
Fingerprinting Mobile Application

with Deep Learning

Bachelor’s Thesis

In partial fulfilment of the requirements for the degree in

Telecomunications Systems Engineering

Author: Albert Pou Marti
Advisor: Marc Juarez
Advisor: Verónica Vilaplana

Universitat Politècnica de Catalunya (UPC)
Katholic University of Leuven (KUL)

May 2019

Abstract
Nowadays, Traffic Network Classification is having a high impact on various studies such as
firewalls, intrusion detection systems or status reports and Quality of Service systems. The
success of the results is due to the evolution of Deep Learning in this area of study during
the past years.

In this thesis, a 1D-CNN&LSTM model is designed that, through the encrypted flows coming
from a smart-phone, can discover from which applications come from and thus showing is
possible to attack the privacy of the people.

Based on a study with 73 different apps, 83% accuracy is achieved in the classification of
traces, indicating which are the most vulnerable. To complete the study, applications that
provide more sensitive information of the user are selected and which have more samples,
and an individual examination is carried out.

i

Resum
Avui en dia, la Classificació de Trànsit de dades està tenint un gran impacte en diversos
estudis com ara tallafocs, sistemes de detecció d’intrusos o informes d’estat i sistemes de
Qualitat del Servei. L’èxit dels resultats es deu a l’evolució de l’Aprenentatge Profund en
aquesta àrea d’estudi durant els darrers anys.

En aquest tesi, es dissenya un model 1D-CNN&LSTM que, mitjançant els fluxos encriptats
procedents d’un telèfon intel·ligent, pot descubrir de quina aplicació provenen i aix́ı mostrar
que és possible atacar la privacitat de la gent.

Basant-se en un estudi amb 73 aplicacions diferents, s’aconsegueix un 83% d’encert en la
classificació de traces, indicant quines són les més vulnarables. Per completar l’estudi, es
seleccionen les aplicacions que aporten informació més sensible de l’usuari i també de les que
es tenen més mostres, i es realiza un estudi individual.

ii

Resumen
Hoy en d́ıa, la Clasificación de Tráfico de datos está teniendo un gran impacto en diversos
estudios como cortafuegos, sistemas de detección de intrusos o informes de estado y sistemas
de Calidad del Servicio. El éxito de los resultados se debe a la evolución del Aprendizaje
Profundo en esta área de estudio durante los últimos años.

En este tesis, se diseña un modelo 1D-CNN&LSTM que, mediante los flujos encriptados
procedentes de un teléfono inteligente, puede descubrir de qué aplicació provienen y aśı
mostrar que es possible atacar la privacidad de la gente.

Basándose en un estudio con 73 aplicaciones diferentes, se consigue un 83% de acierto en la
clasificación de trazas, indicando cuáles son las más vulnarables. Para completar el estudio,
se seleccionan las aplicaciones que aportan información más sensible del usuario y también
de las que se tiene más muestras, y se realiza un estudio individual.

iii

Acknowledgements
First of all, I would like to thank my supervisor from KU Leuven, Marc Juarez, to accept me
as an Erasmus student and offer me the project. I also appreciate the information taught to
me as well as all the proposals and the collection of data that he has given to me. Without
him, it would not have been possible to carry out the project.

Secondly, I would like to acknowledge my UPC supervisor, Verónica Vilaplana, for both the
attention and the advice given.

I would also like to appreciate the institutions of the UPC and the KU Leuven to offering
me the experience of going to carry out the project abroad.

Last but not least, I would like to thank all the Erasmus colleagues I have met and have
made me live an unforgettable experience, as well as encouraging me to work. And of course
thanks to my family for the support given.

iv

Revision History and Approval
Record

Revision Date Purpose

0 03/02/2019 Document creation

1 10/04/2019 Document revision

2 08/05/2019 Document revision

3 11/05/2019 Document approval

DOCUMENT DISTRIBUTION LIST

Name e-mail

Albert Pou Mart́ı albertpou20@gmail.com

Marc Juarez marc.juarezmiro@esat.kuleuven.be

Verónica Vilaplana veronica.vilaplana@upc.edu

Written by: Reviewed and approved by:

Date 05/05/2019 Date 11/05/2019

Name Albert Pou Name Verónica Vilaplana

Position Project Author Position Project Supervisor

v

Contents

1 Introduction 1

1.1 Statement of Purpose . 1

1.2 Requirements and Specifications . 1

1.3 Methods and Procedures . 1

1.4 Work Plan . 3

1.4.1 Gantt Diagram . 3

1.4.2 Work Packages . 4

1.5 Incidents and Modifications . 5

2 State of the Art 6

2.1 Traffic Classification . 6

2.1.1 Port-based Method . 7

2.1.2 Payload-based Method . 7

2.1.3 Host Behavior-based Method . 7

2.1.4 Flow Feature-based Method . 7

2.2 Deep Learning . 8

2.2.1 Neural Network . 8

2.2.2 Convolutional Neural Network . 10

2.2.3 Long Short Term Memory . 12

2.2.4 Optimization . 12

2.3 Deep Neural Network-based Traffic Classification 13

3 Methodology 15

3.1 Data Preparation . 15

3.1.1 Data Collection . 15

3.1.2 Data Pre-Processing . 16

3.1.3 Features . 17

3.2 CNN-LSTM Model . 17

3.2.1 System Architecture . 17

3.2.2 CNN Hyper-parameters Tuning . 19

3.2.3 One-vs-Rest Study . 20

4 Evaluation and results 21

4.1 Experimental Methodology and Evaluation Metrics 21

4.2 Experimental Results and Analysis . 22

4.2.1 Effect of the Number of Packets per Flow 22

4.2.2 Effect of the Number of Flows . 23

4.3 Per-Class Study . 24

vi

4.4 One-Class Accuracy . 24

4.4.1 Experimental Methodology . 24

4.4.2 Experimental Results and Analysis . 25

5 Budget 28

6 Conclusions 29

Bibliography 30

A Apps and Traces in the whole data set 32

B Accuracy and Loss graphs 35

C Results of the Per-Class study 37

vii

List of Figures

1.1 Block diagram of the system proposed . 2

1.2 Gantt Diagram . 3

2.1 Evolution of approaches and literature in traffic classification. 6

2.2 TC Techniques evolution vs Protocols. 8

2.3 The basic unit, the Neuron, and a deep neural network 9

2.4 DL architecture of the global CNN model . 10

2.5 Loss function landscape, averaged over all the training examples 13

3.1 Data set acquisition process. 16

3.2 Data pre-processing process. 17

3.3 Architecture of the model’s project. 18

4.1 Data division and behaviour of the 10-fold process. 21

4.2 Comparison graphic of the results depending on the number of packets per flow. 23

4.3 Comparison graphic of the results depending on the number of flows per app. 24

4.4 Accuracy - Recall curve of tomtom.speedcams.android.map. 26

4.5 Accuracy - Recall curve of king.candycrushsaga. 27

B.1 Graphs of the results of the training with 40 flows and 100 packets (1). 35

B.2 Graphs of the results of the training with 40 flows and 100 packets (2). 36

viii

List of Tables

3.1 Parameters per layer of the model. 19

3.2 Hyper-parameters to train the 1D-CNN-LSTM model. 20

4.1 Performance of the model depending of the number of packets per flow. . . . 22

4.2 Performance of the model depending of the number of flows per app. 23

4.3 One-Class study of apps with sensitive information 26

5.1 Estimated budget of the project. 28

A.1 Total apps with the number of traces (1) . 32

A.2 Total apps with the number of traces (2). 33

A.3 Total apps with the number of traces (3). 34

C.1 Performance of the model for each class(1) . 37

C.2 Performance of the model for each class(2). 38

ix

List of Abbreviations
ADAM Adaptative Moment Estimation

ANN Artificial Neural Network

BP Back-Propagation

CNN Convolutional Deep Neural Networks

DL Deep Learning

DNN Deep Neural Network

DPI Deep Packet Inspection

ET Encrypted Traffic

FN False Negative

FP False Positive

LTSM Long Short-Term Memory

ML Machine Learning

MSE Mean Square Error

NN Neural Network

pdf Probability Distribution Function

SVC Support Vector Machines

TC Traffic Classification

TN True Positive

TP True Positive

x

Chapter 1

Introduction
In this chapter, is presented the statement of the purpose of this project (1.1 which provides
a comprehensive overview of the project. Then, its requirements and specifications (1.2)
are detailed. Finally, we mention the work planning (1.4), showing the general project’s
organization and deadlines and the incidents we have encountered (1.5) and how they have
modified the initial plan.

1.1 Statement of Purpose

Nowadays, the vast majority of mobile applications are encrypted in order to protect user
information and prevent any attack on privacy. If someone knows the applications that
a user uses, it could reveal sensitive information such as their sexual orientation, political
leaning or religion.

However, several articles have shown that encryption protects trivial information but is not
enough. Simply interacting with the interface of an application produces a unique package
sequence respect other applications. Consequently, it has been related that classifiers based
on Machine Learning are very appropriate to classify Traffic Encryption (ET). On the other
hand, the exit of the results depends on getting handcrafted (domain-expert driven) features,
and this process requires much time while mobile traffic is constantly evolving.

Accordingly, because of the success of Neural Networks in fields such as image and speech
recognition, is believed that the Deep Neural Network (DNN) can achieve high performance
in the dynamic and challenging mobile TC context.

Along this project, is presented a DNN able to identify whether an app is installed or not in
a mobile device by only looking at the encrypted network traffic the machine generates.

It ought to mention that during the work we use various abbreviations to entertain the
explanations. A list with all the used ones can be found at the beginning of the document.
The project has been carried out at the Department of Electrical Engineering (ESAT) in
The Katholic University of Leuven (KUL).

1.2 Requirements and Specifications

The main requirement of the thesis is classifying network encrypted flows from different apps
with the development of a DNN.

For this, we must learn the fundamentals and practice of deep learning in order to propose
and train a Deep Learning Architecture.

The specifications have been decided during the project, taking into account the needs of
the system and the resources available, and they will be explained throughout the work.

1.3 Methods and Procedures

As will be explained throughout the work, the system is based on two significant parts (see
Figure 1.1). The first stage, once the dataset is collected, performs the pre-processing of the
raw input data and convert them into features. The next block is the DNN, which classifies

1

Traces
Raw Data

Pre-Processing
Phase

Neural Network
(1D-CNN LSTM)

Traces correctly
classified

Figure 1.1: Block diagram of the system proposed

all the traces. Some code of the baseline model is open source thanks to the contribution of
Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem & Wouter Joosen who
provided the Website fingerprinting through Deep Learning implementation.

Additionally, the Dataset acquisition was made by Marc Juarez from imec-COSIC, ESAT,
KU Leuven.

This project has been developed using Python 3 as the programming language. Also, Keras
is used which is a deep learning framework that provides from TensorFlow with a high-level
API to build and train deep learning models.

All developed models have been trained under the operating system Mac OS X.

2

https://github.com/DistriNet/DLWF

1.4 Work Plan

1.4.1 Gantt Diagram

Figure 1.2: Gantt Diagram

3

1.4.2 Work Packages

Project: Knowledge WP ref: WP1

Major constituent: theoretical learning Sheet 1 of 6

Short description: Study of the generation of Neural Networks and
flow-based features.

Planned start date: 20/08/2018
Planned end date: 22/11/2018
Start event: Start Machine Learning Crash Course
End event: Convolution Neural Network model learned

Internal task T1: Machine Learning
Internal task T2: Network Traffic
Internal task T3: State of the art
Internal task T4: Deep Learning CNN model

Deliveries: Dates:

Project: Programming skills WP ref: WP2

Major constituent: programming learning Sheet 2 of 6

Short description: Learn to work with Machine Learning
Python libraries.

Planned start date: 10/09/2018
Planned end date: 13/12/2018
Start event: Machine Learning Crash Course chapter 4
End event: Keras knowledge acquired

Internal task T1: Python
Internal task T2: TensorFlow
Internal task T3: Pytorch
Internal task T4: Kerash

Deliveries: Dates:

Project: Pre-Processing phase WP ref: WP3

Major constituent: convert the data raw into features Sheet 3 of 6

Short description: Pre-processing of the raw input data
and convert them into features.

Planned start date: 23/11/2018
Planned end date: 13/01/2019
Start event: Dataset parser
End event: Obtain Features

Baseline task B1: Parser the dataset
Baseline task B2: Obtain features

Deliveries:
Model Flow-based features

Dates:
13/01/2019

Project: Development of Deep Neural Network WP ref: WP

Major constituent: development of the Neural Network of the
system

Sheet 4 of 6

Short description: Apply the learned programming
skills and the analysis of the traffic network to develop a NN.

Planned start date: 14/01/2019
Planned end date:05/04/2019
Start event: Database preparation
End event: System evaluation

Baseline task B1: System preparation
Baseline task B2: System training
Baseline task B3: System evaluation

Deliveries:
Neural Network implementation
System evaluation report

Dates:
03/02/2019
05/04/2019

Project: One-Class classifier WP ref: WP5

Major constituent: one-class study simulating an open-world Sheet 5 of 6

Short description: Use the model to study the
accuracy of a concrete app in open-world assumption.

Planned start date: 30/03/2019
Planned end date:28/04/2019
Start event: System modifications
End event: System evaluation

Baseline task B1: System modification
Baseline task B2: System training
Baseline task B3: System evaluation

Deliveries:
System modifications
System finally evaluation

Dates:
08/04/2019
28/04/2019

Project: Documentation WP ref: WP6

Major constituent: project reports deliveries Sheet 6 of 6

Short description: Write the different project reports and
interesting information.

Planned start date: 03/09/2018
Planned end date: 08/03/2019
Start event: Machine Learning Crash Course
End event: Final Report.

Documentation task D1: Proposal and Workplan
Documentation task D2: Project Critical Review
Documentation task D3: Final Report

Deliveries:
PW
PCR
FR

Dates
05/10/2018
30/11/2018
10/05/2019

4

1.5 Incidents and Modifications

In the middle of the project, it was proposed to use the same designed model but changing
the data set. Instead of using captured data in a controlled environment (as it has been done
and explained in section 3.1.1), catch them in the air.

In this case, the packages that are relayed, the acks and those that come from other applica-
tions cannot be filtered because there is no known where the data come from and, therefore,
they realistically simulate the fact that a sniffer capture someone’s traffic.

The problem that appeared a bug in the capture filter and the data were not captured
correctly. To solve this, we tried to transform the data from the first data set by entering
the relay packets and the acks. The results have not been useful, and this part of the thesis
is annulled. This reason prompted us to change the objective and focus on the One-Class
study (3.2.3).

5

Chapter 2

State of the Art
Traffic Classification (TC) is the process of associating (labelling) network traffic with specific
applications. Starting from earlier port-based methods, to those based on payload inspection,
approaches based on Machine Learning classifiers are deemed to be the most appropriate,
especially in the context of Encrypted Traffic (ET) analysis. This chapter provides a brief
introduction to the background of the project, discussing the classical methods of TC and its
literature applied on the mobile context (2.1), as well as a brief review of the Deep Learning
topic, its elements, techniques and terminology (2.2). Finally, it is made a brief mention of
the state of the art techniques of deep learning applied in this particular task (2.3).

2.1 Traffic Classification

TC has a long-established relevance in numerous disciplines, backed by extensive scientific
research. However, both the need and the difficulty of TC of mobile traffic have become very
high nowadays.

State of the art in traffic classification has encountered a significant advance in the past few
years, included in the number of papers and research groups centred on the topic.

The evolution of traffic classification technology (see fig.2.1) has created a complex panorama.

Figure 2.1: Evolution of approaches and literature in traffic classification (Xue et al., 2013)

In the next sections, is reviewed the possible techniques and is explained the decreasing
security of the port-based approach by the strength of machine-learning strategies to DPI
techniques (figure 2.2).

Although earlier results have been published on this topic, the traffic of mobile apps is a
moving target for classifiers due to its dynamic evolution. Thus mobile TC constitutes an
open and evolving research field.

6

2.1.1 Port-based Method

The port-based approach is the oldest, quickest and the easiest method for classifying network
traffic packets and, because of this has been extremely used.

Several applications had fixed port numbers and, then, traffic belonging to these apps could
be easily identified. Nevertheless, apps are increasingly complex, and the growth of reasons
to hide traffic so that filters or blockages can be avoided have made traditional techniques
antiquated (Xue et al., 2013).

2.1.2 Payload-based Method

The Deep Packet Inspection (DPI) techniques are based on inspecting the part of the packet
even beyond the header, including the valuable part of the information, payload, and, finally,
to obtain statistical data. It is based on the establishment of signatures created from said
content, and that allow the characterization of the traffic by checking for each package or
flow of whether or not it complies with the different signatures defined (Gil Delgado, 2015).

The problem is that with traffic encryption this information can easily be hidden and other
classifications techniques have been sought that do not require payload examination.

2.1.3 Host Behavior-based Method

The host techniques are algorithms that classify traffic through non-rigorous methods. They
are based on the knowledge and own experience of the investigator on the data traffic or
even of determined knowledge of the network.

As explains in (Xue et al., 2013) One advantage of these methods is that they manage to
classify traffic even when is encrypted, but the problem is that the host behaviour-based
methods require that the number of specific streams for a particular type of traffic reach a
certain threshold before it can be classified.

2.1.4 Flow Feature-based Method

Using the ML techniques, it has been shown that with the algorithms in the pattern recog-
nition field gets good results. These systems learn from empirical data to automatically
associate objects with their corresponding classes. Within this technique, there are two
branches:

If the researcher defines the classes, and the samples are introduced to the system previously
labelled by categories, this is called supervised algorithm. On the other hand, if it is the
same model the one that identifies and labels the samples is about unsupervised algorithm.

While supervising ML approaches have achieved comparable results to DPI, unsupervised
ML techniques are a promising way to cope with the constant changes in network traffic, as
new applications emerge faster than it might be possible to identify unique signatures and
train machine-learning classifiers.

The performance of the classifiers does not only depend on the type of algorithm used (i.e.
decision tree, Bayesian techniques, neural networks). An important part for the proper
functioning of the model is to choose the classification features, which are the data used
to describe each object to the ML system. Features include common flow properties (i.e.
per-flow duration and volume, mean packet size) as well as more specific properties, such as
sizes and inter-packet times of the first n packets of a flow, or entropy of byte distribution
in packet headers or payload.

7

Figure 2.2: TC Techniques evolution vs Protocols (Santos Lebrato, 2018)

2.2 Deep Learning

Deep learning is based on machine learning and is nothing more than a family of algorithms
whose purpose is to simulate the behaviour that our brain performs to recognize images,
words or sounds. The significant advance of this algorithm with respect to Machine Learning
is based on the fact that the system can train itself to find coherence in random data. From
this, it improves the performance with high levels of precision, achieving systems that surpass
the humans themselves in tasks of classification and detection in images.

In the human brain, with a stimulus, certain neurons are activated, evaluate the information
they have received, react and communicate with other neurons. In subsequent stimuli, they
add new data to those they already know, evaluate the result of the previous actions and
correct their operation to have the best possible reaction The algorithms cited are used by
artificial neural networks to act similar to the brain, but simplifying the set of neurons used
in different layers. Thus, each group of neurons analyzes the input data, processes them
and delivers them to another group of neurons in the form of data. The good results of this
method are possible due to the number of connections between the different layers.

From a mathematical point of view, deep learning can be seen as a model that processes
the information it receives in the input, coded as numbers, to pass it through a series of
mathematical operations (layers of neurons) and obtain information as output encoded that
can be adapted to carry out a specific desired function. In this way, Deep Learning works
thanks to the architecture formed by the different layers and the routine that it uses to
optimize said architecture.

2.2.1 Neural Network

A Network of Neurons (NN), commonly called Artificial Neural Network (ANN), is a math-
ematical model formed by a series of operations that, for an input vector x, offers a different
output vector f(x). Another way of viewing them, as already indicated in the previous sec-
tion, is like a processor that receives incoming data encoded as numbers and makes a series
of operations and produces outgoing information that is also coded as numbers.

There are three types of layers in which the neurons are grouped: (a) The input layers
are the neurons that enter the input values in the network, so there are as many neurons
as input data. No processing occurs in these neurons. (b) Hidden layers are those that
do intermediate calculations of the network. Each hidden neuron contains a weight and a

8

parameter that are the elements that transform the input data. The number of hidden layers
is variable. Finally (c) the output layers are neurons whose values correspond to the output
states of the neural network. In this layer, each neuron also has associated weights and
parameters.

Figure 2.3: On the left, the basic unit of the NN, a neuron (a) (Wikipedia contributors,
2019) and on the right, a DNN (b). (Nielsen, 2015)

Figure 2.3 helps to understand the procedure. Neurons are organized in layers, where each
one connects with all of the next layers. Each connection has a weight associated, so the main
operation is a multiplication between the value of the neuron and its outgoing link. In this
way, the neurons of the successive layers receive the previous results and apply non-linear
functions to produce a new result.

At this point, depending on the NN used, the functions will be of one type or another. In
this thesis, the Softmax function is applied. The first it does is to squash the outputs of each
unit between 0 and 1 and divide each output such that the total sum of the outputs is equal
to 1. Then the output of the Softmax function is equivalent to a categorical probability
distribution, i.e. tells the probability that any of the classes are true. Thus we want the
desired category to have the highest score of all classes, which means it is the most likely
category.

In the described architecture, the learning process of a NN consists, based on a series of
examples in which the output value for the corresponding input is known, in induce the
relation between inputs and outputs for unknown data. This process is called network
training, and it can be seen as the process of adjusting the parameters of the network.
Starting from a set of random weights, the learning process seeks to adapt the value of those
that allow the system to achieve the desired behaviour. The learning process is an iterative
process in which the solution is refined until reaching a satisfactory level of operation. Most
of the training methods used in NN consist of defining an error function that measures the
performance of the network based on the weights (see section 2.2.4). From it, the objective
is to find a set of weights that minimize or maximize it, determining the optimal point of
the NN.

After the training, the results are tested in a different data set. In this way, the ability of
the model is proved on samples that the system have not seen during training.

Once it has been explained what a NN is, it can be said that the most common architecture is
the DNN that refers to having multiple hidden layers in the network. This hierarchy increases
the complexity and abstraction at each level and is the key that makes deep learning networks
capable of handling large data sets.

Depending on the type of entry, different DNN architectures are used. For systems where
the input is sequential, such as audio, images or traffic data, the CNN model is very used,
which is explained in the following section.

9

2.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a particular type of NN. In a classic NN, it is
assumed that all inputs and outputs are independent of each other. For tasks that involve
sequential inputs, such as text data, it is often better to use CNN. CNN has shown excellent
learning ability in image understanding thanks to its method to extract critical features.
Comparing with other Deep Learning architectures, two characteristics make CNN unique:
(a) Locally connected layers, which means the neurons in the output of the layers are con-
nected only with their local nearby input neurons instead of the entire input neurons in
fully connected layers. (b) Pooling mechanism, which significantly reduces the number of
parameters required to train the model while at the same time ensuring that the essential
features are preserved.

Figure 2.4: DL architecture of the global CNN model(Ma et al., 2017)

Figure 2.4 deals with the structure of the CNN model with its four main sections, which are
the inputs, the extraction of features, the prediction and the outputs. Each part is detailed
below.

To begin with, the input model is a matrix xi = {[m0,m1, x2, ...,mN − 1]} where i is the
index of the sample, N the length and mi columns of data, in the case of TC, representing
the flows.

Second, feature extraction is the combination of the convolution and pooling layers. It is the
core part of the CNN model.

Being xl
j the input, ol

j the output, (W l
j , bl

j) the parameters of the lth layer (where L is the
depth of CNN) and j the index channel considering the multiple convolution filters in the
convolution layer. cl is the number of convolutions filters in the lth layer. Then, the output
after the first convolution and pooling layers is

ol
j = pool(σ(W l

j ·xlj + bl
j)), j ∈ [1, cl] (2.1)

where σ is the activation function, which is discussed below. The output in the lth(l1, l =
1..L) convolution and pooling layers can be written as

ol
j = pool(σ(

cl−1∑
k=1

W l
j ·xlk + bl

j)), j ∈ [1, cl−1] (2.2)

10

The number of layers in the cnn are hundreds, which means hundreds of features can be
learned. The CNN algorithm transforms the input model into deep features through these
layers.

In the prediction, the features that have been learned are concatenated in the dense vector
which only contains the most valuable features. The dense vector is known as

oL
flatten = flatten([o1L, o

2
L, ..., o

j
L]), j = cL, (2.3)

where flatten is the concatenating procedure explained before.

Finally, the vector transforms as model outputs through a fully connected layer. Then, the
model output is written as:

â = Wf · oflattenL + bf = Wf (flatten(pool(σ(

cl−1∑
k=1

W l
j ·xlk + bL

j)))) + bf (2.4)

where Wf and bf are parameters that came from the fully connected layer and â are the
predicted output.

Before present the explicit layers, it should be noted that an activation function activates
each layer. It transforms the output into a manageable and scaled data range, which is
beneficial for modelling training. Another advantage of using the activation function is that
the combination of the activation function through the layers can simulate very complex
non-linear functions that make the CNN powerful enough to handle highly complex data.
Relu function can be formulated as is defined as

g1(x) =

{
x, ifx > 0

0, otherwise
(2.5)

Convolution layers differ from traditional NN because each input neuron is connected to
each output neuron, and the network is fully connected (fully connected layer). CNN uses
convolution filters on the layer of its input and obtains local connections where only the local
input neurons are connected to the output neuron (convolution layer). Many of the filters
are applied to the input, and the results are combined in each of the layers. A filter can take
a function out of the input layer and, therefore, many filters can extract many functions.
Those obtained functions are combined even more to extract a higher level and more abstract
functions. This process forms the composition of the CNN model, which means that each
filter composes a local route from the lower level to higher grade characteristics. After a
convolution filter W r

l is applied to the input, the output results are

aconv =

m∑
e=1

n∑
f=1

((W l
r)ef ·def), (2.6)

where both m and n are the two dimensions of the filter, def and (W l
r)ef the data value of

the input matrix and the coefficient of the convolution filter respectively at e and f positions
and finally aconv is the output.

Pooling layers are designed to reduce the sample and add data since they only extract
outgoing numbers from the specific area. These layers ensure that CNN is locally invariant,
which means that CNN can always extract the same feature from the input, regardless of the
changes, rotations or scales of the features ((LeCun et al., 1995)). Based on the above facts,
the grouping layers can not only reduce the CNN network scale but also identify the most
outstanding features of the input layers. Taking the maximum operation as an example, the
pooling layer can be formulated as

apool = max(def), e ∈ [1..p], f ∈ [1..q], (2.7)

11

where def is already defined, p and q are two dimensions of pooling window size and apool
the pooling output.

Finally, the fully-connected layer is connected to the output of the last convolutional layer of
the network. It is the core of the classification stage. It requires an intermediate adaptation
that converts the data to a vector, being that the Flatten layer. Finally, the Softmax layer is
responsible for associating a label with the input image by applying a probability of likeness.

2.2.3 Long Short Term Memory

As the project model will use a Long Short Term Memory (LSTM) layer, its operation will
be introduced.

LSTMs are a particular type of Recurrent Networks. The main characteristic of RN is that
information can persist by introducing loops in the network diagram, so that, basically,
they can ”remember” previous states and use this information to decide which one will be
next. This feature makes them very suitable for handling time series. LSTMs can learn long
dependencies, so it could be said that they have a longer-term ”memory”.

2.2.4 Optimization

As explained above, the NN learns from examples where each vector of features x represents
a target t. To training the system, every time an input is passed through the network, the w
weights vector is best adapted to the category is wanted to predict t. This estimate is done
with a descending gradient.

This algorithm minimizes the error function J(w) so that the difference between the output
of the network and the prediction is minimal (which is the ultimate goal of the system). This
error or cost or function must be defined by the MSE difference, the cross-entropy between
two probability distributions (Golik et al., 2013), Negative Logarithmic Likelihood, and so
on.

In order to adjust the vector of weights, it is the gradient vector which calculates how modifies
the error in case it distributes one way or another. Once fixed in the best way, the vector of
pesos is modified. This process is called a step. To the speed at which the weight adjusts
and goes to the minimum is called learning rate η. In the next level, the weight vector is
updated in the opposite direction to redirect it to the minimum of the error function and is
performed as this way

ω = ω − η5ω J(ω) (2.8)

The loss function averaged over all the training examples, can be seen as a landscape in
the high-dimensional space of weight values, as illustrated in the Figure 2.5. The negative
gradient vector indicates the direction of most descendent step in the landscape, taking it
closer to a minimum, where the output error is low on average.

Before explaining the distressing gradient descent methods, some theoretical concepts are
explained. Primary, is known as an epoch the pass of the whole training data set through
the network. However, not all the complete data set is passed into the neural net at once,
since it is divided into batches or sets. Consequently, we define the batch size as the number
of training examples in a pass through the network. Then the number of iterations is the
number of passes needed to complete one epoch, each pass using batch size instances. For
example, if you have 60 training examples, and your batch size is 20, then it will take three
iterations to complete one epoch.

12

Figure 2.5: Gradient descent path (each black vector represent the movement in one step)
over the loss function landscape, averaged over all the training examples. (Andrew Ng, 2018)

There are two principal alternatives to measure the gradient, and it depends on the data used:
(a) the mini-batch gradient descent provides an update of the loss function for mini-batch
of n-examples. With them is managed to decrease the variance in each update controlling
the speed of the algorithm. As a consequence, the dimension of the mini-batch is one more
hyper-parameter to keep in mind. This method is the one used in the design. On the other
hand, (b) the stochastic gradient descent makes the estimation of the gradient updating the
loss function for each example; in other words, a batch size of one. It is a fast algorithm,
but it has much variance in the updates (see Eq.(2.8)).

There are several gradient descent algorithms; the most famous ones are Momentum, Nes-
terov, Adagrad, Adadelta, RMSprop, and Adam. RMSprop (Vitaly Bushaev, 2018), is the
one is used in the thesis. Gradients of very complex functions like NN tend to either dis-
appear or collapse as the energy is propagated through the task. Furthermore, the effect
has a cumulative nature; the more complicated is the function, the problem becomes criti-
cal. Rmsprop has an ingenious way to deal with the problem. It uses a moving average of
squared gradients to normalize the gradient itself. That has an effect of adjusting the step
size; decrease the step for the large gradient to avoid exploding, and increase the step for
the small gradient to prevent fading.

2.3 Deep Neural Network-based Traffic Classification

DL has shown its smooth functioning in the area of Pattern Recognition (PR). Especially,
the fields where it is more used are the characterization of text, image classification and
speech recognition. From here, and because the methods of TC have become obsolete by the
security measures taken, it was beginning to investigate the similarity between the traffic
data and the examples of PR. Since images and reports can be learned feature and classified
very well by DL, it’s reasonable to expect excellent performance in traffic classification and
it began to treat the bytes of the data flows with DL.

Several researchers have started to classify the traffic of web pages due to the extensive
network traffic that exists today. (Wang et al., 2017b) proposes a system based on the 2D-
CNN model to classify malware traffic with an accuracy of 89%. Based on this study, (Wang
et al., 2017a) adopts a 1D-CNN model for TC and compares them. Testing four different
types of data sets, this second model always gets better results.

It has been later when it has been seen the need to explore the terrain of smart-phones, and
it started the use of DL to classify mobile apps. Many papers have been created to find
which is the best model and algorithm for categorizing the ET from mobile applications.
The ones that have the most relevance are below.

In (Stöber et al., 2013) using the Support Vector Clasifier (SVC) and K-Nearest Neigh-
bors model, and considering only statistical features that learn traffic through background

13

activities, obtain more than 90% accuracy.

Later, (Taylor et al., 2016) made a breakthrough in the results of the identification of mobile
applications. The data is captured through an Android device that automatically runs 110
applications. Later the traces are pre-processed to eliminate the noise that could exist and
uses the models SVC and Random Forest (RF) to evaluate the system. The results obtained
are that it identifies 99% of applications and classifies 86.9% of them. This research has
created a before and after in State of the art of the classification of mobile ET and several
studies and reports have been done using the same methods.

Finally, the [Network traffic classifier with convolutional and recurrent neural networks for
Internet of Things] introduces different combinations between CNN and LSTM models ac-
cording to the number of dimensions. The evaluation is made on a data set with 266,160
network flows and 108 services different, and the best result is obtained with the combination
of 2D-CNN and LSTM achieving an accuracy of 96.32%.

14

Chapter 3

Methodology
As a reminder, the main objective of the project is to identify the different applications that
have generated traffic through its captured flows. From here, some studies are carried out
as the effect of varying the number of packages and the number of traces to train to see how
they modify the results.

This section begins by analyzing the entire process of collecting (3.1.1), preparing and pre-
processing the data to achieve data traffic in a format that is understandable for the algorithm
(3.1.2). Although how to structure the data seems a trivial process, when it comes to working
with DL, it is the most critical and challenging part to implement. One step of this process
consists in extract the features so is explained which and why are chosen to do the training
part (3.1.3). Then, the paper continues with the explanation of the architecture’s system
(3.2.1) and the parameters that have been chosen to achieve the best performance (3.2.2).
Finally, a second study is introduced which wants to verify, in the most realistic way, the
performance of the same model with a single and concrete app, simulating then, an open
world learning(3.2.3).

3.1 Data Preparation

3.1.1 Data Collection

An indispensable requirement when using DL is to have a representative data set. This one
must contain numerous and abundant samples of each class. In (Aceto et al., 2017), is shown
that the accuracy decreases by 26% when the server is different between the training set and
test set. In a real environment, it would not be necessary to obtain traffic captures because it
would come from an already obtained network traffic. In the development of this project, it
has been necessary to generate the traffic of each app separately to be able to associate each
flow to a specific app and subsequently check the reliability of the classification obtained.

However, in the case of traffic data, the large number of existing apps makes impossible
to work with all of them and a closed world learning must be simulated. This means that
this paper studies the hypothetical case that there exist only the apps that are shown in
the project. 117 Android apps have been captured (see A) to perform the analysis and to
represent the whole range of applications that exist(i.e., games, meetings, social, shops).
Some of them are sensitive and reveal information about the person who uses it (i.e. if
he/she is single).

As indicated in the section 1.3 The data collection has been done by my supervisor Marc
Juarez from the Katholic University of Leuven. However, the process that has followed is
detailed because it is an important part to understand the system well.

The first step is to create traffic captures corresponding to applications through the tcpdump
traffic analyzer and the NoSmoke2.0 crawler. The explanation of both tools is out of the
reach of this study.

Using the tcpdump tool, computer captures the network traffic (only IPs that coincides
with that smart-phone) and export details of the packets as time, source and destination
address, ports, packet size, and protocol. Simultaneously, NoSmoke2.0 crawler is used to
produce traffic. It reads a script previously prepared with all the apps that must be installed
and, randomly, it choose one to install and interact with the interface simulating human
behaviour.

15

Figure 3.1: Data set acquisition process (Taylor et al., 2016)

For each service, a particular flow is associated. A network flow consists of a sequence of
packages that are sent from the source and are directed to the same destination. For each
flow, an independent capture file is created and contains exclusively traffic which belongs to
the corresponding app. To achieve this, security measures have been taken such as using a
private router, filtering the IP of the smart-phone and working in a controlled environment,
since the capture point was made from the network access point. All these measures ensure
no other source negatively affects.

This process performed by the crawler is repeated many times achieving a total of 117 apps
and a set of 8197 traces (see table A)

Despite working in the right environment, it is not easy to distinguish and eliminate back-
ground traffic. The study [19] show that 70% of the mobile traffic is noise and only 30% is
directly related to the interactions of the traffic user. Therefore, later on, some traces must
be filtered.

As mentioned above, the acquisition of the files serves the model to learn a distinctive pattern.
However, these data are saved with the extension ”.pcap” (since tcpdump does by default)
and encrypted language so they should be parsed to get traffic flow.

3.1.2 Data Pre-Processing

The pre-Processing phase is the procedure to clean and convert the raw traffic data (in
this case .pcap extension as mentioned before) in the required input format for the model.
This process affects the result significantly. Duplicate acks and messy or relay packets may
change the traffic pattern of the apps. Some studies demonstrate improvements once they
have eliminated these packages (Dubin et al., 2017) while others inform that there are no
difference (Aceto et al., 2017). This is caused by the difference in the data set, the features
used for the classification and the number of packages taken.

Once the flows of each application are available, the next step is to extract the parameters
that interest us. Section 3.1.3 explains why the selected characteristics chosen to train the
model are the length of the package and the direction (income or outgoing network).

After this, the representation of the traffic flow is a sequence of values (length of the package)
positive (outgoing) or negative (incoming) forming a vector as shows the figure 3.2.

Not from all captured traces are extracted useful information; In order to have representative
instances, the flows that have few packets (or directly empty), the relayed flows and the acks
packets are removed. To finish the filtering and to avoid an imbalance in the number of
instances of each app which would produce an oversampling.

On the other hand, to associate each flow with its application, there’s a vector full of 0 except
that position which corresponds on that app.

16

Figure 3.2: Data pre-processing process

3.1.3 Features

As mentioned in the State of the art (2.1, time series features can work both with encrypted
and unencrypted traffic. On the other hand, the methods that use characteristics of the
payload or information of the header use data of upper layers that are not available when
working with ET. That is why, in this study, the only possibility of achieving a model with
real accuracy is using time series features.

Each flow is associated with a particular service, and from each packet of the flow, six
features can be extracted: source and destination port, packet length, transport protocol,
inter-arrival time and direction of the packet.

In this project, only TCP packets are analyzed because, as (A. L. Narasimha Reddy) says,
this protocol uses 90% of all internet traffic since it has an integrated mechanism to avoid
congestion.

In the paper (Lopez-Martin et al., 2017) assess the influence of the set of features used in the
detection process. They show how inter-arrival time dos not always give good results. The
reason is that it can be distorted because it has a strong dependence on network conditions.
For this reason, it has been decided to ignore this feature and, at the same time, saves
computing memory and time.

Finally, the model will be trained extracting the length of TCP packet in bytes and the
direction of each packet of each flow. When it refers to the direction, it only differs if the
data is outgoing from the source or incoming. In the first case, the positive sign (+1) is
added and the second case the negative sign (-1).

Besides, in case that an online classification is made (in real time), choosing a few features
facilitates the great behaviour of the model. On the contrary, it would provoke a high latency,
a high computational cost, and memory (Li and Moore, 2007).

3.2 CNN-LSTM Model

3.2.1 System Architecture

The choice of features and the size of input data set are very correlated with the model of
the DL that must be chosen. CNN consists of a set of layers with learning parameters that,
unlike other techniques, works fine when it comes to working with a high-dimension input
which involves a large number of parameters in the hidden layer.

This project has been inspired by several studies dealing with encrypted traffic classification
to build the most appropriate model. Specifically, the 1D-CNN model is used because the

17

Figure 3.3: Architecture of the model’s project

raw packet’s data are of one dimension and the authors of (Vinayakumar et al., 2017) and
(Wang et al., 2017a) show that in these cases it is better to work with 1D-CNN than with
other CNN dimensions.

After studying and testing various possibilities, a model similar to the study (Lopez-Martin
et al., 2017) has been chosen which combines the output of the convolutional layer with
the layer LSTM. Here, the combination works as the CNN model extracts features while
the LSTM layer is responsible for interpreting them (Brownlee). Finally, the architecture
selected is a combination of 1D-CNN and LSTM as can be seen in figure 3.3 where N is the
number of instances and the input 100 is the length of the flow. In the State of the art (2.2.2
and 2.2.3), the management of the CNN and LSTM algorithms has been explained to have
a general idea. This section describes the architecture of the actual proposed model.

The first layer is the Dropout layer. The idea of the dropout layer is to ”remove” a random
set of neurons in that layer by setting them to zero. This fact, in some way, forces the
network to be redundant. It means that the model must be able to provide the correct
classification or output for a specific example even if some of the neurons are eliminated. An
important note is that this layer is only used during training, and not during the test time.

Let xi be each packet from a flow (represented by its length and direction). The input of
the model is X1:n where the full flow with length n:

X1:n =
{
x1
⊕

x2
⊕

x3, ..., xn

}
(3.1)

and
⊕

the symbol to concatenate vectors. The convolution operation introduces a random
filter hR of length L which is applied to flow Xk and generates a new feature defined as:

Ck = f(h·xk:k+L−1 + b) (3.2)

In this case, bR is the bias and f is the activation function ReLU where its function is
f(x) = max(0, x). This filter is applied to all possible windows {x1:L, x2:L+1, ..., xn−L+1:n}
generating the vector of feature c:

c = [c1, c2, ..., cn−L+1] (3.3)

with cR and where N = n− L+ 1 is the number of characteristics that is extracted.

Is then when the operation max-pooling is applied in the feature vector C to select the
maximum value C = max{c} as a feature for the entry to the next layer.

In our model, there are two convolution layers and two max-pooling layers to extract the
best characteristics. As said, this is the role of the CNN model. These features are passed
to LSTM which transforms the vector sequence into a single vector of less size, containing
information about the entire sequence. This vector is finally passed to the fully connected

18

Softmax layer with cross-entropy minimization as a cost function (explained in section 4.1)
and RMSprop as optimizer (detailed in section 2.2.4)and its output is the probability of
distribution of the input flow. The output and input parameters of each layer are shown in
the table 3.1.

Layer Operation Activation shape Parameters

1 dropout 100 x 1 0

2 conv + ReLU 85 x 64 1088

3 1D max pool 21x64 0

4 conv + ReLU 6x64 65600

5 1D max pool 1 x 64 0

6 LSTM 128 98816

7 softmax 73 9417

Table 3.1: Parameters per layer of the model

Note that both convolution filter and max-pooling are operations of one dimension. This is
the essential feature of the 1D-CNN models.

The model also applies the criterion of Early Stopping, which prevents overfitting. This
phenomenon appears when the model does not improve the prediction accuracy on validation
data, although it improves the prediction accuracy on training data. When this happens,
the model must stop training (Sarle, 1996). The Early Stopping method memorizes the data
set validation losses. After each epoch, checks if the losses increased or remained unchanged.
Finally, if correct and no sign of improvements is observed within a specific number of epochs,
early stopping stops further model training.

3.2.2 CNN Hyper-parameters Tuning

When implementing a CNN model, two key factors need to be taken into account to achieve
the best classification performance and, at the same time, enhance the capabilities to classify
the unknown traffic: choose the hyper-parameters of the Deep Neural Network and the depth
of CNN. The selection of hyper-parameters corresponds to the experience of experts. There
are no general rules that can be applied directly. Therefore, the strategy followed has been
to choose a representative sub-sample of all the set date and, by testing different parameters
oriented to other similar studies, such as (LeCun et al., 1989) or (Krizhevsky et al., 2012),
the best results were chosen:

To reduce the search space, the model uses the same parameters in each layer. Using the
same kernel in all the entries helps the model to capture the most invariant features more
quickly. Finally, the chosen settings are those shown in table 3.2.

19

Hyper-parameters Space Value

optimizer RMSProp, SGD, Adam RMSProp

learning rate 0.0005 ... 0.0025 0.008

batch size 8 .. 256 128

number of epochs 25 .. 200 124

number of layers 4 .. 9 7

input units 50 ... 300 100

dropout 0 .. 0.3 0.1

lstm 100..300 150

activation tanh, ReLU ReLU

kernels 16 .. 128 64

kernel size 2 .. 20 16

pool size 2.. 16 4

Table 3.2: Hyper-parameters to train the 1D-CNN-LSTM model

3.2.3 One-vs-Rest Study

The original study that has been performed makes the closed world assumption; The classes
that the model has seen in the training are the same that have been seen when testing. A
more realistic scenario is to expect unknown classes during the test phase. In this second
study, it is wanted to check the accuracy of a single app against all other apps simulating the
case that only interests if the user is using or not a specific app. The system uses the same
model with some modifications that are explained in section (4.1). Binary classification is
performed according to whether the test data corresponds or not to the selected app.

The main difference between the previous model is the labelling of the classes since they
have grouped according to whether they belong to the interest app or not forming a model
with only one output instead of the 73 that previously were.

20

Chapter 4

Evaluation and results
The present section shows the results obtained in the different studies that have been carried
out during the project and the influence that had particular design decisions such as the
number of packages selected and the number of flows per application. First, the experimental
methodology is detailed as well as the used metrics (4.1). Then, a review of results obtained
as well as an objective evaluation comparing the outcomes according to design changes (4.2)
as well as a comparison of all the investigated classes (4.3). All these steps are subsequently
repeated later in the study of One-vs-Rest (4.4) to finish the section.

4.1 Experimental Methodology and Evaluation Metrics

There are several approaches to train and test the accuracy of the model in supervised
learning algorithms. The data set is divided into three groups: training, validation and test
set. The first is the set of data with which the model trains and learns while the second is
used to provide an unbiased evaluation of a fit model on the training data set while tuning
model hyper-parameters. The test set is used after the training to evaluate the model with
data that it has not seen before.

In some cases, the cost of setting aside a significant portion of the data set, like the holdout
method requires is too high. As a solution, in these circumstances, a resampling-based
technique such as cross-validation may be used instead. In our project, the k-fold validation
method is used. This process consists in dividing the whole data set into k subsets. The
model is trained from k times and each time, one of the subsets k is used as a test, and the
others k-1 as training sets.

The global evaluation is calculated throughout all the trials, thus achieving a stable perfor-
mance evaluation setup. For completeness, we report both the mean and the variance of
each performance measurement as a result of the evaluation on the different folds. In figure
4.1) the operation of k-fold validation is clearly shown.

To perform the measurements of the project model is used k = 10 and four standard per-
formance metrics are determined: Accuracy, Precision, Recall and Cross-Entropy loss. As-
suming a sample X (in the case this study, X is a flow), True Positive (TP) is the number of
samples classified correctly, but if it is typed incorrectly, it counts as False Positive (FP). On

Figure 4.1: Data division and behaviour of the 10-fold process

21

the other hand, True Negative (TN) is the number of packets classified correctly as Not-X,
and if the packet is classified as Not-X incorrectly, we count False Negative (FN). Then,
metrics are calculated as follows

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

Accuracy =
TP + TN

TP + TN + FP ∗ FN
(4.3)

As said above, the Softmax layer evaluates the loss of the model with cross-entropy mini-
mization as a cost function (Rob DiPietro, 2018). It indicates the difference between what
the model believes the output distribution should be, and what the original distribution
really is. It is defined as

CE(y, p) = iyilog(pi) (4.4)

where i is the class, y the prediction and p the real output.

Note that in order to carry out the training, only classes with at least 40 traces are used. It
is done in this way because, as is checked later, the results below this quantity of instances
have too much deviation. Then, the experiment is carried out with a total of 73 apps and
2920 traces.

4.2 Experimental Results and Analysis

In order to appreciate the detection quality of the different options to train the model, this
section compares the results of the classification according to the number of instances and
the number of packages per example to see the impact that causes over the model.

4.2.1 Effect of the Number of Packets per Flow

In this section, five data sets are created where the apps and traces are the same, but the
number of packets for each evidence varies. This study shows the importance of this factor
in the functioning of the model.

Note that the traffic was captured in randomly times. Then, it provoked traces longer than
others, and the length does not depend on the app. This fact can be a drawback if the
system takes it as a feature. However, it is observed that a large percentage of traces have
a minimum of 100 packages and that is why the behaviour of the model is evaluated up to
100 packets.

The results obtained are shown in table 4.1 and in a graphical comparison 4.2 with the
number of packages compares their accuracy and loss.

Number of packets Test Accuracy Test Loss

25 mean 0.6216, std 0.0265 mean 1.5057, std 0.1219

50 mean 0.7592, std 0.0436 mean 1.1233, std 0.1767

75 mean 0.7733, std 0.0456 mean 1.1251, std 0.1704

100 mean 0.7818, std 0.0282 mean 1.0848, std 0.1494

Table 4.1: Performance of the model depending of the number of packets per flow

In both table and graph can see that working with more packages results in better and more
reliable classification. Regarding accuracy, it is clear that 25 packets are few to train the

22

Figure 4.2: Comparison graphic of the results depending on the number of packets per flow

algorithm, but between 50 and 100 packets the difference is not significant, and the value
stabilizes. It indicates that for many packages that would use, the accuracy of the model
would be around the value of 80% However, what is observed is that as the system trains with
more packages, it becomes more reliable. Both Loss and Standard deviation are diminishing,
and it is likely that with more packages it continues to decrease.

The results of the best option (100 packets per trace) are shown in the figures B.

4.2.2 Effect of the Number of Flows

The interest in this section is to see from how many samples the model begins to learn a
reasonably good pattern to classify flows. To study this effect, the applications are filtered
getting only the ones with a minimum of 40 flows (73 apps). Then, there are three different
sets of data, each one with a different number of samples. The first has 20 per application
(1460 instances), the second 30 (2190 instances), and the last has 40 flows per application
(2920). Both the table 4.2 and the graph 4.3 can see the results obtained.

As expected, the model with more samples is the one that gets better results. However, it
should be noted that with 30 or 20 there is a reasonably close result to that of 40. On the
other hand, the deviation and the loss augment too much.

Number of flows per app Test Accuracy Test Loss

20 mean 0.7473, std 0.0408 mean 1.2884, std 0.1997

30 mean 0.7534, std 0.0331 mean 1.2445, std 0.1669

40 mean 0.7818, std 0.0282 mean 1.0848, std 0.1494

Table 4.2: Performance of the model depending of the number of flows per app

23

Figure 4.3: Comparison graphic of the results depending on the number of flows per app

4.3 Per-Class Study

To end the main study of the project is evaluated the results obtained by the model for each
one of the classes separately. In this way, it can identify which applications most adapt to
our model. The C table shows the average of the precision and recall calculated in all k-folds
(10-folds) for each of the apps in the project.

The parameters are the same as the previous section where 40 traces of 100 packages are
used for each app. The objective of the project is to classify each flow with its correspond-
ing application. This study envisages which classes are most vulnerable when it comes to
preserving privacy by using the designed model. Finally, the results are that 37 applications
(51% of the total) have accuracy above 85%, 31 apps (42%) have a recall over 85%, and 20
applications (28%) have this two measures above 85%. Therefore, a large number of apps
get an accurate classification. On the other hand, there are 9 applications (12%) that have
both measures below 60% and thus ensure proper security.

It should be noted that in the set of training data two applications can be sensitive and show
if a person is single or not and their sexual orientation. These are wildec.dating.meetu and
dating.app.datingapps (in bold in table C). As the results show, the first one gets shallow
measurements, while the second gets one of the best results of classification.

4.4 One-Class Accuracy

In this last study, introduced in the ref sec: section, it begins by explaining the design
changes and how the data set is divided (4.4.1). To finish the results are shown with the
help of graphs (4.4.2).

4.4.1 Experimental Methodology

As indicated, is wanted to make a model with only one output that indicates whether the
sample is from the app or not. With the same data set that the whole project, the data
is Pre-Processed extracting the same features (length and direction). The difference with
respect to the rest of the project is that, when it comes to tagging the instances, there are
only App and Noapp classes.

24

Actually, in App class, there is one application while Noapp class contain 116 applications.
As it can see, the difference in samples in both classes is enormous. When this happens, it
is called Imbalanced data set (Gil Delgado, 2015). If this is not deal as a special way, it can
cause overfitting and detect all classes as Noapp due to the simple fact of the large number
of samples it has. To solve this, the data set has been treated in such a way that in the
training set there is the same number of ”App” samples as Noapp.

Be A the total samples of ”App” and Ta, Va, and ta the samples of its Training, Validation
and Test set, N the total samples of Noapp and Tn, Vn and tn he samples of its Training,
Validation and Test set respectively. Then, the data set of the Noapp class is divided as
follows:

Ta = A · 0.6;V a = A · 0.15; ta = A · 0.15 (4.5)

Tn = Ta;V n =
N − Tn

2
; tn =

N − Tn
2

(4.6)

In this case, more samples than normally in the test and the validation set are used to have
more samples to classify. This imbalance causes that, at the time of testing, the model finds
many more negative samples than positive instances. Also, from these negatives, the most
likely is that many applications have not been trained and are unknown for the model. That
is why it is said that in this section is simulating a case of an open world.

To represent the results in a binary classification, the true positive rate (TPR) and false
positive rate (FPR) are used, but as indicated by (Juarez et al., 2016), the size of the sets
are heavily unbalanced, so using only TPR and FPR can lead to incorrect interpretation due
to the base-rate fallacy. Therefore, the measurements that are used to calculate the results
are the same metrics (Precision Recall) explained. The ideal scenario that we all want is
that the model should give 0 FP and 0 FN, but it is not possible as any model is 100%
accurate most of the times.

As mentioned in the section 2.2.1, the last layer of the model returns a probability. Because
it is a binary model, if the probability of the output is above the threshold indicates ”App”
but if its a smaller value indicates Noapp. The value of this threshold is variable since it
depends on the interests. If it is wanted to focus more on minimizing False Negatives, the
Recall needs to be as close to 100% as possible without Precision being too bad, and if the
objective is to focus on minimizing false positives, then it is necessary to make Precision as
close to 100% as possible.

Another aspect to take into account is that learning from the model depends on the flows of
applications that are randomly inside the Training set of Noapp. For this reason, the training
is repeated 3 times and each time it mixes the samples.

Finally, once the procedure has been explained, the following section shows the results of the
two applications that reveal sensitive information about the user: (a) wildec.dating.meetu
and (b) dating.app.datingapps, and represent the Precision Recall graphics of the two appli-
cation with more instances collected:(a) com.tomtom.speedcams.android.map.dump and (b)
com.king.candycrushsaga.dump.

4.4.2 Experimental Results and Analysis

In all the experiments of this section, the whole data set is used. In cases of both applications
(a) wildec.dating.meetu and (b) dating.app.datingapps, doing this study with only 40 samples
for the class ”App” versus 8157 samples for the class Noapp means that the results are very
scattered and the curve Precision-Recall cannot be represented since it is almost impossible
that an unknown application does not classify as an ”App.” Therefore, they are unreliable
results. The best results for each CV are shown in the table 4.3:

25

App CV TP FP FN Precision Recall

com.wildec.dating.meetu.dump 1 2 264 4 0.0075 0.3333

com.wildec.dating.meetu.dump 2 3 177 3 0.0167 0.5

com.wildec.dating.meetu.dump 3 3 95 3 0.0306 0.5

dating.app.datingapps.dump 1 6 29 0 0.1714 1

dating.app.datingapps.dump 2 5 12 1 0.2941 0.8333

dating.app.datingapps.dump 3 5 30 1 0.1429 0.8333

Table 4.3: Performance of the model depending of the number of flows per app

However, there is a significant difference in the comparison of the results. Although they
are bad in both cases, it is evident that app (b) achieves better results in both measures.
Then the results correspond with the Per-class study 4.3. Therefore, it can be stated that
the traces of the app (a) are more difficult to classify and personal privacy is preserved.

On the other hand, to assess if the model works, the two applications with more instances
have been chosen (a) com.tomtom.speedcams.android.map.dump (330 flows) and (b) com
.king.candycrushsaga.dump (337 flows) and the evolution of the Accuracy-Recall curve is
represented in figures 4.4 and 4.5.

(a) tomtom.speedcams.android.map - CV 1 (b) tomtom.speedcams.android.map - CV 2

(c) tomtom.speedcams.android.map - CV 3

Figure 4.4: Accuracy - Recall curve of tomtom.speedcams.android.map

According to the previous study 4.3, they are two applications that are classified correctly,
and In the graphs, the result corresponds. Both apps can get both 100% Accuracy and
Recall, as well as a good result for both measurements at the same time.

26

(a) king.candycrushsaga - CV 1 (b) king.candycrushsaga - CV 2

(c) king.candycrushsaga - CV 3

Figure 4.5: Accuracy - Recall curve of king.candycrushsaga

27

Chapter 5

Budget
The cost of the project consists of the junior engineer’s salary since it has been possible to
work using free software such as python. It is considered a salary of 10e/h, so the cost
depends on the hours invested in the project.

At the beginning, it was estimated that in order to complete the project, a total of 540h
would be necessary. However, the expected hours were extended to a total of 600h. These
extra hours are paid at 14e/h. Therefore, the cost of the project has been as follows:

Type Wage/hour Dedication Total

Junior engineer Normal work hours 10.00 e/h 540h 5 400 e

Junior engineer Extra work hours 14.00e/h 60h 840 e

Total 6 240 e

Table 5.1: Estimated budget of the project

28

Chapter 6

Conclusions
This project develops a system to classify encrypted traces from mobile applications. First,
the encrypted flows are processed to transform them into numerical vectors and subsequently
are trained in a 1D-CNN designed model that can detect patterns of each trace by only
extracting the lengths of the packages and their direction.

Through a data set with 73 applications, each one with 40 traces, a closed-world is simulated.
It achieves 78% of accuracy where 51% of the applications have an Accuracy of more than
85%. Additionally, an open-world experiment is done. It consists in classify an application
versus the rest. This last study only works with apps with a lot of instances, and even not
good results had achieved for the apps with sensitive information, the good performance of
the model has been demonstrated.

However, there are three limitations and related future work about the thesis. First, more
training data would help the model to distinguish different applications better, and the
Standard deviation would diminish. Second, our system only uses spatial features of traffic
and ignores temporary elements. In future researches should investigate how to add these
features as well as new scenarios with more convolutional layers. Finally, and as it has been
tried to do in the current project without results (1.5), in order to complete the study, the
model should be tested with traffic data captured from an uncontrolled scenario. This would
allow getting results very close to reality.

Overall, the study reveals the need for certain applications to improve their safety measures.
Most apps encrypt traffic to hide what is being retransmitted but, as it has been proven,
using deep learning, is possible to know which application has been used on the smart-phone
and with this simple information, attack the privacy of the user.

29

Bibliography
A. L. Narasimha Reddy. Network elements based on partial state. Dept. of Electrical

Engineering, Texas A & M University, [Online; accessed 12-November-2018].

Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. Traffic clas-
sification of mobile apps through multi-classification. In GLOBECOM 2017-2017 IEEE
Global Communications Conference, pages 1–6. IEEE, 2017.

Andrew Ng. Machine learning, 2018. [Online; accessed 17-February-2019].

Jason Brownlee.

Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. I know what you saw last
minute—encrypted http adaptive video streaming title classification. IEEE Transactions
on Information Forensics and Security, 12(12):3039–3049, 2017.

Luis Gil Delgado. Clasificación de tráfico de internet mediante análisis de datos. 2015.

Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error training:
a theoretical and experimental comparison. In Interspeech, volume 13, pages 1756–1760,
2013.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright. Toward an
efficient website fingerprinting defense. In European Symposium on Research in Computer
Security, pages 27–46. Springer, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Wei Li and Andrew W Moore. A machine learning approach for efficient traffic classification.
In 2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 310–317. IEEE, 2007.

Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret. Network
traffic classifier with convolutional and recurrent neural networks for internet of things.
IEEE Access, 5:18042–18050, 2017.

Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma, Yong Wang, and Yunpeng Wang. Learn-
ing traffic as images: a deep convolutional neural network for large-scale transportation
network speed prediction. Sensors, 17(4):818, 2017.

Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press San
Francisco, CA, USA:, 2015.

Rob DiPietro. A friendly introduction to cross-entropy loss, 2018. [Online; accessed 24-
January-2019].

Raúl Santos Lebrato. Desarrollo de una solución de clasificación de tráfico de red utilizando
técnicas de aprendizaje automático. B.S. thesis, 2018.

30

Warren S Sarle. Stopped training and other remedies for overfitting. Computing science and
statistics, pages 352–360, 1996.

Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. Who do you sync you are?:
smartphone fingerprinting via application behaviour. In Proceedings of the sixth ACM
conference on Security and privacy in wireless and mobile networks, pages 7–12. ACM,
2013.

Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Appscanner: Au-
tomatic fingerprinting of smartphone apps from encrypted network traffic. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 439–454. IEEE, 2016.

R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Applying convolutional
neural network for network intrusion detection. In 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 1222–1228.
IEEE, 2017.

Vitaly Bushaev. Understanding rmsprop - faster neural network learning, 2018.

Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. End-to-end en-
crypted traffic classification with one-dimensional convolution neural networks. In 2017
IEEE International Conference on Intelligence and Security Informatics (ISI), pages 43–
48. IEEE, 2017a.

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Malware traffic
classification using convolutional neural network for representation learning. In 2017 In-
ternational Conference on Information Networking (ICOIN), pages 712–717. IEEE, 2017b.

Wikipedia contributors. Artificial neuron — Wikipedia, the free encyclopedia,
2019. URL https://en.wikipedia.org/w/index.php?title=Artificial_neuron&

oldid=885171186. [Online; accessed 10-May-2019].

Yibo Xue, Dawei Wang, and Luoshi Zhang. Traffic classification: Issues and challenges. In
2013 International Conference on Computing, Networking and Communications (ICNC),
pages 545–549. IEEE, 2013.

31

https://en.wikipedia.org/w/index.php?title=Artificial_neuron&oldid=885171186
https://en.wikipedia.org/w/index.php?title=Artificial_neuron&oldid=885171186

Appendix A

Apps and Traces in the whole data
set
List of the applications with the number of traces. In total there is a data set with 8197
traces for 117 apps.

App Number of traces

com.valvesoftware.android.steam.community.dump 204

com.sinyee.babybus.taxi.dump 194

dating.app.datingapps.dump 40

com.appswiz.kodistreamings.dump 100

com.tomtom.speedcams.android.map.dump 330

com.havit.android.dump 40

com.gomo.calculator.dump 183

com.igg.android.lordsmobile.dump 100

com.contextlogic.wish.dump 160

homeworkout.homeworkouts.noequipment.dump 50

com.alibaba.intl.android.apps.poseidon.dump 100

ecom.psafe.msuite.dump 127

com.leftover.CoinDozer.dump 20

com.microsoft.office.outlook.dump 286

com.instagram.android.dump 232

com.roblox.client.dump 231

shayari.funnyshayari.dump 20

com.streema.simpleradio.dump 184

com.spotify.music.dump 171

com.pnn.obdcardoctor.dump 40

com.snapchat.filters.lenses.stickers.forSnapchat.dump 194

net.malingo.wortsuchesprachen.android.wordsearch.dump 20

com.gamingsauce.redballiv.dump 20

com.sirma.mobile.bible.android.dump 20

jp.co.nestle.chocollabo.dump 100

com.jiubang.goclockex.dump 100

com.soundcloud.android.dump 126

com.king.candycrushsaga.dump 337

com.beprod.cofidis.dump 91

com.playrix.homescapes.dump 50

com.alien.shooter.galaxy.attack.dump 132

com.ss.android.article.topbuzzvideo.en.dump 131

com.ea.gp.fifamobile.dump 100

com.waze.dump 100

com.wallapop.dump 99

com.crazylabs.sausage.run.dump 200

Table A.1: Total apps with the number of traces (1)

32

App Number of traces

com.inapp.cross.stitch.dump 20

com.domobile.applock.dump 26

com.pl.premierleague.dump 20

com.lajeuneandassociatesllc.barberchopdev.dump 40

com.igg.castleclash.dump 79

com.kiloo.subwaysurf.dump 250

com.jiubang.fastestflashlight.dump 100

music.christmas.dump 190

de.zalando.mobile.dump 55

com.wunderkinder.wunderlistandroid.dump 40

com.supercell.clashroyale.dump 50

MyING.be.dump 40

com.plonkgames.apps.iqtest.dump 50

com.onetengames.architect.craft.build.construction.dump 40

io.walletpasses.android.dump 40

ru.artemnaumov.soulbough.dump 20

com.pinkapp.dump 4

com.zhiliaoapp.musically.dump 71

com.notdoppler.earntodie.dump 13

net.peakgames.toonblast.dump 50

com.wildec.dating.meetu.dump 40

com.gismart.realpianofree.dump 100

com.wordgame.words.connect.dump 29

com.ubercab.dump 107

com.bitmango.go.wordcookies.dump 100

com.whatsapp.dump 50

jp.nagoyastudio.shakocho.dump 26

de.stocard.stocard.dump 50

bubbleshooter.orig.dump 20

com.netease.chiji.dump 55

com.pinterest.dump 238

com.apnax.wordsnack.dump 100

com.gamefirst.Jurassic.Survival.Island.ARK.dump 40

com.mxtech.ffmpeg.vneon.dump 8

com.tricore.face.projector.dump 40

com.robtopx.geometrydashsubzero.dump 183

com.ehawk.proxy.freevpn.dump 20

com.midasapps.roomcreator.dump 40

com.epicactiononline.ffxv.ane.dump 135

com.calea.echo.dump 40

com.movga.fleetcommand.gp.dump 20

com.facebook.katana.dump 20

com.tnature.Mahjong.dump 47

air.com.pixelstudio.venom.angry.crash.rush.io.online.dump 40

com.playrix.gardenscapes.dump 45

air.com.pixelstudio.venom.angry.crash.rush.io.online.dump 40

com.disney.WMWLite.dump 44

com.fillword.cross.wordmind.en.dump 9

Table A.2: Total apps with the number of traces (2)

33

App Number of traces

com.wallapop.dump 99

com.crazylabs.sausage.run.dump 200

com.inapp.cross.stitch.dump 20

com.domobile.applock.dump 26

com.pl.premierleague.dump 20

com.lajeuneandassociatesllc.barberchopdev.dump 40

net.joyplustech.androidmermaid.dump 40

com.ketchapp.fingerdriver.dump 50

com.lafourchette.lafourchette.dump 40

com.pixel.art.coloring.color.number.dump 20

us.zoom.videomeetings.dump 16

com.mxtech.ffmpeg.v.dump 4

be.scarlet.mobile.dump 21

com.sunofcode.slimedoh.dump 40

com.tiles.piano.animemusic.dump 40

be.wandelknooppunt.dump 20

com.italia.autovelox.autoveloxfissiemoibli.dump 40

com.escapefun.theroomiv.dump 20

com.aminota.tupreferes.dump 4

com.bitstrips.imoji.dump 5

air.com.flaxbin.chat.dump 20

appinventor.aiatomantapps.rmeeps.dump 10

com.shas.kshethram.thayinerimuchilot.dump 20

be.appsolution.lotterienationale.dump 2

com.cc.citycasino.dump 20

com.ketchapp.rider.dump 77

com.amazon.avod.thirdpartyclient.dump 24

eu.optimile.mobiflow.MobilityApp.dump 12

com.visiotalent.app.dump 20

com.js.offroad.car.driving.simulator.hill.climb.driving.dump 4

com.androidringtones.sonneriespopulaires.melodies.dump 40

com.abichus.worchypicturewordsearch.dump 24

com.plexapp.android.dump 20

com.jamesots.android.contractiontimer.dump 17

sandbox.art.sandbox.dump 4

roid.spikesroid.tvremoteforlg.dump 5

be.parcapp.dump 2

fixedcom.microsoft.office.outlook.dump 1

com.outfit.mytalkingtomfree.dump 1

com.mason.wooplus.dump 2

Table A.3: Total apps with the number of traces (3)

34

Appendix B

Accuracy and Loss graphs
Graphs of the results of the training with 40 flows and 100 packets.

(a) Accuracy - Fold 1 (b) Loss - Fold 1

(c) Accuracy - Fold 2 (d) Loss - Fold 2

(e) Accuracy - Fold 3 (f) Loss - Fold 3

(g) Accuracy - Fold 4 (h) Loss - Fold 4

Figure B.1: Graphs of the results of the training with 40 flows and 100 packets (1)

35

(a) Accuracy - Fold 5 (b) Loss - Fold 5

(c) Accuracy - Fold 6 (d) Loss - Fold 6

(e) Accuracy - Fold 7 (f) Loss - Fold 7

(g) Accuracy - Fold 8 (h) Loss - Fold 8

(i) Accuracy - Fold 9 (j) Loss - Fold 9

(k) Accuracy - Fold 10 (l) Loss - Fold 10

Figure B.2: Graphs of the results of the training with 40 flows and 100 packets (2)

36

Appendix C

Results of the Per-Class study
List of the performance of the model for each class.

App Precision Recall

com.jiubang.goclockex.dump 0.705 0.750

com.waze.dump 0.799 0.925

com.jiubang.fastestflashlight.dump 0.582 0.425

com.microsoft.office.outlook.dump 0.893 0.850

com.crazylabs.sausage.run.dump 0.927 0.900

com.ketchapp.rider.dump 0.932 0.850

com.alibaba.intl.android.apps.poseidon.dump 0.668 0.500

com.wallapop.dump 0.293 0.225

com.bitmango.go.wordcookies.dump 0.892 0.825

com.ea.gp.fifamobile.dump 0.855 0.725

com.wildec.dating.meetu.dump 0.555 0.475

net.joyplustech.androidmermaid.dump 0.784 0.850

com.sunofcode.slimedoh.dump 0.897 0.750

com.tricore.face.projector.dump 0.852 0.775

com.italia.autovelox.autoveloxfissiemoibli.dump 0.705 0.725

MyING.be.dump 0.884 0.925

com.androidringtones.sonneriespopulaires.melodies.dump 0.516 0.475

com.midasapps.roomcreator.dump 0.658 0.525

com.playrix.gardenscapes.dump 0.858 0.900

com.lajeuneandassociatesllc.barberchopdev.dump 0.908 0.800

com.lafourchette.lafourchette.dump 0.783 0.825

com.pinkapp.dump 0.756 0.900

dating.app.datingapps.dump 0.960 0.900

air.com.pixelstudio.venom.angry.crash.rush.io.online.dump 0.902 0.900

com.wunderkinder.wunderlistandroid.dump 0.880 0.875

com.streema.simpleradio.dump 0.547 0.550

io.walletpasses.android.dump 0.862 0.850

music.christmas.dump 0.471 0.550

com.gamefirst.Jurassic.Survival.Island.ARK.dump 0.888 0.900

com.calea.echo.dump 0.805 0.775

com.gomo.calculator.dump 0.519 0.575

com.tiles.piano.animemusic.dump 0.868 0.925

com.pnn.obdcardoctor.dump 0.905 0.825

com.tomtom.speedcams.android.map.dump 0.762 0.700

Table C.1: .
Performance of the model for each class(1)

37

App Precision Recall

com.king.candycrushsaga.dump 0.942 0.750

com.appswiz.kodistreamings.dump 1.000 0.850

com.gismart.realpianofree.dump 0.833 0.575

com.apnax.wordsnack.dump 0.877 0.925

com.igg.android.lordsmobile.dump 0.892 0.900

jp.co.nestle.chocollabo.dump 0.895 0.725

com.pinterest.dump 0.653 0.775

com.onetengames.architect.craft.build.construction.dump 0.800 0.950

com.valvesoftware.android.steam.community.dump 0.880 0.775

com.havit.android.dump 0.453 0.300

com.snapchat.filters.lenses.stickers.forSnapchat.dump 0.823 0.875

com.sinyee.babybus.taxi.dump 0.884 0.725

com.disney.WMWLite.dump 0.935 0.925

com.beprod.cofidis.dump 0.789 0.825

com.netease.chiji.dump 0.613 0.625

de.zalando.mobile.dump 0.733 0.575

com.whatsapp.dump 1.000 0.900

com.spotify.music.dump 0.885 0.925

com.instagram.android.dump 0.917 0.950

com.zhiliaoapp.musically.dump 0.479 0.575

com.supercell.clashroyale.dump 0.764 0.925

homeworkout.homeworkouts.noequipment.dump 0.662 0.600

net.peakgames.toonblast.dump 0.872 0.925

com.plonkgames.apps.iqtest.dump 0.795 0.900

com.robtopx.geometrydashsubzero.dump 0.800 0.925

com.kiloo.subwaysurf.dump 0.784 0.800

de.stocard.stocard.dump 0.858 0.650

com.contextlogic.wish.dump 0.980 0.950

com.ketchapp.fingerdriver.dump 0.772 0.650

com.tnature.Mahjong.dump 0.865 0.825

com.playrix.homescapes.dump 0.875 0.925

com.roblox.client.dump 0.947 0.925

com.psafe.msuite.dump 0.712 0.800

com.igg.castleclash.dump 0.813 0.850

com.soundcloud.android.dump 0.947 0.975

com.ubercab.dump 0.913 0.850

com.epicactiononline.ffxv.ane.dump 0.960 0.925

com.ss.android.article.topbuzzvideo.en.dump 0.657 0.475

com.alien.shooter.galaxy.attack.dump 0.867 0.900

Table C.2: Performance of the model for each class (2)

38

	Introduction
	Statement of Purpose
	Requirements and Specifications
	Methods and Procedures
	Work Plan
	Gantt Diagram
	Work Packages

	Incidents and Modifications

	State of the Art
	Traffic Classification
	Port-based Method
	Payload-based Method
	Host Behavior-based Method
	Flow Feature-based Method

	Deep Learning
	Neural Network
	Convolutional Neural Network
	Long Short Term Memory
	Optimization

	Deep Neural Network-based Traffic Classification

	Methodology
	Data Preparation
	Data Collection
	Data Pre-Processing
	Features

	CNN-LSTM Model
	System Architecture
	CNN Hyper-parameters Tuning
	One-vs-Rest Study

	Evaluation and results
	Experimental Methodology and Evaluation Metrics
	Experimental Results and Analysis
	Effect of the Number of Packets per Flow
	Effect of the Number of Flows

	Per-Class Study
	One-Class Accuracy
	Experimental Methodology
	Experimental Results and Analysis

	Budget
	Conclusions
	Bibliography
	Apps and Traces in the whole data set
	Accuracy and Loss graphs
	Results of the Per-Class study

