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GROUPOIDS AND FAA DI BRUNO FORMULAE FOR

GREEN FUNCTIONS IN BIALGEBRAS OF TREES

IMMA GALVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

ABSTRACT. We prove a Faa di Bruno formula for the Green func-
tion in the bialgebra of P-trees, for any polynomial endofunctor P.
The formula appears as relative homotopy cardinality of an equiv-
alence of groupoids. For suitable choices of P, the result implies
also formulae for Green functions in bialgebras of graphs.
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This paper is a contribution to the combinatorial understanding of
renormalisation in perturbative quantum field theory. It can be seen
as part of the general programme, pioneered by Joyal, Baez—Dolan
(and in a sense already by Grothendieck), of gaining insight into com-
binatorics, especially regarding symmetries, by upgrading from finite
sets to suitably finite groupoids. We derive Faa di Bruno formulae in
bialgebras of trees by realising them as relative homotopy cardinalities
of equivalences of groupoids. An attractive aspect of this approach is
that all issues with symmetries are handled completely transparently
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by the groupoid formalism, and take care of themselves throughout the
equivalences without appearing in the calculations. In fact the general
philosophy is that sum weighted by inverses of symmetry factors al-
ways arise as groupoid cardinalities. It is our hope that these kinds of
techniques can be useful more generally in perturbative quantum field
theory, and related areas.

Our starting point is the seminal work of van Suijlekom on Hopf alge-
bras and renormalisation of gauge field theories [38], [39], [40]. Among
several more important results in his work, the following caught our
attention: for each interaction label v of a quantum field theory, the
Connes—Kreimer Hopf algebra of Feynman graphs contains a formal
series Y, satisfying the multi-variate ‘Faa di Bruno’ formula

(1) AY) = 30 VY Y ® papen (Ya),
S

where p,,..,, is the projection onto graphs containing n,; vertices of
type v;. The series Y, is the renormalised (combinatorial) 1PI Green
function

where

is the bare Green function of all connected 1PI graphs I' with residue
v, the product is over the lines of the one-vertex graph v, and where
the denominators

G=1- Y

resI'=e
constitute a renormalisation factor, cf. the Dyson formula (see [21,
Ch. 8]) or [24, Ch. 7]).

The importance of Green functions in the Hopf algebra of graphs is of
course that, unlike the individual graphs, the Green functions actually
have a physical interpretation. The proof of the formula is a matter of
expanding everything, keeping track of several different combinatorial
factors associated to graphs, and comparing them with the help of the
orbit-stabiliser theorem. (The formula is Proposition 12 of [40], but
the bulk of the proof is contained in various lemmas in [38] where the
involved combinatorial factors are computed.)

The Faa di Bruno Hopf algebra plays an important role in Hopf al-
gebra approach to renormalisation, and many different relationships
between it and the Hopf algebras of graphs or trees have been uncov-
ered. One reason for the importance of the Faa di Bruno Hopf algebra
is the general idea, expressed for example by Delamotte [13], that in the
end renormalisation should be a matter of reparametrisation, i.e. sub-
stitution of power series.

r
|Aut T'|
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Already Connes and Kreimer [11] constructed a Hopf algebra homo-
morphism from the Faa di Bruno Hopf algebra (or rather the Connes—
Moscovici Hopf algebra) to the Hopf algebra of Feynman graphs in the
case of ¢ in six space-time dimensions. Bellon and Schaposnik [4] were
perhaps the first to explicitly write down the Faa di Bruno formula, in

a form

Ala) = Z a" @ ap,
very pertinent to the formula we establish in the present paper. Re-
cently the Faa di Bruno formula has been exploited by Ebrahimi-Fard
and Patras [15] in the development of exponential renormalisation.
Their paper contains also valuable information on the relationship with
the Dyson formula.

It seems unlikely that a formula like this can exist for the Green
functions in the Hopf algebra of trees — indeed, the symmetry factors
of the involved trees are not related to the combinatorics of grafting in
the same way as symmetry factors of graphs are related to insertion of
graphs (except in very special cases, such as considering only iterated
one-loop self-energies in massless Yukawa theory in four dimensions,
an example considered by many authors, e.g. [12], [6], [32]).

In the present paper we work with operadic trees instead of the com-
binatorial trees of the usual (Butcher)-Connes-Kreimer Hopf algebra
— this is an essential point: operadic trees are more closely related
to Feynman graphs, and have meaningful symmetry factors in this re-
spect, cf. [28] and Section 9 below.

Our main theorem (7.3) at the algebraic level establishes the Faa di
Bruno formula

(2) AG) =) G @ p.(G)

for the Green function G = > T/ |Aut(T")| in the bialgebra of P-trees,
for any polynomial endofunctor P.

The proof we give is very conceptual: the equation appears as an
equivalence of groupoids, and all the symmetry factors are hidden and
take care of themselves. Precisely, at the groupoid level, our main
theorem (5.5) states the following equivalence of groupoids over F x T

TeT nel
/ cut(T') ~ / F, x,T,

which is essentially a double-counting formula. Here the integral signs
are integration over groupoids (which corresponds to sums with sym-
metry factors), F is the groupoid of P-forests, T is the groupoid of
P-trees, cut(T') is the discrete groupoid of cuts of a tree T, n is an
(I-coloured) finite set, and , T is the homotopy fibre over n of the leaf
map, i.e. the groupoid of trees with leaf profile n, and similarly, F,, is
the homotopy fibre over n of the root map, i.e. the groupoid of forests
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with root profile n. The algebraic Faa di Bruno formula (2) is obtained
just by taking homotopy cardinality (relative to F x T') on both sides
of the equivalence.

Depending on the choice of polynomial endofunctor P, the formula
specialises to many formulae of independent interest. Most notably,
we show in Section 9 that for P a suitable functor defined in terms of
interaction labels and 1PI graphs (for any quantum field theory), a Faa
di Bruno formula for the Green function in a version of the bialgebra
of graphs is obtained.

In order to arrive at a level of abstraction where the arguments be-
come pleasant and the essential features are in focus, we have moved
away quite a bit from the starting point mentioned above, and at the
moment we have not completely succeeded in deriving van Suijlekom’s
formula from ours (or conversely). We do come pretty close though,
and discuss these issues in Section 9. The problem resides in the renor-
malisation factor, which can be seen to account for substitution of
graphs into internal lines, an operation we do not know how to cap-
ture operadically. Nevertheless, the combinatorial clarity obtained is
of independent mathematical interest, and we hope that the concep-
tual insight provided can also be useful for quantum field theory in
particular.

Outline of the paper. Section 1 and 2 are mostly motivational. We
begin in Section 1 by revisiting the classical Faa di Bruno Hopf algebra,
gradually recasting it in more categorical language, starting with com-
position of formal power series, then the incidence algebra viewpoint
(cf. [14]), then finally the category of surjections (cf. [22]). We work
with the non-reduced bialgebra rather than with the reduced Hopf al-
gebra. This is an important point. In order to motivate the groupoid
machinery, we outline a groupoid-equivalence proof of the classical Faa
di Bruno formula. In Section 2 we briefly revisit the (Butcher)-Connes—
Kreimer Hopf algebra of trees, introduce an operadic version of it that
we need, and state one version of the main theorem for the bialgebra
of operadic trees and the corresponding Green function.

The theory of groupoids is at the same time our main technical
tool and the most important conceptual ingredient in our approach.
Section 3 recalls the most important notions, such as homotopy pull-
backs, homotopy fibres, homotopy quotients and slice categories, in the
hope of rendering the paper accessible to readers without a substantial
background in category theory. In Section 4 we set up the formalism
of operadic trees and forests, in terms of polynomial endofunctors, fol-
lowing [25]. This formalism is needed in particular to be able to talk
about decorated trees — P-trees for a polynomial endofunctor P — at
the level of generality needed to cover the examples envisaged.
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In Section 5 we establish our main result, the equivalence of groupoids

over F x T:
TeT Nel
/ cut(7") :/ Fy x yT

already mentioned. Most of the arguments are formal consequences of
general properties of groupoids; the only thing we need to prove by
hand is the equivalence

C:’FXTT.

(Lemma 5.3) between trees with a cut and pairs consisting of a forest
and a tree such that the roots of the forest ‘coincide’ with the leaves of
the tree. In a precise sense, this is the essence of the Hopf algebra of
trees.

Section 6 reviews and extends appropriate notions of groupoid car-
dinality, following Baez—Dolan [2] and Baez—Hoffnung-Walker [3]. In
particular, we consider relative cardinality with respect to a morphism
of groupoids and describe its formal properties. In Section 7 we finally
prove the Faa di Bruno formula in the bialgebra of trees by taking
the cardinality of the groupoid equivalence of Section 5. Examples of
polynomial endofunctors giving rise to several kinds of trees are given
in Section 8. In particular we relate our Faa di Bruno formulae with
the classical one. Finally, in Section 9 we comment further on the re-
lationship with van Suijlekom’s Faa di Bruno formula, and outline in
particular how our formula, for a suitable choice of polynomial endo-
functor P yields a Faa di Bruno formula in a certain bialgebra of Feyn-
man graphs. The appendix contains an explicit calculation with trees,
relating to the our comparison of the classical Faa di Bruno bialgebra
and those of trees in Section 8.

0.1. Acknowledgments. We are indebted to Kurusch Ebrahimi-Fard
for many illuminating discussions on quantum field theory.

1. THE FAA DI BRUNO FORMULA REVISITED

In this section we briefly review the classical Faa di Bruno bialgebra,
starting from power series representations and partitions, and leading
to a groupoid version in terms of surjections.

1.1. Power series and the classical Faa di Bruno formula. Con-
sider formal power series in one variable without constant term and
with linear term equal to z:

f(z) = i Aulf) 7" Ag=0, A =1.

n!
n=0

These form a group under substitution of power series, sometimes de-
noted Diff(C,0), as the series can be regarded as germs of smooth
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functions tangent to the identity at 0. The classical Faa di Bruno Hopf
algebra H is the polynomial algebra on the symbols
a, = A,/n!, n>2,
viewed as linear forms on Diff(C, 0),
(an, [) = an(f) = Au(f)/n!, a, € C[[2]]".
The comultiplication is defined by
(Alan), f @ g) = (an,g o f),

and the counit by e(a,) = (an,1). An explicit formula for A can be
obtained by expanding

3) (g0 1)(z) = nf;an@) (mfj () m)

and involves the Bell polynomials. So far H is a bialgebra; it acquires
an antipode by general principles by observing that it is a connected
graded bialgebra: the grading is given by

deg(ay) =k — 1.

We refer to Figueroa and Gracia-Bondia [16] for details on this classical
object and its relevance in quantum field theory.

The formula for A can be packaged into a single equation, by con-
sidering the formal series

A
A:1+Zk—f:1+2ak e Cllay, as, .. .]].

k>2 k>2

The comultiplication now takes the following form:

AA)=Ae1+)> A'@a.

k>2

The values of A on the individual generators a; can be extracted from
this formula.

1.2. The (non-reduced) Faa di Bruno bialgebra. For our pur-
poses it is important to give up the condition a; = 1. In this case,
substitution of power series does not form a group but only a monoid,
and the algebra is just a bialgebra rather than a Hopf algebra. We
denote it by F = Clay, as, as, ...]. The definition of the comultiplica-
tion is still the same, and again it can be encoded in a single equation,
involving now the formal series

A
A= E k—f: E arp € Cllay, as,as, .. .]].
k>1 k>1

The resulting form of the Faa di Bruno formula is the Leitmotiv of the
present work:
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Proposition. 1.3 (Classical Faa di Bruno identity). The formal series
A satisfies
A(A) => A @ ay.

k>1

We stress that the bialgebra F (with grading deg(ax) = k& — 1) is
not connected: JFy is spanned by the powers of a;, all of which are
group-like. One can obtain the classical Hopf algebra H by imposing
the relation a; = 1, which is easily seen to generate a bi-ideal.

1.4. Note on grading convention. Since deg(ay) = k— 1, it is com-
mon in the literature to employ a different indexing, shifting the index
so that it agrees with the degree. With the shifted index convention,
the Faa di Bruno formula then reads

A(A) =D A ®a,.

n>1

This is the convention used by van Suijlekom and many others, and
explains the extra factor Y, in the formula (1) quoted above. Beware
that this convention means that certain indices are allowed to start at
—1 and when it is said that p,(G) is the part of the Green function
corresponding to graphs with n vertices, it is actually means n + 1
vertices.

While the shifted indexing convention can have its advantages, it is
important for us to keep the indexing as above, so that the exponent
in A* matches the index in a;. As we pass to more involved Faa di
Bruno formulae, this will always express a type match: the outputs of
one operation (the exponent) matching the input of the following (the
subscript).

1.5. Faa di Bruno Hopf algebra in terms of partitions. The
coefficients — the Bell polynomials which we did not make explicit —
count partitions. In fact, it is classical (Doubilet [14], 1975) that the
Hopf algebra H can be realised as the reduced incidence bialgebra of
the family of posets given by partitions of finite sets. We give only a
brief outline here.

The partitions of a finite set S form a lattice, in which o < 7 when
o is a refinement of 7. Any such two partitions define an interval
lo,7] == {p | 0 < p < 7}. Consider the family of all intervals in
partition lattices of finite sets, and declare two intervals equivalent if
they are isomorphic as abstract posets. This is an order-compatible
equivalence relation, meaning that the comultiplication formula

A([Oa T]) = Z [07 P] ® [pv T]
pElo,T]

is well-defined on equivalence classes. Disjoint union of finite sets de-
fines furthermore a multiplication on these equivalence classes. Any
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interval is equivalent to a finite product of nontrivial maximal intervals
(i.e. full partition lattices of some finite sets of cardinality at least 2),
and this product expression is unique up to isomorphism of the sets
involved. Denote by ai, k > 2, the equivalence class of the partition
lattice of a k-element set. The reduced incidence coalgebra on the vec-
tor space spanned by all equivalence classes (that is, the polynomial
ring on the classes ax, k > 2) is naturally isomorphic to the Faa di
Bruno Hopf algebra H.

In order to get the ‘nonreduced’ bialgebra F, one has to consider a
finer equivalence relation: define an interval [0, 7] to have type 121232 . ..
if A is the number of blocks of 7 that consist of exactly k blocks of o,
and declare two intervals equivalent if they have the same type. Ev-
ery interval is isomorphic as a poset to a type-equivalent product of
(possibly trivial) maximal intervals, yielding a ‘nonreduced’ incidence
algebra isomorphic to F.

The technicalities involved here can be avoided by considering sur-
jections instead of partitions.

1.6. Faa di Bruno in terms of surjections. A surjection £ — B
clearly induces a partition of the set F, and conversely, a partition of £
induces a surjection to the set of blocks. This correspondence provides
a groupoid equivalence between the groupoid of sets-with-a-partition
and their isomorphisms, and the groupoid S of surjections. The arrows
in the groupoid S are pairs of isomorphisms forming a diagram

E-—=LF

|,

B-—=.p.

From the groupoid of surjections, one can get a bialgebra F directly.
As a vector space it has as basis the isomorphism classes of surjections,
the multiplicative structure comes from the monoidal structure on S
given by disjoint union, and the formula for comultiplication is

AE=»B)= Y (E—>S)®(S—»B).
E»S-»B

Here the sum is over isomorphism classes of factorisations £ — S —
B. In detail, consider the factorisation groupoid Fact(E — B), whose
objects are factorisations of £/ — B into two surjections £ — S — B,
and whose morphisms are bijections S ~ S" making the two triangles
commute:
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Then the above sum is over my(Fact(E — B)), the set of connected
components of the factorisation groupoid.

Observe that any surjection is the disjoint union of connected sur-
jections ar = ({1,...,k}—{1}), and hence is a product of such in F.
This gives

Fact(E— B) = Fact (Y (B, —{b})) = [ [ Fact(E,— {b}).

beB beB

It follows that F indeed coincides with the classical Faa di Bruno bial-
gebra.

The Faa di Bruno Hopf algebra is also easily obtained from the
groupoid of surjections, but instead of identifying just isomorphic sur-
jections, we identify surjections with equivalent factorisation groupoids.
Thus invertible surjections are all equivalent, as they have trivial fac-
torisation groupoids. This relation is clearly generated by the equation
(1—-1) = (0—0), that is, a; = 1.

The construction of the Faa di Bruno bialgebra in terms of the
groupoids of surjections seems to be due to Joyal [22]. It is in the
spirit of incidence algebras of Mobius categories introduced by Ler-
oux [34], and studied recently by Lawvere and Menni [33]. However,
the category of surjections is not a Mobius category, since it contains
non-trivial isomorphisms. The theory of homotopy Mébius categories
that we develop in [18] extends the classical theory to cover the cate-
gory of surjections, and also the category of trees in Section 4 below.

1.7. Towards a groupoid proof. The viewpoint of the Faa di Bruno

bialgebra in terms of the groupoid of surjections is what leads to analo-

gous formulae for bialgebras of trees. We anticipate this by giving here

the corresponding proof for the classical Faa di Bruno formula. Here we

make use of basic constructions with groupoids, explained Section 3.
The idea is simple: the series

A=A, /n!

n>1

is the relative groupoid cardinality (7.1) of the groupoid of connected
surjections, which is just the groupoid B of non-empty finite sets, rel-
ative to the groupoid of all surjections S. This series A, of connected
objects divided by their symmetry factors, is analogous to the Green
function in the bialgebra of graphs, and to the Green function in the
bialgebra of trees, to be introduced shortly. Taking the relative car-
dinality of an equivalence of groupoids, obtained by looking at the
groupoid S of surjections in two different ways, will give the classical
Faa di Bruno formula.



10  IMMA GALVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

1.8. Double counting of surjections. The groupoid of surjections
S has two projections to B,

Y]

—n/

(02} % [ )

H/{:’

Now the double-counting lemma 3.11 gives equivalences of groupoids

neB keB
/ S~ S ~ / Sk,

where ,,S denotes the (homotopy) fibre over n for the left-hand projec-
tion, and Sy denotes the (homotopy) fibre for the right-hand projection.
To calculate the right-hand side, we have the ‘key lemma’

(4) S; ~ Grpd(k,B) = BF

which encodes a surjection onto k in terms of its & nonempty fibres.

For the left-hand side, the fibre ,,S is the groupoid of surjections out
of n. There is at most one isomorphism between two such surjections,
which is to say that the groupoid ,,S is a discrete groupoid, and it is
clearly equivalent to the set of partitions of n:

(5) S ~P(n).
Combining the previous formulae, we get the following result.

Proposition. 1.9. We have natural equivalences of groupoids

neB keB
/ P(n) ~S ~ / B

This is essentially the Faa di Bruno formula. It remains to take
groupoid cardinality. As S has infinitely many components, this has
to be relative cardinality (6.6), which amounts to introducing a formal
symbol for each component. The natural choice would be relative car-
dinality with respect to S itself, but to obtain the Faa di Bruno formula
as in 1.3, we have to take relative cardinality with respect to S x B,
via the projection S — B sending n— k to k. So for each component
of S x B, introduce a label: for k£ € B we use the label A, and for
p € S we use as label the corresponding monomial in the A; under the
equivalence (4). The image in S x B of the singleton integrand 1 in

o [ [

(p, k)

18
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when p : n — k is a surjection with codomain k. On the right-hand
side, the cardinality of B¥ over S is precisely A*, whereas the second
factor clearly is {k}. Altogether we get

) (Z{p} X {k}> fnl=>"A"® Ay/k!

n

But here the left-hand side is precisely A(A), by linearity.

2. THE BIALGEBRA OF TREES, AND THE MAIN THEOREM

2.1. The bialgebra of rooted trees of Connes and Kreimer [30],
which in essence was studied already by Butcher [7] in the early 70s, is
the free algebra H on the set of isomorphism classes of combinatorial
trees (defined for example as finite connected graphs without loops or
cycles, and with a designated root vertex). The comultiplication is
given on generators by

ArH — HOH
T — ZPC®SC,

where the sum is over all admissible cuts of T'; the left-hand factor P,
is the forest (interpreted as a monomial) found above the cut, and S,
is the subtree found below the cut (or the empty forest, in case the cut
is below the root). Admissible cut means: either a subtree containing
the root, or the empty set. H is a connected bialgebra: the grading is
by the number of nodes, and H, is spanned by the unit. Therefore, by
general principles (see for example [16]), it acquires an antipode and
becomes a Hopf algebra.

2.2. Operadic trees. For the present purposes it is crucial to work
with operadic trees instead of combinatorial trees; this amounts to al-
lowing loose ends (leaves). A formal definition is given in 4.1. For the
moment, the following drawings should suffice to exemplify operadic
trees — as usual the planar aspect inherent in a drawing should be
disregarded:

T

Note that certain edges (the leaves do not start in a node, and that one
edge (the obligatory root edge) does not end in a node. A node without
incoming edges is not the same thing as a leaf; it is a nullary operation
(i.e. a constant), in the sense of operads. In operad theory, the nodes
represent operations, and trees are formal combinations of operations.
The small incoming edges drawn at every node serve to keep track of
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the arities of the operations. Furthermore, for coloured operads, the
operations have type constraints on their inputs and output, encoded
as attributes of the edges.

The trees appearing in BPHZ renormalisation are naturally operadic,
cf. [28]. With the appropriate decorations, these trees even acquire
meaningful symmetry factors, so that the Green function of operadic
trees faithfully reflects the Green function of Feynman graphs. This is
explained in Section 9 below.

2.3. The bialgebra of operadic trees (cf. [26]). A cut of an op-
eradic tree is defined to be a subtree containing the root — note that
the arrows in the category of operadic trees are arity preserving (4.3),
meaning that if a node is in the subtree, then so are all the incident
edges of that node.

If ¢ : .S C T is a subtree containing the root, then each leaf e of S
determines an ideal subtree of 7' (4.3), namely consisting of e (which
becomes the new root) and all the edges and nodes above it. This
is still true when e is also a leaf of T": in this case, the ideal tree is
the trivial tree consisting solely of e. Figuratively, this means that for
operadic trees cuts are not allowed to go above the leaves, and that
cutting an edge does not remove it, but really cuts it(!). Note also that
the root edge is a subtree; the ideal tree of the root edge is of course
the tree itself. This is the analogue of the cut-below-the-root in the
combinatorial case. For a cut ¢ : S C T, define P. to be the forest
consisting of all the ideal trees generated by the leaves of S.

Let B be the free algebra on the set of isomorphism classes of operadic
trees. With comultiplication defined on the generators by

A:B — BB
T — ZPC(X)S,

aSCT

as for combinatorial trees, B becomes a graded bialgebra. It is not
connected: By is spanned by the trivial tree | and all its powers (the
empty power is the algebra unit 1). These are all grouplike, so one
could obtain a connected bialgebra by imposing the equation | =1

2.4. The Green function. In the completion of B, the power series
ring, the series

G:=> 6r/|Aut(T)]

is called the Green function, in analogy with the (combinatorial) Green
function of Feynman graphs. The sum is over all isomorphism classes of
(operadic) trees, and there is a formal symbol d7 for each isomorphism
class of trees. We shall soon consider decorated trees, in which case
there is one Green function for each possible decoration of the root
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edge, in analogy with the situation in QFT, where there is one Green
function for each possible residue (interaction label) in the theory.

The following Faa di Bruno formula for the Green function in the
bialgebra of (operadic) trees is a special case of our main theorem (7.3).

Theorem. 2.5. Write G =} .\ gn, where g, is the summand in the
Green function corresponding to trees with n leaves. Then

A(G) =) G @ gn.

neN

The more general formula we prove is valid for P-trees for any poly-
nomial endofunctor P. In addition to the naked trees considered so far,
this covers many examples (Section 8 such as planar trees, binary trees,
cyclic trees, as well as the trees decorated by connected 1PI graphs of
a quantum field theory (Section 9). The latter allows to transfer the
Faa di Bruno formula to a bialgebra of graphs.

It is essential that we use operadic trees. There seems to be no
reasonable Green function for combinatorial trees, since their symmetry
factors are not related to the combinatorics of grafting.

We now first need to review some standard groupoid theory, then
introduce more formally the trees and P-trees we treat, before coming
to the proofs.

3. GROUPOIDS

We recall some basic facts about groupoids; although this is well
known material in category theory, we do not know of a suitable ref-
erence. It is essential to use the correct homotopy notions of the basic
constructions such as pullback, fibre, and quotient. The correct notions
can all be deduced from the beautiful simplicial machinery developed
by Joyal [23] to generalise the theory of categories to quasi-categories
(called co-categories by Lurie [35]).

3.1. Basics. A groupoid is a category in which every arrow is invert-
ible. A morphism of groupoids is a functor, and we shall also need
their natural transformations. While category theory language is the
main technical tool to deal with groupoids, the intuition is rather that
groupoids are ‘fat sets with symmetries’: instead of having just a few
isolated points (elements in a set) we now have large chunks of points
which are equivalent, with specific arrows linking them up. More than
one arrow can exist between two given objects, and indeed a single ob-
ject can have more than one arrow to itself — these are its symmetries.

A set is considered a groupoid in which the only arrows are the
identity arrows. This defines a functor

D : Set — Grpd.
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Conversely, a groupoid X gives rise to a set by taking its set of con-
nected components, i.e. the set of isomorphism classes in X, denoted
7o(X); this defines a functor in the other direction (the left adjoint of
D)

o : Grpd — Set.

Many sets arising in combinatorics and physics are actually m of a
groupoid, like when we say ‘the set of all trees’ to mean the set of
isomorphism classes of trees.

A group can be considered as a groupoid with only one object. Con-
versely, for each object x in a groupoid X there is associated a group,
the wvertexr group, denoted mi(x) or Aut(x), which consists of all the
arrows from x to itself.

The homotopy notations 7y and 7 from topology are not a whim:
groupoids are in a precise sense a model for certain topological spaces,
namely the homotopy 1-types. To a topological space one associates
the fundamental groupoid, whose objects are the points of the space
and whose arrows are the (homotopy classes of) paths between points.
Conversely, from a groupoid X one can build a CW complex, the clas-
sifying space BX, whose fundamental groupoid is X and which has
vanishing higher homotopy groups (7 = 0 for £ > 2): these spaces are
called homotopy 1-types.

The homotopy viewpoint on groupoids is a very important aspect, as
all the good notions to deal with them are homotopy notions (e.g. ho-
motopy pullback, homotopy fibres, homotopy quotients, etc.), as we
proceed to recall.

3.2. Equivalences of groupoids; discreteness and contractibil-
ity. An equivalence of groupoids is just an equivalence of categories,
i.e. a functor admiting a pseudo-inverse. Pseudo-inverse means that
the two composites are not necessarily exactly the identity functors,
but are only required to be isomorphic to the identity functors. This
is the analogue of a homotopy equivalence in topology. Like in cat-
egory theory, equivalences of groupoids can also be characterised as
functors which are fully faithful and essentially surjective. Just as sets
are often only interesting up to bijection, the appropriate notion of
sameness for groupoids is equivalence. Equivalent groupoids have the
same properties, for example the same 7y, 7, and the same cardinality
(cf. Section 6 below).

A groupoid X is called discrete if it is equivalent to a set considered
as a groupoid; this set can then be taken to be my(X). Another way
of saying the same is that all vertex groups are trivial: m(z) = 1
for all objects x € X, so all the information is stored in my. (There
is a potential risk of confusion with the word ‘discrete’: in settings
where one considers Lie groupoids (as in [8]), the word discrete ususally
designates groupoids whose underlying topological space is discrete.)
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A groupoid is called contractible if it is equivalent to a singleton set.

3.3. Fibrations of groupoids. A morphism of groupoids p: X — Y
is a fibration if it has the path lifting property: for each object x of X
and arrow ¢ : ¥y’ — px of Y there exists an arrow f : 2’ — x such that
pf = g. Fibrations are really just a technical notion to simplify some
constructions. We will see below that any morphism may be replaced
by a fibration if necessary.

3.4. Pullbacks and fibres. The naive notions of pullback and fibres
are not very useful for groupoids, as these notions are not stable under
equivalence. The appropriate notions are homotopy pullbacks and ho-
motopy fibres. Given a diagram of groupoids X, Y, .S indicated by the
solid arrows,

XxsY-25y
‘J
Pl lg
\1,
X——5

the homotopy pullback is the groupoid X x gY whose objects are triples
(x,y,¢) withz € X,y € Y and ¢ : fr — gy an arrow of S, and whose
arrows are pairs («, ) : (z,y,¢) — (2/,y',¢') consisting of o : x — &’
an arrow in X and 8 :y — ¢’ an arrrow in Y such that the following
diagram commutes in S

]
fr——gy

f (a)l ly(ﬁ)

fx' —— gy’

The morphisms p and ¢ are the projections.

The homotopy pullback can be characterised up to canonical equiv-
alence by a universal property: it is the 2-terminal object in a certain
2-category of solid diagrams of the shape in question. 2-terminal means
that the comparison map is not unique but rather that the comparison
maps form a contractible groupoid.

If f is a fibration then so is ¢, and in this case the homotopy pullback
is equivalent to the naive (strict) pullback. The fibrant replacement of
a morphism p : E — B is an equivalent fibration p : £ — B, which
can be obtained by performing the above explicit (homotopy) pullback
construction of p along the identity morphism B — B. Indeed, for any

object (¥, et/ N pe) of B, any arrow g : b — b may be lifted to an
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arrow in F,

bﬂpe

|

Y — pe.
o PC

The notion of fibre is a special case of pullback, and again we need
the homotopy version. If b in an object of B, we denote the inclusion
morphism

1% B
The (homotopy) fibre E, of a morphism p : E — B over an object b in
B is the (homotopy) pullback of p along "b™:

EbJH FE

)

1 e B.
Again, if p is a fibration then the homotopy fibre is equivalent to the
strict fibre. Henceforth the words pullback and fibre will always mean
the homotopy pullback and homotopy fibre, since these notions are
invariant under equivalence (unlike the strict notions).

The slice X/, over an object x of X is the fibre X of the identity
functor X — X, so the functor X,, — X is always a fibration. In
general, the fibre Ej, will rarely be equivalent to the strict pullback of
p:E — Band"b':1— B unless p is a fibration, but we may replace
the functor "0 by the fibration B/, — B and take the strict pullback.

We shall need the fact that for a (homotopy) fibre product of groupoids
X x;Y, the (homotopy) fibre (X x;Y'); is naturally equivalent to the
ordinary product X; x Yj. (There are actually two ways of defining the
fibre (X x;Y');, since there are two distinct but homotopic ways to go
around the square to J, but the two fibres are naturally equivalent.)

3.5. Homotopy quotient. Whenever a group acts on a set or a
groupoid X, say X x G — X, the homotopy quotient X/G is the
groupoid obtained by gluing in a path (i.e. an arrow) between x and
y for each g € G such that xg = y. (The homotopy quotient is often
denoted X//G to distinguish it from the naive quotient. Since naive
quotients are badly behaved in many respects, and since we shall never
need them, we reserve the single-slash notation for the homotopy quo-
tient.) If G acts on a point 1, then the homotopy quotient 1/G is the
groupoid with one object and vertex group G.

3.6. Skeletal groupoids. A groupoid X splits into connected com-
ponents. Recall that the set of connected components is denoted my.X.
Any arrow between two objects within a connected component induces,



FAA DI BRUNO FOR GREEN FUNCTIONS 17

by conjugation, an isomorphism between the vertex groups. A con-
nected groupoid is equivalent to the one-object groupoid formed by any
one of its objects and all its automorphisms, i.e. the full subgroupoid
consisting of one object x. This groupoid is denoted 1/ Aut(zx), in
accordance with the quotient notation.

It is now clear that for every groupoid X we have an equivalent

skeleton:

X ~ Z {z}/ Aut(z) ~ Z 1/ Aut(z).

zemoX rzemoX

Here the sum sign denotes disjoint union of groupoids. We stress that
although formally we sum over all elements x in the set myX, when
we write Aut(x) we are referring to x as an object of the groupoid
X. As mentioned, for different representatives of the same connected
component, these automorphism groups are isomorphic.

Lemma. 3.7. Two groupoids are equivalent if and only if their skeleta
are 1somorphic.

3.8. Integration and ‘Fubini’. More generally if p : X — B is a
morphism of groupoids, we can look at the fibre over b for each b € 7y B.
The ‘inclusion’ of the fibre X, — X is faithful but not full in general.
But Aut(b) acts on it canonically, and the homotopy quotient

X,/ Aut(b)

provides exactly the missing arrows, so as to make the natural mor-
phism X,/ Aut(b) — X fully faithful. Since every object x € X must
map to some connected component of B, we find the equivalence

(6) X~ Y X,/ Aut(b).

We shall adopt an integral notation, writing
beB

Xy = Y X,/ Aut(b)

bemogB

for such sums. Another useful view of right hand side of (6) is as the
Grothendieck construction of the functor

(7) p :mB — Grpd
r — X,/ Aut(b).

We shall need the following general Fubini formula (integration along

the fibres):

Lemma. 3.9. Given morphisms of groupoids X ENY; BN I, we have

Z X/ Aut(b) ~ Z ( Z Xb/Auti(b)> / Aut(7)

bemoB i€mol \bemyB;
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In integral notation,

beB iel beB;
Xb ~ / (/ Xb) .

Note that Aut;(b) denotes the automorphism group of b inside the
fibre B;, not the full automorphism group Aut(b) in all of B. (Note
also that myB; denotes the set of connected components of B; which
is typically different from the set of connected components of B that
intersect the fibre: objects in the fibre might be connected only via
arrows in B which are not in the fibre.) The proof of the lemma is
easy; yet the lemma contains, and automatically takes care of, a lot of
automorphism yoga, which without the setting of groupoids tends to
become messy.

3.10. Double counting. Applying the integration formula (6) twice
we get the following useful double-counting lemma. It can be seen as
the groupoid analogue of the double counting in a bipartite graph, held
by Aigner [1] as one of the most important principles in enumerative
combinatorics.

Lemma. 3.11. Let A, B,U be groupoids, together with morphisms
B+——U——A

and write Us, 7U C U for the (homotopy) fibres over S € A andT € B
respectively. Then there are equivalences of groupoids

TeB SeA
/ U ~ U ~ / Us.

3.12. Slices. We shall need homotopy slices, sometimes called weak
slices. First recall the usual notion of slice category: If € is a category,
and I € ¢, then the usual slice category %); is the category whose
objects are morphisms X — [ in ¥ and whose arrows are commutative
triangles

We are concerned instead with groupoid-enriched categories €, i.e. cat-
egories such that for each pair of objects X, Y, the arrows Hom(X,Y)
form a groupoid instead of just a set, and such that composition are
functors instead of just functions. This means that between two paral-
lel arrows X == Y there may be (invertible) 2-cells. The slice category
%1 then has as objects the morphisms X — [; its arrows are triangles
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with a 2-cell

(8) X— X
\;\/
1.

Two such arrows can be composed by pasting the triangles, and alto-
gether the slice is a category (in fat again a groupoid-enriched category,
but this will not be important here). If € is a groupoid then €); is
again a groupoid.

The basic example is the groupoid-enriched category Grpd of all
groupoids: the objects are groupoids, the morphisms are functors, and
the 2-cells are natural transformations: since we are talking groupoids,
the natural transformations are automatically invertible.

3.13. Basic adjoints between slices. Taking homotopy pullback
along a morphism of groupoids f : B’ — B defines a functor between
the slice categories

" Grpd,;; — Grpd p,.
This has a homotopy left adjoint
fi: Grpd,5 — Grpd
and a homotopy right adjoint
f«: Grpd,p — Grpd .
The homotopy adjoint properties are expressed by natural equivalences
of mapping groupoids
(9) Grpd/B(f!E/u E) ~ Grpd/B,(E’, [TE),
(10) Grpd 5 (f*E', E) ~ Grpd,z(F', .E),
which will be invoked at a few occasions.
3.14. [-coloured finite sets, or families of objects in /. Let Bij

denote the groupoid of finite sets and bijections. We shall need also
coloured finite sets, the colours being objects in a groupoid I. We put

I == Bij,

Hence the objects of I are groupoid maps X — I, where X is a finite
set considered as a groupoid, and the arrows of I are triangles with a
2-cell as in 8. The groupoid I can be interpreted as the groupoid of
I-coloured finite sets: the map X — I then associates a ‘colour’ to each
element in X. Note that maps of I-coloured sets are required to be
bijective and respect the colour, but only up to specified isomorphism
of colours (that’s the content of the 2-cell triangle). If [ = 1 is the
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one-point trivial groupoid, we recover 1~ Bij (the case of only one
colour).

The groupoid I can be considered also as the groupoid of families
of objects in I. In this case, the finite set X plays a secondary role,
it is merely an indexing set for the family. We use this viewpoint for
example when we say that a forest is a family of trees. Formally, if T
is the groupoid of trees (cf. below), then the groupoid of forests is

F=T.

As another important exampe, note that a surjection of sets is just
a disjoint union of connected surjections, and a connected surjection
is determined by a single non-empty set (mapping to a point), so the
groupoid of surjections can be considered as the groupoid of families
of non-empty sets and bijections,

S =B.

It should be mentioned, although we will not need this fact, that I
is the free symmetric monoidal category on I.

4. TREES AND FORESTS

4.1. Trees. It was observed in [25] that operadic trees can be conve-
niently encoded by diagrams of the same shape as polynomial functors.
By definition, a finite rooted tree is a diagram of finite sets

p

N1+ A

(11) Acs M

satisfying the following three conditions:

(1) t is injective

(2) s is injective with singleton complement (called the root and
denoted 1).

With A = 1+ M, define the walk-to-the-root function o : A — A by
1~ 1and e t(p(e)) for e € M.

(B)Vxe A: Ik eN:ok(x)=1.

The elements of A are called edges. The elements of N are called
nodes. For b € N, the edge ¢(b) is called the output edge of the node.
That t is injective is just to say that each edge is the output edge of
at most one node. For b € N, the elements of the fibre M, := p~1(b)
are called input edges of b. Hence the whole set M = >, M, can
be thought of as the set of nodes-with-a-marked-input-edge, i.e. pairs
(b, e) where b is a node and e is an input edge of b. The map s returns
the marked edge. Condition (2) says that every edge is the input edge
of a unique node, except the root edge. Condition (3) says that if you
walk towards the root, in a finite number of steps you arrive there. The
edges not in the image of t are called leaves.

From now on we just say tree for ‘operadic tree’.
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The tree
1+<~0—->0—1

is the trivial tree

4.2. Polynomial functors. The importance of the above tree formal-
ism is that diagrams of shape (11) are precisely what define polynomial
endofunctors. The theory of polynomial functors (for which we refer
to [19]) is very useful to encode combinatorial structures, types and
operations, and covers notions such as species and operads. A diagram

of sets or groupoids

IEEBBLT

defines a polynomial functor
*
Grpd, % Grpd g B Grpd, RN Grpd;.

(Here of course we are talking about homotopy slices, and upperstar,
lowerstar and lowershriek refer to the adjunctions in 3.13.) In this work
we do not need the actual functors, only their representing diagrams.
The intuition is that B is a collection of operations, the arity of an
operation b € B is the size of the fibre Fj,, and that each operation is
typed: the output type of b is ¢(b), and the input types are the s(e)
for e € Ej,. We shall see examples of polynomial functors in Sections 8
and 9.

4.3. Morphisms of trees (cf. [25]). A tree embedding is by definition
a diagram

(12) A M — N —— A
A M N A,

where the rows are trees. This is just the notion of cartesian morphism
in the category of polynomial endofunctors [19]. The terminology is
justified by the fact that each of the components of such a map is
necessarily injective; this follows from the tree axioms [25]. Hence
the category of trees and tree embeddings, denoted TEmb, is mostly
concerned with subtrees, but note that it also contains automorphisms
of trees.

The fact that the middle square is cartesian means that there is
specified, for each node b of the first tree, a bijection between the
incoming edges of b and the incoming edges of the image of b. In other
words, a tree embedding is arity preserving.

A tree embedding is root-preserving when it sends the root to the
root. In formal terms, these are diagrams (12) such that also the left-
hand square is cartesian.

An ideal embedding (or an ideal subtree) is a subtree S in which for
every edge e, all the edges and nodes above e are also in S. There is one
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ideal subtree generated by each edge in the tree. The ideal embeddings
are characterised as having also the right-hand square of (12) cartesian.
Ideal embeddings and root-preserving embeddings admit pushouts
along each other in the category TEmb [25]. The most interesting
case is pushout over a trivial tree: this is then the root of one tree and
a leaf of another tree, and the pushout is the grafting onto that leaf.

4.4. Decorated trees: P-trees. A very efficient way of encoding and
manipulating decorations of trees is in terms of polynomial functors [25]
(see also [26, 27, 28, 29]). We fix a polynomial endofunctor P given by
a diagram

[+ E5 B,

which we keep fixed throughout, until in Sections 8 and 9 where we
consider differente choices for P. By definition, a P-tree is a diagram

A M N A

L]

I E B I

)

where the top row is a tree. The squares are commutative up to iso-
morphism, and it is important that the isos be specified as part of
the structure. Unfolding the definition, we see that a P-tree is a tree
whose edges are decorated in I, whose nodes are decorated in B, and
with the additional structure of a bijection for each node n € N (with
decoration b € B) between the set of input edges of n and the fibre £,
subject to the compatibility condition that such an edge e € Ej has
decoration s(e), and the output edge of n has decoration isomorphic to
t(b).

Standard examples of P-trees are given in Section 8, and in Section 9
we consider groupoid-polynomial decorated trees arising naturally in
quantum field theory, where in order to account for symmetries it is
crucial that the representing diagram I <— E' — B — I be of groupoids,
not just sets.

The category of P-trees is the slice category TEmb,p. The notions
of root-preserving and ideal embeddings work the same in this category
as in TEmb, and again these two classes of maps allow pushouts along
each other. Observe that P-trees can have more automorphisms than
the underlying tree. For example, if P is given by [ < 1 — 1 — I,
where the groupoid I has one object and vertex group G, then the
trivial P-tree | has also automorphism group G. This follows easily
from the observation that the I-family 1 — [ has autormorphism group

G.

4.5. The bialgebra of P-trees. This is precisely the same prescrip-
tion as for naked trees in 2.3.
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4.6. Forests. A forest can be defined as a family of trees, or equiva-
lently as a finite sum of trees in the category of polynomial endofunc-
tors. It is convenient to have also an elementary definition, similar to
that of trees.

By definition, a (finite rooted) forest is a diagram of finite sets

A M- aN-—tnp

satisfying the following three conditions:

(1) t is injective

(2) s is injective; denote its complement R (the set of roots).

With A = R+ M, define the walk-to-the-roots function o : A — A by
being the identity on R, and e — t(p(e)) for e € M.

(3)Vx e A: 3k e N:ok(x) € R.

The interpretations of these axioms are similar to those following the
definition of tree.

A forest embedding is by definition a diagram like (12), required now
separately to be injective (whereas for trees this condition is automatic,
for forests absence of the condition gies only etale maps).

An forest embedding is called a root-preserving embedding if it in-
duces a bijection between the sets of roots. This is equivalent to being
a sum of tree embeddings. By ideal embedding we understand an em-
bedding such that the right-hand square of (12) is cartesian. This
means that every edge and node above the subforest is also contained
in the subforest. The most important example will be this: for a given
tree S, the set of its leaves forms a forest, and the inclusion of this
forest into S is an ideal embedding.

Just as for trees, root-preserving embeddings and ideal embeddings
allow pushouts along each other (in the category of forests and forest
embeddings). The important case is grafting a forest onto the leaves
of a tree.

4.7. P-forests. The definition of P-forest if analogous to the defini-
tion of P-tree, and again the category of P-forest embeddings can be
characterised as the finite-sum completion of TEmb,p inside the slice
category Poly p.

We fix a polynomial endofunctor P (given by I < E — B — I)
and denote by T the groupoid of P-trees and by F the groupoid of
P-forests.

4.8. Leaves and roots. To any P-tree we can associate it set of leaves;
this is naturally an I-coloured set, defining a morphisms of groupoids
called the leaf map,

L:T— 1
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An object in I can be interpreted as a leaf profile, and we can ask for
those trees with a given leaf profile N € I. This is the homotopy fibre

Let F denote the groupoid of P-forests. There is a natural morphism,
the root map

R:F—1, ,
which to a forest associates its I-coloured set of roots. For a fixed
colour N : X — I, the N-fibre,

FNHF

has the following characterisation:

Lemma. 4.9.
Fy ~ Grpd;(N,T).

Proof. Recall that the forest root map F — }; is the family functor
applied to the tree root map, that is, R : T — I. Hence we can write,
by adjunction:
Fy ~"N"R~ Grpd(1,"N"R) ~ Grpd ("N, R).
It remains to establish the equivalence
Grpd/ff(rN—',}?) ~ Grpd (N, R).

Consider the commutative diagram

Grpd (N, R) — Grpd ("N, R)

!

Grpd(X,T) — Grpd(l, T)

Grpd(X,I) — Grpd(1,1)

in which the vertical maps form the standard slice fibre sequences;
the bottom vertical maps are postcomposition with R and R, respec-
tively. Each of the horizontal maps sends a family to its name. Since
the bottom square is a pullback, we conclude that the top map is an
equivalence. O
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Integrating over the fibres, we therefore find

Nel Nel
F:/ Fy ~ Grpd;;(N,T) >~ exp(T),
corresponding again to the fact that forests are disjoint unions of trees.

5. FAA DI BRUNO EQUIVALENCE IN THE GROUPOID OF TREES

In this section we prove our main theorem, the equivalence of groupoids

over F x T:
TET Nel
/ cut(T') ~ / Fy x T,

In Section 7 we will obtain the Faa di Bruno formula for the Green
function in the bialgebra of trees by taking relative cardinality of both
sides.

We fix a polynomial endofunctor P given by

I+~ F—B—1.

Throughout this section the word ‘tree” will mean a P-tree, a ‘forest’
will mean P-forest. Recall that we denote the categories of P-trees and
P-forests by T and F respectively.

Recall (3.14) that I denotes the groupoid of finite sets over I and
their isomorphisms. We have canonical morphisms

F T
(13) / Y / Y
i i I
given by the leaf maps and the root maps. The map L associates to
a tree or forest its I-coloured set of leaf edges, while R associates to a
forest the I-coloured set of root edges and to a tree the colour of the
unique root edge.

We use two-sided subscript notation to indicate the fibres of these
maps. Hence, we denote by T} the groupoid of trees with root colour
k € I (or more precisely: with root colour isomorphic to k, and with
a specified iso) and by Fy the groupoid of forests whose set of roots
is N el (again, up to a specified iso). Similarly, for the fibres of
L, we write yF and T for the groupoids of forests and trees with
leaf profile N. These are the groupoids of P-forests or P-trees with
specified I-bijections between their leaves and N.

5.1. The groupoid of trees with a cut. In Section 2.3 we already
defined a cut in a tree T to be a subtree S containing the root. For
varying 7', these form a groupoid which we denote C: its objects are
the root preserving inclusions ¢ : S »— T, and its arrows are the iso-
morphisms of such arrows, i.e. commutative diagrams
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T—->T

(14) I I

§-758.

This groupoid comes equipped with canonical morphisms m,r : C — T
and w : C — F: when applied to a cut ¢: .S — T, the map m returns
the total tree 7', the map r returns the subtree (i.e. the tree S. found
below the cut), and the map w returns the forest P, consisting of the
ideal trees in T generated by the leaves of S. These maps and the
morphisms L, R in (13) above form a commutative diagram

\\ \\R
m\){ L \N
w T- |- 51
| 4
(15) g
Pl F
L\\ \L
N~
1

We denote by 7C, Cg and Cy the fibres of the functors m, » and Lor.
For a fixed tree T', the arrows of the groupoid 7C are

T—-T

[ ]

R?R’

and since the vertical maps are monomorphisms, we see that this
groupoid has no nontrivial automorphisms, and hence is equivalent to
a discrete groupoid which we denote by cut(7’); we refer to it objects
as the cuts of T'. In summary,

7C ~ mo(rC) = cut(T).
Together with the double-counting lemma 3.11:

Lemma. 5.2. We have equivalences of groupoids

T€eT TeT SeT Nel
/ cut(T):/ TC:C:/ CS:/ Cy

The following Main Lemma states that the solid square face of (15)
is a (homotopy) pullback square and enables us to identify the fibres
Cg and Cy.
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Lemma. 5.3. The canonical morphism to the product
(w,r): C— F x T
that sends ¢ : S — T to (P.,S.), induces an equivalence

C:’FXTT.

A
Proof. Starting with an object (P, S, L(S) = R(P)) of the pullback,
we construct a tree with a cut by grafting. The isomorphism A may be
regarded as a root-preserving embedding of forests

LS—P=> Ty,
LeLS

and we construct the pushout in the category of forests of this map
and the ideal sub-forest embedding LS — S,

2T —— T

I

LS — S

to obtain a root-preserving embedding S »— T in the sense of 4.6. Note
that since the forest S is a tree, T' is again a tree. This assignment is
functorial: an isomorphism (p, o) from (P, S, \) to (P’,S’, \) induces
an isomorphism of pushouts 7: 7' = T” extending o as in (14).

In the reverse direction, we prune a root-preserving inclusion S — T'
to obtain (> Ty, S,1d) where T} is the ideal subtree of T' generated by
the image of the leaf edge ¢ in T. An isomorphism of root-preserving
inclusions (14) is sent to (7, 0) where 7 : Ty — T, is the restriction of

T to the ideal subtree T}. O
— prune *
03 04 05
IR
graft P1 P2 P‘S P4 P5
c:S—T Sc; PC:ETPN &A/)z

Corollary. 5.4. For S € T and N € I we have equivalences of
groupoids

CS >~ (F XTT>S ~ FLS;
CN ~ FN X NT.

Combining the previous results, we arrive at our main theorem:
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Theorem. 5.5. We have equivalences of groupoids

TET SeT
/ cut(7) :/ Frs
Nel
2/ FN X NT.

We can regard this as an equivalence of groupoids over F x T. For
fixed T, the map from cut(7) to F x T is precisely

T(Pe,Se)”
S e

cecut(T)
To emphasise this, we can reformulate the result as

Nel

(16) / - > AP} x {8} ~ / Fy x yT

cecut(T)

Extracting the algebraic version of the Faa di Bruno formula 7.3 from
5.5 will be a matter of taking cardinality in a certain sense, which we
explain in the next section.

If we take the fibres of the equivalence given in Theorem 5.5, over a
fixed colour v € I, we obtain:

Corollary. 5.6. We have equivalences of groupoids
TET, NeTl
/ cut(7T) ~ / Fy x yT,.

6. GROUPOID CARDINALITY

6.1. Finiteness conditions. A groupoid X is called finite when
mo(X) is a finite set and each 7 (x) is a finite group. A morphism of
groupoids is called finite when all its fibres are finite.

6.2. Cardinality. [2] The cardinality of a finite groupoid (sometimes
called groupoid cardinality or homotopy cardinality if there is any danger
of confusion) is the nonnegative rational number given by the formula

1
XI= 2. R

zEmeX

Here |Aut(z)| denotes the order of the vertex group at . This is inde-
pendent of the choice of the z in the same connected component since
an arrow between two choices induces an isomorphism of vertex groups.
The cardinality of a groupoid coincides with that of any skeleton, so
the following fundamental result is clear from Lemma 3.7:

Lemma. 6.3. Equivalent groupoids have the same cardinality.
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If X is a finite set considered as a groupoid, then the groupoid cardi-
nality coincides with the set cardinality. If G is a group considered as a
one-object groupoid, then the groupoid cardinality is the inverse of the
order of the group. The groupoid cardinality is a standard construction
in physics and combinatorics: you sum over the different (isomorphism
classes of) objects and for each object divide out by the order of its
symmetry group.

We have the following fundamental formulae for cardinality of sums
and products of groupoids:

(X +Y[=[X]+]Y]|
X X Y] = [X] x]Y]

extending the analogous results for the cardinality of finite sets.

The following is one important feature of homotopy quotients and
cardinality.

Lemma. 6.4. For any action of a finite group G on a finite groupoid
X, we have

| X/Gl = 1X[/1d]
where |G| denotes the order of the group G.

6.5. Cardinalities of families. For the sake of taking cardinalities
we shall need the following ‘numerical’ description of the groupoid I of
families of objects in I, cf. 3.14.

Let vy,...,vs be representatives of the isoclasses in I. Then every
family

N:X—=1

is isomorphic to a sum (in the category of sets over I) of families of the
kind "v; ': 1 — I. Hence for uniquely determined natural numbers n;

we have
S
~ My, 71
N = E n; v; .
i=1

It follows that

WQ(T) ~ N°?,
We compute the vertex group. The automorphism group of "v; ' :
1 — I is Aut(v;) and that of n;"v;7 is n;! Aut(v;)™, since each point
contributes with a factor Aut(v;), and since the points can also be
permuted. Altogether, we have

(17) Aut(N) = [T ni! Aut(v,)™,
=1
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and the groupoid I can be described as

i~ ¥ !

o e Hni!Aut(vi)m
7

6.6. Relative cardinality. Groupoid cardinality makes sense for
more general groupoids than the finite ones: for example, the groupoid
of finite sets and bijections has cardinality Zn>0 = e, see Baez—
Dolan [2].

We shall instead make use of relative cardinality, which refers to
the situation where one groupoid X is relatively finite over another
groupoid, i.e. we have a morphism p : X — B with finite fibres. This
notion is from [3]. In this situation we define the relative cardinality
of X relative to B to be the following element in the completed vector
space spanned by the symbols ¢, for b € my(B):

|Xb
Pl = X5 =) [Aut(b)

bemo B

The notations | X |5 is potentially ambiguous; it assumes the morphism
X — B is clear from the context. Since the morphism has finite fibres
Xy, the coefficients are well-defined nonnegative rational numbers.
The vector space spanned by the ¢, is nothing but the space of func-
tions mgB — Q with finite support, and we have an isomorphism be-
tween the completed vector space and Q™%. For each b € mB we
identify the cardinality of the inclusion "b': 1 — B with a function

0 =11l : B — Q

1 ifz~b
T —> '
0 otherwise.

Hence we identify the relative cardinality of X — B with the function
7T()B — Q
b — | Xp|/|Aut(d)].

6.7. Relative cardinality as left Kan extension along n,. We
give a highbrow explanation of the above definition, which shows that
the factor 1/ |Aut(b)| is not arbitrary, or just a convention, but in fact
is forced upon us by general principles.

Any morphism of groupoids p : X — B naturally defines a groupoid-
valued presheaf

B — Grpd
b — Xb

which, composed with absolute cardinality |—| : Grpd — Q yields a
function on B. However, we want our function spaces to be indexed
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by isomorphism classes of objects in B, not by the groupoid B it-
self. Therefore we need to pass to myB. The correct way to achieve
this it to take left Kan extension along the projection map B — 7y B
of the groupoid valued presheaf. This is a standard construction in
category theory and geometry; in the present case it has a very ex-
plicit description: it is obtained by first postcomposing the morphism
p with the projection, and then taking the corresponding groupoid-
valued presheaf

(moB)®* — Grpd
b — X,/ Aut(b)

This automatically produces the quotient, as is readily seen by the
pullback diagram

Ey/ Aut(b) —— T
{b}/ Aut(b) —— B

|

{b} —— M B.

The relative cardinality of X — B is now recovered by composing
the presheaf myB — Grpd with the absolute cardinality, yielding the
required function mgB — Q .

6.8. Properties of relative cardinality. When taking relative car-
dinality over a product of groupoids, B x B’, the formal symbols are
indexed by (b,t') € myB X myB' ~ my(B x B’). We shall then use
notation &, ® &, instead of d(, 4. We shall need the following obvious
compatibility with products: if

XxXxX X X
[ o]
BxB B B

then
| X x X,|B><B’ =|X|p® |X,|B’ .

Consider the groupoid morphism X — X/G given by the action of
a finite group on a groupoid. Then

Xl x/c
| X/Glx/6 =
X/G |G|

and we have the following generalisation of Lemma 6.4:
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Lemma. 6.9. For any action of a finite group G on a groupoid X and
a finite morphism X/G — A, we have

[ X/Gly = |X]4/1G]
where |G| denotes the order of the group G.

We need the following transitivity property of relative cardinality:

Lemma. 6.10. Given groupoid morphisms X 2 B L I with finite
fibres, the relative cardinality of p is obtained from those of the restric-
tions p, : X, — B,,

Ipv
vemol

Also the relative cardinality of X over I is obtained from the relative
cardinality over B by substituting o) for each dy. That is:

\Xb
bemgB

In particular, any groupoid can be measured over itself via the iden-
tity morphism Id : X — X:

1
Xl = 2 (hw)
zemoX

Hence we get the following useful result.

Corollary. 6.11. Forp: X — B we have

1
Xlp= > TAut(z)] Op(a)-

rEmTeX

7. THE FAA DI BRUNO FORMULA IN THE BIALGEBRA OF TREES

7.1. Abstract Green functions as relative cardinality. There is
a general notion of Green function which include the power series A in
the Faa di Bruno algebra F and also our Green functions of P-trees.
Let X be a groupoid with finite vertex groups, and consider first the
relative cardinality of the identity functor X — X,

1
S
mezm:X |Aut(z)|

Equally natural is to consider the inclusion X — X into the groupoid
of families of objects in X (cf. 3.14). We define the Green function as
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the relative cardinality of this inclusion

B X,
¢ = 2 T "

zemoX
1
= — ),
xe;OX |Aut(z)|

since the summand is zero when z ¢ myX. As an element of the ring
Q™X, the Green function is

G: WO)? — Q
1 .
. /|Aut(x)| if z € mpX
0 otherwise

We observe the natural isomorphisms

Q™ = Sym(Q™¥) 2 Q[[6,]]senox

between the ring of functions and the power series in symbols 6, for
x € moX. This restricts to an isomorphism from those functions with
finite support to the ring of polynomials.

7.2. Definition of the Green functions of trees. We define the
total Green function as the relative cardinality of T — T = F:

Pp— 5T .
G = TgT ()] © Q[[67; T € m'T]].

We also define an individual Green function for each possible (iso-
morphism class of) root colour v € w1,

[y— 5T
Goi= 2. Thun@)

Temg (Tv)

Here the automorphism group Aut, (7") consists of those automorphisms
of T" which fix the root colour v. This is the relative cardinality of the
inclusion T, — T — F.

It follows from Lemma 6.10 that we have the relationship

Gy
G —
vemol ‘AUt(,U”
Let s := |mpI| be the number of colours, and let n = (n4,...,ny) € N*®

be a multiindex, parametrising an isoclass of objects N in I. Consider
the relative cardinality of the inclusion of the homotopy fibre yT — T,

Pyp— 5T
Gy = Z )‘AutN(T)‘.

TEWo(NT



34  IMMA GALVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

We also consider the summands of the Green function corresponding
to all trees with n, leaves of each colour v € my1,

or
In = Z | Aut T'|

TemyT, LTSN

This is the relative cardinality of the full subcategory of T whose objects
are those trees T with leaf profile N. This is equivalent to the weak
quotient yT/Aut N of the homotopy fibre by the canonical action of
Aut N. Clearly,

gn = Gn/|Aut N|.

G:Zgn.

neNs

Theorem. 7.3. The following Faa di Bruno formula holds for the
Green function in the bialgebra of trees.

(18) A(G) =) G"®gn.

neNs

and hence

Here G™ is to be interpreted as the product
¢ = IJ G
vemgl

To prove the theorem we first need a result about forests. Recall that
the multiindices n classify the isomorphism classes of objects N € I.

Lemma. 7.4. Let N : X — [ be an object of I of class n =
(n1,...,ns). Then

FAJQZIItFWni
i=1
Proof. Combining Lemma 4.9 with 6.5, we find
Fy =~ Grpd,(X,R)

~ Grpd/l <Z 7 rv[‘,R)

i=1
~ H Grpd; ("v;", R)™ .
i=1
Now "v; 7 is the ‘lowershriek’ "v; (1) and so by adjunction (9) we have

~ ﬁGrpd(l,rvij*R)’“ ~ ﬁTvi”i
i=1

i=1
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Corollary. 7.5.
Fy|=G" = HG"
i=1

7.6. Proof of the theorem. The left-hand side A(G) of (18) is the
relative cardinality of the left-hand side of (16). It remains to show that
the right-hand side of (18) is the relative cardinality of the right-hand
side of (16). We have

Nel

/ FyxyT| = ) |Fy[®|xT|/|Aut N|
N@rof

= ZG“@gn.

neNs

U

7.7. Summands of Green functions. If v € /] and n € N° is a
multiindex parametrising an isoclass of an object N € I, define the
Green function

Gnw = |nTy/ Aut N|.

We have
=
|Aut(v)]
veEmol
and hence
gnv
B ppppe e
n vemgl

Taking relative cardinality of Corollary 5.6 then gives

Theorem. 7.8. Forv € I and n € N° we have

= Z G" ® Gnw-

neNs

This is the version that most closely resembles the multi-variate Faa
di Bruno formula and the formula of van Suijlekom.

8. EXAMPLES

In this section we specialise to some standard examples of the poly-
nomial endofunctor P, and compare with the classical Faa di Bruno
bialgebra. Fancier examples, more relevant to quantum field theory,
are given in Section 9.

8.1. Naked trees. Consider the polynomial functor P represented by
1 + Bij — Bij — 1,
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where Bij’ denotes the groupoid of finite pointed sets and basepoint-
preserving bijections, and 1 denotes a singleton set. This is the expo-
nential functor
P(X) =exp(X) =) _ X"/nl.
neN
There is a fibre of each finite cardinality n € N, and for every tree
A<+ M — N — A there is a unique P-decoration

A M N A
[
1 Bij Bij 1

(since a node of arity n must map to n € Bij, and since the choices of
where to map the incoming edges to the fibre over n are all uniquely
isomorphic). It follows that in this case P-trees are essentially the same
thing as the naked trees defined in 4.1 (in the precise sense that the
groupoid of P-trees is equivalent to the groupoid of naked trees).

8.2. Cyclic trees. If P is the polynomial endofunctor
1+ C —-C—1,

where C is the groupoid of finite cyclically ordered sets, and C’ is the
groupoid of finite cyclically ordered pointed sets (that’s canonically
equivalent to the N’ of the following example), then the notion of P-
tree is that of cyclic tree.

8.3. Planar trees. Consider the polynomial functor P represented by
1+ N —-N-—=1,

where N is the (discrete) groupoid of finite ordered sets, and N’ is the
(discrete) groupoid of finite ordered with a marked point, so that the
fibre of the middle map is naturally a linearly ordered set). This functor
is the geometric series

P(X)=——=) X"

In this case the P-trees
A M N A

b

are naturally planar trees, since the cartesian square in the middle
equips the incoming edges of each node in the tree with a linear order.

Note that the resulting bialgebra of planar trees is still commutative,
unlike the planar-tree Hopf algebra studied by Foissy [17] and others.
Since P-trees are rigid (this is true in general when P is represented
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by discrete groupoids), there are no symmetries, so the Green function
is the just the sum of all the formal symbols,

G = Z 5T-
TenyT
8.4. Planar binary trees. Consider now the diagram

1+2—>1—1

representing the polynomial functor P(X) = 1+ X2 In this case
P-trees are planar binary trees.

8.5. Injections. For the constant polynomial functor P(X) = 1,
represented by

1<~0—-1—1,
there are two possible P-trees:
oyt

P-forests are disjoint unions of these. The groupoid F of P-forests
is naturally equivalent to the groupoid whose objects are injections
between finite sets, and whose arrows are the isomorphisms between
such. The associated Faa di Bruno bialgebra is Q[0,,d,], with the
comultiplication given by

A(0) = 6, ® 0y
A(0y) =1 ® 0y + 0y ® I,
Expanding we find
n n n—
A =) (k)a’; ® opheh,
k<n

After passing to the reduction (putting z = 1) we get the usual binomial
Hopf algebra. The Green function is

G = 0, + 0y,
with gy = ¢, and ¢g; = d,, and the Faa di Bruno formula is immediate.

8.6. Linear trees. The identity functor P(X) = X is represented by
1<~1—=1—=1

Now P-trees are linear trees. We take a variable x,, for the isoclass of
the linear tree with n nodes, and find the comultiplication formula

=0

this is the ladder Hopf algebra, studied for example in [37].
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8.7. Trivial trees. Consider the polynomial functor
P=(I+<0—0-—1).

where [ is a discrete groupoid. The only P-trees are the trivial trees,
one for each x € ml. The groupoids of P-trees and P-forests are [
and [ respectively. In Q[mI] all generators are grouplike, and we have

G:Zx

remol
AG =Y 2@z = Y |Lx Il = > |Lx,|
xEmol xemol $E7T()T

(This is the monoid algebra on the free commutative monoid on mo1.)

8.8. Effective trees. Consider the polynomial functor represented by
1+~B —-B—1,

where B is the groupoid of non-empty finite sets and bijections (and B’
the groupoid of non-empty finite pointed sets and basepoint-preserving
bijections). The resulting endofunctor is P(X) = exp(X) — 1. In this
case P-trees are naked trees with no nullary operations, sometimes
called ‘effective’ trees. These are the key to understanding the rela-
tionship with the classical Faa di Bruno bialgebra, cf. 1.2, as explained
below.

Since effective trees have no nullary nodes, they always have a non-
empty set of leaves, and therefore the leaf map can be seen to take
values in B. Furthermore, for each n € B, the homotopy fibre ,T C T
is discrete, since if an automorphism of a effective tree fixes the leaves
then it fixes the whole tree.

The sub-bialgebra B.g of B is the polynomial algebra on the isomor-
phism classes of effective trees.

8.9. Stable trees. In a similar vein, we can consider P-trees for the
polynomial functor P(X) = exp(X) — 1 — X, represented by

1+<Y =Y =1,

where Y is the groupoid of finite sets of cardinality at least 2. These are
naked trees with no nullary and no unary nodes, called reduced trees by
Ginzburg and Kapranov [20]. We adopt instead the term stable trees.
Clearly stable trees are effective, so L : T — B is a discrete fibration.
In this case it is furthermore finite: for a given number of leaves there
is only a finite number of isoclasses of stable trees. This finiteness is
convenient for computational purposes, and we include an instructive
computation in the appendix for this case.

8.10. The classical Faa di Bruno: surjections versus effective
trees. As far as we know, the classical Faa di Bruno bialgebra of
surjections is not a bialgebra of P-trees for any P. There is nevertheless
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a close relationship with the bialgebra of effective trees, which we now
proceed to explain. The following construction work for any polynomial
endofunctor without nullary operations.

Since effective trees have no nullary nodes, the leaf map can be seen
as taking values in the groupoid B of non-empty finite sets. Pulling
back along the leaf map L : T — B

L* : Grpd/B — Grpd/T,

sends "n': 1 — B to the inclusion of the discrete fibre , T — T.
This yields a linear map

QWQB — QnoT
A, — G,
an = (gpn
A — G

which extends to an algebra homomorphism
O F=Q[A,:n€mB] — Q[ér: T € 1oT]] = Begr-
Lemma. 8.11. The map ® is a bialgebra homomorphism.

Proof. We already noted that ® preserves the Green functions. Now

(22 2)(A(4) = (2@0)()_ A"®a,)
= ) (2A)" @ O(ay)
= Z G" @ gy

= A(D(A)).

It remains to recall that the comultiplication in F is determined by the
comultiplication of the Green function. O

To appreciate the amount of combinatorics hidden in these argu-
ments, it is rewarding to work out the comultiplicativity of ® by hand.
We provide in the Appendix a direct combinatorial proof that (¢ ®
®)(AAy) = AGy, but for simplicity we work with stable trees instead
of effective trees.

9. TREES VERSUS GRAPHS

In this final section we explain how to derive Faa di Bruno formulae in
bialgebras of graphs from our formulae for trees, and compare with van
Suijlekom’s Faa di Bruno formula, although this has not been sorted
out completely. All the differences are due to our strictly operadic
viewpoint. The results in this section are from the forthcoming paper
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[28] and concern the relationship between Feynman graphs and P-
trees. We reproduce the key points since this correspondence is the
main motivation for the use of P-trees.

(All the pictures in this section are implicitly from massless ¢ theory
in six space-time dimensions.)

9.1. Trees in BPHZ renormalisation. The main use of trees in
BPHZ renormalisation is to express nestings of Feynman graphs. The
discovery of Kreimer [30] was that the combinatorics of the BPHZ
procedure is elegantly encoded in a Hopf algebra of rooted trees. More
information, related to the specifics of a particular theory, is encoded
in the Hopf algebra of graphs [9], [10].

In order to understand the relationship between the two Hopf alge-
bras well enough to transfer constructions and results such as the ones
of the present paper, some modifications seem necessary both on the
graphs and the tree side. On the tree side, we pass to operadic trees,

3
33 33

the small combinatorial tree in the middle expresses the nesting of 1PI
subgraphs on the left; Kreimer showed that the information encoded
by such trees is sufficient to account for the counter-term corrections
of BPHZ. On the other hand, it is clear that such combinatorial trees
do not capture anything related to symmetries of graphs.

For this, fancier trees are needed, as partially indicated on the right.
First of all, each node in the tree should be decorated by the 1PI graph
it corresponds to in the nesting [5], and second, to allow an operadic
interpretation, the tree should have leaves (input slots) corresponding
to the vertices of the graph. Just as vertices of graphs serve as insertion
points, the leaves of a tree serve as input slots for grafting. The deco-
rated tree should be regarded as a recipe for reconstructing the graph
by inserting the decorating graphs into the vertices of the graphs of
parent nodes. The numbers on the edges indicate the type constraint
of each substitution: the outer interface of a graph must match the
local interface of the vertex it is substituted into. But the type con-
straints on the tree decoration are not enough to reconstruct the graph,
because for example the small graph { decorating the left-hand node
could be substituted into various different vertices of the graph {{ The
solution found in [28] is to consider P-trees, for P a certain polynomial

endofunctor over groupoids, which depends on the theory. For this to
work, a few modifications are needed on the graphs side:
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9.2. Adjustmenst to the Hopf algebra of graphs. The first
modification required is rather harmless. Traditionally, the Connes—
Kreimer Hopf algebra of graphs is spanned by the 1PI graphs that are
furthermore superficially divergent. This last condition excludes the
one-vertex graphs given by the interaction labels themselves, and for
this reason in the formula for comultiplication

AT)=1®T+T®1+» y®I/y

yGr

the primitive part has to be specified separately since taking v = T’
would yield a term with the one-vertex graph I'/y = res(I'). While
of course excluding the one-vertex graphs is natural from the view-
point of physics, from the strictly combinatorial viewpoint it appears
as an ad hoc feature. This was perhaps first observed by Manchon [36]
who introduced a bigger bialgebra, by including the interaction labels
(one-vertex graphs) as generators. Since obviously these new genera-
tors have loop number zero, this bigger bialgebra is not connected, and
therefore no longer Hopf. The difference is strictly analogous to the
difference between reduced and non-reduced incidence algebras, as we
saw in the classical Faa di Bruno case in Section 1; again, the stan-
dard Hopf algebra can be obtained by collapsing the degree-0 piece. It
should also be noted here that in this setting the sum constituting the
Green function for a vertex v does not start with 1, but rather with v
considered as a graph with residue v.

The second modification is subtler. The Hopf algebra of graphs
expresses contraction of subgraphs, but its dual Lie algebra is the one
of insertions of graphs. One is allowed to substitute graphs with two
external legs into internal lines of the receiving graph. This means that
every internal line represents an ordered infinity of virtual insertion
points. This does not look very good from the viewpoint of operadic
trees, as it destroys the input slot correspondence between vertices in
graphs and leaves in trees: the strict operadic viewpoint requires that
grafting of trees only occurs at pre-existing leaves, and correspondingly
in the setting of graphs, only insertions at vertices should be allowed.

This can be arranged by declaring each internal line to be an inser-
tion point, for example by decorating it with a special 2-valent vertex,
often indicated with a cross. It means that the bialgebra now has a
generator for every term in the Lagrangian, even for the kinetic terms.
Correspondingly one declares the residue of a graph with two external
lines to be this new kind of vertex, instead of saying that the residue
is just the line, and the Green function for the new interaction label
e = - looks like this:

Go= ~+30+O0+; O + -
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and similarly, the Green functions for the proper interaction labels are
refined by all possible appearances of the new vertex.

These issues seem to be closely related to the Z-factor comparing
the bare and normalised Green functions, but we do not at this point
understand the physics of this relationship.

9.3. Trees decorated with graphs. Having been specific about
which graphs we consider, we can now explain how to encode the graph-
decorated trees, in order to get the correct correspondence between
graphs and trees, cf. [28]. The decorations are encoded P-trees, for
P a certain polynomial endofunctor over groupoids, which depends on
the theory. This formalism yields the correct symmetry factors.

To match the figure above, we consider a theory in which there are
two interaction labels - and «( ; let I denote the groupoid of all such
one-vertex graphs. Let B denote the groupoid of all connected 1PI
graphs of the theory such that the residue belongs to /. Finally let
E denote the groupoid of such graphs with a marked vertex. The
polynomial endofunctor is now given by the diagram

(19) I« BBty

where the map s returns the one-vertex subgraph at the mark, p forgets
the mark, and ¢ returns the residue of the graph, i.e. the graph obtained
by contracting everything to a point, but keeping the external lines. A
P-tree is hence a diagram

(20) Ac—M—3N—A

L-1-1-]

I E B I,

with specified 2-cells, in which the first row is a tree in the sense of 4.1.
These 2-cells carry much of the structure: for example the 2-cell on the
right says that the 1PI graph decorating a given node must have the
same residue as the decoration of the outgoing edge of the node — or
more precisely, and more realistically: an isomorphism is specified (it’s
a bijection between external lines of one-vertex graphs). Similarly, the
left-hand 2-cell specifies for each node-with-a-marked-incoming-edge
x' € M, an isomorphism between the one-vertex graph decorating that
edge and the marked vertex of the graph decorating the marked node
x’. Hence the structure of a P-tree is a complete recipe not only for
which graphs should be substituted into which vertices, but also how:
specific bijections prescribe which external lines should be identified
with which lines in the receiving graph.

9.4. Graph nesting. A graph nesting is a Feynman graph (assumed
to be 1PI and with residue belonging to I) with nested circles, such
that every circle cuts a 1PI Feynman graph of the theory with residue
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in I. The graph nestings form a groupoid N, in which the maps are
graph isomorphisms compatible with the configuration of circles.

The following is the main theorem of [28], which draws from insights
from higher category theory [29].

Theorem. 9.5. ([28]) There is an equivalence of groupoids between
the groupoid N of graph nestings and the groupoid T of P-trees. In
particular, the symmetries of a given graph nesting can be read off the
corresponding decorated tree and vice versa.

It should be stressed that the use of groupoids as coefficients is crucial
for getting the decorations that make this correspondence to work. In
fact, a tree decorated in groupoids may have more symmetries than
the underlying tree. For example, the graph I' = <O is 1PI and, as
a trivial nesting it corresponds to the tree Y decorated with T' at the
node, 3 at the leaves, and 2 at the root. More formally it is of course a
diagram like (20). It is straightforward to check that this P-tree has a
symmetry group of order 4, just as the graph I', whereas the underlying
tree clearly has a symmetry group of order 2.

9.6. Graphs with fixed residue. So far we are talking abstract
Feynman graphs, whereas in quantum field theory, the symmetries are
required to fix the external lines. Categorically, this means that we are
talking about the groupoid G, defined as the (homotopy) fibre over
the residue v = —- . Inside this fibre, the symmetry group of the graph
' = -0 is of order 2, the non-trivial symmetry being the one that fixes
the external lines and interchanges the two internal lines. Since v is an
object in the groupoid I, the tree corresponding to I' belongs to the
fibre T, of trees with root colour v. One can check directly that in this
groupoid, the tree has only one non-trivial automorphism, which in
fact is trivial on the underlying tree! Indeed, if we were to interchange
the two leaves of the tree, then by the compatibilities expressed by the
decoration, we would be interchanging the two vertices of I', and this
in turn would interchange the two external lines of v = -, the residue
of I', but since we are inside the fibre T, this automorphism is not
allowed.

9.7. Nestings versus graphs. By Theorem 9.5 we have an equiv-
alence of groupoids N ~ T. There is an obvious projection functor
N — G which simply forgets the circles expressing the nesting on a
graph. This functor is a finite discrete fibration — this is just to say
that for a given graph there is a finite set of possible nestings to put
on it. Pullback along this projection defines a functor

Grpd,c — Grpd,y = Grpdr,

which associates to each graph the set of possible nestings on it, and
then the associated P-tree. Note that no coefficients appear in this
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sum, but as illustrated in 9.11 below, there may be repetitions. This
functor induces an injective linear map

QT(OG N QT(ON :) QWOT
between the spaces of Q-valued functions, which in turn extends to an
algebra homomorphism
(U Q[[F € WQG]] — @HT € WoTH.

Theorem. 9.8. ([28]) The map Q[[I € myG]] — Q[T € mT]] is a
bialgebra homomorphism. Here the bialgebra structure on Q[[I' € 1G]]
is the one of 9.2; the bialgebra structure on Q[[T € mT]] is the one
explained in Section 2.3.

Proposition. 9.9. The bialgebra homomorphism Q[I' € 1G]] —
Q[T € my'T]] sends Green functions to Green functions.

This is basically because the inverse image of the groupoid G, is the
whole groupoid N,. Since V¥ is injective we conclude:

Corollary. 9.10. The Faa di Bruno formula holds for the Green func-
tion in the bialgebra of graphs.

We offer two examples to illustrate the significance of this result.

9.11. Example: nestings breaking symmetry. First we consider
the graph I' (with residue v = —):

Q

The graph I' has a automorphism group of order 8 (in G,), and thus
appears in the Green function with a factor %. Hence \If(%T) = éNl +
éNg + éNg + %N4. Now N, and N3 are isomorphic in N, so we can
also write the sum as %Nl + iNg + %N4, and these factors, %, i, % are
precisely the inverses of the orders of the symmetry groups of the three
objects in IN,,. What the example shows is the fact that symmetries of
a graph can be broken by imposing nestings, but the decrease in sym-
metry is precisely counter-balanced by the fact that a certain number

of isomorphic nestings appear in the fibre.

9.12. Overlapping divergences. The second example concerns a
graph with overlapping divergences. Consider the graph  (with residue
v =)
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{I}

The fibre over I' has three elements, denoted Ny, Ny, N3:

. S
. P

In this case 2 as well as the nestings Ny, N, N3 all have an automor-
phism group of order 2 (over v). The interesting remark in this case
is that the trees corresponding to the nestings N, and N3 are not iso-
morphic inside the fibre T, (although they are isomorphic as abstract
P-trees). The reason for this is the observation already made earlier
that the drawings of these trees, even with all the decorating graphs,
is not the full picture. Interchanging the two branches is only possible
over the non-trivial automorphism of v = —--. (In fact it is clear in the
drawings of nestings that the two nestings are not isomorphic for fixed
residue.)

APPENDIX

As an illustration of the content of Lemma 8.11, we check the identity
(21) (P®P)(AAy) = ADA,

by hand, where ® is the map from the classical Faa di Bruno bialgebra
F to the bialgebra of stable trees B that sends A, to G,,.

Recall that the coproduct of A4 in the classical Faa di Bruno bialge-
bra is given by

A(Ay) = Ay @ A1+ (3A° + 4 A3A1) @ Ay + 6 Ay A? @ Az + A ® Ay

In the bialgebra of trees we restrict for simplicity to the case of
stable trees, with colours I = {x}. Recall that there are no non-trivial
automorphisms in the homotopy fibre ,,T' of trees with n leaves, so the
relative cardinality is

Gn = Y Or/Aut,(T) = > o
TGTK‘Q(nT) TGTK‘Q(nT)

The relative cardinality g,, of the full subcategory of trees with n leaves,
which has fewer isomorphism classes, satisfies

gn = G, /nl.

We draw a tree for its corresponding symbol d7, and identify symbols
for trees in T' € my(,, T), if the trees coincide in 7'T. The total Green
function is

G=G1+G2/2+G3/6+Gyq/24+ ...
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where
Gi=|
Gy=Y
Gs =Y +3Y

G4:V+6V+3V+N+my

The comultiplication applied to G4 is then, by definition,
AGi=1"@Y +Y o
+6<|4®YV+YV®I +|2Y®Y)

+3 <|4®V+V®I+Y2®Y+2|2Y®?/)
+4 <|4®?V+?V®I+IY® Y)
112 (|4®?y+?y®|+l?/® Y+|2Y®?{)

The first two columns are simply Gf ® G4 and G4 ® G, respectively.
Less obvious is the simplification that occurs in the third column and
the fourth column:

(3-Y2+4-|\|/+12-N/) ® Y = (3G3 + 4G1G3) ® Gy,

1Y @ (6-Y+3-2-?’+12Y/) = G2G, ® 6G3.

Thus we have shown that
AGy=Gi® G+ (3G* +4G3G1) ® G2 +6G2G1* ® Gs + G1* @ Gy,
and the relation (21) holds.
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