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Abstract 
 

Insulated gate bipolar transistor (IGBT) power semiconductors are widely employed 

in industrial applications. This power switch capability in high voltage blocking and high 

current-carrying has expanded its use in power electronics. However, efficiency 

improvement and reducing the size of products is one of main tasks of engineers in 

recent years. In order to achieve high-density power converters, attentions are focused 

on the use of fast IGBTs. Therefore, for achieving this desire the trend is designing 

more effective IGBT gate drivers.  

In gate drive (GD) controlling, the main issue is maintaining transient behavior of the 

MOS-channel switch in well condition; when it switches fast to reduce losses. It is well 

known that fast switching has a direct effect on the efficiency improvement; meanwhile, 

it is the major reason of appearing electromagnetic interference (EMI) problems in 

switched-mode power converters.  

Nowadays the most expectant of an active gate driver (AGD) is actively adjusting 

the switching transient through simple circuit implementation. Usually its performance 

is compared with the conventional gate driver (CGD) with fixed driving profile. As a 

result a proposed AGD has the capability of increasing the switching speed while 

minimizing the switching stress. Different novel active gate drivers (as feed-forward and 

closed-loop topologies) have been designed and analysed in this study. To improve the 

exist trade-off between switching losses and EMI problem, all effective factors on this 

trade-off are evaluated and considered in proposed solutions. Theoretical 

developments include proposed controlling methods and simulated efficiency of IGBTs 

switching control. The efficiency improvement has been pursued with considering EMI 

study in the proposed active gate controller. Experimental tests have been conducted 

to verify the design and validate the results. Beside technical aspects, cost study has 

also considered in the closed-loop GD. The proposed gate drivers are simple enough 

to allow its use in real industrial applications. 
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      CHAPTER  

ONE 

Introduction  
 

 

This chapter outlines the main lines of inquiry on which this thesis research is 

engaged. It takes the reader from an introduction of the research field to the thesis's 

contents, through the hypothesis statements and the exposition of the specific 

objectives. 
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1.1. Research Topic 

Insulated gate bipolar transistor (IGBT) power semiconductors with antiparallel 

freewheeling diodes (FWDs) are widely used in industrial. In order to achieve high 

power density converters many researches have been assigned to the efficiency 

improvement through minimizing switching losses [1]-[5]. Fast switching is the known 

solution for minimizing the losses which has encouraged engineers to design 

proportionate gate drivers. However, increasing switching speed imposes electrical 

stress on the device and also it is the major source of electromagnetic interference 

(EMI) in switched-mode power converters [6, 7]. Therefore, the exist trade-off between 

switching losses and EMI generation should be considered in GD designing. It will be 

more challenging when we are dealing with IGBTs which operate at high frequency 

under hard switching conditions. 

Several factors for designing the IGBT gate driver are effective. In GD design, the 

most challenging task is the definition of diC/dt and dvCE/dt rates that are independent 

of other effective factors such as junction temperature, parasitic inductance, load 

current value and the coupled DC-link voltage etc. [8]. However, using a static gate 

resistor (Rg); in the drive circuit is known as a conventional solution for the switching 

control [8], [9]. The result of using conventional gate drive (CGD) is a sub-optimal 

compromise, which has an undesirable effect on the switching speed and switching 

losses of the IGBT. To overcome the inherent ineffectiveness of the CGD, many active 

gate control (AGC) have been reported [8]-[26].  

Among the reported driving methods, the gate charge control by active gate voltage 

controlling or by active gate current driving are effective solutions [27]-[29]. This 

technic has been considered as a main control method for gate driving. The method 

has been developed through first as feedforward and then closed-loop controllers. 

1.2. Research problem 

 The first problem in this research is related to switching transient behaviour of 

the IGBT. Overshoot cancelation in current (iC) and voltage (vCE) and 

elimination of oscillations are known issues for any control system. Many 

controlling methods were reported in scientific articles to improve the dynamic 

behavior of IGBTs current and voltage in switching time [10]–[29]. In fact, a 

proper AGC has significant benefit for IGBT from life time aspect [30] and it 

prevents to generate some noises in high frequency orders. In addition, the 

presence of oscillation potentially provokes some parasitic issues such as 

crosstalk problem in normal operation of converters [31, 32]. 
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 Controlling the slope of collector current (diC/dt) and collector-emitter voltage 

(dvCE/dt) to keep them in desired value independent of effective-variable 

factors; such as junction temperature and load variation, is the main concern of 

GD designing. Determining a proper diC/dt in turn-on and dvCE/dt in turn-off 

conditions depend on the trade-off between switching losses and electro-

magnetic interference (EMI) problem.  

 Efficiency improvement. As regards, the conductance loss is not depends on 

GD and it highly depends on physical feature of IGBT, hence; reduction of 

switching losses in both condition (EOn and EOff) is a real solution for efficiency 

improvement. To achieve this goal, fast switching is a single possible solution 

which makes switching time smaller. However, the fast switching increases EMI 

problem that is another concern. 

 EMI problem. In real condition, a stray inductance (LS) exists in the designed 

circuit and its value mainly depends on the designed PCB layout [33]. This 

undesired factor provokes some overshoot (and potentially oscillations) in both 

current and voltage profiles. On the other hand, fast switching and higher rate 

of diC/dt and dvCE/dt intensifies these transients. 

 Despite a suboptimal performance of conventional GDs, they are simple 

enough to attracting industry confidence. In recent decays many perfect and 

novel GDs have been presented [8], [33]. However; using such controllers 

increase the cost and complexity of the GDs circuit. Designing a simple and 

more effective AGD which can compete with CGD is one of main problems in 

this research. 

1.3. Hypotheses 

In order to address the presented research problems, the following hypotheses 

have been mentioned as a starting point for this research work: 

 Designing mathematical and electrical model of an active gate controller for 

IGBTs under various load conditions will be necessary for simulation. In 

addition, the simulated AGD method will be developed based on application 

based concerns. 

 Both switching losses and EMI phenomena affected by applied AGD will be 

considered in the evaluations. The inherent trade-off between efficiency and 

EMI must be improved by new AGD then the obtained results will be compared 
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to conventional gate drive (CGD) methods. The simulated studies will be 

verified by experimental tests in MCIA laboratory.  

 An optimal AGD can be adjusted for Silicon Carbide (SiC) technology 

MOSFETs as new application. The designed optimal AGD will be validated in 

experimental environment. 

 The presented AGD in feed-forward control method will be developed in close-

loop control system as a self-tuned AGD for improving the performances of the 

power switch. The optimal design of closed-loop AGD is feasible in simulation 

and real test-bench.  

In conclusion, applying new AGD (as feed-forward and close-loop) on high power 

converters is possible under different load characteristics. Thus, for a high density 

power converter an efficient and robust AGD will be designed. 

1.4. Aims and objectives  

Covering the mentioned problems of section 1.2 are the main objectives of this 

dissertation. In general terms, the final goal of this thesis is to develop a controlling 

system for gate driver of IGBTs and to evaluate switching transient behavior and 

efficiency with respect to EMI issues. In the following these objectives will be explained 

in more details: 

Objective I:  

To propose an effective gate driver for IGBTs. Proposed controllers should be 

designed to improve the switching transient behaviour. It means, overshoot and 

oscillations should be reduced in the profiles of current (iC) and voltage (vCE). 

For performance evaluation, the obtained results must be compared to 

conventional gate drivers (by changing Rg). This is a main objective that is 

considered in chapter 3, 4 and 5 of the dissertation. 

Objective II:  

The proposed GD should be developed to improve the exist trade-off between 

efficiency and EMI. Both subjects should be considered in the performance 

evaluation of the driver. The proposed controlling concept should be able to 

embed on feedforward and closed-loop control topologies. In each control 

format, improving the mentioned trade-off is the main objective. This objective 

will be discussed in chapter 3 (for feedforward GD) and chapter 5 (for closed-

loop GD) of the dissertation.  
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Objective III:  

The developed GD controls the diC/dt and dvCE/dt. Controlling switching 

transient behavior continuously independent of effective-variable factors; such 

as junction temperature and load variation, is one of the main objectives of this 

dissertation. This objective will be faced in chapter 5 of the dissertation. 

Objective VI: 

Other important objective is achieving a cost-effective and a simple controller 

with respect to the robustness factors. Therefore, cost study should be 

considered in the analysis. This objective briefly has been evaluated in chapter 

5 of the dissertation. 

Objective V: 

The optimal tuning of new AGD and then applying on SiC technology of 

MOSFET is other important subject that Chapter four is dedicated for this 

purpose. The performance index evaluation in each chapter will be considered.    

1.5. Research Methodology 

To use the available and appropriate scientific sources and building the state of the 

art was the first step. Proposing possible solutions for the considered problem was the 

next step. Implementation and achieving experimental results in order to derive proper 

conclusions was other important stage, and finally, publishing the conducted study, 

and its results. 

Thesis supervisor is in charge of overseeing this project development, providing 

technical and scientific support. Weekly / monthly or unscheduled meetings have been 

held with him.  

Review and analysis of state of the art was a continuous process. The theoretical 

and mathematical models were developed by simulations. According to the obtained 

results from conducted simulations, appropriate strategies and new active gate control 

methods were proposed.  

Getting experimental resources in laboratories of MCIA research center in Terrassa, 

based on simulation results, was the advanced level of verification.  

Finally, the results of experimental test helped us to improve and to fine the 

controllers and technical developments and all led to publish several papers and 

writing the current thesis. 

The schematic of the research methodology regarding to main objectives is 

depicted in below diagram. 
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IGBT Modelling 

Proposal Thesis

New Feedforward AGD

 Switching Efficiency vs EMI 

Test and Validation

 Simulation & Experimental 

Feedforward AGD

 Optimal Tuning – SiC MOSFET 

Test and Validation

 Simulation & Experimental 

Closed-Loop AGD

 Switching Efficiency vs EMI 

Test and Validation

 Simulation & Experimental 

Figure. 1.1 Research Methodology Scheme 

1.6. Chapter descriptions 

A general review on different controlling algorithms is conducted in chapter two. The 

basics of active gate drivers and IGBT modelling are explained, and a brief review on 

different gate drive control methods for IGBTs is presented. Effective parameters in 

IGBT gate drivers and also EMI will be explained in this chapter. In addition, 

POSICAST controller as a primary idea is briefly reviewed. This idea will be developed 

and will be the basic concept of the proposed GDs. 

In chapter three, a novel feedforward GD will be proposed to drive of IGBTs. The 

investigation has been limited to turn-on switching condition. In this chapter the 

performance of the proposed GD has been evaluated from switching efficiency and 

also EMI aspects. In this study, the concept, principles, and structure of the proposed 

control method will be provided and then, the performance of new GD will be 

evaluated by simulation and experimental results. The impact of the temperature on 

the proposed open-loop controller are presented as well. The EMI generation of the 

new gate driver will be compared with the conventional driver. The chapter closes with 

a discussion of presented controller and conclusion. 

Chapter four proposed a new feedforward GD based on what has been presented in 

previous chapter. This chapter involves the entire switching condition (turn on/off), and 

the GD has been applied on SiC base technology of MOSFET. The conventional GD 

still is the base of comparison for the evaluation in this chapter. 
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A new closed-loop gate driver for improving switching trajectory in IGBTs will be 

presented in Chapter five. The proposed closed-loop gate driver is based on an active 

gate voltage control method, which deals with emitter voltage (VEe) for controlling diC/dt 

and it gets feedback from the output voltage (vCE) in order to control of dvCE/dt. The 

sampled voltage-signals modify the profile of applied gate voltage (vgg). As a result, the 

desired GD improves the switching transients with minimum switching loss. The 

operation principle and implementation of the controller in the GD are thoroughly 

described. It can be observed that the new GD controls both dvCE/dt and diC/dt 

accurately independent of the variable parameters. The new control method is verified 

by experimental results. The known trade-off between switching losses and EMI is 

improved by this simple and effective control method. 

In Chapter six, the thesis work is analyzed from a general point of view, and the 

conclusions and contributions are clearly exposed. 

Finally, the publications and collaborations resulting from the research work 

development are presented in Chapter seven. 
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In this chapter, a literature review is conducted on different aspects of IGBT gate drivers. These 

aspects include IGBT modelling, basic controlling methods of gate drivers, efficiency 

improvement methods and cancellation of EMI problems. Moreover, the basic ideas of proposed 

active gate controller are presented. After knowing the mentioned subjects, analysing the 

IGBT’s behaviour will be easy to understand. Also, the initial idea of proposed active gate 

controller will be presented to figure out the trajectory of the development. 
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2.1. IGBT Characteristics and Modelling 

2.1.1.   IGBT 

 
The Insulated Gate Bipolar Transistor (IGBT) is a semiconductor which inherently has combined 

from a Bipolar Junction Transistor (BJT) and a Field Effect Transistor (MOSFET). Thereby, it 

combines the advantages of MOSFETs and BJTs for use in power electronics and industrial 

circuits. The IGBT has inherited the best parts of these two types of common transistors. The 

high input impedance and high switching speeds of a MOSFET with the low saturation voltage 

of a bipolar transistor all in a semiconductor make it an attractive power switch. This hybrid 

combination makes possible to conduct a large amount of collector-emitter currents with 

negligible gate current. In fact, IGBT is an FET integrated with a BJT in a form of Darlington type 

configuration as shown in Figure. 2.1. 

 

Figure 2.1 the equivalent circuit of IGBT 

An IGBT is simply turned-on or turned-off by activating and deactivating its Gate terminal. 

Applying a positive input voltage signal across the Gate-Emitter bases (vGe) will keep it in active 

region or ON state. To turn-off the device, the Gate-Emitter bases get a zero or slightly negative 

voltage signal. So, as simple as MOSFET switching, IGBT can be switched. In addition, IGBT 

has much lower on-state channel resistance than a MOSFET which makes it more efficient 

because of lower conducted loss. 

Advantageously, IGBT only requires a small voltage pulse on its Gate to maintain conduction 

through Collector to Emitter, unlike BJT’s which require a continuously Base current that should 

be sufficient enough to maintain saturation. 

 

Unlike MOSFET, the IGBT is a unidirectional device, it means, the collector current (iC) only may 

flow through from Collector to Emitter. So, the current control is dedicated to the forward 

direction and the switch does not meet any reverse direction current. The advantage that 
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creates a better current profile in OFF switching condition (removing undershoot). Its 

consequence can be seen in the cancelation of EMI. 

In general, the advantages of using the IGBT over other types of transistors can be listed as; 

high voltage blocking capability, low resistance while ON state (RON), ease driving, fast 

switching and roughly zero gate drive current (ig). Thereby, IGBTs are attractive choice for 

industrial application like switch-mode power supplies or power converters which deals with high 

level of voltage and frequency.  

A general comparison between IGBT’s and BJT’s, MOSFET’s is presented in table 2.1. 

Table 2.1. IGBT Comparison  

Device 

Characteristic 

Power 

BJT 

Power 

MOSFET 
IGBT 

Voltage Rating High <1kV High <1kV Very High >1kV 

Current Rating High <500A Low <200A High >500A 

Input Drive 
Current, hFE 

20-200 

Voltage, VGS 

3-10V 

Voltage, VGE 

4-8V 

Input Impedance Low High High 

Output Impedance Low Medium Low 

Switching Speed Slow (uS) Fast (nS) Medium 

Cost Low Medium High 

2.1.2. IGBT Modelling 

Since 1985, most of IGBT models have been presented in scientific articles. Mainly they 

categorize based on the modelling method. Here the models are categorized into three different 

classes. Although the most of published IGBT models are developed for simulation of IGBT 

behaviour in circuits, some models like mathematical models are developed for analysing 

device operation mechanism. Such models mainly have focused on the device structure 

understanding.  

The classified models are mentioned below: 

2.1.2.1.  Mathematical Model  

It is an analytical models based on semiconductor physics. The physical properties have 

expressed by mathematic equations. The expressions describe the electrical behavior. Layer by 

layer all parts in IGBT are described by mathematic equations. The obtained equations can be 

implemented into various simulators to emulate IGBT behavior for different applications. 

Numerous early IGBT models were based on IGBT physics. The first time, IGBT Turn-off 

characteristic was modeled by Baliga [7], [8].  This analysis for IGBT behavior is a common 
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method and a recently complete physics-based analysis IGBT circuit model has been presented 

[9], [10]. This kind of modelling has a better accuracy but is more complex in parameter setting 

and model analysis.  

2.1.2.2.    Hefner Model 

Hefner [13]–[16], developed the mathematical model as a combination of MOSFET and BJT 

(the equivalent circuits of that in reflected in figure 5.2). Although by Kuo et al [11], [12] the 

configuration was validated with discrete MOSFET and PNP transistors at turn-off, under 

resistive load condition. However, this model is not comprehensive for simulation because the 

MOSFET part, that is critical in transient simulation, has not been involved. The model was 

enlarged to a punch-through structure and a dynamic electro-thermal model [17], [18] as well.  

Similar to Hefner model, Kraus presented an interesting model. Although the both Hefner and 

Kraus models were experimentally verified, a direct comparison of the two methods has been 

presented in [19]. Due to the Hefner model depends strongly on the redistribution of charge into 

the drift region during switching, while the Kraus model mostly relies upon the process of charge 

extraction from the drift region by the electric field [20]. The conclusion is that the both models 

cannot be compared theoretically, and it is difficult to say which one is more realistic. In [19], a 

comparison of both models against experiment was done, the results showed that the Hefner 

model was found to be the more adaptive with experimental results and more robust as well. 

The Hefner model was also less sensitive to the inputs; for this reason, it was more challenging 

to extract the parameters for the Kraus model. 

Gradually, Laplace transforms of the carrier transport equations were applied into an electrical 

sub-circuit to model the IGBT. Actually, Hefner method compromises between precision and 

simple of implementation. However, Hefner model is highly based on IGBT’s physical structure 

which includes of a MOSFET and PNP. 

2.1.2.3.  Behavioral Model (Micro-Model) 

The Hefner model relies on IGBT’s physical structure. The Hefner model needs some physical 

parameters such as the drawn channel width and the drawn channel length parameters. Micro-

model simulates IGBT behaviour without attention its physical structure. The requirement IGBT 

characteristics are applied by different ways. The resultant expressions, databases or 

components are then used in a simulator to model the IGBT. It consist IGBT electrical 

characteristics, thermal characteristics and etc. The micro model has simplified the IGBT’s 

behaviour as a current source in a core. In [21], IGBT output characteristics were modelled by 

parasitic capacitors and current source. The nonlinear capacitors values and source current 

were obtained from an IGBT database. Specific characteristics of the IGBT that the previous 

sub-section has considered them are normally neglected in this category. 
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2.1.3. Effective Parameters in Gate Drivers 

A gate driver provides the switching condition for IGBTs through applying a proportional voltage 

signal to the Gate-Emitter. Of course, it makes the required isolation for separating the control 

signals from the power side as well. The most important task for a GD is turning-on and turning-

off the IGBT under proportional rates of diC/dt and dvCE/dt independent of the load effects [22]. 

To design an optimized GD, it is necessary to know which parameters have effect on the IGBT 

driving. This survey should be done with respect to below concerns. 

 IGBT losses 

 Reverse recovery current of the freewheeling diode 

 Current overshoot in turn-on  

 Voltage overshoot in turn-off  

 EMI 

The state of the art continues by describing the effective parameters on switching trajectory. 

2.1.3.1 Gate Resistor (Rg):  

Driving through changing the value of the gate resistor (Rg), cf. Fig. 2.2 is a very simple GD 

technique which widely has been used in industrial. This approach is known as conventional 

gate driver (CGD). The current and voltage waveforms at hard switching are highly depend on 

the values of Rg,on/off. The GD with low resistors leads to increase absolute values of the gate 

current ig, hence, IGBT switches quickly. Although that may create transients consequently, 

however, fast switching has benefit in enhancing the efficiency because of small switching time 

(reducing switching loss) [1]. Switching transients in current and voltage generates Electro-

magnetic Interference (EMI) issues. This subject is explained in 2.3 part in detail. 
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Figure 2.2, Equivalent circuit for hard switching including a push–pull gate driver. Ls represent 

the sum of the dc-link. (The figure retrieved from ref. [22]). 

As shown in figure 2.3, both turn-on and turn–off modes are faster switching by lower RG,on/off in 

compare with second condition which has higher RG,on/off. The achieved advantage at fast 

switching results a lower efficiency. On the contrary, by slow switching we can see a low peak 

reverse recovery current (irr), low turn-off overvoltage (vov) and low EMI in consequence. 

  

Figure 2.3, Typical current and voltage waveforms at hard switching by means of a push–pull 

gate driver during turn-on and turn-off using small 1) or large 2) gate resistors Rg,on/off. The 

figure from [22]. 

A technique for determination of gate resistance (Rg) value has been presented in [25].  The 

study was based on the analysing the equivalent circuit of a simple IGBT model. The extracted 

equations are mentioned below. 

Equation 2.1     

  gg
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GeV V
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
 
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Equation 2.2     
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The equations show that the gate resistor may change the absolute value of the gate current ig, 

which affects to the transient behaviour of both voltage and current in output. 
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2.1.3.2 The applied gate voltage signal (vgg):  

As can be seen in Eq. 2.1, the voltage value of gate signal is another effective factor to 

influence on gate current and switching behaviour. In fact, changing the voltage value of vgg is 

other method to drive the IGBTs. Some benefits of this control method have been reported in 

articles [26], and some others evaluated the effect of this method on the junction temperature of 

the switch device [27]. However, the voltage value of the vgg is an effective parameter on the 

transient behaviour of IGBTs. 

2.1.3.3 Stray inductance (LS):  

Stray or parasitic inductance LS exists in all circuit paths and connectors. Figure 2.2 shows GD 

and the current path in the IGBT, the anti-parallel diode and stray inductance. In all paths and 

tracks of a circuit, the parasitic inductance can be gotten a value. However, as was assumed in 

[28] a single symbol is enough to present the total value of stray inductance in a circuit; so, LS is 

an equivalent value for whole parasitic inductance. 

The effect of stray inductance on the switching transients can be seen in below equations. 

Equation 2.4     
,

ic
CE ov s

d
V L

dt
 

 

Equation 2.5     

DC C

S

Edic V

L

V

dt




 

Equation 2.6     

c
rr rr

di
i Q

dt


 

Equation 2.4, shows the direct effect of LS on the turn-off overvoltage VCE,ov. At turn-on, LS 

affects to the diC/dt and consequently the peak reverse recovery current is being influenced by 

this factor. Equations 2.5 and 2.6 approve the role of this undesirable factor on IGBT switching.  

The elimination of stray inductance more than any other factor depends on the art of the 

hardware engineer while designing printed circuit board (PCB). The position of components, 

length and width of tracks, vicinity of DC routes with AC parts, the class of protection and martial 

of PCB all have a great effect on the value of this problematic parameter [28]-[30].  

2.1.3.4 The inner parasitic capacitors (CGE, CGC and CCE):  

In order to produce high density power converters, operation in high frequency with fast 

switching is a necessity. In such condition one of the effective parameter in switching transients 

is inner parasitic capacitors of an IGBT. We know that the presence of parasitic capacitances in 

semiconductors is unavoidable and typically their values depend on the physical features. So, 

sometimes the proper selection of switch device is even effective than designing a good gate 

driver. The parasitic capacitance consists of the input capacitance, the reverse transfer 
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capacitance, and the output capacitance is expressed in [31]. The relations of inner capacitors 

between each other are presented in below equations.  

CGC

C

G

E

CGEVGe CCE

ic ICE

IGE

ICG

 

Figure 2.4 Micro-model of an IGBT model  

Equation 2.7      iss GE GCG C C   

Equation 2.8      rss GCC C  

Equation 2.9      oss GC CEC C C   

Where, in the inner parasitic capacitors; Ciss is IGBT input capacitor and Crss is IGBT reverse 

capacitor. Also, the output capacitance (Coss) and Miller capacitance (CGC) roles are clear in 

above-mentioned expressions. 

2.1.3.5 Junction temperature (TJ):  

The change in junction temperature (TJ) of an IGBT may varies the characterises of an IGBT 

such as threshold value of gate-emitter voltage (vGe,th), injected gate current (ig) and the nominal 

value of collector current (iC) and collector-emitter voltage (VCE). This can be a disturbance for 

operation of some gate drivers or at least it makes some extra consideration for controller 

designers. 

Also, TJ it is an essential parameter in determination of optimal point and reliability of an IGBT. 

So, the junction temperature should be considered in the power loss calculation and the 

analysis. The power losses in the converters can be classified as either conduction losses or 

switching losses. This classification depends on the thermal characteristics of the device [32]. 

Due to thermal capacitance, the transmission of thermal energy is not an instant parameter. The 

transfer time is related to the heat capacity, therefore, can be assumed that the thermal loss 

time is constant.  
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When the constant time (𝜏) is almost small, Eq. (2.10) is a roughly good approximation, where 

the heat capacity (CS) of the thermal transfer path and can be calculated from Equation (2.11). 

Equation (2.12) demonstrates the momentum value of a transient junction temperature. The 

equivalent electrical circuit for the transient case is illustrated in Figure 2.5 (a). The temperature 

variation induced by the transient heat transfer and the single-pulse power loss are shown in 

Figure 2.5 (b).   

Equation 2.10      𝜏 = (π.Rt.Cs)/4 

Equation 2.11      Cs = CV. A. d 

Equation 2.12      Tj(t) = Ploss [4t/(π.Rt.Cs)]0.5+Ta 

 

 

Figure 2.5 Equivalent electric circuit of temperature transient case and trend of temperature 

variation  

When starting and in emergency steering, there are many changes in power consumptions. 

Because the time required for heat transfer is longer than the transition time, the junction 

temperature will increase rapidly. Equation (2.13) provides an approximate (the coefficients can 

be obtained from the manufacture’s datasheet): 

Equation 2.13   TJ=PDM×ZthJC+TC    

Where TJ is the junction temperature, PDM is the transient power loss, ZthJC is the transient 

thermal resistance, and TC is the ambient temperature. The transient pulse power is an 

important factor for calculating the transient temperature. The transient single-pulse power loss 

can be obtained from the manufacture’s datasheet and the operating procedures.  
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2.1.3.6 Load variation: 

The load variation is the main problem for passive and feedforward gate driver controllers [22]. 

This factor affects to the transient behavior of IGBTs. Especially in hard switching condition 

when IGBT operates under inductive loads, preserving the dvCE/dt and diC/dt in proportional 

slope rates is a serious issue for having EMI standards [33]. Moreover, the load and its 

demanded current have significant effect on the Miller plateau area in IGBT while turn on/off 

transients [34]. So, the load variation in value and feature may vary the switching times 

including turn-on/off delay time, turn-on/off rise/fall time and active/inactive region times. These 

changes may lead to appear cross-talk sometimes. 

 This factor like previous part may change IGBT’s behaviour in gate side and all previous 

concerns are valid for this case as well.  

2.2.  Classification of Gate Drivers 

In this part, the gate drivers are classified into three different categorizes. The classification 

subdivided into passive, open-loop and closed-loop control methods. The advantages and 

disadvantages of each one of them are discussed. 

2.2.1 Passive Feed-Forward Control  

Feed-forward controllers are individual adjustable drivers to regulate of diC/dt and dvCE/dt. Figure 

2.6 is a simple instance of feed-forward controller for AGD of IGBT based on push–pull gate 

driver circuit. This method mainly controls the gate of an IGBT through applying an external gate 

resistor of external capacitors i.e. CGE and / or a CGC. The applied extra CGC reduces the value 

of dvCE/dt and the insertion of an extra CGE slows down the diC/dt [35]. Simple structure and low 

complexity and also cheapness are the most important advantages of the feedforward 

controllers. However, the traditional version of this approach deals with longer switching delay 

and more switching losses [36]. The other scenario for gate driving by feed-forward method is 

the adjusting of the shape of applied gate voltage (Vgg) [37]. This type of gate driver applies 

passively generated voltage slope to the Gate while turn-on condition. In fact the slope rate of 

diC/dt is defined by the specific slope of the gate voltage. This strategy is the same for 

controlling the gate-emitter voltage. So, a specific dvCE/dt can be controlled by a specific slope 

of gate voltage signal. 

This control method for solving some particular problems, according to its simple structure can 

be a candidate for GDs. 

2.2.2. Open-Loop Control  

An open-loop control is a stand-alone controller which could be applied in GDs for keeping gate 

current under control. This control method includes three different solutions: standard gate 
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driving (by employing switchable or adjustable gate resistors) [38], [39] see Fig 2.6, current-

mode gate driving (gate current control) [40]-[44] and voltage-mode driving (gate voltage 

control) [45]. 

 

Figure 2.6 Gate drivers with an adjustable output stage by (a) switchable gate resistors and (b) 

switchable gate voltage or gate current source featuring discrete resistances / voltage / current 

levels. 

In this method to control IGBT behaviour, the switching transients are subdivided into different / 

specific intervals based on each stage of switching behaviour. The open-loop controller applies 

its effect on a specific interval/s according to its scenario. Normally, this control method 

operates based on a fixed profile [46], an operating point dependent action [38], [47], or by 

getting feedback from the switching transients [34], [39], [48]. 

The main drawbacks of all passive and open-loop controllers are their disability to following 

circuit variations and their independent function regarding to the load and/or temperature 

variation. On the other hand, the tuning of an open-loop controller is more difficult because of its 

high sensitivity to defined parameters values. So, closed-loop concepts with negative feedback 

are applied to achieve a more precise control. 

2.2.3. Closed-Loop Control  

Unlike the open-loop or passive gate driving controllers, a closed-loop gate driver adapts IGBT 

with various non-linearity parameters continuously [22], [49]. Since, the performance of an IGBT 

with open-loop or passive gate drivers is not optimal (without getting feedback from variable 
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factors and output data) some problems like longer switching delay, lower immunity for noises 

and higher switching losses are expectable. Also, a closed-loop AGC targets transient 

improvement in order to mitigate EMI issues with many different control methods [22], [26], [34], 

[48], and [49]. 

Moreover, in hard switching condition that the dynamic of changes in temperature and profiles 

of output voltage and current are roughly high, closed-loop gate drivers may perform a perfect 

control to ensure the operation of the IGBT in the safe operation area (SOA) [49]. However, 

such controllers deal with feedback signals which make them more complex than previous 

controllers. Although such GDs have been designed to guarantee the stability and SOA against 

the perturbations conditions however, their presence complicates the structure of GDs and 

potentially can be a concern from economic aspect as well.  

2.3. Electro-magnetic Interference (EMI) 

Electromagnetic Compatibility (EMC) is the ability of electrical and electronic systems, 

equipment and devices to operate in their intended electromagnetic environment within a 

defined safety margin, without suffering or causing unacceptable degradation as a result of 

electromagnetic interference (ANSI C64.14-1992). The standard classifies EMC into 

electromagnetic interference (EMI) and electromagnetic susceptibility (EMS). Figure 2.7 

demonstrates this classification with corresponding subclasses. In this thesis EMI is under focus 

which refers to disruptive electromagnetic energy transmitted from one electronic device or 

equipment to another. EMI emits its effects as: 

• Conducted emission when it is propagated along a power line 

• Radiated emission when it transmitted through free space 

EMS represents the immunity factor against perturbations like electrostatic discharge (ESD), 

electrical fast transient (EFT), burst capacitive, surge immunity and electromagnetic waves [50]. 
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Figure 2.7, Electromagnetic compatibility diagram 

 

Power switches like IGBTs that have high dv/dt and di/dt rates are the main source of EMI [51]. 

Other sources for EMI are; microcontrollers (MCs), transient power components i.e. 

electromechanical relays and lighting.  

As mentioned in the diagram, the EMI problem has been subdivided into conducted emission 

and radiated emission. In the case of conducted emission two mechanisms cause this noise 

which are the differential mode (DM) and common mode (CM) Noise. Conventionally, the DM 

noise is caused by switch current which only flows at the connecting line [51]-[53]. The high rate 

of diC/dt in turn-on condition may generate this phase of conducted emission.  The source of the 

CM noise is related to high rates of dv/dt in turn-off condition. Also, the parasitic capacitors 

between device and the ground are other reasons for the advent of CM interferences [52] and 

[53]. As a result, in both switching conditions we should observe EMI consideration.  

The standard [CEI EN 55022] limits the conducted emission noise in 150 kHz to 30 MHz 

frequency rang. This specification includes both industrial (class A) and domestic (class B) 

devices. The limits for conducted quasi-peak and average value emission are demonstrated in 

Fig 2.8. Although the conducted emissions are expressed as noise currents, they are measured 

in voltages as dBμV.  

As can be seen in the figure, if each of quasi-peak and average emission values exceed from 

their defined limits the result of the conducted emission test will be failed.  Of course we should 

consider the class (A or B) of the device under test (DUT) in our evaluations. 

The other aspect of switching noise in EMI is radiated emission. All electronic components can 

emit electromagnetic fields. The emission of unwanted electromagnetic energy in the space 

may cause interference in the normal operation of a device with itself or with its adjacent 

devices [54]. The phenomenon which is known as radiated emissions can be measured through 

the disturbance power test. The corresponding standard [CEI EN 55014-1] for disturbance 

power test specifies the limits (in dBpW) in 30 MHz to 300 MHz frequency range for both quasi-

peak and average values. Fig 2.9, shows the defined limits by standard. The presented limits in 

the figure are for household. 

 The frequencies above 30 MHz mainly are radiated by the power lines. Therefore, the 

disturbance power test can be measured via the power supplied by electrical equipment (in 

standard test condition) [54]. 
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Figure. 2.8 Conducted emission limits [54] 
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Figure. 2.9 Disturbance power limits for household based on EN 55014-1 standard 

2.4.  Control Methodology Approach 

To find a proper solution for solving the mentioned problem in IGBT driving control, many 

control methods were studied. To find or creation of the desired controller, it must have same 

characteristics such as simple structure, applicable into GDs, flexible to use it as feedforward 

and closed-loop controllers, known as a robust controller and effective for cancelation of 

overshoot and oscillations.  

POSICAST control method had all above features, so, the initial studies were done based on 

this control method. In this part, before introducing the concept of this controller, a brief history 

of POSICAST in different electrical and electronic applications is presented. The objective is 

better knowing this controller and its presence in science and industry. 

2.4.1. An introduction for POSICAST control 

The POSICAST control method first was presented by Prof. Otto J. M. Smith. He described its 

basic principles in 1957 [55]. Then it became as a real solution for damping oscillations in 

mechanical systems and then after a decay in electrical systems [56]–[60]. The first case 

studies for this controller were related to mechanical applications; however, recently 

POSICAST-based feedback control has been used in the field of power electronics and 

electrical engineering. Reference [61] has proposed a digital POSICAST-based controller for a 

buck type DC-DC converter in order to obtain the advantage of POSICAST superior damping 
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qualities while reducing the sensitivity of classical feed-forward POSICAST. In addition, rather 

than a conventional (two-step) POSICAST, a three-step compensator based on the POSICAST 

concept has been presented in [62]. As a combination approach for damping of PWM current 

source rectifiers, this approach also was carried out in [63] for shaping the modulation signals 

for high switching frequency DC-DC converters, inverters and PWM rectifiers. For compensating 

the voltage sags and damping of high frequency oscillations at medium voltage of distribution 

system, an investigation of Dynamic Voltage Restorer (DVR) transient response was presented 

in [64]. Also, this study employed POSICAST into the closed-loop control for damping 

resonance problem. Recently, this controller has been introduced as a simple and effective 

solution for oscillation damping and improving dynamic behaviour in electrical power systems 

[65–68] as well.  

Summarizing, the POSICAST is a feedforward controller which has been selected as a potential 

approach for active gate drivers. However, it has also been used in the topology of some 

closed-loop controllers. Despite its simple structure, the performance of this controller in 

damping the oscillations is highly effective.  

2.4.2. The basic concept of POSICAST  

POSICAST is an effective feed-forward control method that damps disturbance-based 

oscillations in a well-tuned condition. This control method has enough capability to offer a 

transient response with deadbeat reflection.  

The concept of POSICAST control can be described with an example. As illustrated in Fig. 2.10 

we assume the moving a pendulum weight suspended by a string attached to a gantry. The 

heavy ball in the beginning has stayed at position ‘1’. The objective is to move the ball from the 

beginning position to position ‘3’ without any unwanted oscillations in final position. In fact, 

because of the inertia law a rigid mass in an instant relocation will have some oscillation 

(depending on the weight and speed of the movement) around the final point. POSICAST 

solves this problem with applying a stop before destination. The duration and location of this 

stop is important to stay in the final destination without fluctuations. That way, first we should 

realize that in which point of the way the ball should stop till the ball reaches to position ‘3’ in its 

maximum point of swing (finding position 2. see Fig. 2.10). Then we should know how long time 

it necessary to stop in position ‘2’. However, as the bob reaches position ‘3’, the gantry 

immediately moves again to position ‘3’. As a result, the heavy ball will rest at its final position 

with minimum deviation [69]. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          39 

 

Figure. 2.10 Sequence of movements in a gantry problem 

2.4.3. The principals of POSICAST controller 

As mentioned before, Posicast is a feed-forward control that damps transient-based oscillations. 

Fig. 2.11 demonstrates an analytical form of Posicast response. The overshoot in the response 

is defined by two parameters: first “Td”, which denotes the time of the underdamped response 

period; and then “1+δ”, which is the peak value of the overshoot. The δ denotes the normalized 

overshoot factor that ranges from zero to one [70]. Posicast divides the step-reference signal 

into two separate parts. In the classical half-cycle Posicast, which is shown in Fig. 2.12. The 

controller first subtracts a scaled amount from the input signal (in the lower path). Consequently, 

the peak of the lightly damped response coincides with the desired final value of the system 

response. The time of the peak step-response is equal to one-half of the natural damped period 

(Td/2). This path makes a time delay. Then, the original value of the input step signal is applied 
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to the system (in the upper path). Finally, the output remains at the desired final value. The 

system output is shown in Fig. 2.11 (solid line); the uncompensated output is also shown for 

comparison (dashed line). The Posicast is an open-loop controller; therefore, it has high 

sensitivity to the parameter variations or any mismatch problem. In some researches this 

weakness was compensated by applying a feedback into the controller [71]. 

 

Figure 2.11 Step-response of lightly damped system 

 

Figure 2.12 Open-loop half cycle Posicast 

2.5. Conclusion 

In preliminary studies, POSICAST feedforward controller was embedded into the gate driver of 

IGBT. The studies first were done by simulation analysis. The test circuit is shown in Fig. 2.13, 

where Posicast controller has been connected to the GATE. A single stray inductance was 

assumed to present the total stray inductance of the circuit; then, Ls is the equivalent parasitic 

inductance. A half cycle Posicast control (see Fig. 2.12) was applied into the GATE. Also, an 

inductive-resistive load by connection with an antiparallel diode has applied to the circuit. The 

test condition for the circuit is selected as Vcc=600v, Ic= 20A, Vg=  15 v, Rg= 1Ω and LS= 

0.5µH. IGBT is switching in 20kHz frequency. The simulation is done in Simulink/MATLAB by fix 
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step time (t=1e-10 sec). All technical characteristics and parameters of IGBT model are based on 

N-channel IGBT of NGTB20N60L2TF1G. 

Vgg

Vdc

POSICAST

IGBT

LS

Load

D

L

 

Figure 2.13. Topology of test circuit with Posicast controller in gate driver 

As described in previous section, to design the Posicast controller only two parameters should 

be determined. First, the elapsed time of overshoot and the second parameter is the overshoot 

value. These parameters are obtained from the IG dynamic behavior (incl. second interval) in 

first turn-on switching, which are listed in table 1. Normally, in a specified condition, these 

transients are happening continuously. 

Table 2.2 Parameters obtained from first IG turn-on overcurrent 

Parameter Value Unit 

δ 0.34 Per unit 

Td /2 0.9 Nano Sec 

The minimizing IGBT losses (through as much as fast switching) besides minimum switching 

stress (it can be warranted by slow switching) has almost always been a main purpose for gate 

driver designers. To achieve such trade-off, in this survey, suppressing diC/dt overcurrent by 

gate current controlling has been chosen as a solution.  

As reported in many articles [55], [56], [66], [68]-[71] an open-loop half cycle POSICAST is a 

very sensitive solution. It means, its performance is highly dependence on the accuracy of the 

tuning. As can be seen in Table 1, to create 0.9 ns delay (in real test-bench) is a tough goal. 

Except the feasibility issue, many environmental factors potentially may affect to the created 

delay time.  

On the other hand, the internal second order behaviour of IGBT is negligible. The step response 

appeared in IGBT’s voltage and current (while switching) mainly caused by parasitic inductance 
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and/or capacitance of circuit’s paths. So, even assuming complete removal of internal factors, 

we won’t see significant improvements practically.   

Hence, although POSICAST became as an inspirational way to design of gate driver however, 

this method was not used in the development process.  

In the next chapter, feedforward control methods with respect to mentioned concerns are 

presented.  

2.6.  References 

[1] Application Manual Power Semiconductors. E-Book. 2012. 

[2] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love, and N. Zommer, “Insulated gate rectifier 

(IGR): A new power switching device,” in Proc.Tech. Dig. IEDM, 1982, pp. 264–267. 

[3] K. Sheng, B.W. Williams, and S. J. Finney, “A Review of IGBT Models”, IEEE Trans Power 

Electronics, Vol. 15, No. 6, pp. 1250- 1266, Nov. 2000. 

[4] http://www.pwrx.com/pwrx/docs/cm750hg-130r.pdf 

[5] http://www.pwrx.com/Product/CM1500HG-66R 

[6] Databook, International Rectifier (IR), 1997. 

[7] B. J. Baliag, “Analysis of insulated gate transistor turn-off characteristics,” IEEE Electron 

Device Lett, vol. EDL-6, pp. 74–77, Feb. 1985. 

[8] B. J. Baliga, Modern Power Devices. New York: Wiley, 1987, pp. 353–387. 

[9] A.T. Bryant, Liqing Lu, E. Santi, J. L. Hudgins, P R. Palmer, “Modeling of IGBT Resistive and 

Inductive Turn-On Behavior”, IEEE Trans. Ind. App, Vol. 44, No. 3, pp. 904-915, May/Jun 2008. 

[10] P. R. Palmer, E. Santi, J. L. Hudgins, X. Kang, J. C. Joyce, and P. Y. Eng, “Circuit simulator 

models for the diode and IGBT with full temperature dependent features,” IEEE Trans. Power 

Electron., vol. 18, no. 5, pp. 1220–1229, Sep. 2003. 

[11] D. S. Kuo, J. Y. Choi, D. Giandomenico, C. Hu, S. P. Sapp, K. A. Sassaman, and R. 

Bregar, “Modeling the turn-off characteristics of the bipolar-MOS transistor,” IEEE Electron 

Device Lett, vol. EDL-6, pp. 211–214, May 1985. 

[12] D. S. Kuo, C. Hu, and S. P. Sapp, “An analytical model for the power bipolar MOS 

transistor,” Solid-State Electron., vol. 29, no. 12, pp. 1229–1237, 1986. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          43 

[13] A. R. Hefner, “Analytical modeling of device-circuit interactions for the power insulated gate 

bipolar transistor (IGBT),” Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Appl. Soc.), vol. 35, no. 6, 

pp. 606–614, 1988. 

[14] A. R. Hefner, “Improved understanding for the transient operation of the power insulated 

gate bipolar transistor (IGBT),” in Proc. PESC Rec.—IEEE Power Electron. Spec. Conf., vol. 1, 

1989, pp. 303–313. 

[15] A. R. Hefner, “An investigation of the drive circuit requirements for the power insulated gate 

bipolar transistor (IGBT),” IEEE Trans. Power Electron., vol. 6, pp. 208–219, Apr. 1991. 

[16] A. R. Hefner, “An investigation of the drive circuit requirements for the power insulated gate 

bipolar transistor (IGBT),” in Proc. PESC Rec.—IEEE Power Electron. Spec. Conf., pp. 126–

137, 1990. 

[17] A. R. Hefner, “Dynamic electro-thermal model for the IGBT,” IEEE Trans. Ind. Applicat., vol. 

30, pp. 364–405, Mar/Apr. 1994. 

[18] A. R. Hefner, “Modeling buffer layer IGBTs for circuit simulation,” IEEE Trans. Power 

Electron., vol. 10, pp. 111–123, Mar. 1995. 

[19] A. N. Githiari, B. M. Gordon, Richard A. McMahon, Z. Li, P. A. Mawby “A Comparison of 

IGBT Models for Use in Circuit Design”, IEEE Trans On Power Electronics, Vol. 14, No. 4, pp. 

607-614, Jul. 1999. 

[20] R. Kraus and K. Hoffmann, “An analytical model of IGBT’s with low emitter efficiency,” in 

ISPSD’93, Monterey CA, pp. 30–34. 

[21] Shiqi Ji, Ting Lu, Zhengming Zhao, Liqiang Yuan, “Modelling of High Voltage IGBT with 

Easy Parameter Extraction”, IEEE 7th International Power Electronics and Motion Control 

Conference - ECCE Asia June 2012. 

[22] Y. Lobsiger, and Johann W. Kolar, “Closed-Loop di/dt and dv/dt IGBT Gate Driver”, IEEE 

Trans. on Power Electronics, Vol. 30, No. 6, pp. 3402-3417, June 2015. 

[23] Kagerbauer, J.D.; Jahns, T.M. “Development of an Active dv/dt Control Algorithm for 

Reducing Inverter Conducted EMI with Minimal Impact on Switching Losses”, Power Electronics 

Specialists Conference PESC, pp. 894 – 900, 2007.  

[24] A. Muetze, “EMI and Filtering,” Power Electronics: Circuits, Systems, and Industrial 

Applications - Course Notes, UW-Madison short course, pp. 8.1-8.38, August 2004. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          44 

[25] Y. Lobsiger and J. W. Kolar, “Closed-Loop IGBT Gate Drive Featuring Highly Dynamic di/dt 

and dv/dt Control”, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4754 – 

4761, 2012. 

[26] N. Idir, R. Bausiere, and J. J. Franchaud, “Active gate voltage control of turn-on di/dt and 

turn-off dv/dt in insulated gate transistors,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 849–

855, Jul. 2006. 

[27] J. Ortiz Gonzalez O. Alatise, “Impact of the gate driver voltage on temperature sensitive 

electrical parameters for condition monitoring of SiC power MOSFETs”, Microelectronics 

Reliability., Vol 76–77, pp. 470-474, September 2017. 

[28] S. Yanqun, J. Jiang, Y. Xiong, Y. Deng, X. He, and Z. Zeng, “Parasitic inductance effects 

on the switching loss measurement of power semiconductor devices,” in proc. IEEE Int. Symp. 

Ind. Electron, vol. 2, pp. 847-852, Jul 2006. 

[29] Bonyadi. R, Alatise. O, Jahdi. S, Ortiz-Gonzalez. J, Davletzhanova. Z, Li Ran, Michaelides. 

A, Mawby. P, “Physics-based modelling and experimental characterisation of parasitic turn-on in 

IGBTs”, 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-

Europe), pp. 1 – 9, 2015. 

[30] Xiaoqing Song, Huang. A.Q, Mengjia Lee. Gangyao Wang, “A dynamic measurement 

method for parasitic capacitances of high voltage SiC MOSFETs”, Energy Conversion Congress 

and Exposition (ECCE), pp. 935 – 941, 2015. 

[31] Lobsiger. Y, “Closed-Loop IGBT Gate Drive and Current Balancing Concepts” Ph.D.  

Dissertation, Dept.  Elect.  Eng., ETH Univ., Zurich, 2014. 

[32] Guo, Yong-feng, Xin-lei Ma, and Ping Shi, “Power Losses and Temperature Variations in a 

Power Converter for an Electronic Power Steering System Considering Steering Profiles”, 

Journal of Instrumentation Technology 2, No. 1, pp. 40-46, 2014. 

[33] N.  Oswald, P. Anthony, N. McNeill, and B. H.  Stark, “An  Experimental  Investigation  of  

the  Tradeoff  between  Switching  Losses and EMI Generation With Hard-Switched All-Si, Si-

SiC, and   All-SiC   Device   Combinations,” IEEE Transactions on Power Electronics, vol. 29, 

pp. 2393-2407, 2014. 

[34] Z. Wang, X. Shi, L. M. Tolbrert and B. J. Blalock, “Switching performance  improvement  of  

IGBT  modules  using  an  active  gate  driver”  in  Proc.  Of the 28th Annual IEEE Applied 

Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, Mar. 2013, pp. 1266–

1273. 

 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          45 

[35] A. Volke and M. Hornkamp, IGBT Modules—Technologies, Driver and Application, 1st ed. 

Munich, Germany: Infineon Technologies AG, 2011. 

[36] L. Chen, “Intelligent gate drive for high power MOSFETs and IGBTs,” Ph.D. dissertation, 

Dept. Electr. Comput. Eng, Michigan State Univ., East Lansing, MI, USA, 2008. 

[37] J. Grbovic, “An IGBT gate driver for feed-forward control of turn-on losses and reverse 

recovery current,” IEEE Trans. Power Electron.,vol. 23, no. 2, pp. 643–652, Mar. 2008. 

 [38] R. Hemmer, “Intelligent IGBT drivers with exceptional driving and protection features,” 

presented at the 13th European Conf. Power Electronics and Application, Barcelona, Spain, 

Sep. 2009. 

 [39] S. Musumeci, A. Raciti, A. Testa, A. Galluzzo, and M. Melito, “Switching behavior 

improvement of insulated gate-controlled devices,” IEEE Trans. Power Electron., vol. 12, no. 4, 

pp. 645–653, Jul. 1997. 

[40] G. Schmitt, R. Kennel, and J. Holtz, “Voltage gradient limitation of IGBTs by optimised gate-

current profiles,” in Proc. 39th IEEE Power Electron. Spec. Conf., Rhodes, Greece, Jun. 2008, 

pp. 3592–3596. 

 [41] M. Rose, J.Krupar, andH.Hauswald, “Adaptive dv/dt and di/dt control for isolated gate 

power devices,” in Proc. 2nd IEEE Energy Convers. Congr. Expo, Atlanta, GA, USA, Sep. 2010, 

pp. 927–934. 

[42] I. Baraia, J. A. Barrena, G. Abad, J. M. Canales, and U. Iraola, “An experimentally verified 

active gate control method for the series connection of IGBT/diodes,” IEEE Trans. Power 

Electron., vol. 27, no. 2, pp. 1025–1038, Feb. 2012. 

[43] B. Wittig and F. W. Fuchs, “Analysis and comparison of turn-off active gate control methods 

for low-voltage power MOSFETs with high current ratings,” IEEE Trans. Power Electron., vol. 

27, no. 3, pp. 1632–1640, Mar. 2012. 

 [44] J. Sigg, M. Bruckmann, and P. Turkes, “The series connection of ¨ IGBTs investigated by 

experiments and simulation,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 1996, vol. 2, pp. 

1760–1765. 

[45] J. A. Barrena, L. Marroyo, M. A. Rodriguez, and J. R. Torrealday, “A novel PWM 

modulation strategy for DC voltage balancing in cascaded H-bridge multilevel converters,” in 

Proc. EUROCON 2007. Int. Conf. “Computer as a Tool”, Sep. 2007, pp. 1450–1456. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          46 

[46] Lihua Chen; Peng, F.Z, “Closed-Loop Gate Drive for High Power IGBTs”, Applied Power 

Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, pp. 

1331 – 1337, 2009. 

[47] Takizawa, S. Igarashi, and K. Kuroki, “A new di/dt control gate drive circuit for IGBTs to 

reduce EMI noise and switching losses,” in Proc. 29th IEEE Power Electron. Spec. 

Conf.,Fukuoka,Japan, May1998,vol.2, pp. 1443–1449. 

 [48] A. Galluzzo, M. Melito, G. Belverde, S. Musumeci, A. Raciti, and A. Testa, “Switching 

characteristic improvement of modern gate con- trolled devices,” in Proc. 5th Eur. Conf. Power 

Electron. Appl., Brighton, U.K., Sep. 1993, pp. 374–379. 

[49] Lobsiger, Y.; Kolar, J.W, “Stability and robustness analysis of d/dt-closed-loop IGBT gate 

drive”, Applied Power Electronics Conference and Exposition (APEC), Twenty-Eighth Annual 

IEEE, pp. 2682 – 2689, 2013. 

[50] “Testing for EMC Compliance: Approaches and Techniques”, Mark I. Montrose, Edward M. 

Nakauchi, John Wiley & Sons, 2004. 

[51] Experimental and Simulative Investigations of Conducted EMI Performance of IGBTs for 5 - 

10 kVA Converters, Siemens, pdf. 

[52] Kagerbauer, J.D.; Jahns, T.M. “Development of an Active dv/dt Control Algorithm for 

Reducing Inverter Conducted EMI with Minimal Impact on Switching Losses”, Power Electronics 

Specialists Conference PESC, pp. 894 – 900, 2007.  

[53] A. Muetze, “EMI and Filtering,” Power Electronics: Circuits, Systems, and Industrial 

Applications - Course Notes, UW-Madison short course, pp. 8.1-8.38, August 2004. 

[54] AN4694 Application note, EMC design guides for motor control applications.pdf, June 2015. 

[55] O. J. Smith, Posicast control of damped oscillatory systems, Proceedings of the IRE 45 (9) 

(1957) 1249–1255. 

[56] J. Y. Hung, Application of posicast principles in feedback control, in IEEE International 

Symposium on Industrial Electronics, Vol. 2, 2002. 

[57] H. Ghorbani, S. Masoudi, V. Hajiaghayi, Speed control of vector controlled induction motors 

with fuzzy and posicast controller, Australian Journal of Basic and Applied Sciences 5 (7) (2011) 

1099–1106. 

[58] Y. W. Li, Control and resonance damping of voltage-source and current-source converters 

with lc filters, IEEE Transactions on Industrial Electronics 56 (5) (2009) 1511–1521. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          47 

[59] P. C. Loh, D. M. Vilathgamuwa, S. K. Tang, H. L. Long, Multilevel dynamic voltage restorer, 

in: Power System Technology, 2004. Power-Con 2004. 2004 International Conference on, Vol. 

2, IEEE, 2004, pp. 1673–1678. 

[60] P. Loh, C. Gajanayake, D. Vilathgamuwa, F. Blaabjerg, Evaluation of resonant damping 

techniques for z-source current-type inverter, in: Applied Power Electronics Conference and 

Exposition, 2006. APEC’06. Twenty-First Annual IEEE, IEEE, 2006, pp. 7–pp. 

[61] Q. Feng, R. M. Nelms, J. Y. Hung, Posicast-based digital control of the buck converter, 

IEEE Transactions on Industrial Electronics 53 (3) (2006) 759–767. 

[62] Y. W. Li, B. Wu, N. R. Zargari, J. C. Wiseman, D. Xu, Damping of pwm current-source 

rectifier using a hybrid combination approach, IEEE Transactions on Power Electronics 22 (4) 

(2007) 1383–1393. 

[63] Y. Neba, A simple method for suppression of resonance oscillation in pwm current source 

converter, IEEE transactions on power electronics 20 (1) (2005) 132–139. 

[64] Y. W. Li, P. C. Loh, F. Blaabjerg, D. M. Vilathgamuwa, Investigation and improvement of 

transient response of dvr at medium voltage level, IEEE transactions on industry applications 43 

(5) (2007) 1309–1319. 

[65] M. Khederzadeh, A. Ghorbani, Impact of vsc-based multiline facts controllers on distance 

protection of transmission lines, IEEE transactions on Power delivery 27 (1) (2012) 32–39. 

[66] H. Ghorbani, J. I. Candela, A. Luna, P. Rodriguez, Posicast control—a novel approach to 

mitigate multi-machine power system oscillations in presence of wind farm, in: PES General 

Meeting| Conference & Exposition, 2014 IEEE, IEEE, 2014, pp. 1–5. 

[67] M. Kalantar, et al., Posicast control within feedback structure for a dc–dc single ended 

primary inductor converter in renewable energy appli- cations, Applied Energy 87 (10) (2010) 

3110–3114. 

[68] A. Ghorbani, B. Mozafari, S. Soleymani, A. M. Ranjbar, Operation of synchronous 

generator loe protection in the presence of shunt-facts, Electric Power Systems Research 119 

(2015) 178–186. 

[69] Emmanuel A. Gonzalez, “Posicast Control in Power Electronics”, matlabtools.com/wp-

content/uploads/p1111.pdf 

[70] J. Y. Hung, Feedback control with posicast, IEEE Transactions on industrial electronics 50 

(1) (2003) 94–99. 

http://matlabtools.com/wp-content/uploads/p1111.pdf
http://matlabtools.com/wp-content/uploads/p1111.pdf


   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          48 

[71] H Ghorbani, M Monadi, A Ghorbani, JI Candela, “Application of new POSICAST control 

method to synchronous generator excitation system”, Journal of Power Technologies 98 (4), 

336-344, 2018. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

javascript:void(0)
javascript:void(0)


   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          49 

 

 

 

 

 

 

 

 

 

     CHAPTER  

Three 
 

 

Feedforward controller into the IGBT gate driver for 

switching transient improvement_ Turn-on Condition

 

 

An active gate drive method based on a feedforward control for turn-on condition in IGBTs has 

been proposed in this chapter. The transient improvement with minimum undesirable effect on 

the efficiency is the main objective of this research. The new gate driver (GD) improves the 

trade-off  between switching loss and device stress at the turn-on condition, without getting 

feedback from the output. The operation principle and implementation of the controller in the GD 

are presented. The effect of the proposed GD on the transient behaviour, efficiency, junction 

temperature and electromagnetic interference (EMI) during turn-on switching is evaluated by 

both simulation and experimental tests. The new GD is evaluated under hard switching 

condition and various frequencies. Advantages and disadvantages of the method have been 

discussed. Also, a new active gate drive for Silicon carbide (SiC) metal–oxide–semiconductor 

field-effect transistor (MOSFET) is proposed in this study. The SiC MOSFET as an attractive 

replacement for insulated gate bipolar transistor (IGBT) has been regarded in many high-power 

density converters. The proposed driver is based on feedforward control method as well. The 

proposed GDs have been validated through experimental tests. All evaluations have been 
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carried out in a hard-switching condition and at high-frequency operation.
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3.1. Introduction 

Insulated gate bipolar transistor (IGBT) power semiconductors with antiparallel freewheeling 

diodes (FWDs) are widely used in industrial. In order to achieve high power density converters 

many researches have been assigned to the efficiency improvement through minimizing 

switching losses [1]–[5]. Switching in high speed level is the known solution for the losses 

minimizing which has encouraged engineers to design proportionate gate drivers. However, 

increasing switching speed imposes electrical stress on the device and it is the major source of 

electromagnetic interference (EMI) in switched-mode power converters [6] and [7]. Therefore, 

as a main task of GD, the exist trade-off  between switching losses and EMI generation should 

be considered. It will be more challenging when we are dealing with IGBTs which operate at 

high frequency under hard switching conditions. Several factors for designing the IGBT gate 

driver are effective. In GD design, the most challenging task is the definition of diC/dt and 

dvCE/dt rates that are independent of other effective factors such as junction temperature, 

parasitic inductance, load current value and the coupled DC-link voltage etc. [8]. However, using 

a static gate resistor (Rg); in the drive circuit is known as a conventional solution for the 

switching control [8] and [9]. The result of using conventional gate drive (CGD) is a sub-optimal 

compromise which has an undesirable effect on the switching speed and switching loss of the 

IGBT. Various methods have been reported for improving the performance 

of GD. Among them, the gate charge control by active gate voltage controlling or by active gate 

current driving are effective solutions [9]–[12]. As described in this here, the extra gate charge 

energy in turn-on switching is absorbed by applying a delay in a specific interval on the voltage 

source of gate driver (Vg ±). The proposed controller makes a lower value of the applied voltage 

to gate-emitter of IGBT while the load current has started to commutate from the freewheeling 

diode to the IGBT. The reduced part of voltage should be adjusted for the cancellation of the 

extra gate charge. Typically, in the evaluation of IGBTs switching, the focus is on turnoff  

behaviour because of the current tail problem which makes significant losses. Mostly, the IGBTs 

operate under hard switching conditions. Hence, turn-on losses can be important due to the 

diode reverse recovery so it can be comparable to turn-off  losses [12]. On the other hand, the 

imposed stress on IGBTs during turn-on condition has a significant impact on their lifetime 

parameter [13]. Moreover, the turn-on loss extremely depends on the GD circuit whereas turn-

off  loss only weakly depends on the GD and it more highly depends on the amount of charge 

stored in the drift region and the physical structure of the IGBT [12], [14]. Most of the reported 

solutions in control of the GDs can be categorized as close-loop control methods [8], [15] and 

[16]. Such complex controllers have been designed to guarantee the safe operation area (SOA) 

of the IGBTs under various types of the loads. However, using such controllers increase the 

complexity of the GDs circuit. This chapter proposes a novel control method which is based on 
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a feed-forward controller for IGBT gate driver. The simple structure and effective performance 

of the controller are the outstanding characteristics of this method. The intended purpose of 

using this new GD is the elimination of ringing with the aim of EMI reduction; this target will be 

pursued with respect to the turn-on switching loss. In this study, the concept, principles, and 

structure of the proposed control method will be provided in Section 3.2. Then, the performance 

of new GD is evaluated by simulation and experimental results and impact of the temperature 

on the proposed open-loop controller are presented in Section 3.3. In Section 3.4, the EMI 

generation of the new gate driver is compared with the conventional driver. The chapter closes 

with a discussion of presented controller and conclusion. 

3.2. Concept of proposed controller 

3.2.1. Turn-on behavior of IGBT 

The IGBT meets several intervals during its turn-on under hard switching conditions. Fig. 3.1 

demonstrates these intervals schematically. The collector current (iC) at t1 is initiated and 

collector-emitter voltage (VCE) falls down when VGe(t) ≥ VGe;th and it is valid as long as VCE(t) ≥ 

VGe(t) − VGe;th. This period is co-called the active region, which is specified by a gray background 

in the figure (t1 ≤ t < t4). This period is a respite for new GD to effect on the current and voltage 

transition rates. All details about the turn-on process of the IGBT are fairly well documented in 

[16] and [17]. Here, we have focused only on the corresponding intervals to figure out the 

effective parameters and controlling the diC/dt and dvCE/dt rates. At t0, a voltage step (from −VEE 

to +VCC) is applied to the gate port of IGBT. In this moment, the gate-emitter capacitor CGe of the 

IGBT's input capacitance Cies starts to change immediately while its gate-collector oxide 

capacitance (Miller capacitance) CGC is discharging also due to the clamping of the collector 

base to the positive link of DC source through the freewheeling diode. However, in this stage, 

CGC is significantly smaller than CGe. 

Equation 3.1     
+  ies Ge GCC C C

     

As soon as we apply positive voltage to the gate driver VCC at t0, the gate current (ig) 

immediately executes a step up to its maximum value and then starts to decay. In the 

meantime, the gate voltage VGe rises in accordance with the time constant of the charging 

process (τG). The IGBT is still off as long as the VGe remains lower than the threshold voltage 

VGe;th. All happen in the first interval which covers the time between t0 to t1. Although the gate 

charge delay (the first interval) has a minimal effect on the diC/dt and dvCE/dt rate during this 

interval, the gate charge has remained valid and the potential energy is stored for the next 

interval. 
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t0 t2 t3 t4

+VCC

-VEE

VGe,Miller 

     

iG=0

vGe

iG

vCE

iC

iC, max

iC
VDC

t

t

VGe,th 

t1 t5  

Figure 3.1. The waveforms of the IGBT at turn-on transient condition and dic/dt period (gray 

background). 

During the active region intervals, the new GD changes the profile of Vgg voltage signal. As 

soon as VGe(t) passes the VGe,th value, the IGBT begins to contact current based on its transfer 

and output characteristics. Then the collector current increases almost linearly from zero and 

the load current initiates to commutate from the freewheeling diode to the IGBT [18]. Thus, in 

this interval which IGBT is activated, we are facing with the falling of VCE to the conduction 

voltage value. The extra gate charge that has been stored in the previous interval potentially 

can generates the overshoot problem in both VCE and especially in iC. According to below 

equations which have been proved in [19] and [20], the dvCE/dt and diC/dt rates can be 

calculated as a function of the gate circuit parameter. The gate current ig (t) during the second 

interval can be represented as 

Equation 3.2     

( 1)/
( )

Ggg t t
g

g

V
i t e

R

 
 

      

That ∆Vgg is the difference value of the maximum (VCC) and minimum (VEE) gate drive voltage, 

and Rg is the gate resistor. 

Equation 3.3     
gg CC EEV V V  

      

Equation 3.4     
 G g iesR C  

      

The iC and diC/dt equations in turn-on can be approximately explained as 
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Equation 3.5     
,( )( )  (  )thC m Ge t Gei t g v v  

    

Where gm is the IGBT’s linearized trans-conductance 

Equation 3.6     

C
m

Ge

di
g

dv


      

Equation 3.7     

C Ge g
m m

ies

di dv i
g g

dt dt C
   

    

Equation 3.8     

6
2.86 10

C
os BD F

di
I BV I

dt


 

    

The VCE and its slope rate in turn-on get effect from collector current and its slope rate. 

Equation 3.9     

C
CE DC S

di
dv V L

dt
  

     

Equation 3.10     

CE g

GC

dv i

Cdt
 

      

Where gm is trans-conductance; CGC is Miller capacitance; IF is the diode forward current; BVBD 

is the diode breakdown voltage and LS is the stray inductance. As shown in Eq 3.5, the collector 

current iC rises rapidly with crossing VGe (t) from VGe,th value. Regarding Eq. 3.7, for having a 

constant diC/dt, the product gm. ig must be constant. In high voltage applications (in high VCE 

values), CGe is too small. Hence, the only possible way to control of a diC/dt is the tuning the 

change in the trans-conductance gm (diC/dvGe) during the current rise time, or gate current value. 

Also, the overshoot in collector current IOS may be possible due to the reverse recovery current 

that is cycling by the freewheeling diode (FWD) Eq. 3.8. The IGBT’s output voltage VCE and the 

rate of dvCE/dt at turn-on are given by Eq. 3.9 and Eq. 3.10. Since the gate-emitter capacitance 

depends on the physical structure of IGBT, the control of output current and voltage transition 

rates in GD can be possible by controlling the VGe or gate current ig values. 

3.2.2 Structure and operation of the controller 

Considering the previous discussion, the proposed gate driver controls the current as fast as 

possible, to reduce the turn-on time (it means, by reducing the gate resistance), but controlling 

the current overshoot by adjusting the gate voltage. By this way, both total losses and current 

overshoot will be enhanced when compared to classical solutions. As shown in Fig. 3.2 a simple 

test circuit is assumed. The proposed controller is embedded into the GD of IGBT parallel with 

the voltage source gate drive Vgg. The connected load has a high inductive feature in terms of 

making hard switching condition for IGBT. More details regarding circuit component are 

reflected in the Appendix part of this chapter. The configuration of the proposed controller as a 

block diagram is shown in Fig. 3.3 The applied controller divides the step ΔVgg voltage into two 
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separate parts. The performance of this feedforward controller for modification of the GD voltage 

signal Vgg is depicted graphically in Fig. 3.4. The controller first makes a scaled value signal 

from the deference value of the applied input signal (ΔVgg). The created signal (VD) is 

weakened and KP gain block defines its value. This signal is delayed by D1 block. The time of 

D1 equals to the whole active region of the IGBT (t1 < t < t4). Then, the weakened signal 

(without delay) is subtracted from the delayed one. The output result of this subtraction is a 

negative signal (the blue waveform, Fig. 3.4) which is passing from D2 delay block. The time 

value of the second delay is adapted by the gate charge delay time (t0 < t < t1). In fact, D2 shifts 

the produced signal to after the first interval (the red waveform, Fig. 3.4). The produced negative 

signal is applied to the original input signal Vgg (in the upper path, Fig. 3.3). Finally, the Vgg 

voltage signal becomes changed (the green waveform, Fig. 3.4). Accordingly, collector current 

iC during its rising time and output voltage VCE during its falling down meet the lower voltage and 

current values from the gate side. This is the main point for the dvCE/dt and diC/dt controlling. 

IGBT

Vcc

L
o
ad

Vgg

Rg

Ls

D

Controller

 

Figure 3.2. The test circuit and the position of controller in the GD 

 

+

D1

Input (Vgg) Output (Gate)

KP +/-
+

-

D2

 
Figure 3.3 Block diagram of the proposed feedforward controller 
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Figure 3.4. Controller performance for Vgg modification  

Eq. 3.2 shows the dependence of the gate current ig during the second interval to ΔVgg value. 

Also, the diC/dt rate strongly depends on the ig which expressed as Eq 3.5 – Eq 3.8. As a 

consequence, the controller reduces the ΔVgg factor during active region time in order to 

eliminate the overshoot from output current in turn-on condition. The first interval should be in 

maximum ΔVgg because it minimizes the gate delay time which is a beneficial factor for 

reducing the junction temperature. Based on published results in [21] and [22], the turn-on delay 

is the time that the junction temperature gets extremely effect. The proposed GD improves the 

junction temperature significantly. The corresponding analysis is carried out and it has reflected 

in Section 3.3.4. 

3.2.3 Tuning the controller 

The logic block diagram of the controller is depicted in Fig. 3. As shown in its configuration, only 

three parameters are necessary to determine KP gain value, first delay (D1) and the second 

delay (D2) which the roles of them have been described in part A. In the case of D2, due to the 

proposed GD is resistive hence the gate charge delay can be seen as RC circuit cf. Eq. (4). 

Regarding to high values of vCE where the CGC is significantly smaller than Cge, the time 

constant of the charging process can be defined as;  
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Equation 3.11     
, , int ,= ( )G G ext G G exties geCR R R C   

     

Equation 3.12     
2

,
ln

gg
G

CC Ge th

V
D

V V


 
 
 


 

     

It should be noted that the mentioned turn-on delay td (on) in the application nots covers almost 

90% of D2 time. The determination of the KP value is important because it defines VD voltage 

value which has an effect on the overshoot suppression and switching time extremely. The 

pattern of the KP calculation can be interpreted by below equations. 

Equation 3.13      
,cg CC Ge thV V V  

     

Equation 3.14     
0 cgV  

     

Equation 3.15     ,D Ge thV V        

Equation 3.16     

1 1
EE D

P P

gg

V V
K K

V
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




 
 
      

The VD value should be defined between Vcc to VGe,th and the difference value is demonstrated 

as ∆Vcg. In the mentioned equations σ represents a variable factor which should be selected 

according to the desired diC/di rate. The domain of the σ factor is limited between zero and ∆Vgd. 

Hence, KP varies from zero to a fraction of one (normally, 0<KP<0.5 cf. Eq. 3.16) which in its 

maximum magnitude (when σ =0) has the highest impact factor on the diC/dt and overcurrent 

suppression. The effectiveness of the applied controller can be observed on the gate current ig 

and diC/dt by below equations while corresponding intervals. 

Equation 3.17     

( )/
, ( )

n GP gg t t
g new

g

K V
i t e

R

   
 

    

The gate current after first interval being affected by applied controller as (17). Regarding to Eq. 

3.16 the KP coefficient is denoted by K'P+1. The relation between absolute value of K'P and 

desired diC/dt expressed in Eq 3.18. The K'P can be a factor to adjust the collector current slope 

which has direct effect on the IGBT temperature as well. The controller effectiveness on the 

junction temperature will be discussed in next section. The voltage transition dvCE/dt at turn-on 

due to the KP effect on gate current can be defined as Eq. 3.19. With taking into account below 

relations, can be observed that both current and voltage transition rates change with |K'P| or (1-

KP) value. 

Equation 3.18     

,( ) ( )C g g new
P m m

Ge Ge

t t
K

di i i
g g

dt C C
   

   

Equation 3.19     

,( ) ( )
.

CE g g new
P

GC GC

t t
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C Cdt
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The definition of both delay times (D1 and D2) determines the operation domain for the 

controller. The D1 delay time covers the whole active region of IGBT, which consists of the 

current rise time and the voltage decay. This period is specified by a gray background in Fig.3.1. 

This period involves deferent states of the IGBT because of its nonlinear behaviour. By 

modelling the IGBT in each state, the time TAR of the active region can be calculated, and then 

by adding the predefined D2 time the total D1 time can be obtained. The dynamical conditions 

of the IGBT during its active region are demonstrated in Fig. 3.5. The IGBT equivalent is based 

on different intervals at turn-on which already have been defined in Fig. 3.1. Eq. 3.20 describes 

each interval time (Tint n) based on the charging time constant ( G) of the corresponding 

equivalent circuit. Then Eq. 3.21 shows the whole active region time (TAR). 

CCE
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E

m Geg v
iG

+

_

VCE
+

_

VGe

CCE

CGC

CGE

G

C

E

m Geg v
iG

+

_

VCE
+

_

VGe

(a)

(b)
 

Figure 3.5. a) the general equivalent circuit for IGBT b) the equivalent circuit for IGBT during 

t3 < t < t4. 

Equation 3.20     

int 1

,

ln( )
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V
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Equation 3.21     int 2 int 3 int 4ART T T T        



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          59 

Because of non-linear behaviour of Cies which depends on VCE, the charging time constant ( G) 

cf. Eq. 3.4 defines the time value of each interval in Eq. 3.20 with respect to the magnitudes of 

relevant gate-emitter CGe and Miller CGC capacitates. In Fig. 3.5.a, the general equivalent circuit 

for IGBT is assumed this can be validated for interval 3 (t2 < t < t3) as well. In the third interval 

because of the high value of VCE, the CGE is significantly bigger than CGC, conversely during 

interval 4 (t3 < t < t4) Miller capacitance is at its highest value and we can assume the IGBT’s 

circuit as Fig. 3.5.b. 

3.3. Simulation and experimental results 

3.3.1 System simulations 
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Figure 3.6. Simulation of dynamic test circuit for IGBT’s turn on control 

Simulation was done in MATLAB/SIMULINK environment. In this evaluation, a dynamic model 

of an IGBT with its anti-parallel freewheeling diode is studied in a buck converter topology. Fig. 

3.6 shows the test circuit. The tuning parameters of the controller are reflected in Table 3.1. D1 

shows the elapsed time of the active region during t1 < t < t4, D2 also shows the time of gate 

charge or the turn-on delay time td (on) that covers first interval and the other is the KP value 

which its role was explained in the previous section. In this case study which its topology is 

depicted in Fig. 3.6, the load has high inductive feature in order to monitor IGBT's performance 

under hard switching condition. The dc link voltage is VDC = 550 V, with almost 5 KVA power. 

More technical details of the case study are mentioned in the Appendix of this chapter. The new 

gate drive is simulated in a dynamic test circuit, the diC/dt and dvCE/dt resultant waveforms at 

turn-on condition are depicted in the following figures. The resultant diC/dt from the original 

driving is 75 A/μs. Because of some concerns in switching dynamic such as EMI, overcurrent, 

oscillations and etc.,the desired diC/dt is assumed 22 A/μs. Vgg voltage source generates ±16V, 

so ΔVgg = 32. The VGe,th in its maximum value is 5 V, the reduced voltage value (VD) is chosen 

6.5 V, thus, the calculated KP value is 0.297. The performance of new GD is evaluated through 
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a comparison between all presented GDs. The change of gate resistor Rg is known as the 

conventional gate drive (CGD) for turn-on switching [8], [9], [23] and [24]. Also, in some GDs an 

external gate–emitter capacitance (CGe) is used [25]. However, it increases the gate input 

capacitance (Cies) thus slows down the diC/dt and dvCE/dt. In some applications this technique 

has favorable outcome from efficiency aspect. It should be considered that, the gate 

capacitance is a parasitic element which potentially provokes transients and it may generate 

some parasitic issues such as rising the stress and crosstalk problem [26] and [27]. Therefore, 

in high switching rate values this may not be preferable.  

Table 3.1. The controller tuning parameters 

Parameter Value 

D1 450 ns 

D2 50 ns 

KP 0.297 

 

The performance of the new GD is evaluated based on a comparison. The individual Rg 

change, and the change of both Rg and CGe in GD, are compared to the new GD operation. Fig. 

3.7, shows the controller performance for the suppression of oscillations in the collector current 

iC (a) and it exhibits the slope of each tested collector-emitter voltage VC (b). 

 

Figure 3.7. The turn-on switching of IGBT with new GD and CGDs 

 

The positive VCC voltage step is applied to the gate at 100th µs. The normal GD operates with 18 

ohm external gate resistor. The overcurrent is suppressed by increasing the gate resistance up 

to 36 ohm and then again the Rg has been increased up to 22 ohm beside applying 2.2 nF 
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capacitance on the gate-emitter of the IGBT. The internal CGe of IGBT is 2 nF which its value 

has been almost doubled. The results of both conventional techniques are measured and 

reflected in Table 3.2 which presents a comparison with the new GD.  

When both VCE (t) and iC (t) waveforms multiply together during the turn-on condition, the 

resulting common under curve area equals to the switching losses. The lost energy can be 

calculated as equation (22). 

Equation 3.22     

5
( ) ( ) 

0

t
on CE t C t

t
E dtv i       

Where the elapsed time during t0 < t < t5 cf. Fig.1 is the turn-on switching time; then, Eon is the 

turn-on lost energy (in joule) for each time switching. The index performance of the test circuit is 

shown in Table 3.2. 

 

Table 3.2. The performance index 

Gate driver 
Overshoot 

value in IC (A) 
Eon (µJ) 

Current slope diC/dt 

(A/µs) 

Original gate driver 

R=18 Ω 
9.7 353 

75 

New gate driver 4.3 388 22 

CGD, Rg=36 Ω 6 390 22 

CGD, Rg=22Ω, CGe= 

2.2 nF 
6.5 385 

22 

 

The results show that among applied GDs in the same Eon, the best overcurrent suppression 

belongs to the proposed GD. On the other hand, the combination of Rg and CGe presents 

roughly smaller loss compared to other GDs. However, both conventional technique in 

overshoot suppression have operated weakly. Moreover, increasing parasitic capacitance 

provokes oscillatory behaviour while switching condition. This issue has been more explained in 

the experimental tests and in EMI analysis parts.  

3.3.2. Experimental test 

The measured experimental results put through the developed gate driver prototype are 

presented here to verify the performance of proposed controller in GD. An experimental test 

setup consisting of a dc link capacitor, a couple IGBTs and an inductive load cf., Fig. 3.6 is 

considered. More technical details of the experimental test setup are reflected in the appendix 

part. 

Fig. 3.8 demonstrates the performance of test circuit when the IGBTs operate with an original 

gate driver. In this state, the gate resistance is 18 ohms that is chosen based on application 
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note of IGBT. Despite the losses are not high because the fast current response, the overshoot 

and the current slope result in high values that provoke radiated electromagnetic emissions. The 

new controller’s objective focusses in reducing the overshoot while reducing the current slope 

with a minimum impact on the switching losses. Fig. 3.9 shows the performance of the new gate 

driver to enhance the transient behaviour of the IGBT during turn-on switching. It should be 

noted that the applied gate resistor is 12 ohms, lower than proposed by manufacturer, to allow 

fast current response during the first interval, although IGBT meets lower injection current 

during the following action region intervals due to the applied voltage by the driver. It affects 

significantly on the reduction of the junction temperature. This time (first interval), which is 

necessary to charge the gate, is definitely lower. Despite this time is not calculated here for the 

sake of applicability of the new design, the obtained results allow to conclude that improved GD 

has better performance compared to conventional solutions. 

 

Figure 3.8. The dynamic of voltage and current during turn-on by original GD (Rg= 18 ohms) at 

20 KHz and 550 V 
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Figure 3.9. The dynamic of voltage and current during turn-on with improved driving circuit at 20 

KHz and 550 V 

As shown in the figures, the applied new GD results acceptable dynamic in turn-on condition 

with minimum overshoot value and lower current transition rate. Nevertheless the corresponding 

lost energy and the generated EMI should be evaluated. 

The test condition of the CGDs in simulations is applied on experimental tests. So, the gate 

resistance is increased up to 36 ohm and another time the Rg is increased up to 22 ohm beside 

adding 2.2 nF external gate-emitter capacitance. All experimental results are reflected in Table 

3.3, which are aligned to simulation results. The obtained experimental data have been applied 

to the MATLAB environment. Figure 3.10 (a) shows a close-up view from iC transient when 

IGBT switches with original and new GDs and fig 3.10 (b) represents current profiles which has 

been driven by CGDs. Based on this comparison, it can be stated that the new GD has highest 

capability in overcurrent suppression among the presented GDs. 
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Figure 3.10. The experimental results of collector current measurement resultant from new GD 

and CGDs 

The experimental results show the excellent performance of the applied new GD. It can be seen 

that the proposed method eliminates oscillations from turn-on transient condition. It has been 

achieved with minimum diC/dt rate and with a reasonable switching loss (Eon). Among the 

applied GDs, the combination of Rg and CGe has the lowest loss. However, this case generates 

noisy fluctuations at 8.5 MHz due to increasing the parasitic factor cf.  fig 3.10 (b) that is 

observed in EMI analysis. The resultant diC/dt caused by new GD is smaller than calculated 

range. The reason of this slowness is related to the speed operation of the interface unit. The 

interface unit for new driver is a totem pole unit (cf. fig 3.17). This unit delivers a non-ideal slope 

of Vgg signals to the gate due to using bipolar junction transistors (BJTs) in its structure. Thus, 

this unavoidable issue affects to the diC/dt rate and subsequently the switching loss is 

increased. 

Table 3.3. The experimental turn-on performance index  

Gate driver 
Overshoot 

value in IC (A) 

Eon (µJ) diC/dt 

(A/µs) 

Original gate driver R=18 

ohms 
9.68 

388 71 

New gate driver 3.84 467 18 

CGD,  R=36 Ω 6 460 22 

CGD, R=22 Ω, with CGe= 

2.2nF 
6 

438 22 
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Figure 3.11. The dynamic of voltage and current during turn-on by (a) original GD (Rg= 22 

ohms) and (b) new GD at 40 KHz and 400 V. 

 

The performance of the proposed GD is validated at high frequency operation. The new GD, 

drives the IGBT for switching in 40 KHz and 60 KHz. Fig 3.11 presents the operation at 40 KHz 

and fig 12 shows the test result at 60 KHz. It should be noted that, in order to protect the IGBT 

in new test condition, the test is carried out under 400V dc voltage and the gate has been fed 

through Rg= 22 Ω. 
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Figure 3.12 The dynamic of voltage and current during turn-on by (a) original GD (Rg= 22 

ohms) and (b) new GD at 60 KHz and 400 V 

As shown in Figures 3.11 and 3.12, the applied GD at higher and various frequencies operates 

effectively. At 40 KHz switching, the appeared 9.2 A overshoot is suppressed to 3.96 A and the 

suppression rate at 60 KHz is 50%. Table 3.4 shows the new GD's capability in turn-on transient 

improvement at the various tested frequencies. The new GD at 20 KHz switching frequency 

presents 60.33% suppression rate that because of the deference in test condition the result is 

not reflected in Table 3.4. 

Table 3.4. The experimental turn-on performance index  
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Frequency 

(KHz) 

Overcurrent by 

original GD (A) 

Overcurrent by 

new GD (A) 

Suppression rate 

% 

40 9.2 3.96 56.9 

60 9.6 4.8 50 

3.3.3 The effectiveness of new GD on junction temperature 

The non-adaptability is an admissible criticism for all open-loop controllers as well as the 

presented GD has this disadvantage to control of the temperature. Although the VGe,th may vary 

with different temperatures however, compared with CGDs, the new GD beings lower affected 

by the temperature. Also it has positive impact on the reduction of IGBT temperature. 

The gate current during the first interval (turn-on delay) acts as a step response of a second-

order due to its RLC circuit [28] and [29]. Fig. 3.13 exhibits RLC circuit of the GD with a step 

voltage generator where the LG represents the stray gate inductance, both internal and external 

gate resistances are depicted as RGint and RGext respectively, and CG is the gate capacitance. 

Gate Drive

RG ext RG int LG

CG

Temperature 
dependent

Ig

 

Figure 3.13. Gate driver RLC network. 

The injected gate current by passing from internal gate resistor (RGint) affects to the junction 

temperature. The lost power on the RGint can be approximated by, 
2

( ) intloss W G gP R i and with 

considering the time factor the lost energy can be inferred from; ( ) ( )J loss sW P t . The 

temperature’s dependence on the gate current and RGint already is fully elaborated in [21], [22] 

and relation of RGint with junction temperature (T) was presented as: 

Equation 3.23     
3

int (0.917 ) 1.58210GR T  
   

Accordingly, in normal gate driving condition the effectiveness rate of RGint is 7.1% when 

temperature rises from 25 co to 150 co and consequently that expands the turn on delay up to 5 

ns (as mentioned in the application note). However, in new gate diver, the RGint meets lower 

current-time and it dissipates lower energy to generate temperature. 
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Figure 3.14 Injected gate current during turn on, by CGD and new GD. 

Fig 3.14 shows the gate current in both conventional (GD with Rg = 36 ohm) and new GD. 

Hereon, the current rate has been decreased up to 40% therefore the lost energy can be 

reduced to 64%. As a result, IGBT’s temperature caused by new GD is much less than the 

CGD’s one which can be led to the extension of the device lifetime [7]. In addition, the 

temperature variation has negligible effect on the change of defined intervals. 

3.4. EMI 

In general, the EMI suppression leads to an increase in the size and cost of a product. This is a 

serious challenge for the IGBT operation. It is well-known that a clear trade-off exists between 

switching losses and EMI generation. However, in high power density applications where high 

efficiency with a minimum EMI is a certain requirement, this suppression may be cost effective 

[30]. EMI suppression with the lowest number of switching losses is a known purpose that we 

are trying to achieve it in this research with a simple active gate controller. In the previous 

section, it was shown that the new GD improved turn-on transient without a major increase in 

switching loss. Given the fact that EMI generation is proportional to the duration of the switching 

transients and dvCE/dt and diC/dt [31]. It is expected that the new GD must be improved the 

electromagnetic emission due to current transition rate. 

The EMI generation has been analyzed in this section. The evaluation is carried out in FFT 

analysis of MATLAB software. All applied data have been extracted from the experimental test 

which has been measured by Tektronix MDO3024 oscilloscope.  
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Figure 3.15 Separated turn-on spectrum of measured currents for original GD and new GD 

Fig. 3.15 illustrates the spectral characteristics caused by original GD and the new GD 

trapezoidal waveforms. Although both have the same fundamental frequency f0 =20 kHz, the 

switching resonant frequencies and rise times are different. The figure shows the spectral 

characteristics based on current transition also the spectral analysis is done for voltage 

transition, both for the turn-on process. 

It can be seen that exist an obvious difference between both spectra. The original GD clearly 

dominates the spectrum along 300 kHz to 8.4 MHz, despite the radiated spectrum that depends 

on current amplitude rate change [32] is reduced. The highest difference value is located at 8.4 

MHz, where the new GD damps spectrum magnitude up to 13 dB. The radiated emission at 8.4 

MHz is created because of the same range ringing in original GD switching cf. fig 3.10. Hence, 

improving the turn-on transient e.g. by reducing turn-on oscillations will lead to an improved 

radiated spectrum. 

Regarding the voltage transitions, the rise time determines the frequency spectral of each 

transition waveform. As has been approved in [33], for a waveform with a specific voltage rise or 

fall time, the influence of changing this rise/fall time on the high-frequency content of the 

waveform can be defined as 

Equation 3.24     
10( ) 20log (1 )

r
V dB

r






   

   

Where ΔV (dB) is the change in spectral amplitude in dB scale, and Δτr is the difference 

between the controlled rise/fall time and the original rise/fall time τr. 
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In turn-on switching we are facing with current rising and in case of voltage its fall time should 

be considered. Here, the original voltage fall time is 280 ns whereas the resultant voltage from 

new GD has 320 ns fall time. As a result, the influence of voltage transition for noise 

propagation has been reduced up to 1.16 dB by new GD.  

3.5. Conclusion 

In this chapter a feedforward controller for the gate drive of IGBTs was proposed. It has been 

shown that the new GD is able to improve turn-on transient under hard switching condition with 

minimum side effect on the switching loss. The following results were obtained from both the 

simulations and experimental evaluations: 

1) According to carried out studies in simulation and practical environments, and assuming 

almost same switching loss, the new GD has better performance for improving the turn-on 

switching transient. Experimentally, under hard switching condition overshoot has been 

removed from the current profile up to 60.3% while it had the minimum current transition diC/dt. 

As a result, it can be stated that the proposed GD will extend the IGBT life time. 

2) Based on spectrum analysis of the current transition, the radiated EMI during switching-

on condition is reduced up to 13 dB. The studies showed even the voltage transition dvCE/dt, 

which has lower effect on EMI during turn on; with 1.16 dB reduction in spectral amplitude had 

positive impact. 

3) The proposed gate driver is simple enough to allow its use in high frequency real 

industrial applications without compromising the cost and reliability of the improved solution. 

The application of this feedforward controller in GD will be more beneficial with improved 

version that could be adaptively operated when the load varies. The relevant studies for making 

an effective close-loop GD are under process and the next step of the research is to assure 

performances and stability of the resulting closed loops. 

3.6. Appendix 

The test circuit cf. Fig 3.6, is evaluated under below mentioned features and components.  

The tested IGBT is NGTG50N60FLWG and the clamped DC bus-voltage is 550 V. The applied 

inductive load is composed of RLoad = 47 Ω, L = 370 µH. The switching frequency was 15 kHz, 

and the estimated stray inductance (Ls) value is 45 nH. 
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Figure 3.16. The schematic of the proposed feedforward controller 

Fig. 16 shows the schematic of the controller which is feeding by a signal generator (Vg). In this 

circuit all the operations are done by general-purpose TL-084 Op Amps. Both delays are 

created by simple RC circuit. 

The signal generator is connected to gate emitter (VGe) by an Optocoupler HCPL-3020 gate 

drive. This interface device is used in the test circuit when the original GD had been used. 

In the case of using feedforward controller in GD, an interface unit (see Fig.17) is considered 

which consists of low power bipolar NPN (2N2222) and PNP (2N2907) transistors. It was 

supplied by V= 16V .  

Vcc

VEE

Rg

Q1

Q2

RLoad

VDC

IGBT

 

Figure 3.17. Totem pole interface unit to gate current supply 

The designed interface unit is able to conduct both positive and negative parts of input signals. 

It should be noticed that the applied interface unit has not effect on the generated voltage signal 

by the new gate driver. 
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     CHAPTER  

Four 
 

 

A Feedforward Active Gate Voltage Control Method for 

SiC MOSFET Driving 

 

A new active gate drive for Silicon carbide (SiC) metal–oxide–semiconductor field-effect 

transistor (MOSFET) is proposed in this chapter. The SiC MOSFET as an attractive 

replacement for insulated gate bipolar transistor (IGBT) has been regarded in many high power 

density converters. The proposed driver is based on feedforward control method. This simple 

analog gate driver (GD) improves switching transient with minimum undesirable effect on the 

efficiency. In fact, this feedforward GD is designed based on what has been presented in 

previous chapter. This chapter involves the entire switching condition (turn on/off), and the GD 

has been applied on SiC base technology of MOSFET. The conventional GD still is the base of 

comparison for the evaluation in this chapter. 

The presented GD has been validated through experimental tests. All the evaluation have been 

carried out in a hard switching condition and at high-frequency operation.
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4.1. Introduction 

Silicon IGBT is a conventional switch in the structure of the power converters. However, 

because of some weak points such as operation in low-speed switching and low-temperature 

condition, the studies have been driven to silicon carbide (SiC) technology. SiC technology in 

power switches has emerged as a serious alternative to overcome the disadvantages of Si-

switches. SiC device has some advantages such as higher operating frequency and 

temperature and lower on-resistance due to its bandgap and unipolar nature [1, 2]. Moreover, 

due to its fast switching behaviour and shorter switching time, a better switching efficiency can 

be expected. In order to gain as efficiently as possible, engineers try to switch as fast as 

possible. However, the high speed switching in SiC MOSFETs increases the electromagnetic 

interference (EMI) emission. Therefore, the existing trade-off between efficiency improvement 

and EMI reduction through switching control brings a challenge in the gate driver designing. In 

addition, the SiC MOSFET normally has large input capacitance and higher threshold voltage, 

therefore more complex and sensitive driver is needed [3]. 

Several GDs have been presented to improve the mentioned trade-off between fast switching 

and EMI [4-8]. However, most of them have been assigned to Si-MOSFET or IGBT applications. 

Also, mainly they can be categorized in the closed-loop controller. Typically such controllers are 

effective and comprehensive for GDs, but in general, they increase the complexity of the GD’s 

circuit. Therefore, some of the presented approaches are not attractive solutions for industrial. 

Moreover, in high-frequency operation rates, when SiC MOSFET is under hard switching 

condition; the advent of EMI problem is possible. Hence, designing proper GD for SiC 

MOSFETs has significant importance. 

In this chapter, a simple feedforward controller is applied to the GD of a SiC-MOSFET. The new 

gate driver is compared to a conventional gate driver (CGD). In the following, an overview about 

the GDs will be presented then SiC MOSFET gate drivers will be under-focused. In the second 

section, the concept and operation of the proposed controller thoroughly are explained. 

Moreover, controller limitations for tuning the parameters are determined. The third section is 

dedicated for designing and evaluation of new GD. Studies are carried out based on simulation 

and experimental tests. Finally, the chapter will be closed with a conclusion. 

4.1.1 Overview of Gate Drivers for Power Devices 

In order to enhance power density in switch-mode applications, operation at high switching 

frequency is necessary due to reducing the size of its passive component and as well as it 

reduces the size of the heatsink. Thereby, the operation of IGBT has been limited at the low 

switching frequencies (<20 kHz) [9]. However, in high speed switches the transition rates of 

current and voltage (di/dt and dv/dt respectively) get higher values. Also, some of the inevitable 
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oscillations and overshoots in current and voltage waveforms are caused by parasitic 

inductance [10]. Changing the gate resistor Rg is known as a conventional solution [11], [12]. 

Although the overshoot suppression can be achieved by high Rg value. However, the id and 

Vds both get lower slopes which cause to increase switching times. As a result, the increased 

Rg sacrifices additional switching losses. Another conventional driving technique is the use of 

an external gate-source capacitance (Cgs) in the GD circuit [13]. However, it increases the input 

capacitance (Cies). This technique has been used for IGBT’s gate drivers due to roughly better 

efficiency (compared to the method of solely Rg increasing). Nevertheless, the gate capacitance 

is a parasitic element which potentially provokes transients and it can create some parasitic 

problems such as imposing the stress and crosstalk problem [14], [15]. As a result, this may not 

be a favorable solution for SiC MOSFET applications which typically has large input 

capacitance. To improve the existing trade-off between switching loss, stress and EMI; diverse 

approaches have been proposed such as applying snubber circuits in Si and SiC devices [16], 

[17] active gate voltage controlling [18], active gate current driving [19] resonant gate drivers 

[16] and [20], etc. All mentioned techniques could be used for driving SiC MOSFETs. Although, 

these GDs can minimize stress from the power device, however, these deal with more 

complexity or more cost and more switching losses. The control of GDs is not the single 

possible way for EMI reduction, rather with using a better design of PCB layout the parasitic 

(stray) inductances can be reduced, and consequently we will have lower EMI problems. 

4.1.2 SiC MOSFET Gate Drivers  

The SiC MOSFETs are widely employed in power converters due to its advantages. This 

switching technology inherently has lower trans-conductance compared to Si-MOSFETs or 

IGBTs. Thus, higher orders of gate-source voltage are required for switching-on. Also, the gate-

source voltage pulse is commonly asymmetrical. Therefore, different values of Rg should be 

used in their GDs [21]. Conventionally, two different gate resistance is used in the drive circuit 

for controlling each turn path. This common driver controls both turn-on and turn-off paths 

separately. A gate boost circuit was introduced for SiC MOSFET driving in [22] which had 

reduced the switching losses, however, the transient and overshoots had not been reduced. 

The same technique is presented in [23] as well. Many studies for controlling di/dt and dv/dt 

transition by closed-loop control method have been reported [23]‒[26]. Such controllers have 

been allocated to guarantee the safe operation of MOS-gate switches under different and 

variable loads. However, they increase the complexity of the driver’s circuit. 

According to the presented overview, most of the offered approached are related to efficiency 

improvement and for solving some other issues such as EMI reduction, overshoot suppression, 

stability improvement etc. mainly the presented solutions have fallen in the complex closed-loop 

GD controllers. This part of thesis presents a simple control method for driving SiC MOSFETs. 
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The control concept is based on a feed-forward controller. The effective performance of the 

controller beside its simple structure is the main advantage of this GD. The purpose is the 

switching transient improvement with a minimum undesirable effect on efficiency. In the next 

section, the operation of SiC MOSFET and the principles of new GD are presented. 

4.2. Active Gate Driver 

4.2.1 Principles of proposed controller 

The test circuit is represented in Fig 4.1. The proposed controller is applied in the gate circuit. 

The profile of Vgg voltage signal is changed by the controller and it is delivered to the gate port 

of MOSFET. In order to test in a hard-switching condition, the clamped load is highly inductive. 

The technical details of the test circuit and corresponding components are mentioned in the 

appendix part. 

Controller
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Figure 4.1. Schematic of test circuit 

The schematic of the proposed controller is depicted in Fig 4.2. Since the SiC MOSFET meets 

several intervals during the switching conditions (Fig 4.3 (a) shows these intervals), controller 

changes the profile of gate signal during MOSFET’s active region. The modification process of 

gate signal has been demonstrated in Fig 4.3. (b). At t0, the turn-on is initiated, and step voltage 

(from –VEE to +VCC) is applied to the gate. As shown in Fig 4.2, each switching state has been 

separated from the other by diodes for individual controlling. The positive side of voltage signal 

has been driven by d1 and the d2 conducts its negative for turn-on and turn-off controlling 

respectively. Both control paths have same structure and operate based on same concept. 
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Figure 4.2. Block diagram of the proposed feedforward controller 

However, the required parameters should be defined according to each switching condition. In 

both cases, the controller gets a step voltage value (∆Vg) cf. Eq. 4.1 from the input. Depending 

on the suppression rate of overshoot at each swathing state, a portion of the input value is given 

to the corresponding control path. Ki and Kv determine these coefficients for turn-on and turn-off 

controlling respectively. In each switching condition, weakened signal with a negative coefficient 

is summed with the same positive signal that has a delay. These delays are created by blocks 

Di and Dv. The applied Di delay covers whole turn-on (t0 < t < t5) and Dv covers turn-off (t6 < t 

< t9) intervals. The resultant voltage signal is called VD here. Finally, the original Vgg signal after 

summing with VD1 and VD2 results modified Vg signal which is applied on gate port for driving 

MOSFET. The modified Vg affects to the current transient while turn-on condition and as well as 

to the dynamic of voltage during turn-off condition. 

Equation 4.1     
g CC EEV V V  

    

According to what has been presented in [27], with a little approximation the current and voltage 

transitions may be defined as Eq. 4.2 and Eq. 4.3, which both depend on a different voltage 

value between Vg(+/‒) to Vgs(th). This differential voltage value affects to the injected gate current ig 

in each switching state. Thereby, the used technique can be effective to control of both current 

and voltage transitions. 

Equation 4.2      
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Equation 4.3     

( )DS platEE gs

gd g

eauV V

C R

dv

dt 




     



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          81 

+VCC

VD

+VCC

-VEE

t

Vg

The modified Vg

VDS

ID

PWM

+VCC

-VEE

VDS

ID

ID-peak

t

t

VDS-peak

IG

Normal VGSVgs

VMiller

tVth

VS1,ctrl

t
Delay ON

-Vgs

t0 t1 t2 t4 t5 t6 t7 t8 t9 ON

Delay OFF

t3

PWM

-VEE

t0 t5 t6 t9 ON

(a) MOSFET switching 

behavior 

(b) Controller 

performance

+VD

-VD

 

Figure 4.3. (a) The transient behavior of MOSFET switching and (b) controller performance for 

Vg modification 

In Eq. 4.2, gm is the trans-conductance and Ciss= Cgs+Cgd is the input capacitance of the SiC 

MOSFET. All details about the switching process of the MOSFET is fairly well demonstrated in 
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[10]. Here, we present the performance of the new gate driver for controlling did/dt and dvds/dt 

rates. 

4.2.2 Parameters and limitations 

For tuning the controller in each switching state two parameters are necessary. Ki coefficient 

and the Di delay for turn-on and Kv coefficient and the Dv delay for turn-off. In the case of delays, 

these parameters can be determined based on application note or experimental observations. 

As already mentioned, the delay time must cover whole active region times. Because of the time 

difference between switching on and off, two individual delays have been considered for 

corresponding states cf. fig 4.2. It should be noted that the margin determination for delays is 

not a delicate issue. Because after finishing Di or Dv delay, the modified Vg returns to its original 

value when MOSFET is in the saturation (steady state) region. For this reason, the delay time 

could be defined much longer than switching time. The K coefficient determines VD voltage 

value (see fig 4.3(b) and Eq. 4.5) or in other word, it determines the ∆Vg voltage value while 

controlling time. As a result, the injected gate current and then switching transient will get effect 

by that. VD is the reduced voltage level during turn on/off. Since the SiC MOSFETs driving is 

asymmetric and the absolute value of VEE is smaller than VCC, thus the change domain of the 

Vgg for each switching state must be determined individually. For turn-on condition Ki coefficient 

can be obtained by below equations. 

Equation 4.4     
1,gs th CCV V 

      

Equation 4.5     1 D CCV V 

        

Equation 4.6     1m D EEV V V


         

Equation 4.7     

1
1
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i

g

V
K

V


 



 
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As well as for turn-off condition, Kv coefficient can be defined as 

Equation 4.8     2 0EEV         

Equation 4.9     2 D EEV V 

        

Equation 4.10     2m CC DV V V


         

Equation 4.11     

2
1

m
v

g

V
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V


 



 
 
        

In the mentioned equations σ1 and σ2 are variable factors which should be selected according to 

the desired did/dt and Vds/dt rates respectively with considering the limitations cf. Eq. 4.4 and 

Eq. 4.8. For turn-on condition the modified Vg has been limited by Vgs,th and for turn-off condition 
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it has been limited by zero. Accordingly, smaller ∆Vm has higher impact on the switching 

transient and oscillations suppression. 

4.2.3 Controller tuning 

According to presented method, the level of applied intermediate voltages and their time 

duration should be determined. The influence of each control parameter on the switching 

transient behavior is explained here. Also, the optimal interval values for each switching 

condition should be determined. 

4.2.3.1 Tuning for turn-on  

Based on what expressed in previous section, Ki coefficient determines the level of intermediate 

voltage which can be reduced up to MOSFET’s threshold voltage. As a result, the applied 

intermediate voltage affects to did/dt and current overshoot at turn-on. The time duration of 

intermediate voltage is another consideration that must be long enough to cover turn-on active 

region. In this case study, 3 µs has been considered for Di. In order to realize which level of 

reduced gate voltage provides a desirable did/dt and current overshoot, the corresponding 

MOSFET has been tested by different intermediate voltage values. Fig. 4.4, shows the effect of 

controller on MOSFET behaviour at turn-on. 

 

Figure 4.4. The effect of intermediate gate-voltage levels on the peak value of current transient 

and did/dt while turn-on control domain. 

4.2.3.2 Tuning for turn-off 

As well as voltage transition (dvds/dt) and overshoot (VDS-peak) are being affected by intermediate 

voltage while turn-off condition (cf. Eq. 4.3). The resultant intermediate gate voltage through Kv 

and its consequence on MOSFET behaviour at turn-off has been reflected in Fig. 4.5. In this 

controlling stage, Dv is 2 µs which covers whole transient behaviour of MOSFET while turn-off 

with considering worst case. 
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Figure 4.5. The effect of intermediate gate-voltage levels on voltage transition and voltage 

overshoot in turn-off control domain. 

4.3. The process of validation 

4.3.1 Test condition 

Experimental tests evaluate the performance of the proposed gate driver. The test circuit is a 

standard clamped-inductive circuit which is depicted in Fig. 4.1. The driving power SiC MOSFET 

and the clamped SiC MOSFET both are from a same type (SCT2080KE). The parasitic 

inductance (LS) which comes from the loop of the PCB and power devices is 120 nH. The load 

current is 6 A, and the value of L in load is 330 μH. A square signal with 50% of duty cycle and 

frequency at 100 kHz has been applied to the input. The voltage of dc-bus is 400 V and the Vgg 

supply for original gate driver is −5/+18 V. The applied gate resistor (Rg) for turning-on is 33 

ohms and for turning-off is 46 ohms. The experimental waveforms have been captured by a 

Tektronix MSO 4054 (500 MHz) digital oscilloscope. The insulators and the safety instruments 

for protection are not demonstrated here. 

The control unit has been connected through a totem pole interface unit that supplies the 

required gate current (iG). The topology of totem pole interface unit was already illustrated in Fig 

3.17 in previous chapter that is composed from low power bipolar NPN (2N2222) and PNP 

(2N2907) transistors. 

4.3.2 Optimized tuning  

The product of multiplication of the drain-source voltage Vds(t) to output current Id(t) during the 

switching time results corresponding switching loss. The lost energy while turn-on and turn-off 

can be calculated as Eq. 4.12 and Eq. 4.13 equations respectively. Accordingly, to reach an 

optimized design, the effect of Ki and Kv on switching loss and peak value of oscillations are 

evaluated. 
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Equation 4.12     

5
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Equation 4.13     
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E dtiv       

First, each one of the switching losses and peak values of current transient (at turn-on) and 

voltage overshoot (at turn-off) must be normalized as below equations. 

Equation 4.14     
min,

on

on

E

E
 

       

Equation 4.15     min,

off

off

E

E
 

      

 In this analysis, the minimum value of switching loss (Emin) is assumed when the minimum 

possible value of Rg has been used. This value for each switching condition is 6.3 Ω. Also, in 

this condition the maximum peak value of current transient (id,max peak) and maximum voltage 

overshoot (vds,max, ov) can be measured. 

Equation 4.16     
_max

d

d

di dt

di dt
 

     

Equation 4.17     
_max

ds

ds

dv dt

dv dt
 

      

α and γ present the normalized values of the lost energy and peak value of current oscillations 

at turn-on condition respectively. Also, β and δ represent the normalized values of the lost 

energy and voltage overshoot at turn-off condition respectively. With these assumptions, the 

optimal intermediate gate voltages for each switching state can be obtained. Fig 4.6 and Fig 4.7 

these optimal intermediate gate-source voltages. 

 

Figure 4.6. Optimal intermediate voltage for gate-source (V) at turn-on 
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Figure 4.7. Optimal intermediate voltage for gate-source (V) at turn-off 

To realize the effect of VGS value on the transient behavior of switch while turning-on. Eq. 4.18 

represents the relation of current peak normalized value (see Eq. 4.16) to the normalized value 

of lost energy (see Eq. 4.14) for a specific VGS value at turn-on condition. Also, in the same way 

can be realized for turning-off condition by Eq. 4.19. 

The test results base on Eq. 4.18 have been reflected in Table 4.1 and for turn-off condition 

have been reflected in Table 4.2. Then, the highest value of γ/α column expresses the highest 

impact of VGS value or in other word it belongs to optimum value of VGS. 

Equation 4.18     
max

 
on

GS
n

n
V




      

  

Equation 4.19     
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off

GS
i

i
V




      

  

Table 4.1. Optimal VGS value in turn-on condition 

n VGS γ α γ / α 

1 19 0.0155 0.141 0.1099 

2 18 0.1078 0.229 0.4707 

3 17 0.0913 0.274 0.3332 

4 16 0.095 0.326 0.2914 

5 15 0.111 0.474 0.2341 

6 14 0.063 0.497 0.1267 

 

Table 4.2 Optimal VGS value in turn-on condition 
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i VGS γ α γ / α 

1 -4 0.0693 0.163 0.425 

2 -3 0.0683 0.23 0.297 

3 -2 0.0198 0.243 0.0815 

Table 4.3 shows the optimal setting at both switching states and corresponding values. Through 

original GD, SiC MOSFET has been driving with Vg= +20/-5 V and the implemented external 

gate resistor (Rg) is valid for the new GD as well. Though defined coefficients, Ki delivers VD
+ = 

18V to the gate for switching-on and by Kv it gets VD
- = -4V while turn-off state. 

Table 4.3. The controller tuning parameters 

P Value P Value Eon 

(µJ) 

Eoff 

(µJ) 

Emin 

(µJ)  

id,max 

(A) 

Vds,max,ov 

(V) 

Turn-

on 

Ki 0.122 α 1.52 190 - 125 6.6 - 

Di 3 µs γ 0.86 

Turn-

off 

Kv 0.1 β 1.18 - 46 39 - 580 

Dv 2 µs δ 0.93 

4.4. Experimental validation  

The proposed GD is validated by experimental tests. In order to evaluate the performance of 

new GD, the transient behaviour of the MOSFET in both with original GD and with proposed GD 

are compared with together. 

4.4.1 The test results  

The profile of output parameters (id and VDS) of MOSFET when it is driven by original GD are 

demonstrated in Fig. 4.8. Then in next figure, for a closer look, the switching behaviour of 

MOSFET driven by new GD is zoomed in different tuning conditions. 
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Figure 4.8. Output voltage and current of MOSFET driven by original GD 

 

Figure 4.9. Zoomed view of drain current with different Ki 

 

As can be seen in figure 4.9, the overshoot value in output current and corresponding 

oscillations can be suppressed by applying different Ki. The biggest suppression rate belongs to 

which has smallest ∆Vm1 (see Eq. 4.6 and Fig. 4.3). However, the optimized value (VD
+ = 18V 

and VD
- = -4V) for driving is compared with original gate driver. Figures 4.10 and 4.11 represent 

the id current waveform while turning on and off conditions. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          89 

 

Figure 4.10. Drain current with new GD (optimal tuning value) and original GD at turning-on  

 

Figure 4.11. Drain current with new GD (optimal tuning value) and original GD at turning-off 

Although the proposed GD may suppresses the overshoot up to 5.2 A, however, the optimized 

tuning condition the overshoot can be reduced up to 5.5 A. In this tuning condition, the slope of 

the current (did/dt) in fundamental frequency (100 KHz) ten times has been increased compare 

to its maximum value. Also the current fluctuation in switching-on condition with 5.3 MHz (see 

Fig. 4.10) highly has been removed which both manners help to eliminate EMI problem from 

switch mode power supplies.  

This comparison can be carried out in the case of drain-source voltage as well. The figures 4.12 

and 4.13 demonstrate the output voltage profiles with original and new GDs in both switching 

condition. 

 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          90 

 

Figure 4.12. Drain-Source voltage with new GD (optimal tuning value) and original GD at 

turning-on 

 

Figure 4.13. Drain-Source voltage with new GD (optimal tuning value) and original GD at 

turning-off 

The obtained results show that output voltage at turn-off condition gets minimum effect from 

applied control method. 

4.4.2. Performance index 

Based on previous subsection, experimental setup of the gate driver for both switching states 

have been developed. In order to observe the effect of the applied GD, an analytical test 

between new GD and original GD (with minimum Rg,ext values that presented in previous 

subsection) has been carried out. The purpose of this comparison is the evaluation of transient 

behavior during the operation of new GD and the CGD. Another criteria in this analysis is the 

comparison of the switching losses between these GDs. The change of gate resistor (Rg,ext) is 

known as a conventional driver for MOS-channel switches [27], [28]. So, as a conventional 
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solution, Rg,ext has been increased up to 15 Ω (for turning on) and 22 Ω (for turning off) to 

achieve the same level of overshoot suppression in current and voltage that new GD presents in 

its operation. In this condition the switching losses of both GDs can be calculated according to 

equations 4.12 and 4.13. The results have been reflected in Table 4.4. 

Table 4.4. The performance index 

Gate driver 
Peak of Id 

oscillation (A) 

Voltage 

overshoot (V) 

Eon 

(µJ) 

Eoff 

(µJ) 

 did/dt 

(A/µs) 

dvds/dt 

(KV/µs) 

Original gate 

driver  
6.1 562 125 

39 22 4.2 

New gate driver  5.5 535 190 46 19.2 3.9 

CGD, Rg,on=15 Ω 

Rg,off =22 Ω 
5.5 535 212 

50 18.5 3.6 

 

4.5. Conclusion 

 Based on the obtained results, the new active voltage gate driver has improved transient 

behavior of the SiC MOSFET in both switching condition. Although this improvement is 

significant in turn-on condition, however it has better performance compare to CGD. In this 

chapter, we tried to address rest of issues that previous chapter had not been dedicated. 

Applying the proposed feedforward controller on SiC technology MOSFETs, optimal tuning of 

active voltage GD and evaluation of this GD in turn-off condition were the important parts of this 

study. 
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      CHAPTER  

FIVE 

A Simple Closed-Loop Active Gate Voltage Driver for 

Controlling diC/dt and dvCE/dt in IGBTs  
 

The increase of the switching speed in power semiconductors leads converters with better 

efficiency and high power density. On the other hand, fast switching generates some 

consequences like overshoots and higher switching transient, which provoke electromagnetic 

interference (EMI). This phase of the thesis proposes a new closed-loop gate driver for 

improving switching trajectory in insulated gate bipolar transistors (IGBTs) at the hard switching 

condition. The proposed closed-loop gate driver is based on an active gate voltage control 

method, which deals with emitter voltage (VEe) for controlling diC/dt and it gets feedback from the 

output voltage (vCE) in order to control of dvCE/dt. The sampled voltage-signals modify the profile 

of applied gate voltage (vgg). As a result, the desired gate driver (GD) improves the switching 

transients with minimum switching loss. The operation principle and implementation of the 

controller in the GD are thoroughly described. It can be observed that the new GD controls both 

dvCE/dt and diC/dt accurately independent of the variable parameters. The new control method is 

verified by experimental results. As a current issue, the known trade-off between switching 

losses and EMI is improved by this simple and effective control method. 
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5.1. Introduction 

Insulated gate bipolar transistor (IGBT) power semiconductors with antiparallel freewheeling 

diodes (FWDs) are widely employed in industrial applications. In order to achieve high-density 

power converters, attentions are focused on the use of fast IGBTs. Hence, the demand for 

minimizing switching losses and increasing efficiency has encouraged engineers to design more 

effective IGBT gate drivers. For gate drive (GD) designing, the main task is the transient 

behavior improvement into switching times with minimum penalty in the losses. It is well known 

that fast switching has a direct effect on the minimization of switching losses; meanwhile, it is 

the major reason for electromagnetic interference (EMI) generation in switched-mode power 

converters [1]. Moreover, the higher rates of voltage and current transition (dvCE/dt and diC/dt 

respectively) impose stress on the IGBT that have a harmful effect on device lifetime [2]. 

Therefore, a trade-off between switching losses and EMI generation should be defined for 

having an optimized switching. It would be more challenge when we are dealing with IGBTs, 

which operate at high frequency and those are under hard switching conditions over non-

constant load. 

In addition, the other challenging issue in GD designing is the definition of diC/dt and dvCE/dt 

rates and keeping them in desired values during operation condition independent of effective 

variables such as junction temperature (Tj), parasitic inductance (LS), and load etc. [3]. 

Moreover, some other factors such as high-speed operation, low-cost production, simplicity in 

structure, effectiveness in EMI reduction and efficiency improvement are important 

considerations in GD designing. The modification of gate resistor (Rg) in the drive circuit is 

known as a conventional solution for the switching control [4]-[6]. The result of using 

conventional gate drive (CGD) is a sub-optimal compromise, which has an undesirable effect on 

the switching speed and switching losses of the IGBT. To overcome the inherent ineffectiveness 

of the CGD, many active gate control (AGC) have been reported [3], [7]–[24]. In order to create 

a safe operating point for IGBT with respect to its nonlinearities and dependencies, it is 

necessary to get some feedbacks from corresponding concerns and applying them to the GD 

controller. That is why the passive and feedforward controllers with having a simple structure 

and the cheaper price are not impeccable solutions for industrial applications. Therefore, AGC 

can mainly be categorized into the closed-loop controller’s family. These controllers have been 

presented and gradually developed to guarantee the safe operation area (SOA) of the IGBTs 

under different load conditions. However, using such controllers increase the cost and 

complexity of the GDs circuit. For this reason, the goal is achieving a cost-effective and simple 

closed-loop controller with respect to the robustness factors. 

The junction temperature and the load variation as changeable factors and IGBT’s nonlinearity 

have a significant influence on the structure of closed-loop GDs. A brief review of these factors 
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is summarized here. As an exclusive advantage of this controller, the proposed GD operates no 

dependence on the mentioned factors. 

5.1.1 Junction temperature (Tj)  

 The IGBT’s reliability is a thermal-related issue; as far as half of the total amounts of power 

device damages are related to the temperature-dependent failures [25], [26]. However, the 

effect of high Tj is not limited to the reliability. This factor has a significant effect on IGBT 

switching characteristic values [27] as it may change the dynamic behaviour of gate voltage 

(VGe) and current (iG). Also threshold gate-emitter voltage (VGe,th) may vary with different 

temperatures [28]-[30]. Therefore, considering Tj for some of the controllers that are dealing 

with gate side parameters is essential. Otherwise, the applied controller may not be entirely 

effective for all operating conditions. For instance, an active gate voltage control was presented 

in [11] to control the values of diC/dt and dvCE/dt at turn on/off, based on gate side transient 

behaviour. However, the addressed intervals may vary by different Tj values which are the 

principal action of the controller. The defined intervals for controller operation had been 

bounded by constant delays, hence for such controllers, some criticisms can be raised up. 

Different methods for measuring device temperature have been presented [31]. The proposed 

closed-loop GD presented in this chapter is independent of IGBT’s temperature. It covers all 

consequences of temperature variation without installing additional circuit. 

5.1.2 The load variation  

Missing compensation of the load variation is the main drawback of passive and feedforward 

controllers [3]. Thereby, the closed-loop concept with negative feedback is promoted to achieve 

a more precise control. The variation in the load affects to dvCE/dt and diC/dt. Especially in hard 

switching condition when IGBT operates under inductive loads, preserving the dvCE/dt and diC/dt 

in proportional slope rates is a serious issue for having EMI standards [32]. Moreover, the load 

and its demanded current have an effect on the Miller plateau area in IGBT while turn on/off 

transients [33]. This factor like previous part may change IGBT’s behaviour in gate side and all 

previous concern are valid for this case as well. Significantly, in turn-on condition, the load 

variation affects to diC/dt that it also has an effect on the inducted “vEe” voltage that exists 

between the emitter and the common path of the converter. This voltage which has been 

created by stray inductance is used in the proposed controller. By this technique, GD has been 

benefited by an undesirable phenomena. More details are explained in the corresponding 

section. Briefly, IGBT can be controlled permanently in all load condition. 

5.1.3 IGBT’s nonlinearity  

Typically, the closed-loop AGC is the only possible solution to compensate the IGBT’s 

nonlinearities in variable operating condition. Many sophisticated analog closed-loop GDs have 
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been presented [9], [17], [34]-[36]. Due to the different transient behaviour of IGBT at each 

switching on/off conditions [37]-[39], individual control loop for each switching state (for diC/dt 

control at turn-on [18], or dvCE/dt at turn-off [40]) are needed. As well as, for full GDs, a 

combination of both voltage and current feedbacks in the AGC topology have been presented 

[3], [8], and [24]. Recently, several digital approaches have been presented in IGBT GDs [19]-

[21], [33], [41]. The use of these techniques have benefits for minimization of switching losses, 

reverse-recovery current, and EMI at desired switching operation. However, the spent large 

delay times while conversion of analog to digital (A/D) and vice versa (D/A) in the signal paths, 

and the higher cost are the main drawbacks of digital solutions. On the contrary, this part of 

research proposes a simple analog GD which controls both voltage and current transitions in a 

closed loop. 

Regarding what was expressed in this section; various methods for diC/dt controlling based on 

the measurement of the collector current have been presented and for controlling dvCE/dt many 

different techniques through the measure of the collector-emitter voltage also have been 

proposed. However, the addressed GDs mainly have fallen into the complicated and expensive 

solutions or in other cases, they sacrifice additional switching losses. In this study, a simple 

structure closed-loop GD with voltage type feedbacks operates independently of variable 

parameters while maintaining a precise balance between switching losses and EMI effects. The 

concept, principles, and structure of the proposed control method are explained in Section 2. 

The controller setting and performance of new closed-loop GD is evaluated by experimental 

results, which are presented in Section 3. The next section (4) is about performance index of 

new GD through comparing with conventional gate drive method. In addition, the EMI analysis 

and the cost study are other parts of this evaluation. The chapter closes with a discussion of 

presented controller and conclusion. 

5.2. Closed-loop Active Gate Control Method   

The proposed GD controls IGBT’s diC/dt and dvCE/dt at turn-on and turn-off respectively. The 

risen collector current while turn-on switching creates a vEe voltage at the IGBT emitter which as 

a feedback is used in the controller. The output voltage (VCE) as turn-off feedback is applied to 

the closed-loop controller as well. The principles of new GD are based on active gate voltage 

control method. Thus, an intermediate gate-voltage (vgg) is applied into specific intervals, which 

covers current (iC) rise time at turn-on and voltage (VCE) rise time at turn-off. The level of the 

applied intermediate voltage varies due to the load variation in order to maintain the desired 

rates for current and voltage transitions. The concept and operation principle of the new closed-

loop GD is explained in the following. 
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5.2.1 Philosophy of the method 

The IGBT meets several intervals during its turn on/off under hard switching conditions. Fig. 5.1 

shows these intervals schematically. All details about the switching process of the IGBT are 

fairly well documented in [39]. Here, we have mainly focused on the corresponding intervals to 

figure out the effective parameters and controlling the diC/dt and dvCE/dt rates.  

At t0, a voltage step (from –VEE to +VCC) is applied to the gate port. In this moment, the gate 

current (iG) immediately rises up to its maximum value and then starts to decay. In the 

meantime, the gate voltage vGe rises in accordance with the time constant (τG) of the charging 

process cf. Eq. 5.1 and Eq. 5.2. The IGBT is still off as long as the vGe remains lower than the 

threshold voltage vGe;th. This process happens in the first interval, which covers the time 

between t0 to t1 cf., Fig. 1(a). This interval is co-called gate charge delay and it has a minimal 

effect on diC/dt rate; however, the gate charge has remained valid and the potential energy is 

stored for the next interval. 

Equation 5.1     
+  ies Ge GCC C C

  

Equation 5.2     
 G g iesR C  

  

As soon as vGe(t) passes the vGe,th value, the GD circuit changes the profile of vgg voltage signal 

and delivers lower voltage value to the gate-emitter (see Fig. 5.1(a)). In this moment, the IGBT 

begins to conduct current based on its transfer and output characteristics. Then the collector 

current increases almost linearly from zero and the load current initiates to commutate from the 

freewheeling diode to the IGBT [39]. The extra gate charge that had been stored in the previous 

interval potentially can generate the overshoot problem in iC [42], [43]. According to below 

equations, which have been proved in [17] and [23], the diC/dt rates can be calculated as a 

function of the gate circuit parameter. The gate current iG(t) during the second interval can be 

represented as 

Equation 5.3      

( 1)/
( )

G
G

gg t t

g

v
i t e

R

 
 

   

That ∆vgg is the difference value of the maximum (VCC) and minimum (VEE) gate drive voltage, 

and Rg is the gate resistor. 

Equation 5.4      
gg CC EEv V V  

   

The iC and diC/dt equations in turn-on can be approximately explained as 

Equation 5.5       
,( )( )  (  )thC m Ge t Gei t g v v  

  

Where gm is the IGBT’s linearized trans-conductance 

Equation 5.6      
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Equation 5.7      

GC Ge
m m
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di dv i
g g

dt dt C
   

  

Equation 5.8      

6
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C
os BD F

di
I BV I

dt


 

   

CGC is Miller capacitance; IF is the diode forward current; BVBD is the diode breakdown voltage 

and LS is the stray inductance.  

The collector current iC rises rapidly when vGe(t) exceeds from vGe,th value cf. Eq. 5.5 Whereas in 

high voltage applications (in high vCE values) CGe is too small therefore according to Eq. 5.7 the 

only possible way to have desire diC/dt is having constant product in gm·iG. Hence, the 

transconductance gm or gate current value during the current rise time should be controlled. 

Also, the overshoot in collector current IOS may appear because of the reverse recovery current 

that is cycling by the freewheeling diode (FWD) cf. Eq. 5.8. 

The gate-emitter capacitance depends on the physical structure of IGBT, so the diC/dt control at 

turn-on condition can be possible by changing the vGe or gate current iG values. In Fig. 5.1(a), 

the gray background demonstrates the controller operation time to apply intermediate vgg 

voltage value. Based on this technique, the injected iG will be controlled by changing vgg voltage 

profile cf. Eq. 5.3 in order to control diC/dt cf. Eq. 5.7 and remove the current overshoot cf. Eq. 

5.8. 

Fig. 5.1 (b) shows schematic waveforms of the IGBT at turn-off. At t6, the vgg voltage pulse is 

switched to its negative value. With few exceptions, it can be assumed that voltage and current 

in gate side have inverse behaviour compare to turn-on condition. Upon applying VEE, the vGe(t) 

starts to decay and at the same time, vCE gradually increases. The slow rising in vCE is because 

of large Miller capacitance CGC value. In this process, as soon as both vCE and vGe arrive at the 

same value, CGC suddenly falls down in value and the vCE starts to rise fast [39]. The dvCE/dt can 

be calculated as 

Equation 5.9      

CE G

GC

dv i

Cdt
 
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Figure 5.1. The intrinsic behavior of IGBT at turn-on (a) and turn-off (b) switching and controller 

operation time marked by gray background 

This transition also directly depends on the gate current. So, the method of active gate voltage 

control could be an effective solution. As shown in Fig. 5.1(b), at t8 VCE, exceeds from vGe value 

and voltage rising since this moment till t9 when vCE arrives to VDC is valid. During this period, 

the new controller applies a lower voltage to gate circuit according to the load condition. 
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5.2.2 The operation principles 

The schematic of case study and the topology of new GD are presented in Fig. 5.2. More details 

regarding the load and circuit component are reflected in the appendix part. 
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Kv 
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 VEe

input (vgg) output+
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Figure. 5.2. (a) The test circuit and the proposed controller in GD, (b) General scheme of the 

controller 

In real condition, an inductance exists between emitter and earth. This inductive factor (LEe) is a 

part of stray inductance (LS) and its value mainly depends on the designed PCB layout [44]. 

While turn-on condition, diC/dt gets value and LEe generates a voltage (vEe) cf. Eq. 5.10. Based 

on Lenz’s law, the induced voltage has inverse polarity. The positive part of vEe, which had been 

created by current decaying (see Fig. 5.3) is filtered by a diode (see Fig. 5.2-b). The created vEe 

voltage has diC/dt factor in itself inherently and that can be used as a feedback in the active gate 

voltage controller instead of getting feedback from the output current. This technique has 

obvious advantages, for instance, it is simpler because the use of a current sensor would make 

the circuit more complicated. In the conventional closed-loop diC/dt controllers [3], [17]; in order 

to sense error, the measured iC must be derived in feedback. However, in addition to the use of 

extra operation (typically by Op-Amp), the transfer function gets an extra dimension which 
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increases the sensibility of the controller from stability aspect. Therefore, it can be said that the 

proposed active gate voltage control method with a simpler structure is more robust as well. 

Equation 5.9      

C
Ee Ee

di
L

dt
v   

    

For achieving desire diC/dt and proper transient the obtained vEe voltage is adjusted by a Ki 

coefficient and it is used to reduce the original vgg voltage signal. Thereby, in turn-on condition, 

GD feeds the IGBT with proper intermediate voltage. Thus, a controlled current driven by this 

intermediate voltage at the specific interval (between t1 to t2) will be injected into the gate port.  

Moreover, the proposed closed-loop GD makes possible to control dvCE/dt at the turn-off 

switching. For maintaining voltage transition under control, the positive part of dvCE/dt with a 

proportional coefficient (Kv) is summed with vgg. The configuration of the proposed closed-loop 

gate driver as a block diagram is shown in Fig.2-b. The voltage type feedbacks after summing 

vgg modify its profile. Thereby, diC/dt and dvCE/dt during corresponding switching conditions are 

controlled by this method of active gate voltage driving. 

t0 t2 t3 t4
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Figure 5.3 Voltage type feedback signals originated from turn-on and turn-off switching 

transients and corresponding modified vgg. 
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5.3. The Closed-Loop GD Tuning and Experimental Results 

The experimental tests have been performed in almost nominal voltage and a high inductive 

load has made hard switching conditions for IGBT. The voltage of dc-bus is 550 V and IGBT 

operates at 5KVA. Two DC power supplies (XFR 300V-9A) as a series connection provide the 

power of test bench. 

For each switching state, only one adjustment parameter is necessary which should be located 

in corresponding feedback paths. Through a proper Ki coefficient, a suitable voltage value will 

be applied to the gate. Therefore, in order to control the diC/dt at turn-on, the determination of Ki 

coefficient is necessary, from which a reduction on gate voltage is provoked. As a desirable 

purpose, a significant reduction in current overshoot and EMI problem will result. 

The mathematics logic for diC/dt and dvCE/dt controlling and overshoot suppression by 

modification of ∆vgg is based on subsection 5.2.1. However, the practical tuning based on the 

experimental behavior of IGBT is explained here. 

At turn-on condition, in order to allow remaining IGBT as on-state, the minimum value of 

intermediate vgg should be higher than the threshold value (vGe,th), which its maximum value is 

6.5 V for this device. Therefore, the minimum intermediate voltage (by Ki1) is not selected lower 

than 6.8V. Although the IGBT has stayed on the active region while applying intermediate 

voltage and only switching-off condition (see ref [39]) is able to challenge its operation; however, 

due to the stability and SOA considerations, the minimum Ki coefficient has been selected with 

high margin. The reflected experimental results in Fig. 5.4 and Table 5.1, show how diC/dt and 

the overshoot in collector current both get influence from Ki. The desired Ki can be realized with 

a simple voltage divider. 

 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          106 

(a) 

 

(b) 

Figure 5.4. (a) The collector current waveform, performed by the original gate driver. (b) The 

zoomed view to show the performance of AGD with difference Ki coefficient and its effect on the 

current at turn-on. 

Table 5.1. Collector current trajectory controlled by closed-loop GD with different Ki coefficients 

Ki coefficient intermediate gate-

voltage levels 

diC/dt (pu.) Over current (pu.) 

Ki1 6.8 0.54 0.77 

Ki2 7.6 0.58 0.8 

Ki3 8.4 0.65 0.85 

Ki4 9 0.69 0.9 

Original GD - 1 1 

The control of dvCE/dt and overshoot suppression at the turn-off switching can be achieved by 

the feasible solution shown in Fig. 2-b. The voltage transition will be under control when the 

controller operates with a proper Kv coefficient. Figures 5.5 and Table 5.2 present the role of 

choosing Kv at turn-off on the IGBT switching. We should remind that there is a minimum limit 

for the differential voltage value (∆Vgg) which has been defined by the application note. Based 

on this rule, in order to apply minimum ∆Vgg to IGBT (while turn-off condition) and with 

considering a safe margin Kv1 is set on 3.5 V which presents the slowest possible turn-off 

switching.  
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(a) 

 

Figure 5.5. (a) The waveform of collector-Emitter voltage, performed by the original gate driver. 

(b) The zoomed view to show the performance of AGD with difference Ki coefficient and its 

effect on the voltage at turn-off. 

Table 5.2. VCE trajectory controlled by closed-loop GD with different Kv coefficients 

Kv coefficient intermediate gate-

voltage levels 

dvCE/dt 

(pu.) 

V-Overshoot (pu.) 

Kv1 3.5 0.64 0.886 

Kv2 1.5 0.72 0.911 

Kv3 -1 0.79 0.93 
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Kv4 -4 0.93 0.95 

Original GD - 1 1 

The proposed gate driver deals with changing the voltage value of the gate signal (vgg) while 

switching time. As we know, IGBT in active region loses its function if vGe (t) gets a value less 

than its threshold value. This concern has been considered with defining a safe margin area in 

turn-on and turn-off conditions. All the generated intermediate voltages by GD in both switching 

conditions do not affect the operation of IGBT from the stability aspect. It should be noted that 

the previous studies [11] and [45] approve SOA of active gate voltage driver technique on IGBT 

when it operates with an intermediate voltage of vgg. However, the mentioned references were 

limited to manual adjusting and the feedforward control method that is not adaptive with variable 

load conditions. For this reason, in this study the stability analysis was ignored. 

This part does not present an optimization method for tuning of the controller, because the new 

GD has better performance index compare to CGD in any gain value. In fact, the Tables 

express the trajectory of controlling process that affect to the slope current/voltage and 

overshoot which consequently has effect on efficiency and EMI. Based on this information the 

user may select the level of control on the turn-on or turn-off switching. This advantage of active 

gate voltage control compare to conventional method has been already approved in [11] and 

[45]. The new section details performance index of closed-loop GD. 

About the effect of temperature, in the Introduction we declared that the proposed closed-loop 

GD is independent of IGBT’s temperature. It covers all consequences of temperature variation 

without installing additional circuit. The consequence of gate side changes (e.g. temperature) 

can be seen on switching behaviour. This is the essence of the story and the controller may 

adapt itself through getting feedback from di/dt and dv/dt and applying them on the profile of 

gate voltage.  

Temperature influences on the switching time or/and it varies the threshold gate-emitter voltage 

(vGe,th) value. In the case of switching time, the controller is adaptive and it operates throughout 

the required switching time. However, the change in threshold voltage value is important from 

SOA viewpoint that should be considered in the adjusting margin value of intermediate voltages.  

Several studies evaluate the variations of the thresholds voltages in IGBTs [28], [29]. In [29], the 

effect of temperature on threshold of vGe was evaluated by different device manufacturers. The 

results showed that the threshold voltage in different IGBTs was reduced up to 1 V by 

increasing temperature from 25 °C to 120 °C. It´s key point that the increase of temperature has 

negative effect on the vGe(th) value. In fact, this change even enhances the level of SOA when; 

controller reduces gate voltage value in its operation time (see Fig. 5.3).  
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5.4. The Performance Index of closed-loop GD 

5.4.1 The Comparison with CGD 

In order to evaluate the performance of proposed GD, the obtained results by new GD and CGD 

are compared together experimentally. The meaning of CGD is the increase of gate resistor Rg 

value for achieving desire transient behaviour which is a known technique [3], [10], [11], [20], 

and [24]. In this evaluation both control method are compared when they have the same rate of 

overshoot suppression (i.e., a very similar electrical behavior, as it is shown in Fig. 5.6 and Fig. 

5.7)). This suppression is for current overshoot at turn-on and also it is for voltage overshoot at 

turn-off. To better understanding, the resultant diC/dt and dvCE/dt from new GD and CGD have 

compared each other. Moreover, the switching losses (Eon and Eoff) are considered in the 

carried out comparison. Fig. 5.6 shows the current waveforms at turn-on which resulted by new 

GD and CGD. At the same time, the waveforms of collector-emitter voltage are shown in Fig. 

5.7. In addition, Table 5.3 presents all aspects of this comparison. 

The Ki1 coefficient regulates the suppression rate of collector current. The gate resistance is 

increased up to 23 ohms. It should be noted that the amplitude of Rg in original GD and in new 

GD was 12 ohm, which has been calculated, by IGBT’s application note. 

 

Figure 5.6. The resultant iC from the closed-loop GD and CGD at turn-on condition. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          110 

 

Figure 5.7. The resultant vCE from closed-loop GD and CGD at turn-on condition. 

 

To realize the turn-on switching loss (Eon), VCE (t) and iC (t) waveforms should be multiplied 

together while the active region of IGBT. The area of the product can be calculated as below 

equation. 

Equation 5.11     

5
( ) ( ) 

0

t
on CE t C t

t
E dtv i      

Where the elapsed time during t0 < t < t5 cf. Fig. 5.1-(a) is the turn-on switching time; then, Eon 

is the turn-on lost energy (in joule) at each switching time. 

For comparison at turn-off, the closed-loop GD operates with Kv1 coefficient meanwhile the 

CGD has increased the gate resistance up to 50 ohms in order to achieve the same damping 

rate on voltage overshoot. The performance of both gate drivers is presented as comparative 

figures, which illustrate collector-emitter voltage and collector current waveforms at turn-off. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          111 

 

Figure 5.8. The resultant VCE from closed-loop GD and CGD at turn-off condition. 

 

Figure 5.9. The resultant iC from the closed-loop GD and CGD at turn-off condition 

The switching loss at turn-off (Eoff) can be obtained by Eq. 5.11 as well, but the considered 

domain in the calculation is t6 < t < t11 which includes turn-off switching time cf. Fig. 5.1-(b). 

Fig. 5.8 and Fig. 5.9 offer a graphic comparison; also, the numerical results are reflected in 

Table 5.3. 

Table 5.3. The performance index 

Gate drivers 
Overshoot 

value in IC (A) 

Overshoot value in 

VCE (V) 

Eon (µJ) Eoff (µJ) 

Original GD 8 790 397 716 

New GD 6.1 700 465 931 
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CGD 6.1 700 512 986 

It is distinguishable that the new closed-loop gate driver has improved the trade-off between 

switching losses and overshoots suppression. 

5.4.2 Electromagnetic Interference Analysis 

The proposed closed-loop GD has the capability of improving the dynamical behaviour of IGBT. 

The high rate of current and voltage transitions (diC/dt and dvCE/dt respectively) are known 

reasons of EMI generation in power converters. In addition to the ability of new GD to reduce 

the overshoots in output current and voltage with minimum losses penalty, it moderates the 

oscillation and other effective parameters, which have an impact on EMI appearance. 

The following evaluation does not include all the aspect of EMI phenomena; however, the 

deference rate of EMI through driving with Rg and new GD can be monitored. The carried out 

analysis is based on the trajectory of the current and voltage waveforms, which experimentally 

had been extracted by an oscilloscope Tektronix MDO3024. The obtained data are applied to 

the FFT in MATLAB software for processing. The effective parameters in EMI production can be 

characterized by FFT analysis as a periodic trapezoidal pulse. It should be considered that the 

measured output current and voltage are in common mode (CM) conditions. Fig. 5.10 shows the 

spectrum for both collector current and collector-emitter voltage. The results show that the 

closed-loop GD can eliminate the noise in VCE voltage with a resonant frequency of 8 MHz and 

in IC current with a resonant frequency of 11 MHz. 
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Figure 5.10. The comparison of resultant spectrum between closed-loop GD and CGD with 

Rg=12Ω tested on VCE and iC experimentally. a) Spectrum approximation of VCE and, b) 

Spectrum approximation of IC. 

5.5. The Cost Study 

All MOS-channel switches require a driver to supply the device and provide desired 

performance. In power converters with a simple gate driver, the snubber circuits are the well-

known solution to reduce the EMI problems and overshoots. On the other hand, snubber may 

reduce the system efficiency and it is enough massive for high-density power converters. 

However, the main advantage of snubber circuits is the cheapness and its simple structure. 

Although, snubber-less methods (GD base techniques) compensate the weak points of the 

snubber circuits however they increase the cost [44]. 

The simple structure of proposed closed-loop GD has been already presented. In this part, the 

cost study is evaluated. As reference price, the total cost of the driver plus snubber circuit is 

considered 1 per unit (pu), which is calculated based on the components price. Accordingly, the 

price of implemented totem-pole interface unit cf. Fig. 5.12 consists of a pair of bipolar NPN and 

PNP transistors and corresponding resistors are 0.13 of per unit. A pair of dual high-speed 

operational amplifiers and a quad general purpose Op-Amp include 1 pu. The rest of the 

components including diodes, two potentiometers, and some other resistors allocate 0.12 pu of 

the base cost. The cost of closed-loop GDs may be increased mainly by the high-speed 

comparators and MOSFETs whereas in the proposed GD is needless the use of these 

components. As a result, the new closed-loop GD beside its effective performance it does not 

impose a significant extra cost. 

In Table 5.4, the approximated costs besides main characteristics of proposed closed-loop are 

compared to the corresponding parameters of a CGD plus snubber network. 
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Table 5.4. Cost and characteristic comparison 

Drivers Cost 

(pu) 

Efficiency EMI 

reduction 

Overshoot 

reduction 

GD+Snubber 1 Medium High High 

Proposed 

AGD 

1.25 High High High 

 

5.6. Conclusion  

The last chapter of thesis proposed a robust closed-loop gate driver for the IGBTs. It has been 

shown that the new GD is able to improve switching transient under hard switching condition 

with a minimum penalization in switching loss. The following results were obtained from both the 

experimental evaluations: 

The proposed GD has the capability to control of diC/dt and dvCE/dt in turn-on and turn-off 

respectively. Controlling GD is possible with very simple tuning in both switching states. 

The closed-loop GD has eliminated the overshoot from collector current more than 20%. Also, 

the VCE overshoot has been reduced more than 10%. Therefore, the IGBT lifetime will be 

extended. 

The performance index showed that the closed-loop GD has lower switching losses compare to 

CGD in both turn-on and turn-off conditions. 

This novel closed-loop controller keeps its performance versus TJ and load variations without 

applying extra circuit in its topology.     

Based on spectrum analysis of the current and voltage transition obtained from experimental 

tests, the radiated emission of EMI is reduced during switching transient.  

The proposed gate driver is simple enough to allow its use in real industrial applications. In 

addition, based on the carried out evaluation it is the fairly cost-effective solution. 

According to the philosophy of the proposed closed-loop GD, IGBT can be controlled 

permanently in all variable condition, allowing a novel and real solution for industrial 

applications. 

Appendix 

The test circuit cf. Fig. 5.2-a, consist of below features and components. The tested IGBT is 

NGTG50N60FLWG which clamped to 550 V DC bus-voltage. The applied inductive load is 

composed of RLoad = 59 Ω, L = 780 µH. The switching frequency is 20 kHz. 

Fig 5.11 illustrates the schematic of the controller. In this circuit, the operations and integrations 

are done by general-purpose LT1364/LT1365 Op-amps. Also, both Ki and Kv coefficients are 

created by simple voltage divider circuits. The model of implemented diodes is 1N4148-TR. 
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Figure 5.11. The schematic of the proposed closed-loop controller 

In order to make the connection between the closed-loop controller and IGBT, an interface unit 

(see Fig. 5.12) is considered which is composed of low power bipolar NPN (2N2222) and PNP 

(2N2907) transistors. It was supplied by V= 15V. 

Vcc

VEE

Rg

Q1

Q2

RLoad

VDC

IGBT

 

Figure 5.12. Totem-pole interface unit to gate current supply 

Signal generator (Agilent 33220A-20MHz) generates a symmetric gate signal ( 2.5). In 

conventional GD method, this signal is applied to a HCPL-3120 optocoupler to have a  15V 

gate signal. Since, the proposed controller modifies the profile of the gate signal (vgg) and 

optocupouplers are not be able to maintain this modification; therefore, a Totem-pole interface 

unit (see Fig 5.12) generates  15V gate signal for our driving method. The designed interface 

unit is able to conduct both positive and negative parts of input signals. The Totem-pole circuit 

does not eliminate the changes of vgg signal. 

The active gate driver circuit was designed and implemented as shown in Fig 5.13. 



   Active Gate Switching Control of IGBT to Improve Efficiency in High Power Density Converters 

 

          116 

 

Figure 5.13. AGD prototype manufactured 
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     CHAPTER  

Six 

General conclusions and future work  
 

 

 

The main contributions of this thesis including the conclusions and future work, generally are 

presented in this chapter. 

 

CONTENTS:  

 

6.1.  General Conclusion  

6.2  Future research plan    
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6.1.  General Conclusion 

The increase of the switching speed in power semiconductors leads converters with better 

efficiency and high power density. On the other hand, fast switching generates some 

consequences like overshoots and higher switching transient, which provoke electromagnetic 

interference (EMI). Since the demand for minimizing switching losses and increasing efficiency 

has been increased from industry side, the main task of this thesis is the transient behavior 

improvement into switching times with minimum penalty in the losses. In other word, the exist 

trade-off between switching losses and EMI should be improved. 

The main contribution of this thesis is based on active gate voltage control method. The first 

phase of this study is to propose a simple feedforward gate driver into the GD of an IGBT. 

Although, at the beginning a POSICAST controller was introduced for AGD, however, after 

assessing the IGBTs switching behavior and also the principal operation of POSICAST, this 

control method was developed by presenting a new and effective feedforward control method. 

The proposed feedforward GD controls both switching states (on/off) to achieve the objectives 

of the thesis. The method of evaluation was based on making a comparison between the 

performances of proposed AGD and CGD in a same test condition. 

The other phase of this contribution was the evaluation of this feedforward AGD by applying that 

on SiC technology MOSFETs and also optimal tuning of active voltage GD. 

The next important contribution of this thesis is presenting a robust closed-loop gate driver for 

the IGBTs. The principals of proposed closed-loop AGD is based on presented feedforward 

AGD which already has been validated. The results showed that the new AGD is able to 

improve switching transient under hard switching condition with a minimum penalization in 

switching loss. The following results were obtained from both the experimental evaluations: 

• The proposed AGD has the capability to control of diC/dt and dvCE/dt in turn-on and turn-

off respectively. Controlling GD is possible with very simple tuning in both switching states. 

• The closed-loop GD has eliminated the overshoot from collector current more than 20%. 

Also, the VCE overshoot has been reduced more than 10%. Therefore, the IGBT lifetime will be 

extended. 

• The performance index showed that the closed-loop GD has lower switching losses 

compare to CGD in both turn-on and turn-off conditions. 

• This novel closed-loop controller keeps its performance versus Tj and load variations 

without applying extra circuit in its topology.     

• Based on spectrum analysis of the current and voltage transition obtained from 

experimental tests, the radiated emission of EMI is reduced during switching transient.  

• The proposed gate driver is simple enough to allow its use in real industrial applications. 

In addition, based on the carried out evaluation it is the fairly cost-effective solution. 
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According to the philosophy of the proposed closed-loop GD, IGBT can be controlled 

permanently in all variable condition, allowing a novel and real solution for industrial 

applications. 

 

6.2  Future research plan    

Despite the progress made in this dissertation and the other researches, the active gate driving 

for IGBTs and MOSFETs is still a hot research topic in the world. Because of real demand from 

industry for producing high density switch mode power converters. Several aspects of active 

gate voltage drivers can be recommended for future consideration: 

6.2.1.  Closed-loop active gate driver of SiC MOSFETs 

The presented active gate voltage controller was applied into GD of IGBT as a feedforward 

controlling method. Although the operation principals of presented closed-loop AGD is based on 

the introduced feedforward AGD, however, applying this closed-loop AGD on SiC technology 

MOSFETs can be interesting from many aspects. 

6.2.2. Stability analyzing closed-loop active gate  

The stability analysis was ignored because of operation of IGBT in SOA through adjusting active 

gate voltage margin. However, because of simple structure of presented closed-loop AGD, 

(minimum control loops), stability analysis and its robustness assessment can be an 

advantageous phase of study.  

6.2.3. Applying the new closed-loop active gate on power converters  

Finally the proposed AGD should be applied to a power converter. Then the other aspects of the 

study for the performance of AGD will be raised. Some of the potential research works for this 

case study are mentioned below 

6.2.3.1 Total harmonic distortion (THD) study 

One of the main tasks of the presented AGDs is the oscillation cancellation from the switching 

behavior. We already analyzed the effect of AGD on the elimination of EMI, consequently it has 

a benefit to remove some harmonics in the delivered output power. Therefore, total harmonic 

distortion (THD) could be other future work when the AGD has been implemented on a power 

converter topology. 
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6.2.3.2 Reliability Aspect 

The temperature effect of the new AGD on IGBTs already has been studied. However, after 

implementation the AGD on the power converter, the life time analysis and reliability are 

potential and important subjects for the presented AGD. 
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     CHAPTER  

Seven 

Thesis results dissemination 
 

 

 

The direct contributions resulting from this Thesis work, in international journals as well as in 

specialized conferences, are collected in this Chapter. Additionally, the contributions in research 

projects related with the Thesis topic are also briefly exposed. 

 

CONTENTS:  

 

7.1.   Publications 
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