentum space, which presents unexpected difficulties. We find that the usual 

inverse-square-root model is not a suitable choice in case of the split-step method. Changing 

the focus on a Gaussian orbital for a separable potential yields a better qualitative convergence 

for the imaginary-time method without impacting the physics being simulated. From stability 

analysis we find that the convergence characteristic is not satisfactory mostly because of round-

off error as well as from discretization error. Without mitigating the noise level in the 

simulation, performing the simulation in presence of a laser field will not give accurate results. 

To mitigate this problem there may be several options to consider as future works. One possible 

option is to switch to quadrupole precision, though that may require software changes as the 

software support is more limited. Another possible option could be the use of other methods. 

Finally, it is possible that the numerical noise can be mitigated by transforming the problem to 

the velocity gauge, where the laser coupling uses only the momentum operator, eliminating the 

need for Fourier transforms and their associated sources of numerical noise. 
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Appendix 

In the appendix section A1, we provide the derivation of the ground state of the separable 

potential and in the section A2, we present a comparison of ground states of an inverse-

square-root model and a Gaussian model. 
 

A1.1 Derivation of ground state of the Separable potential 
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⇒ 
(−𝐼𝑝) ⟨𝑝|𝜓0⟩ =⏟      

𝜓0(𝑝)

 1

2𝑚
𝑝2 ⟨𝑝|𝜓0⟩⏟  

𝜓0(𝑝)

− 𝛾 ⟨𝑝|𝜙⟩⏟  
𝜙(𝑝)

⟨𝜙|𝜓0⟩  = ∫𝛾
𝜙∗(𝑝)𝜙(𝑝)

𝐼𝑝 +
1
2𝑚

𝑝2
⟨𝜙|𝜓0⟩𝑑𝑝 

⇒ 𝜓0(𝑝) = 𝛾⟨𝜙|𝜓0⟩⏟    
𝑁

 
𝜙(𝑝)

1
2𝑚

𝑝2 + 𝐼𝑝

  ⇒ 𝛾 = (∫
|𝜙(𝑝)|2

𝐼𝑝 +
1
2𝑚

𝑝2
𝑑𝑝)

−1

 

From the expressions we observe that both the ground state and the coupling constant depend 

on ionization potential. 

A1.2 Derivation of adjusted ground state of the Separable potential 

Inserting 𝑒−𝑖𝐻̂ ∆𝑡 = 𝑒−𝑖
𝑝̂2

4
∆𝑡 [𝕀 + (𝑒𝑖𝛾∆𝑡 − 1)|𝜙⟩⟨𝜙|] 𝑒−𝑖

𝑝̂2

4
∆𝑡 and 𝐸 = −𝐼𝑝 into 

⟨𝑝|𝑒−𝑖𝐻̂ ∆𝑡|𝜓⟩ = ⟨𝑝|𝑒−𝑖𝐸 ∆𝑡|𝜓⟩ we obtain: 

 𝑒−𝑖
𝑝2

4
∆𝑡  [𝑒−𝑖

𝑝2

4
∆𝑡𝜓(𝑝) + (𝑒𝑖𝛾∆𝑡 − 1)𝜙(𝑝) ⟨𝜙|𝑒−𝑖

𝑝̂2

4
∆𝑡𝜓⟩] = 𝑒𝑖𝐼𝑝 ∆𝑡𝜓(𝑝) 

⇒ 𝜓(𝑝) =
 𝑁𝑒+𝑖

𝑝2

4
∆𝑡

1 − 𝑒
𝑖(𝐼𝑝+

𝑝2

2
) ∆𝑡

𝜙(𝑝), 
⟨𝜙|𝑒−𝑖

𝑝̂2

4
∆𝑡𝜓⟩ = 

∫𝜙∗(𝑝)𝑒−𝑖
𝑝̂2

4
∆𝑡𝜓(𝑝) 𝑑𝑝 

 

where  

𝑁 = (1 − 𝑒𝑖𝛾∆𝑡) ⟨𝜙|𝑒−𝑖
𝑝̂2

4
∆𝑡𝜓⟩ 

 = ∫
 𝑁|𝜙(𝑝)|2

1 − 𝑒
𝑖(𝐼𝑝+

𝑝2

2
) ∆𝑡

𝑑𝑝 

  
⇒ 𝛾 = 1

∆𝑡
𝐼𝑚 [ln(1 − [∫

 𝑁|𝜙(𝑝)|2

1 − 𝑒
𝑖(𝐼𝑝+

𝑝2

2
) ∆𝑡

𝑑𝑝]

−1

)] 

In this case, the ground state and the coupling constant are adjusted in accordance with the 

time-step used in the simulation. In the limit of very small time-step the expression of 𝜓(𝑝) in 

this section converges to the one derived in section A1.1. 

A2  Comparison between two models of ground states 

 

Fig. S1. In this figure, we compare the ground states of the separable potential for inverse-square-root model (in blue) 

and Gaussian model (in red) in both momentum space (left) and position space (right). In this simulation 𝛤𝐶 = 1 and  

𝛤𝐺 = 3 are used. 


