Assessment of chemical and mechanical behavior of bamboo pulp and nanofibrillated cellulose exposed to alkaline environments

Viviane da Costa Correia¹*, Mònica Ardanuy², Josep Claramunt³, Holmer Savastano Junior¹

¹University of São Paulo (USP), Department of Biosystems Engineering, Research Nucleus on Materials for Biosystems, Pirassununga, SP, Brazil.

²Universitat Politècnica de Catalunya (UPC), Department of Materials Science and Metallurgy, Terrassa, Barcelona, Spain.

³Universitat Politècnica de Catalunya (UPC), Department of Agri-Food Engineering and Biotechnology, Castelldefels, Barcelona, Spain.

*Corresponding author: vivianecostcor@usp.br

Phone number: +55 19 3565-4176
Abstract

This study was performed to study the effects of the cement paste composition (calcium aluminate cement -CAC- and a geopolymer in comparison to Portland cement -OPC-) on bamboo pulp and nanofibrillated cellulose (NFC). The changes in the composition and chemical structure of the fibers were analyzed by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The changes in the mechanical strength were evaluated through tensile tests on the fibers after immersion on the cement pastes, in the form of sheets. The XPS results showed that the immersion of the pulp and NFC in the different pastes (CAC, geopolymer and OPC) modified the chemical surface of these fibers: it was found removal of lignin and extractives and some degradation of hemicellulose and cellulose. The FTIR analysis indicated modifications in the hydrogen bonds energy. The tensile strength of pulp sheets decreased in 70% and 34% after immersion in OPC and geopolymer, respectively. The tensile strength of the NFC sheets decreased 36%, 68% and 54% after immersion in OPC, CAC and geopolymer, respectively. Thus, the response of the bamboo pulp and NFC immersed in different cement pastes was different due the inherent characteristics of such fibers, and not only the Portland cement should be considered as harmful to lignocellulosic fibers. Although CAC and geopolymer are free of calcium hydroxide, the high alkalinity of these pastes also accelerated the degradation process of lignocellulosic fibers.

Keywords: bamboo pulp, nanofibrillated cellulose, degradation, high alkalinity
1. Introduction

Fiber-cement composites are construction building materials that can be used in applications such as sidings, roofing and ceiling panels. These materials are basically composed of Ordinary Portland cement (OPC), limestone, cellulosic pulp and synthetic fibers, like polypropylene, and polyvinyl alcohol. In the Hatschek process cellulosic pulps are used as processing fiber. In this process the pulps are responsible for the retention of particles in the cementitious matrix and to facilitate the water removal during the drainage stage of the production process. In addition, the pulp is also a reinforcing component in the micrometric scale of fiber-cement (Bentur and Mindess 2007).

Other form of cellulosic fibers with potential to use as reinforcement of cement-based materials is nanofibrillated cellulose (NFC). NFC is produced by mechanical disintegration without chemicals or even biological process. It is described as a long and flexible cellulosic nanomaterial, which is obtained from cellulose fibers that have been fibrillated to achieve agglomerates of cellulose microfibril units (Missoum et al. 2013). NFCs contain crystalline and amorphous regions and they have diameters in the range of 5–60 nm and lengths of several hundred nanometers (Klemm et al. 2011; Klemm et al. 2018). NFCs have high specific surface area, which increase the interaction of the fibers with the matrix promoting the higher mechanical strength of the reinforced composites (Correia et al. 2018a; Correia et al. 2016; Ardanuy et al. 2012a; Ardanuy et al. 2012b). According to Correia et al. (2018b) NFC contribute to the increase of the physical and chemical adhesion, friction and mechanical anchorage with the matrix with respect pulps, induced by its high specific surface area.

Eucalyptus and pinus pulp are traditionally used in the producing of commercial fiber-cement products by the Hatschek process, but some studies have shown that bamboo pulp and NFCs also have potential to be used as reinforcement for these cement-based materials (Correia et al. 2018a; Li et al. 2017; Xie et al. 2015; Correia et al. 2014; Rodrigues et al. 2010; Rodrigues et al. 2006; Coutts and Ni 1995).

The drawback of the use of lignocellulosic fibers in cementitious matrices based on OPC is their low durability in this environment. The high alkalinity (pH ≈ 13) and the presence of
calcium hydroxide in the pore solution of OPC affect the durability of cellulosic fibers (Cheng et al. 2018; Wei 2018; Wei and Meyer 2015; Tolêdo Filho et al. 2003).

The high alkalinity of water in the pore of the cementitious matrix dissolves the lignin and hemicelluloses of fiber; alkaline hydrolysis of cellulose molecules leads to degradation of molecular chains and the reduction in the degree of polymerization and lower tensile strength; crystallization of calcium hydroxide in the lumen, walls of the individual fibers and middle lamella leads to a decrease in the fiber flexibility and mechanical strength (Singh 1985; Gram 1988; Tolêdo Filho et al. 2000; Mohr et al. 2005; Wei and Meyer 2017). Thereby, the degraded lignocelulosic fibers can decrease the durability of the material and consequently lead it to premature failure (Wei and Meyer 2017).

The use of cellulosic pulp as reinforcement of cement-based materials is a way to mitigate the degradation because the high alkalinity of cementitious matrix deteriorates the lignin and hemicellulose, and in chemical pulping processes most part of these components is removed. Other measures to reduce fiber degradation and increase the durability of composites include the use of calcium hydroxide free cementitious matrices or the use of supplementary cementitious materials as a partial replacement of OPC (Tolêdo Filho et al. 2003; Mohr et al. 2007) and the use of accelerated carbonation curing (Almeida et al. 2013; Santos et al. 2015). According to Mármol and Savastano (2017), these measures aim to reduce the level of calcium hydroxide in cement matrices.

Gram (1988) studied the durability of sisal fibers in matrix with high alumina cement and concluded that the use of these cements significantly minimize the degradation of composite subjected to accelerated aging. In this study the author observed that after the alternating of 120 cycles of immersion and drying, the post-cracking peak strength of composite with high alumina cement decreased by 56.2% in comparison to 98.8% for the OPC matrix. According to Mohr et al. (2007) this is due the consumption of calcium and aluminate ions from the pore solution that decreases the amount of calcium hydroxide and secondary ettringite reprecipitation.

Claramunt et al. (2018) evaluated the mechanical behavior of calcium aluminate cement (CAC) composites reinforced with flax’s nonwoven fabrics, and the durability of the composites subjected to five cycles of immersion and drying. The authors found that the CAC matrix is effective for mitigating the degradation of the fibers after accelerated aging. These results are in accordance with Mohr et al. (2005), who reported that CAC is an alternative to supplementary
cementitious materials and should be evaluated for their respective effect on the progression of
degradation of pulp in the fiber-cement composite.

Another promising matrix rich in aluminates and free of calcium hydroxide is the
geopolymer. Among the advantages of the use of geopolymers as an inorganic matrix is that this
matrix is considered eco-friendly. The cure of geopolymers is generally performed at room
temperature and, therefore, its synthesis requires less energy, and depending on the activator there
is a reduction of up to 80% CO₂ compared to OPC (Tailby and MacKenzie 2010; Villa et al.
2010; Firdous et al. 2018).

Due to fragile behavior of geopolymer, the use of vegetal fibers as reinforcement of this
matrix has been studied (Alomayri et al. 2013; 2014; Chen et al. 2014; Assaedi et al. 2015).
However, as the high alkalinity of the geopolymer can be harmful to the lignocellulosic fibers, Yan
et al. (2016) suggest the composition of the geopolymer with high content of fly ash, blast-furnace
slag, metakaolin and silica. But there are no studies to confirm the increased durability of the
fibers and geopolymer composites with the adoption of these measures.

Thus, this study aims assess the chemical and mechanical degradation of bamboo pulp
and nanofibrillated cellulose when exposed to three different highly alkaline unhardened cement
pastes (Portland cement, calcium aluminate cement and geopolymer) up to 28 days of age, what
can be considered a very severe degradation test.

2. Experimental procedure

2.1 Preparation and characterization of the fibers

Unbleached pulp and nanofibrillated cellulose (NFC) from bamboo were used in this
study. The pulp was produced by the organosolv pulping process using a batch reactor. The NFC
was produced from bamboo pulp using the grinding method. The parameters used for the pulping
and nanofibrillation, as well as their characterization are described in Correia et al. (2016). The
chemical, physical and morphological characteristics of the fibers are presented in Table 1.
Table 1 – Chemical, morphological and physical characteristics of the pulp and NFC

<table>
<thead>
<tr>
<th>Components (%)</th>
<th>Pulp</th>
<th>NFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractives</td>
<td>6.92 ± 1.47</td>
<td>9.07 ± 1.25</td>
</tr>
<tr>
<td>Lignin</td>
<td>9.85 ± 3.86</td>
<td>9.67 ± 2.37</td>
</tr>
<tr>
<td>Holocellulose</td>
<td>85.39 ± 1.42</td>
<td>85.28 ± 1.96</td>
</tr>
<tr>
<td>Cellulose</td>
<td>82.75 ± 0.42</td>
<td>77.82 ± 1.02</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>2.64 ± 0.42</td>
<td>7.46 ± 1.02</td>
</tr>
</tbody>
</table>

Morphological and physical characteristics

<table>
<thead>
<tr>
<th>Average diameter (µm)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.72 ± 2.64)</td>
<td>1.51</td>
</tr>
<tr>
<td>(13.88 ± 9.47) nm</td>
<td>1.42</td>
</tr>
</tbody>
</table>

The micrographs obtained via Scanning Transmission Electron Microscopy (STEM) (FEI Magellan 400 L Scanning Electron Microscope) are presented in Figure 1. The images show the difference between pulp and NFC related to their morphology and specific surface area. In this way, considering the difference in the levels of some chemical components (extractives, cellulose and hemicelluloses) and in the morphology is possible to presume that the response of these fibers immersed in different alkaline environment will not be the same.

Figure 1 – Micrographs of unbleached bamboo pulp (A) and NFC (B) used in the degradation study
2.2 Composition of the alkaline pastes

In order to analyze the degradation of the fibers in different alkaline environments, samples of pulp and NFC were prepared in packets, which were produced using a first layer of paper filter and other layer of fabric material. Then, the packets with fibers were immersed in three containers containing the unhardened pastes: Ordinary Portland Cement (OPC) CEM I 52.5 R (EN 197-1: 2011 Standard); Calcium Aluminate Cement (CAC) (EN 14647 Standard), both with a water:cement ratio of 2:1; and geopolymer. The OPC and CAC were supplied by Molins industrial, Molins de Rei, Barcelona, Spain. The geopolymer was produced using metakaolin as aluminosilicate source. The activator solution for geopolymerization was made by mixing sodium hydroxide (10M) with silica fume. The metakaolin and silica fume were supplied by Arciresa, Gijón, Asturias, Spain. The molar ratios used were Si/Al = 1.72, Na/Al = 1.01, and H$_2$O/Na$_2$O = 11.25.

The objective of this methodology was keeping the fibers in a high alkaline environment, and in contact with the ions of the unhardened cementitious pastes, without direct contact between fibers and mineral particles. After immersion of the packets with fibers in the cement pastes, it was intermittently stirred during 7 days at 1000 rpm to avoid cements hardening. In order to monitor the evolution of the alkalinity of unhardened pastes up to 28 days, which is very severe condition that the fibers were exposed, the pH of the pastes was measured using a bench top pH meter at different ages (0 h, 6 h, 7 days and 28 days). The packets were kept within unhardened pastes for 28 days.

The chemical composition (%wt of oxides) of the OPC, CAC and mineral particles of geopolymer (metakaolin and silica fume) was analyzed by X-ray Fluorescence Spectrometry, and the results are presented in Table 2.
Table 2. Chemical composition (%wt of oxides) of Portland cement (OPC), calcium aluminate cement (CAC), metakaolin and silica fume

<table>
<thead>
<tr>
<th>Oxides (%)</th>
<th>OPC</th>
<th>CAC</th>
<th>Metakaolin</th>
<th>Silica fume</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>19.26</td>
<td>3.7</td>
<td>54.61</td>
<td>93.5</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>4.02</td>
<td>41.5</td>
<td>40.24</td>
<td>0.32</td>
</tr>
<tr>
<td>CaO</td>
<td>57.32</td>
<td>38.1</td>
<td>0.1</td>
<td>0.39</td>
</tr>
<tr>
<td>MgO</td>
<td>5.04</td>
<td>0.43</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>3.62</td>
<td>0.01</td>
<td>-</td>
<td>0.03</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.14</td>
<td>0.14</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1.15</td>
<td>0.02</td>
<td>0.51</td>
<td>0.28</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>-</td>
<td>1.72</td>
<td>0.13</td>
<td>-</td>
</tr>
<tr>
<td>MnO</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>3.91</td>
<td>13.20</td>
<td>0.52</td>
<td>0.11</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>2.98</td>
<td>1.41</td>
<td>0.07</td>
<td>3.44</td>
</tr>
</tbody>
</table>

The heat of hydration of the matrices based in OPC, CAC and geopolymer were determined using the calorimetry test. The pastes with a water/cement relation of 0.5 were mixed during 5 min at temperature of 25 °C, and then they were placed in glass cylinders. The sealed samples were placed in the calorimeter, which recorded the heat of hydration and reaction during 24 h. Figure 2 shows the heat of hydration of OPC and CAC and the heat of reaction of geopolymer.

Figure 2 - Curves of the heat of hydration of OPC, CAC and reaction of geopolymer
2.3 Study of fibers degradation

Sheets of pulp and NFC immersed in the unhardened pastes with OPC, CAC and geopolymer at 28 days were produced for further characterization and analysis of fibers degradation. The sheets of 0.05 mm of thickness were produced by the vacuum filtration from the fibers suspension with 0.2% consistency (by mass). The suspensions were stirred in a laboratory mixer during 5 min and then, they were filtered using hydrophilic polyether sulfone membranes with 90 mm of diameter and pores of 0.1 μm of thickness. After filtration, the sheets were removed from the membrane and then they were oven dried at 60 °C for 48 h. Figure 3 presents the sheets of pulp and NFC that were immersed in alkaline environments.

![Figure 3](image)

The changes in the chemical structure of the fibers before and after the accelerated degradation test, from immersion of the pulp and NFC in the three alkaline pastes, were analyzed by the X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy.

The XPS measurements were performed using a SPECS system equipped with Al anode XR50 source operating at 150 W and 12 kV and a Phoibos 150 MCD-9 detector. Samples were placed in a vacuum chamber (5.0x10⁻⁶ mbar). Survey spectra were recorded in 0.1s/step, 0.5eV/step and 5 scans. The high-resolution were recorded in 0.5 s/step, 0.05eV/step and 3 scans.
Spectra were analyzed using SPECS Prodigy and data processing were performed with CasaXPS software.

The FTIR spectra of pulp and NFC were recorded using a Thermo Scientific Nicolet 6700 FTIR instrument equipped with an Attenuated Total Reflectance (ATR) Smart Orbit Diamond accessory that allows collection of FTIR spectra directly on a sample. The spectra were obtained over the scan range of 4000–600 cm\(^{-1}\), with a spectral resolution of 4 cm\(^{-1}\), and with a total accumulation of 32 scans. Curve fitting for the peak deconvolution was performed by OriginPro 2018 software. The true shape of the peaks obtained from the absorption bands for samples was assumed to be Lorentzian. The number of peaks involved was determined in the range of 2700-3800 cm\(^{-1}\).

The energy of the hydrogen bonds was calculated using the Equation 1 (Poletto et al. 2014; Popescu et al. 2007):

\[
E_H = \frac{1}{k} \left[\frac{\nu_0 - \nu}{\nu_0} \right]
\]

\[\text{(1)}\]

Where \(\nu_0\) is the standard frequency corresponding to free OH groups (3650 cm\(^{-1}\)), \(\nu\) is the frequency of the bonded OH groups, and \(k\) is a constant \((1/k = 2.625 \times 10^2 \text{ kJ})\).

The sheets produced for the mechanical characterization were cut in specimens with approximately 30 mm of length and 5 mm of width. For each type of cementitious paste, 22 specimens of NFC and 28 specimens of pulp were produced for the mechanical test. The specimens were subjected to tensile testing using a texture analyser model TA XT Plus with a load cell of 5 N, the cross head speed of 0.1 mm/s and with the gage length of 10 mm.

A statistical analysis was carried out for comparison the tensile strength of fibers immersed in OPC, CAC and geopolymer with the control. The statistical analysis was performed using Statistica software (version 13.4.0.14). After the analysis of ANOVA assumption, an assessment was defined by completely randomized design (CRD) and a comparison between the average values by Tukey test at 5% significance level.
3. Results and discussions

The pH values of the unhardened cementitious pastes at different ages are presented in Table 3. The slight increase in pH of the OPC and CAC pastes over time was observed. This is due to the dissolution of minerals and continuous cement hydration reactions, which forms new hydration products with water (Šiler et al. 2016).

Sodium hydroxide is commonly used as alkaline activator of the silicon and aluminum for the geopolymer synthesis. The use of hydroxides and alkali silicates with pH values higher than 13 allows transforming glassy structure partially or totally into a very compacted composite (Khale and Chaudhary 2007). The apparent reduction of the pH of the geopolymer, especially in 6 h, may indicate the dissolution of the silicate and the aluminate and the polymerization of the material, since the gain of 70% strength of the geopolymer occurs in the 3-4 h of cure (Khale and Chaudhary 2007).

The results show that despite the changes occurred in the pH of the pastes over the 28 days, such matrices remained highly alkaline.

<table>
<thead>
<tr>
<th>Age</th>
<th>OPC</th>
<th>CAC</th>
<th>Geopolymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>12.95</td>
<td>11.81</td>
<td>13.37</td>
</tr>
<tr>
<td>6 h</td>
<td>12.96</td>
<td>11.86</td>
<td>12.84</td>
</tr>
<tr>
<td>7 days</td>
<td>13.05</td>
<td>12.46</td>
<td>12.75</td>
</tr>
<tr>
<td>28 days</td>
<td>13.16</td>
<td>12.45</td>
<td>12.44</td>
</tr>
</tbody>
</table>

The analysis of the fibers by XPS allowed the evaluation of the effect of the fibers immersion in different unhardened cement pastes and the changes in the composition and chemical structure of the fibers surface. The chemical composition found on the surface of the fibers is shown in Table 4.

Table 4 shows that more than 90% of the fibers surfaces are composed for carbon and oxygen. Besides carbon and oxygen, low amount of nitrogen and calcium was found on the surface.
of the fibers. The higher content of calcium is observed, especially, in the fibers (pulp and NFC) immersed in the OPC paste and in the pulp immersed in the CAC paste, in comparison to the control fibers. This is due to the residual calcium ions existing in these cementitious pastes, which migrated to the surface of the fibers. The study of the chemical components on the surface of the fibers is commonly carried out from the oxygen to carbon (O/C) ratio and determination of the non-oxygenated carbons in the high resolution spectrum C1s (Johansson et al. 2005).

Table 4 – Chemical composition and O/C ratio of pulp and NFC surfaces

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Chemical elements</th>
<th>% C</th>
<th>% O</th>
<th>% N</th>
<th>% Ca</th>
<th>O/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Pulp</td>
<td>72.12 ± 1.30</td>
<td>26.89 ± 1.19</td>
<td>0.70 ± 0.11</td>
<td>0.29 ± 0.03</td>
<td>0.37 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>71.81 ± 0.33</td>
<td>27.12 ± 0.82</td>
<td>0.66 ± 0.04</td>
<td>0.41 ± 0.05</td>
<td>0.38 ± 0.01</td>
</tr>
<tr>
<td>OPC</td>
<td>Pulp</td>
<td>70.33 ± 1.27</td>
<td>28.21 ± 1.25</td>
<td>0.96 ± 0.15</td>
<td>0.51 ± 0.05</td>
<td>0.40 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>72.96 ± 0.25</td>
<td>25.71 ± 0.70</td>
<td>0.64 ± 0.02</td>
<td>0.69 ± 0.08</td>
<td>0.35 ± 0.01</td>
</tr>
<tr>
<td>CAC</td>
<td>Pulp</td>
<td>69.59 ± 1.45</td>
<td>29.21 ± 1.30</td>
<td>0.79 ± 0.12</td>
<td>0.41 ± 0.04</td>
<td>0.42 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>70.01 ± 0.32</td>
<td>29.08 ± 0.89</td>
<td>0.55 ± 0.03</td>
<td>0.36 ± 0.04</td>
<td>0.41 ± 0.01</td>
</tr>
<tr>
<td>Geopolymer</td>
<td>Pulp</td>
<td>69.96 ± 1.36</td>
<td>28.93 ± 1.34</td>
<td>0.84 ± 0.09</td>
<td>0.26 ± 0.02</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>70.96 ± 0.42</td>
<td>28.06 ± 0.86</td>
<td>0.58 ± 0.01</td>
<td>0.39 ± 0.05</td>
<td>0.39 ± 0.01</td>
</tr>
</tbody>
</table>

The O/C ratio is commonly used for the estimation of fibers surface coverage by lignin, and this is possible based on the theoretical O/C ratios of cellulose and lignin, which are 0.83 and 0.33 respectively (Laine et al. 1994). The results of the chemical composition (Table 1) show that after nanofibrillation the fibers are composed of about 9% residual lignin, which is confirmed by the O/C ratio of pulp and NFC control (Table 4). The O/C ratio of all fibers in different conditions is inferior to 0.83 and close to the O/C ratio of lignin.

Moreover, the results show that the immersion of the pulp and NFC in the different environments modified the chemical surface of these fibers. According to Hua et al. (1993), the higher O/C ratio represents the lower amount of lignin and extractives on the surface of the fiber. Thus, the immersion of the pulp in the pastes containing OPC, CAC and geopolymer caused the removal of lignin and extractives from the surface of the fibers.
Regarding to NFC, the increase in the O/C ratio of the fibers immersed in CAC paste and geopolymer was also observed, indicating the removal of lignin and extractives. However, the O/C ratio of NFC immersed in OPC was reduced, indicating a higher amount of lignin on the surface of this fiber. According to George et al. (2015) the degradation of hemicelluloses and removal of extractives of the fibers results in lignin exposure, and consequently the reduction in O/C ratio.

The modification of the chemical composition of the fibers immersed in OPC, CAC and geopolymer confirms what Wei and Meyer (2017) and Chakar and Ragauskas (2004) reported. According to the authors the high alkalinity environment causes depolymerization and fragmentation of lignin. This fragmentation leads to the generation of free phenolic hydroxyl groups, and in turn the lignin fragments are rendered water/alkali soluble. Similar with lignin, hemicelluloses also experience alkaline attacks and can be converted into fermentable sugar. Thus, lignin acts as a barrier, being the first pulp component to suffer alkaline attack (Mohr et al. 2005; Mohr et al. 2006).

High-resolution XPS spectra, which give details of the peak C1s, allow the quantitative and qualitative evaluation of the functional groups in the surface of the fibers from decomposition of the C1s peak in carbon atoms (C1, C2, C3, C4). According to Fuentes et al. (2013) and Migneault et al. (2015), the carbon C1 corresponds to the functional groups C-C and C-H; the C2 corresponds to C-O-C and C-OH; the C3 corresponds to C=O and O-C-O; the C4 corresponds to O-C=O. The C1 and C4 components arise mainly from lignin and extractives and C2 and C3 components arise mainly from hemicelluloses and cellulose (Hua et al. 1993).

The results of the deconvolution of peaks C1s of the pulp and NFC immersed in the different highly alkaline and unhardened cement pastes are presented in Figure 4. Figure 4 indicates the existence of the four carbon atoms, C1, C2, C3, C4, for the fibers under all conditions. However, Table 5 shows that the proportion of the atoms and functional groups differs for the pulp and NFC immersed in the different pastes.
Figure 4 – High resolution XPS scan of C1s region for pulp and NFC immersed in unhardened cementitious pastes based in OPC, CAC and geopolymer

Table 5 shows that the main modifications occurred in the components C1 and C2 of the pulp and NFC after the immersion in the different alkaline environments, in comparison to the control. In addition, these components are the main ones for the analysis of lignin and cellulose on the surface of the fibers. According to Johansson (2002) the C-C component in C1 spectrum, originating from carbon atoms that have no oxygen neighbors is due to lignin only, but with the presence of extractives, indicated by the C-H bonds. Thus, Johansson (2002) recommends that the quantification of lignin be based on the C-C percentages. For pure cellulose a large contribution of C2 (83%), and a small contribution of C3 (17%) carbons in the C(1s) peak is expected (Hua et al., 1993; Holmberg et al., 1997; Bastidas et al. 2005). This indicates that the C2 component represents much more cellulose, although the hemicellulose has a similar carbon bond structure to cellulose, that is, all the carbons in hemicellulose are linked to at least one oxygen (Hua et al. 1993). However, hemicellulose has carbonyl groups (C = O), which are strongly present in the C3 and C4 components. In addition, the carbonyl groups are in hemicellulose, lignin and extractives (Bouafif et al. 2008), and this makes the C3 and C4 more heterogeneous and complex.

The results show the reduction of 61% and 44% of carbon C1 in the pulps immersed in OPC and geopolymer respectively, and the increase of 6% of C1 in the pulp immersed in CAC. In the NFC, it is observed that the immersion of these fibers in OPC paste led to a reduction of 40% of C1 and increase of 38% and 63% of C1 in the fibers immersed in CAC and geopolymer, respectively. The reduction of carbon C1 indicates removal of lignin, or extractives, or both, from the surface of the fibers. The increase in C1 indicates the degradation of hemicelluloses or cellulose, leading to exposure of the lignin or extractives on the surface of the fibers. This correlation is clear when considering the reduction of 11% and 18% of the carbon C2 on the surface of NFC immersed in CAC and geopolymer, respectively; and the increase of 27% of C2 on the surface of NFC in OPC. In the pulp, there was a reduction of 11% of C2 for immersion in CAC and the increase of 6% of C2 in the pulp immersed in OPC.
Table 5 – Functional groups on the fibers surface

<table>
<thead>
<tr>
<th>Fibers</th>
<th>% C1</th>
<th>% C2</th>
<th>% C3</th>
<th>% C4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C-C, C-H)</td>
<td>(C-O, C-OH)</td>
<td>(C=O, O-C-O)</td>
<td>(O-C=O)</td>
</tr>
<tr>
<td>Pulp control</td>
<td>8.09 ± 0.58</td>
<td>38.21 ± 0.91</td>
<td>45.18 ± 1.65</td>
<td>8.52 ± 0.88</td>
</tr>
<tr>
<td>Pulp OPC</td>
<td>3.05 ± 0.81</td>
<td>40.38 ± 1.01</td>
<td>46.87 ± 1.05</td>
<td>9.70 ± 0.51</td>
</tr>
<tr>
<td>Pulp CAC</td>
<td>8.60 ± 0.83</td>
<td>34.06 ± 1.89</td>
<td>48.36 ± 0.99</td>
<td>8.98 ± 1.10</td>
</tr>
<tr>
<td>Pulp geopolymer</td>
<td>4.52 ± 1.04</td>
<td>36.73 ± 1.11</td>
<td>47.97 ± 0.52</td>
<td>10.77 ± 1.26</td>
</tr>
<tr>
<td>NFC control</td>
<td>7.14 ± 0.97</td>
<td>34.60 ± 2.46</td>
<td>47.72 ± 1.77</td>
<td>10.54 ± 1.73</td>
</tr>
<tr>
<td>NFC OPC</td>
<td>4.19 ± 1.11</td>
<td>43.76 ± 1.60</td>
<td>42.59 ± 2.13</td>
<td>9.45 ± 0.47</td>
</tr>
<tr>
<td>NFC CAC</td>
<td>9.78 ± 0.94</td>
<td>30.85 ± 1.62</td>
<td>49.76 ± 1.49</td>
<td>9.60 ± 0.83</td>
</tr>
<tr>
<td>NFC geopolymer</td>
<td>11.65 ± 1.38</td>
<td>28.55 ± 1.44</td>
<td>48.70 ± 1.34</td>
<td>11.10 ± 0.55</td>
</tr>
</tbody>
</table>

These results of the high-resolution XPS spectra confirm the low resistance of lignin, especially in pastes based on OPC and geopolymer. This reinforces the assertion that the high alkalinity dissolves the lignin and hemicelluloses of fiber, and besides the low durability of these components in a highly alkaline environment, they are sensitive to Ca(OH)₂, present in the OPC matrix. About the geopolymer, Ye et al. (2018) and Alshaer et al. (2017) concluded that geopolymerization causes alkaline degradation of lignin and hemicelluloses by the generation of carboxylic acids.

The degradation of the cellulose in the CAC and geopolymer pastes, indicated by the reduction of the carbon C2 on the surface of the fibers, is according to Gram (1988) and Tolêdo Filho et al. (2000). These authors have found that high alkalinity causes the hydrolysis of the cellulose molecule, leading to degradation of molecular chains and then a reduction in the degree of polymerization of the fibers.

The FTIR analysis of the pulp and NFC immersed in the different unhardened cementitious pastes also indicates the modifications that occurred in the chemical structure of the fibers due to the exposure in the alkaline environment. Hence, Figure 5 (A) and Figure 5 (B) show the spectra of pulp and NFC respectively, in the control condition and after 28 days in the unhardened pastes of the OPC, CAC and geopolymer.
The spectra display the characteristic peaks of cellulosic fibers, but it does not show clear shifts in the bands due to the exposure of the fibers under different conditions. However, the careful analysis of the OH stretching vibration peak intensities and positions within the range of 3000–3800 cm$^{-1}$, gives considerable information concerning the hydrogen bonds (Altaner et al. 2014; Dai and Fan 2011; Fengel 1992; 1993).

Figure 5 – FTIR spectra of pulp (A) and NFC (B) in the control condition and after 28 days of immersion in the OPC, CAC and geopolymer pastes

* The IR region between 1800 cm$^{-1}$ and 2700 cm$^{-1}$ has been omitted from the spectra because it does not contain any significant bands

Figure 6 and Figure 7 show the deconvoluted peaks into two bands for the curves fitting of pulp and NFC in the control condition and immersed in different unhardened cement pastes. The pulp and NFC control presented intermolecular hydrogen bonds, which are indicated in bands at 3278 cm$^{-1}$ and at 3269 cm$^{-1}$, and intramolecular hydrogen bonds at 3399 cm$^{-1}$ and at 3394 cm$^{-1}$, respectively. According to Zhao et al. (2019) the intramolecular hydrogen bonds for O2H…O6 and O3H…O5, and the intermolecular hydrogen bonds for O6H…O3’ in cellulose appear at 3455–
3410, 3375–3340, and 3310–3230 cm$^{-1}$, respectively, along with the valence vibration of H-bonded OH groups at 3570–3450 cm$^{-1}$.

Figure 6 – Deconvoluted FTIR spectra of pulp control, and of pulp immersed in OPC, CAC and geopolymer pastes.
Figure 7 – Deconvoluted FTIR spectra of NFC control, and NFC immersed in OPC, CAC and geopolymer pastes

It can be seen in Figure 6, Figure 7 and Table 6 that the immersion of the fibers in the alkaline environments (OPC, CAC and geopolymer) induced in general, the slight shift of the bands to lower wave numbers (red shift), compared to the control. The exception occurred in the bands related to intramolecular hydrogen bonds of NFC CAC and NFC geopolymer, which were shifted to higher wave numbers (blue shift).

Table 6. Band positions and its hydrogen bond energy

<table>
<thead>
<tr>
<th>Fibers</th>
<th>Band position (cm(^{-1}))</th>
<th>(E_H) (kJ)</th>
<th>Band position (cm(^{-1}))</th>
<th>(E_H) (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp control</td>
<td>3278.9 ± 1.3</td>
<td>26.6 ± 0.1</td>
<td>3399.0 ± 1.2</td>
<td>18.0 ± 0.2</td>
</tr>
<tr>
<td>Pulp OPC</td>
<td>3266.7 ± 1.2</td>
<td>27.4 ± 0.5</td>
<td>3386.6 ± 0.9</td>
<td>18.9 ± 0.4</td>
</tr>
<tr>
<td>Pulp CAC</td>
<td>3272.4 ± 0.6</td>
<td>27.1 ± 0.1</td>
<td>3393.5 ± 0.8</td>
<td>18.4 ± 0.2</td>
</tr>
<tr>
<td>Pulp geopolymer</td>
<td>3275.8 ± 1.2</td>
<td>26.9 ± 0.1</td>
<td>3394.4 ± 1.7</td>
<td>18.4 ± 0.1</td>
</tr>
<tr>
<td>NFC control</td>
<td>3269.2 ± 1.6</td>
<td>27.4 ± 0.1</td>
<td>3394.5 ± 1.2</td>
<td>18.4 ± 0.1</td>
</tr>
<tr>
<td>NFC OPC</td>
<td>3271.5 ± 1.7</td>
<td>27.2 ± 0.2</td>
<td>3393.2 ± 0.8</td>
<td>18.5 ± 0.1</td>
</tr>
<tr>
<td>NFC CAC</td>
<td>3263.9 ± 0.6</td>
<td>27.8 ± 0.0</td>
<td>3404.5 ± 1.8</td>
<td>17.6 ± 0.1</td>
</tr>
<tr>
<td>NFC geopolymer</td>
<td>3266.9 ± 2.2</td>
<td>27.5 ± 0.2</td>
<td>3395.4 ± 0.4</td>
<td>18.3 ± 0.0</td>
</tr>
</tbody>
</table>

The red shift of OH stretching frequency suggest the formation of the H bond and consequently, the weakening of the OH bond, causing elongation of these OH bonds (Hobza and Havlas, 2000 and Van der Veken et al., 2001). The formation of new hydrogen bonds can be confirmed with the results of the hydrogen bonding energy, which increased with the shift of the bands to lower wave numbers frequencies.

The shift of the bands of the NFC to higher wave numbers (NFC CAC (3404 cm\(^{-1}\)) and NFC geopolymer (3395 cm\(^{-1}\)), compared to the control, gives indications of the weakening of hydrogen bond and reduction of its energy. According to Turki et al. (2018) this may be explained by the formation of new OH bonds at this frequency, but these bonds are not as strong as the initial ones due to the lack of stability and to the packing effect that makes the length of OH covalent...
bonds shorter. These modifications, blue and red shift, indicate changes in the chemical structure and hydrogen bonds of the pulp and NFC after immersion in unhardened OPC, CAC and geopolymer pastes. These changes can be associated with different patterns of geometrical perturbations or electron density shifts (Scheiner and Kar 2002).

According to Ciolacu et al. (2011) the H bonding energy is directly related to the degree of crystallinity of the cellulose. Thus, the increase in H bond energy indicates changes in the crystalline structure of the cellulose, ie increase in the degree of crystallinity. Therefore, the increase in H bond energy indicates the degradation of the amorphous components on the surface of the fibers (pulp OPC, CAC, geopolymer, and NFC OPC) after immersion in alkaline pulps. On the other hand, the reduction of H bond energy of NFC CAC and NFC geopolymer is related to the reduction of crystallinity, which indicates degradation of the cellulose in these fibers.

The immersion of the pulp and NFC in CAC, OPC and geopolymer caused slight modifications in the fibers, but that were sufficient to consider the alkaline environment of these pastes as being harmful during the time of exposure of lignocellulosic fibers. This is because in highly alkaline environments cellulose and hemicellulose are exposed to reactions such as alkaline swelling; alkaline dissolution; alkaline hydrolysis of acetyl groups; peeling-off reaction; chemical and physical stopping reaction and alkaline hydrolysis (Van Loon et al. 1999; Pavasars et al. 2003). According to the authors, the rates at which these reactions occur are dependent on pH, temperature and alkaline environment.

According to Nevel (1985) and Askarieh et al. (2000) at temperatures below 170 °C the predominant mechanism of alkaline cellulose degradation is by a reaction that takes place at the reducing end group of the chain and ruptures the 1,4-glycosidic linkage. Glucose units are progressively eliminated from the reducing end of the chain, and this process is known as the peeling. Terminal degradation consists of shortening of the main chain by successive elimination of the terminal reducing monomer. This reaction occurs in solutions with a pH greater than 11. The cellulose molecule loses about 50 to 70 units of glucose in this type of hydrolysis (Grace et al., 1989).

According to Johansson and Samuelson (1975) the peeling reaction rate is proportional to the concentration of reducing end groups of the cellulose. Sixta (2006) confirm that the alkaline solubilization occurs whenever any new region containing fibers becomes accessible or when there is a significant reduction in fibers size, and that the low degree of polymerization (DP) of fibers...
favors the alkaline solubilization phenomenon. This indicates that the intensity of alkaline
degradation is different in pulp and NFC.

The nanofibrillation process reduces considerably the DP of the fibers because the cell
wall structure consisting of nanofibers in a multilayered structure and hydrogen bonds is broken
down. According to Zimmermann et al. (2010) fibrillation in the laboratory led to a decrease in DP
between 15% and 63%. The DP correlates with the aspect ratio of the fibrils, and this means that,
shorter fibrils have a lower DP. According to Matsuoka et al. (2014) and Van Loon et al. (1999)
the large number of new reducing ends is formed in cellulose during the DP reduction, and the
extent of degradation depends on the number of reducing end groups, that in principle, would
enable complete degradation of cellulose. In other words, the greater the number of reducing end
groups, the higher the peeling reaction rate. In addition to the degree of polymerization, the higher
specific surface area of NFC, which greatly increases the quantity of surface hydroxyl groups,
increases the accessibility of this fiber to a greater extent of degradation.

The effect of the alkalinity of the OPC, CAC and geopolymer pastes on the mechanical
strength of the pulp sheets and the NFC is complementary to the study of the chemical degradation
on the surface of the fibers and can be verified in Figure 8.

The tensile strength results show that pulps and NFC immersed in the OPC, CAC and
geopolymer pastes had statistically significant reduction in the tensile strength, in comparison to
pulp and NFC control. However, the pulp immersed in CAC had the lower reduction rate (34%) in
the mechanical strength after 28 days of immersion than OPC and geopolymer (approximately
70%). For the NFC the effect of the matrix was different than that found for the pulp, where the
lower reduction rate in the mechanical strength was to OPC (36%). The immersion of NFC in
CAC and geopolymer caused the higher reductions in tensile strength, which were of 68% and
54%, respectively.

As previously reported, the rate of alkaline degradation that occurs in lignocellulosic
fibers is directly related to pH, temperature and alkaline environment. Table 3 shows that OPC has
higher pH than CAC and geopolymer. However, the CAC and geopolymer pastes released more
heat during hydration and geopolymerization reaction, as shown in Figure 2. Thus, NFC tensile
strength results show that the effect of heat release on CAC hydration and geopolymer reaction
was more prevalent in fiber degradation than the higher pH of OPC paste. This finding can be
confirmed by the reduction in glycosidic bonds (C-O-C) of pulps and NFCs immersed in CAC and
geopolymer, which is observed by the reduction of the C2 component (Table 5).

Thus, this study certified that immersion of cellulose pulp and nanofibrillated cellulose in
the highly alkaline and unhardened cement paste exposes them to deterioration through the
chemical modifications of the extractives, residual lignin and carbohydrates (cellulose and
hemicellulose) in the surface of the fibers.

Conclusions

This study showed that not only Portland cement should be considered as harmful to
lignocellulosic fibers, through the migration of calcium hydroxide to the lumen and cell wall of the
fibers. Although CAC and geopolymer are free of calcium hydroxide, the high alkalinity of these
matrices also accelerated the degradation process of lignocellulosic fibers.

The surface components of unbleached bamboo pulp and NFC, such as lignin, extractives,
hemicellulose and cellulose, were modified after 28 days of immersion in the alkaline cement
pastes. The high alkalinity of the pastes also modified the hydrogen bonds in the fibers. These
changes in the chemical composition and molecular structure of the fibers directly affected the
strength of the pulp and nanofibrillated cellulose, confirming the degradation of the fibers.

This study also showed that the response of the bamboo pulp and NFC immersed in the
high alkaline cement pastes is different due the distinctions in characteristics of these fibers. The
combination of factors such as, the lower degree of polymerization and high specific surface area
of NFC with the highest amount of heat released during hydration of CAC and geopolymerization favored the greatest degradation of NFC. The higher pH of OPC and the higher heat released in the first hours of geopolymer reaction may have caused the more significant changes in the chemical structure of the pulp and the reduction of its tensile strength.

Therefore, the best known means to reduce the degradation of the fibers are still those which concomitant reduce the pH and calcium hydroxide of the matrices.

Acknowledgments

The authors would like to thanks the financial support offered by São Paulo Research Foundation – FAPESP (Grants nº: 2018/00519-0; 2015/21079-0), Brazil. The authors also gratefully acknowledge Ministerio de Educación, Cultura y Deporte (Government of Spain) for financial support of this work (project BIA2014-59399-R).

References

