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Abstract. A Neural Network is trained to classify Mott Insulator and Superfluid

phases in an optical lattice using data generated with Diffusion Monte Carlo algorithms

(DMC). The trained model is used to predict the phase transition and its dependence

with different training parameters is studied. The study of this dependence shows the

existence of optimal training and simulation parameters, which cannot be used due

to computational limitations. This prevents to calculate the phase transition diagram

consistent with other theoretical and experimental results.
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1. Introduction

Machine Learning research began in the 1950s, it became a promising discipline quickly,

specially in 1958 with the discovery of the perceptron by F. Rosenblatt [1]. After two

decades of research in the field, the realization of many of its limitations led to a substantial

decrease on its initial enthusiasm and financial support, which provoked what is known

as the AI Winter: a period with almost no interest or financial support in Artificial

Intelligence.

It wasn’t until the decade of the 2010s, partially because of important advancements in

computing power, that Machine Learning began delivering astonishing results and became

a trending discipline not only in academia, but also in media and business. Machine

Learning is present is most of our everyday life with applications in social media, medicine

and gps navigation amongst others.

Physics can also benefit from the advancements in Machine Learning, its image

recognition power has been proven to be useful in many physics related applications.

The aim of this Master Thesis is to use Machine Learning algorithms to study quantum

phase transitions in an optical lattice.

Optical lattices can confine atoms in a periodic structure using laser standing-waves.

The properties of this periodic structure can be modified by properly tuning the laser



Quantum phase transition detection via Machine Learning algorithms 2

parameters, which offers the possibility of modelling systems that emulate the crystal

lattice structure of some solids. Optical lattices are also useful tools to manipulate the

internal states and positions of atoms, making them candidates for applications related

with quantum information.

Depending on the relation between the lattice depth and the interaction between

particles, atoms inside an optical lattice can be found in two well differentiated phases:

Mott Insulator and Superfluid, whose transition is studied with Machine Learning in this

Master Thesis.

2. Optical Lattices

In the presence of an electric field the energy of an atom is shifted, this energy shift can

be treated as consequence of an external potential which deppends on the intensity of the

electric field E . The origin of this potential is referred as the ac Stark Effect and can be

expressed as

V (r) = −1

2
α′(ω)〈E(r, t)〉t (1)

where α′ is the real part of the polarizability of the atom.

When the intensity of the electric field is periodic in space, i.e: a standing-wave laser

field, the potential (1) is also periodic, which produces an optical lattice in one, two or

three dimensions.

Optical lattices in one dimension are the object of study of this Master Thesis. These

kind of lattices are achieved by superimposing two counter-propagating laser beams,

the most simple configuration are two lasers with identical amplitude, polarization and

opposite wave-vector, which produces the following electric field

E(x, t) = E0 cos(kx− ωt) + E0 cos(−kx− ωt) = 2E0 cos(kx) cos(ωt) (2)

resulting in a lattice potential VL according to (1) of the form

VL(x) = V0 cos2(2kx) = V0 cos2(πx/a0) (3)

where a0 = π/k = λ/2 is the lattice depth, i.e: the distance between the minima of the

potential. The distance between those minima can be modified via the lasers wavelength

λ. The lattice depth V0 depends on the real part of the polarizability α′ and the amplitude

of the electric field E0, hence the potential V of an optical lattice is highly tunable, as

well as the behaviour of the atoms it contains.

2.1. From Mott Insulator to Superfluid

The first quantization Hamiltonian of N bosons of mass m in an optical lattice with lattice

constant a0 and interacting with a contact potential of strength g = −2~/ma is

Ĥ =
N∑
i=1

[
− ~

2m

∂2

∂x2i
+ VL(xi)

]
+ g

∑
i<j

δ(xi − xj) (4)

The phase transition is obtained in [2] from the Luttinger parameter K = vF/c, where

vF = ~Nπ/La0m is the Fermi velocity, fixed by the system setup, and c is the speed of
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Figure 1: Spatial distribution of 10 particles inside the one-dimensional optical lattice,

calculated with a million configurations of 10 particles in (a) Mott Insulator and (b)

Superfluid phase. Both phases show the same distribution.

sound which deppends on the strength of the interaction g ∝ 1/a. The speed of sound is

calculated via Diffusion Monte Carlo algorithms (DMC) and the transition is found for

unit filling (n = N/L = 1) at K = 2 [3].

For deep optical lattices, where V0 is high compared with the recoil energy Erec =

π2~2/2ma20, equation (4) reduces to the Bose-Hubbard model (BHM)

ĤBH = −J
L∑
〈i,j〉

â†i âj +
U

2

L∑
i=1

â†i â
†
i âiâi (5)

where the first term accounts for tunnelling between lattice sites and the second for the

interaction between particles at the same lattice site. The transition is found via exact

diagonalization.

Experimental measurements of the transitions are made in [4], which mostly agree with

BHM at V0/Erec > 5, while for lower values the results are closer to those predicted by

sine-Gordon model.

The same DMC algorithms used in [2] are used in this Master Thesis to simulate

the behaviour of a system of N = 10 particles with different scattering lengths in an

optical lattice with occupation n = 1 and different depths (Fig. 1). DMC generates

datasets containing snapshots of the position and energy of the particles in the lattice,

and choosing a/a0 and V0/Erec far enough from the transition provides examples of Mott

Insulator and Superfluid configurations, whose differences are already visible in Fig. 2.

3. Machine Learning

A Machine Learning algorithm is such that can make a computer system perform a certain

task without being explicitly programmed to perform that task in particular, but relying

instead in inference and pattern detection.

One of the main applications of machine learning are classification problems, i.e:

identifying to which of a set of categories a new observation belongs, on the basis of
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Figure 2: (a) Distribution of the average positions and energy of different configurations

of 10 particles. (b) Probability distribution of the lattice site occupation.

a training set of data containing observations whose category is known. The object of

study of this Master Thesis is the classification between two quantum phases without

explicitly programming how to distinguish them.

Supervised methods require a large dataset where the actual category of each element

is already known beforehand, which is used to do the training and then predict the

category of new elements. Conversely, unsupervised methods don’t require a known

training dataset, but instead classify all the given dataset in unlabelled categories.

Unsupervised learning algorithms generally have a lower predictability power than

supervised ones, however, the latter relies on the availability of a training set correctly

classified, which isn’t always easy to obtain or even possible, in those cases the former

must be used.

Since the dataset is generated with tunable simulations, the phase of each generated

element is known, which makes available a large training dataset with known categories

and allow supervised methods to be used.

3.1. Neural Networks

A supervised algorithm that has become widely used are Artificial Neural Networks,

inspired in biological neural networks. Neural Networks are made by artificial neurons

grouped in layers, and artificial synapses that connect neurons between layers.

An artificial neuron is a computing object that has a certain number of inputs, each of

those represented by a numerical value, which are summed together plus a characteristic

term of the neuron, the bias. The resulting number is evaluated with an activation

function and output by the neuron.

Artificial synapses are the connections between neurons, they are the abstract elements

that connect the output of a neuron to the input of another in the next layer. Each

synapse has a characteristic number by which its input is multiplied called weight, which

represents the relevance of that particular connection between neurons.
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A Neural Network is structured in layers, at least two, the input and the output layer.

The number of neurons in the input layer is the dimension of the data, while the number

of neurons in the output layer is the size of the set of categories. Between these two layers

there can be an arbitrary number of internal layers with an arbitrary number of neurons.

A higher number of layers and neurons allows the classification of more complex datasets,

but increases the computing time required for its training and can result in overfitting

if the complexity of the network is too high compared with the complexity of the data.

Overfitting is a common issue in Machine Learning methods, an overfit model memorizes

the training set instead of learning its subtle patterns, resulting in a high precision when

predicting the actual training dataset but a significantly lower predicting an unknown

one.

3.2. Training a Neural Network

A Neural Network takes as input an array of real numbers which are output separately by

each neuron of the input layer, each output is propagated to each neuron of the next layer

being multiplied by the weight of its connection, in this layer each neuron sums all of its

inputs plus its bias and outputs the result to the next layer, this process is repeated until

arriving to the output layer. The output layer represents the result of the classification,

each neuron represents a category and its output is a number from 0 to 1 representing

the likelihood of the input belonging to that category.

The output of a Neural Network depends on its set of weights and biases, which begin

as random values and through training algorithms are tuned in a way that can reproduce

the classification of training dataset.

To evaluate how bad a Neural Network performs, a cost function is used. It measures

the distance between the expected and obtained outputs. Slowly varying the weights and

biases in a way that the cost decreases, the network arrives to a state where the cost

function is minimal at least locally, and produce an output which is very close to the

expected one.

Training a neural network consists therefore in finding the minimum of a function

numerically, which can be achieved with a gradient descent. However, the cost function

typically has a large number of variables and its evaluation for a given set of weights and

biases requires the processing of large batches of data through the entire network. Directly

performing a gradient descent would take an unfeasible amount of time. Backpropagation

uses gradient descent individually on each layer, beginning from the output and going

backwards, this reduces significantly the number of effective variables of the cost functions

and the number of neurons that an input has to go through to compute it.

4. Binary Classification

4.1. Neural Network structure

The problem to solve is a classification between two categories: Mott Insulator and

Superfluid. This is the particular case of a binary classifier, a classifier which only has

two outputs. Since this configuration only needs an output neuron, which yields zero or
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one depending on if the input is classified as Mott Insulator or Superfluid, the appropiate

cost function to be used in the backpropagation is the binary cross-entropy

Hp(q) = − 1

N

N∑
i=1

yi log [p(yi)] + (1− yi) log [1− p(yi)] (6)

An adequate optimizer is RMSprop [7], which automatically adjusts the learning rate in

a convenient way at each learning step.

The layer structure of the neural network only consists of an input layer, an internal

layer of 64 neurons using the rectified linear unit (ReLU) [5] as activation with dropout

to reduce overfitting, and a single output neuron with the sigmoid activation function.

The output of this last neuron varies from 0 to 1, and the precise meaning of this number

is the probability that the input configuration is in Superfluid phase.

4.2. Training

To find the transition between phases, it is not required to detect the phase of a single

configuration, but rather to detect the phase of a point in the V0/Erec−γ−1 phase diagram.

Many configurations in the same phase diagram coordinates can be used as a single input

and then the network only has to guess one phase by seeing many examples. In practice,

this translates to instead of using a vector with the positions of N particles as input, use

an R×N matrix with R configurations of N particles.

Using more than one configuration at once produces more accurate results, but with

a dataset consisting of M configurations, using R configurations a a single input reduces

effectively the number of samples to M/R. Furthermore, the number of parameters of

the network gets increased with R, which requires an even larger dataset for the training

algorithm to work properly.

Finding an optimal value of R that delivers maximum accuracy with an stable training

isn’t trivial and depends on N and M . In this Master Thesis, where 2 · 109 configurations

of N = 10 particles have been used for the training, the value of R which delivered good

results is R = 100 (Fig. 3a).

5. Phase Transition Detection

5.1. Sigmoid fitting

For a given lattice depth V0/Erec, there is a critical value of a, called at, for which those

configurations with a < at are in Mott Insulating phase, and those with a > at in

Superfluid phase.

And ideal model should be able to classify all a < at configurations as Mott Insulator,

and all those with a > at as superfluid. Since the network has been training at extreme

values of a which are far from the transition value, its behaviour at closer values is

unexpected, and a more realistic result would be an increasing uncertainty in the phase

of the configurations as the value of a gets closer to the transition.

The method to find at for a given lattice depth is to generate many configurations at

different values of range of a wide enough to certainly contain the transition without the
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Figure 3: (a) Evolution of the validation accuracy for different number of matrix rows R.

(b) The amount of configurations labelled as Mott Insulator with respect to the scattering

length a is adjusted to a sigmoid, obtaining at = 0.69.

use of a priori information about its precise location. The generated configurations are

grouped in matrices with the same number of rows as in the training, and each of this

matrices is classified as either Mott Insulator or Superfluid.

For each a, a fraction of the configurations is labeled as Mott Insulator. This fraction

is denoted by fM and is a real number which should be equal to 0 at a > at and 1 at

a < at, with a sudden gap from 1 to 0 at a = at, i.e. the Heaviside step function (7).

What is more realistic and what is observed is a sigmoid shape (8) where fM ' 1 and

fM ' 0 at Mott Insulator and Superfluid configurations, respectively, which are far from

the transition, with a smooth transition from 1 to 0 at a ' at.

fM(a) = H(at − a) =

{
1 for a ≤ at

0 for a > at
(7)

fM(a) = f0 +
A

1− es(a−t)
(8)

For equation (8) to be valid, f0 ' 0, A ' 1 and s > 0. The offset f0 is the fraction of

configurations labeled as Mott Insulator when a→∞, the amplitude A is the difference

between the maximum and minimum value of fM and the stepness s measures how sudden

is the transition detected. In the limit and ideal case of f0 = 0, A = 1, s→∞ and t = at,

equation (8) is equivalent to equation (7).

A set of fM–a points can be adjusted to equation (8), obtaining its parameters, and by

inverting it, the value at which fM = 1/2 is found (Fig. 3b). This value is proposed as

the transition value at

at =
1

s
log

(
A

1/2− f0
− 1

)
− t (9)



Quantum phase transition detection via Machine Learning algorithms 8

5.2. Using many trained models

Random processes are involved in the training. Two binary classifiers which classify the

training dataset with perfect accuracy can have a different set of internal parameters,

which can lead to slight differences at classifying configurations at non-extreme values of

a and result in different values of at.

A solution to this problem would be to modify the neural network hyperparameters

until the variance between different values of at is minimal. Nonetheless, the network

already has a perfect accuracy classifying the values of a with which it is trained, and

basing the tuning of the hyperparameters on a so posterior result, as it is the whole process

of sigmoid fitting, is highly non-trivial.

The alternative is a more pragmatic numerical approach. The network is trained 300

times and for each training a transition at is calculated. Rather than obtaining a precise

value of it, what it is obtained is statistical information about its expected value and

uncertainty.

The accuracy and precision of at is related with the width of the sampling interval.

A narrow interval which contains the theoretical transition will be more accurate, since

the non-horizontal part of the sigmoid will be more represented by the samples, which

will result in a better sigmoid adjustment. Nonetheless, a too narrow sampling interval

that involves a priori knowledge of the precise theoretical value of the transition would

invalidate its predictability power.

A solution to the previous dilemma consists in finding a first value of at with a wide

training interval with its extremes far from the transition. With the obtained values of

at a second interval is determined based on the average and dispersion of at.

5.3. Training coordinates

The sigmoidal shape show that the trained models do slightly distinguish between two

a at the same theoretical phase, which may indicate that the choice of the two training

coordinates from which the network learn the definition of Mott Insulator and Superfluid

phase could be relevant to the transition value calculated.

This dependence is shown in Fig. 4a, where the training coordinates for Mott Insulator

phase are SM = 1 and aM = 0.0 while for Superfluid phase the lattice height is fixed at

SS = 1 and aS is varied from 2.0 to 16.0, showing an asymptotic dependence (10) with a

value at infinity at = c0 = 1.73.

at = c0 + c1e
c2aS (10)

This value is far from the value obtained with the continuous model at [2], where at = 0.69.

This is justified by the fact that while aS is infinitely far from the transition, aM is still very

close and the transition value obtained is shifted towards the Superfluid. Unfortunately,

the DMC algorithm used doesn’t work properly for S > 5, which prevents from using a SM

high enough to define a training point for Mott Insulator far enough from the transition.

With this limitation, what can be tested is whether a Neural Network that can properly

detect the transition at S = 1 can find the transitions at different values of S. From

Fig. 4a the training coordinates can be hand-picked in such a way that at = 0.69, this
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Figure 4: Transition at at V0/Erec = 1 with respect to (a) a superfluid aS and (b) inverse

number of particles 1/N . Both dependencies show the tendency to a finite value at infinite

N and aS. With infinite particles and aS = 3.9, at = 0.91; with infinite aS and N = 10

particles, at = 1.73.

corresponds to SM = SS = 1, aM = 0.0 and aS = 3.9. As it is shown in Fig. 5, the

different transitions found aren’t significantly sensible to the lattice height, showing that

at least with the chosen training coordinates, the networks aren’t detecting the phase

transition.

5.4. Finite size effects

The calculations for the phase transition of the different models mentioned in section 2.1

rely on approximations for a high number of particles N → ∞, while the configurations

studied have only N = 10 particles.

Since the simulation and training time grows exponentially with N , the transition for

large values of N cannot be explicitly calculated, but exploring a range of different small

values N can give an approximate idea of its behaviour as 1/N → 0, as it is shown in Fig.

4.

6. Conclusions

A Neural Network can be successfully trained to distinguish between two coordinates in

the Mott Insulator – Superfluid phase diagram. The sigmoidal behaviour of fM show that

there is a small region compared to the training interval where the classification isn’t either

as Mott Insulator or Superfluid, which is proposed to be the physical phase transition.

The location of this transition has a strong dependence with the number of particles and

the training coordinates, which show that the optimal values are those computationally

more exigent.

With the available training and simulation parameters, the phase transition can’t be

found with the implemented method.
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Figure 5: Phase diagram comparing various theories [2] and experiments [4]. The training

coordinates of the Neural Network are chosen a way such that the transition value

coincides with that from the continuous model at V0/Erec = 1, which isn’t capable of

finding the transition at different lattice depths.

The data used to train the models used single–coordinate definitions of the phases, i.e:

one training coordinate for Mott Insulator and another of Superfluid. It is possible that

the information about the phase doesn’t lie on a single point at the phase diagram and a

good approach would be to use many of them for both phases. Although this approach

is very likely to improve the results, using an effective surface on the phase diagram

as definition for the phases requires more a priori knowledge of the actual value of the

transition, which could make irrelevant any finding if the training surfaces are too close

to the transition.
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