On the Galois embedding problem associated to the universal central extension of the alternating group of degree 6

Teresa Crespo * Montserrat Vela †
Departament d’Àlgebra i Geometria Departament de Matemàtica Aplicada II
Universitat de Barcelona Universitat Politècnica de Catalunya
Gran Via de les Corts Catalanes 585 C/Pau Gargallo, 5- Campus Sud- Edifici U
E-08007 Barcelona, Spain E-08028 Barcelona, Spain
e-mail teresa.crespo@ub.edu e-mail: Montse.Vela@upc.es

Abstract

We obtain an explicit expression for the obstruction to the solvability of the Galois embedding problem associated to the universal central extension of the alternating group of degree 6.

Key words: Galois embedding problem, central simple algebras, Galois descent.

Mathematics Subject Classification 2000: 12F12, 11S20, 11R32, 11R34.

*Partially supported by grant MTM2009-07024, Spanish Science Ministry.
†Partially supported by MECD grant BFM2000-0794-C02-01 and AGAUR 2002SGR 00148
1 Introduction

Let $L|K$ be a Galois extension with Galois group the alternating group A_6. Let $6A_6$ be the nontrivial 6-fold cover of A_6. We consider the Galois embedding problem

$$6A_6 \rightarrow A_6 \simeq Gal(L|K).$$

(1)

A solution to (1) is a field \tilde{L}, containing L, which is a Galois extension of K such that $Gal(\tilde{L}|K) \simeq 6A_6$ and the diagram

$$\begin{array}{ccc}
Gal(\tilde{L}|K) & \rightarrow & Gal(L|K) \\
\downarrow & & \downarrow \\
6A_6 & \rightarrow & A_6
\end{array}$$

commutes, where the epimorphism $Gal(\tilde{L}|K) \rightarrow Gal(L|K)$ is given by restriction. Our aim is to obtain an explicit expression for the obstruction to the solvability of (1).

It is known that, for $n \neq 6, 7$, the nontrivial double cover $2A_n$ is the universal central extension of A_n, i.e. we have a commutative diagram

$$\begin{array}{ccc}
1 & \rightarrow & \{\pm 1\} \\
\downarrow & & \downarrow \\
1 & \rightarrow & H
\end{array} \quad \begin{array}{ccc}
2A_n & \rightarrow & A_n \\
\rightarrow & & \rightarrow \\
A_n & \rightarrow & A_n
\end{array} \rightarrow 1$$

for any central extension $1 \rightarrow H \rightarrow \tilde{A}_n \rightarrow A_n \rightarrow 1$.

For $n = 6, 7$, the universal central extension of A_n is

$$6A_n = \langle g_1, \ldots, g_{n-2}, z | g_i^2 = g_i = (g_{i-1}g_i)^3 = (g_jg_k)^2 = z^2, (g_tg_k)^2 = z, z^6 = [z, g_t] = 1, 1 \leq i \leq 5, 1 \leq j \leq k - 1, k \leq 5, (j, k) \neq (1, 4), 1 \leq t \leq 5 \rangle.$$

Given a finite Galois extension $L|K$ with Galois group G and an epimorphism of groups $\tilde{G} \rightarrow G$ with abelian kernel A, the obstruction to the solvability for the Galois embedding problem

$$\tilde{G} \rightarrow G \simeq Gal(L|K)$$

is given by $\inf \varepsilon \in H^2(G_K, A)$, where G_K is the absolute Galois group of K, $\varepsilon \in H^2(G, A)$ represents \tilde{G} and $\inf : H^2(G, A) \rightarrow H^2(G_K, A)$ is the induced morphism between cohomology groups.

In the case of the Galois embedding problem given by the nontrivial double cover of the alternating group $A_n, n \geq 4$, over a field K of characteristic different from 2, Serre [4] obtained a formula expressing the obstruction to the solvability in terms of the Hasse-Witt of a trace form and allowing its explicit computation. An explicit formula for the solutions to this embedding problem was obtained by Crespo in [1]. These results were generalized in [3] and [2]. An explicit determination of the obstruction to the solvability of embedding problems with a cyclic kernel of order > 2 in terms of generalized Clifford algebras was obtained by Vela in [6] together with an explicit construction of their solutions.
2 Preliminaries

The group $6A_6$ is isomorphic to the subgroup of $SL(6, \mathbb{Q}(\omega))$ generated by the two matrices

$$M_1 := \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad M_2 := \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

where ω denotes a primitive third root of unity, and the epimorphism $6A_6 \to A_6$ can be given by

$$M_1 \mapsto \sigma := (2,3)(4,5) \quad M_2 \mapsto \tau := (1,4,3,2)(5,6)$$

For K a field containing $\mathbb{Q}(\omega)$, we obtain a representation

$$\rho : A_6 \to PGL(6, K) = Aut(M_{6 \times 6}(K))$$

and a commutative diagram

$$\begin{array}{ccc} 6A_6 & \to & A_6 \\ \downarrow & & \downarrow \rho \\ SL(6, K) & \to & PGL(6, K). \end{array}$$

In this situation, we may apply a result of Fröhlich and obtain the following statement.

Proposition 2.1. ([3], App. III) Let us denote by B the twisted algebra of $A := M_{6 \times 6}(K)$ by the 1-cocycle $\rho : A_6 \to Aut(M_{6 \times 6}(K))$. The obstruction to the solvability of the embedding problem

$$6A_6 \to A_6 \simeq Gal(L|K)$$

is given by the class of the algebra B in the Brauer group $Br(K)$ of the field K.

3 Main result

Let the field L be given as the splitting field of a monic irreducible polynomial of degree 6 in $K[X]$.

Theorem 3.1. The twisted algebra B of $M_{6 \times 6}(K)$ by the 1-cocycle ρ is the subalgebra of $M_{6 \times 6}(L)$ whose elements $E = (a_{ij})_{1 \leq i,j \leq 6}$ satisfy

$$a_{ii} = \sum_{k=0}^{5} \lambda_k x_i^k, \quad \lambda_k \in K$$

$$a_{ij} = z_{ij} \sum_{k=0}^{5} \sum_{l=0}^{4} \mu_{kl} x_i^k x_j^l, \quad \mu_{kl} \in K, i \neq j,$$

where $x_i, 1 \leq i \leq 6$, denote the roots in L of the polynomial f realizing the group A_6 over K and the elements z_{ij} are given by

$$z_{ij} = \sum_{k=0}^{5} \sum_{l=0}^{4} \mu_{kl} x_i^k x_j^l, \quad \mu_{kl} \in K, i \neq j.$$
Proof. By Galois descent, the algebra B is the K-subalgebra of $M_{6\times 6}(L) \simeq A \otimes_K L$ fixed by the action of the group $G = \text{Gal}(L|K)$, where G acts on A via the representation φ given by

$$
\varphi : \quad A_6 \longrightarrow \text{Aut}(A)
$$

$$
s \mapsto \varphi(s) : \quad A \longrightarrow A
$$

$$
E \mapsto \tilde{s}E\tilde{s}^{-1},
$$

where \tilde{s} is the preimage of $\rho(s)$ by the epimorphism $SL(6, K) \rightarrow PGL(6, K)$, and G acts on L by the Galois action (see [5] X §2).

If $E = (a_{ij})_{1 \leq i,j \leq 6}$ is a matrix in $M_{6\times 6}(L)$, we obtain

$$
\varphi(\sigma)(E) = M_1 E M_1^{-1} = \begin{pmatrix}
 a_{11} & a_{13} & a_{12} & a_{15} & a_{14} & a_{16} \\
 a_{31} & a_{33} & a_{32} & a_{35} & a_{34} & a_{36} \\
 a_{21} & a_{23} & a_{22} & a_{25} & a_{24} & a_{26} \\
 a_{51} & a_{53} & a_{52} & a_{55} & a_{54} & a_{56} \\
 a_{41} & a_{43} & a_{42} & a_{45} & a_{44} & a_{46} \\
 a_{61} & a_{63} & a_{62} & a_{65} & a_{64} & a_{66}
\end{pmatrix},
$$

and

$$
\rho(\tau)(E) = M_2 E M_2^{-1} = \begin{pmatrix}
 a_{22} & \omega^2 a_{23} & a_{24} & \omega a_{21} & a_{26} & a_{25} \\
 \omega a_{32} & a_{33} & \omega a_{34} & \omega^2 a_{31} & \omega a_{36} & \omega a_{35} \\
 a_{42} & \omega^2 a_{43} & a_{44} & \omega a_{41} & a_{46} & a_{45} \\
 \omega^2 a_{12} & \omega a_{13} & \omega^2 a_{14} & a_{11} & \omega^2 a_{16} & \omega^2 a_{15} \\
 a_{62} & \omega^2 a_{63} & a_{64} & \omega a_{61} & a_{66} & a_{65} \\
 a_{52} & \omega^2 a_{53} & a_{54} & \omega a_{51} & a_{56} & a_{55}
\end{pmatrix}.
$$

Hence, the equivalent conditions for a matrix $E = (a_{ij})_{1 \leq i,j \leq 6}$ to be fixed under σ are
\[a_{11} = a_{11}^\sigma, \quad a_{12} = a_{12}^\sigma, \quad a_{13} = a_{13}^\sigma, \quad a_{14} = a_{14}^\sigma, \quad a_{15} = a_{15}^\sigma, \quad a_{16} = a_{16}^\sigma, \quad (2) \]

\[a_{21} = a_{21}^\sigma, \quad a_{22} = a_{22}^\sigma, \quad a_{23} = a_{23}^\sigma, \quad a_{24} = a_{24}^\sigma, \quad a_{25} = a_{25}^\sigma, \quad a_{26} = a_{26}^\sigma, \]

\[a_{31} = a_{31}^\sigma, \quad a_{32} = a_{32}^\sigma, \quad a_{33} = a_{33}^\sigma, \quad a_{34} = a_{34}^\sigma, \quad a_{35} = a_{35}^\sigma, \quad a_{36} = a_{36}^\sigma, \]

\[a_{41} = a_{41}^\sigma, \quad a_{42} = a_{42}^\sigma, \quad a_{43} = a_{43}^\sigma, \quad a_{44} = a_{44}^\sigma, \quad a_{45} = a_{45}^\sigma, \quad a_{46} = a_{46}^\sigma, \]

\[a_{51} = a_{51}^\sigma, \quad a_{52} = a_{52}^\sigma, \quad a_{53} = a_{53}^\sigma, \quad a_{54} = a_{54}^\sigma, \quad a_{55} = a_{55}^\sigma, \quad a_{56} = a_{56}^\sigma, \]

\[a_{61} = a_{61}^\sigma, \quad a_{62} = a_{62}^\sigma, \quad a_{63} = a_{63}^\sigma, \quad a_{64} = a_{64}^\sigma, \quad a_{65} = a_{65}^\sigma, \quad a_{66} = a_{66}^\sigma. \]

and those to be fixed under \(\tau \)

\[a_{11} = a_{22}^\tau, \quad a_{12} = \omega^2 a_{23}^\tau, \quad a_{13} = a_{13}^\tau, \quad a_{14} = \omega a_{14}^\tau, \quad a_{15} = a_{15}^\tau, \quad a_{16} = a_{16}^\tau, \]

\[a_{21} = \omega a_{21}^\tau, \quad a_{22} = a_{22}^\tau, \quad a_{23} = \omega^2 a_{23}^\tau, \quad a_{24} = \omega^2 a_{24}^\tau, \quad a_{25} = \omega a_{25}^\tau, \quad a_{26} = \omega^2 a_{26}^\tau, \]

\[a_{31} = a_{31}^\tau, \quad a_{32} = \omega^2 a_{32}^\tau, \quad a_{33} = a_{33}^\tau, \quad a_{34} = \omega a_{34}^\tau, \quad a_{35} = a_{35}^\tau, \quad a_{36} = a_{36}^\tau, \]

\[a_{41} = \omega^2 a_{41}^\tau, \quad a_{42} = \omega a_{42}^\tau, \quad a_{43} = \omega^2 a_{43}^\tau, \quad a_{44} = a_{44}^\tau, \quad a_{45} = \omega^2 a_{45}^\tau, \quad a_{46} = \omega^2 a_{46}^\tau, \]

\[a_{51} = a_{51}^\tau, \quad a_{52} = \omega^2 a_{52}^\tau, \quad a_{53} = a_{53}^\tau, \quad a_{54} = \omega a_{54}^\tau, \quad a_{55} = a_{55}^\tau, \quad a_{56} = a_{56}^\tau, \]

\[a_{61} = a_{61}^\tau, \quad a_{62} = \omega^2 a_{62}^\tau, \quad a_{63} = a_{63}^\tau, \quad a_{64} = \omega a_{64}^\tau, \quad a_{65} = a_{65}^\tau, \quad a_{66} = a_{66}^\tau. \]

Let us look at the conditions imposed on the elements in the diagonal.

The element \(a_{11} \) is fixed by \(\sigma = (2,3)(4,5) \) and \(\sigma \tau \sigma \tau = (2,6,4,3,5) \). So, \(a_{11} \) belongs to the field \(L^{<\sigma,\sigma \tau \sigma \tau>} \) which clearly contains \(K(x_1) \). Now, the subgroup \(<\sigma,\sigma \tau \sigma \tau> \) of \(A_6 \) has order 60, so \(L^{<\sigma,\sigma \tau \sigma \tau>} = K(x_1) \). As \(a_{11} \in L^{<\sigma,\sigma \tau \sigma \tau>} = K(x_1) \), we may write \(a_{11} = \sum_{i=0}^{5} \lambda_i x_1^i \), for some \(\lambda_i \) in \(K \).

From the relations \(a_{44} = a_{11}^\tau, a_{33} = a_{44}, a_{22} = a_{33}, a_{55} = a_{44}, a_{66} = a_{55} \), we obtain

\[a_{kk} = \sum_{i=0}^{5} \lambda_i x_1^i \quad k = 1, \ldots, 6. \]

We consider now the elements out of the diagonal.

The element \(a_{61} \) is fixed by the subgroup \(H \) of \(A_6 \) generated by \(\sigma \) and the permutation \((2,4)(3,5) = \sigma \tau^2 \sigma \tau^3 \sigma \tau^3 \sigma \tau \). Let \(K_2 := L^H \); as \(H \) has order 4, the degree of \(K_2 \) over \(K \) is 90. The field \(K_2 \) contains clearly the field \(K_1 := K(x_1, x_6) \) which has order 30 over \(K \), so \([K_2 : K_1] = 3 \). Let us look for a generator of the extension \(K_2/K_1 \). We have the following towers of fields

\[
A_4 \begin{pmatrix}
4 \\
3 \\
30 \\
1
\end{pmatrix}
\]

\[
\begin{array}{c}
L \\
K_2 = L^H \\
K_1 = K(x_1, x_6) \\
K
\end{array}
\]

The extension \(L/K_1 \) is the splitting field of the polynomial

\[
f_4(X) = \frac{f(X)}{(X-x_1)(X-x_5)} = (X-x_2)(X-x_3)(X-x_4)(X-x_5) \in K_1[X].
\]

By the Galois correspondence, the field \(K_2 \) is associated to the subgroup \(H_2 = <\sigma, (2,4)(3,5)> \) and the field \(K_1 \) to the alternating group in the four letters \(\{2,3,4,5\} \). Hence, the extension \(K_2/K_1 \) is the splitting field of the cubic resolvent of \(f_4 \). We may then write \(K_2 = K_1(y_1, y_2, y_3) \), where
\[y_1 = (x_2 + x_3)(x_4 + x_5) \]
\[y_2 = (x_2 + x_4)(x_3 + x_5) \]
\[y_3 = (x_2 + x_5)(x_3 + x_4). \]

The Galois group of \(\text{Gal}(K_2/K_1) \) is generated by \(\gamma H_2 \), where \(\gamma = (2, 3, 4) = \sigma \tau \sigma^3 \sigma \tau^2 \tau \). We have

\[a_1^\gamma = \omega a_{16}, \quad y_1^\gamma = y_3, \quad y_2^\gamma = y_1, \quad y_3^\gamma = y_2. \]

Hence the element \(z = y_1 + \omega y_2 + \omega^2 y_3 \) satisfies \(z^\gamma = \omega z \) and we have \(a_{16} = \alpha z \), with \(\alpha \in K(x_1, x_6) \). We obtain then the expression for \(a_{16} \) given in the statement. By using the relations (2) and (3), we obtain the formulas for all elements \(a_{ij}, 1 \leq i, j \leq 6, i \neq j \).

References

