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Facultat de Matemàtiques i Estad́ıstica

Degree in Mathematics

Bachelor’s Degree Thesis

Matroids, positroids
and paths

Zaira Ros Jiménez
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Abstract

Matroids arise from the abstract notion of dependency. Matroids can be studied from different points of
view. From linear algebra we know matrices, which can be seen as matroids, however matroids generalise
the concept of dependency. In matroids there also is combinatorics, graph theory and geometry. This
project wants to be an introduction to matroids throughout two of its families: positroids and lattice path
matroids. Starting with basic definitions and examples the project reaches deeper and more interesting
relations between these two families.
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Introduction

The aim of this project is to introduce the general concept of matroids with more emphasis on one family
of matroids, the positroids.

Gordon and McNulty’s book (2012) ([7],Matroids: A Geometric Introduction) defines matroid the-
ory as an active area of mathematics that uses ideas from abstract and linear algebra, geometry, com-
binatorics and graph theory. We will see there are many different families of matroids that all have in
common an abstract notion of dependence. Trying to abstract the notion of dependence is what lead
Whitney to the introduction of matroids in 1935 in [14]. We will give the formal definition of matroid
in Chapter 1. Informally speaking, a matroid consists of a finite set E and a collection  of its subsets
that somehow behaves like independent sets in a vector space. In particular, given a k×nmatrix one can
construct a matroid with E = {1, 2,… , n} and taking  as the subsets of E that index column sets that
are linearly independent.

Positroids are matroids representable over R by a k × n totally nonnegative matrix, that is a matrix
with all its maximal minors being nonnegative. Positroids arose in the study of cell decompositions of
the Grassmanian, but we will only be interested in their matroidal and combinatorial properties. Lusztig
in [8] already defined a variety named G≥0 over arbitrary connected algebraic reductive group G that
has a natural partition into "zones" and conjectures that its totally nonnegative part has a cellular de-
composition. More recently Postnikov in [13] extended the positroids notion in the following way. Let
the Grassmannian Grkn(R) be the set of k-dimensional subspaces in Rn. For any element V ∈ Grkn

represented by a k × n matrix A we obtain the matroid MV . Then the totally nonnegative Grassman-

nian Grtnnkn are the elements of the Grassmannian that have a matrix representation with all its maximal
minors nonnegative. For the Grassmannian we can obtain a partition into Schubert cells Ω� where � is
a partition of n whose diagram fits in a k × n rectangle (see [13] for the concrete definition). There is
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a finer subdivision of Grkn(R) into matroid strata SM ∶= {V ∈ Grkn(R)|MV = M} where M is a
matroid. With these definitions Postnikov obtains a cell decomposition of Grtnnkn where the cells corre-
spond to positroids. Postnikov also obtains different objects with interesting combinatorial properties that
are in bijection with positroids such as decorated permutations, Grassmann necklaces and ⅃-diagrams.
Understanding these objects and their relationships is one of the main goals of this project.

We also study a specific family of positroids named lattice pathmatroids (LPM). Lattice pathmatroids
are also a family of transversal matroids, and they are formally defined in Section 3.1; the name comes
from the fact that each of them is determined by the region bounded by two lattice paths going from (0, 0)
to (m, r). This family of matroids has been studied from an enumerative and structural perspective by J.
Bonin, A. de Mier, and M. Noy.

The project is structured as follows. In the second chapter we introduce the notion of matroid and
define them in different (equivalent) ways. Then examples of matroid families are given. The third
chapter refers to positroids, objects that are in bijection with them and some properties. The last chapter
is mainly about studying lattice path matroids from the positroid perspective.
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Chapter 1

Matroids

In this chapter we will introduce different but equivalent ways to define matroids and operations we can
do with them. To familiarize with the concept we will study briefly different families of matroids.

As reference books, for general graph theory we suggest Diestel’s [6] and for matroids Oxley’s [12]
and Gordon and McNulty’s [7]. Also, we assume the reader to have the knowledge on discrete mathe-
matics corresponding to a bachelor’s degree on Mathematics.

1.1 Definitions

Definition 1. A matroidM = (E,) consists of a set E and a collection  of subsets of E such that the
following properties hold:

I.1)  ≠ ∅.

I.2) If J ∈  and I ⊆ J , then I ∈ .

I.3) If I, J ∈  with |I| < |J |, then there exsists x ∈ J − I with I ∪ {x} ∈ .

The set E is called the ground set and the elements of  are the independent sets.

In Section 1.2 we will study several families of matroids with interesting properties. Let us now
introduce representable matroids to help the reader understand basic concepts of matroids with some
linear algebra intuition.
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Definition 2. Given a matrix A over a field F with m columns it defines a matroid with ground set
[m] = {1,… , m}. The independent sets of the matroid are the indices of independent sets of columns as
vectors. This matroid is calledM(A). Matroids that can be constructed this way are called representable
matroids.

Example 1. Let A be the following matrix over R with columns enumerated from 1 to 4:

A =

⎛

⎜

⎜

⎜

⎝

0 1 1 2

0 2 0 4

⎞

⎟

⎟

⎟

⎠

Then E = {1, 2, 3, 4} and (M) = {∅, {2}, {3}, {4}, {2, 3}, {3, 4}} form a representable matroid
M = (E,).

There are many other different ways to define a matroid. Some of them are by bases, by ranks, by
circuits, by closure or by flats. LetM = (E,) be a matroid from now on. Let us define these elements
and their properties. The proofs of the properties are not hard and they can be found in [12] .

Definition 3. A circuit is a minimal dependent set. The set of circuits ofM will be denoted by .

In circuits the following properties hold:

C.1) ∅ ∉ .

C.2) If C1, C2 ∈  and C1 ⊆ C2, then C1 = C2.

C.3) If C1, C2 ∈ , C1 ≠ C2 and e ∈ C1 ∩ C2, then there exists C3 ∈  such that C3 ⊆ (C1 ∪ C2) − e.

Notation. As we did in property C.3) above, in this section and when talking about sets we will be using
e to denote {e}, the set containing the element e.

Having , the collection  is determined. In the same way, from  we get  as all those subsets not
containing any member from . Moreover, given a set E and a collection  of subsets of E such that
C.1, C.2, C.3 hold, then there is a matroid with ground set E whose circuits are the elements of .

In Example 1 the circuits are  = {{1}, {2, 4}}.

Definition 4. An element e such that {e} is a circuit is called a loop. If {e, f} is a circuit, the elements
e, f are called parallel.
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Definition 5. A basis or base is a maximal independent set. Given a matroid, its set of bases will be
denoted by .

In bases the following properties hold:

B.1)  ≠ ∅.

B.2) If B1, B2 ∈ , x ∈ B1 − B2 then there exists y ∈ B2 − B1 with (B1 − x) ∪ {y} ∈ .

B.3) If B1, B2 ∈ , then |B1| = |B2|.

From  we can get  by selecting all the maximal indepentent sets, and we can get  from  by getting
all the subsets of each base. Moreover, given a set E and a collection  of bases of E such that B.1, B.2
and B.3 hold, then there is a matroid with ground set E whose bases are the elements of .
In Example example 1 the bases are  = {{2, 3}, {3, 4}}.

Definition 6. An isthmus is an element of the ground set E(M) that is in all the bases of the matroidM .

In Example 1 we have an isthmus that is 3.

Definition 7. Let X ⊆ E. We define |X = {I ⊆ X ∶ I ∈ } and it is easy to check that the pair
(X,|X) is a matroid. This matroid is called the restriction ofM to X and denoted byM|X.

Definition 8. ForX ⊆ E we define the rank ofX, rank(X) or simply r(X) as the size of a basis ofM|X.

The rank function has the following properties:

R.1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

R.2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

R.3) If X, Y ⊆ E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Let  be the collection of subsets X ∈ E such that r(X) = |X|. Then (E,) is a matroid with rank
function r.

In matroids arising from linear algebra the rank can be seen as the dimension. The rank is the maxi-
mum cardinality of the subsets of the subset X that are independent.

Definition 9. Given X ⊆ E the closure cl of X is defined by cl(X) = {x ∈ E ∶ r(X ∪ x) = r(X)}.
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The closure operator has the following properties:

Cl.1) If X ⊆ E, then X ⊆ cl(X).

Cl.2) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ).

Cl.3) If X ⊆ E, then cl(cl(X)) = cl(X).

Cl.4) If X ⊆ E, x ∈ E, y ∈ cl(X ∪ x) − cl(X), then x ∈ cl(X ∪ y).

In Example 1 the closure of {2} is cl{2} = {1, 2, 4}.

Observation 1. Let X ⊆ E and x ∈ E. Note that if X ∈  and X ∪ x ∉ , then x ∈ cl(X).
We can also know  from the closure by  = {X ∈ E ∶ x ∉ cl(X − x) ∀x ∈ X}.

In matroids arising from linear algebra the closure can be seen as the span of a vector set.

Definition 10. A subset X ⊆ E is a flat if X = cl(X). The set of flats is called  .

In flats the following properties hold:

F.1) E ∈  .

F.2) If F1, F2 ∈  , then F1 ∩ F2 ∈  .

F.3) If F ∈  and {F1, F2,… , Fk} is the set of minimal members of  that properly contain  , then
the sets F1 − F , F2 − F ,… , Fk − F partition E − F .

In Example 1 the set {1, 2, 4} is a flat.
In matroids arising from linear algebra the flats can be seen as the subspaces of different dimensions

over E.

Definition 11. Given a matroidM = (E,), the truncation to rank k ofM is Tk(M) = (E,′) where a
set I is in ′ if and only if it is in  and rank(I) ≤ k.

1.2 Families of matroids and operations

LetM be a matroid with ground set E and independent sets . We will now define several operations
that is easy to check that are closed over matroids. After this, we will see some important families of
matroids and see how these operations behave.
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1.2.1 Operations

Definition 12. LetM = (E,) be a matroid. We define the dual ofM as the matroidM∗ = (E,∗)

where ∗ = {E − B ∶ B ∈ }.

Definition 13. The deletion of an element e ∈ E fromM is the matroid denoted byM∖e orM − e and
defined asM∖e = (E∖e,′) where ′ = {I ⊆ E∖e ∶ I ∈ }.

In fact, using Definition 7, the deletion of e isM∖e =M|(E − e).

Definition 14. The contraction of an element e ∈ E fromM isM∕e = (M∗∖e)∗.

Definition 15. The direct sum of two matroidsM1 = (E1, B1),M2 = (E2, B2) is

M1 ⊕M2 = (E1 ∪ E2, {B1 ∪ B2 ∶ B1 ∈ (M1), B2 ∈ (M2))}.

1.2.2 Uniform matroids

Definition 16. A uniform matroid Um,n with 0 ≤ m ≤ n has as ground set E = {an n−element set} and
 = {I ∈ E ∶ |I| ≤ m}.

A uniform matroid Um,n has rank m. Its circuits are the subsets of m + 1 elements.
When deleting an element ewe get another matroidM ′ overE∖e. The independent sets are the same

as inM except those containing e. ActuallyM ′ = Umin(m,n−1),n−1 .
The dual of Um,n is Un−m,n. When contracting an element e we get Um,n∕e = Um−1,n−1 so uniform

matroids are closed under duality, deletion and contraction.
It is easy to check that the direct sum of two uniform matroids does not have to be a uniform matroid,

so uniform matroids are not closed under direct sum.

1.2.3 Graphic matroids

Definition 17. If G is a graph with edge set E and forests , thenM(G) = (E,) is a matroid. Matroids
that can be constructed this way are called graphic matroids.

A graphic matroidM(G) has as independent sets the forests of G and as circuits the cycles. Its rank
is the number of edges of a spanning forest.
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If the graphG is planar andG∗ is its geometric dual, the dual of the graphic matroidM(G)∗ isM(G∗)

and thenM(G)∗ is a graphic matroid. In fact, the inverse is also true and thus we have that the dual of a
graphic matroidM(H) is graphic if and only ifH is planar.

When deleting an element e we get M(G)∖e = M(G∖e), which is graphic. When contracting an
element e we get M(G)∕e = M(G∕e), which is also graphic. Here G∖e and G∕e stand for the usual
deletion and contraction in a graph.

Example 2. A simple graphic matroid and the three operations defined above.

(a) Graphic matroid. (b) Deletion of one edge.

(c) Contraction of one edge. (d) Dual of the graphic matroid.

1.2.4 Transversal matroids

A family of subsets of a finite set E is a collection = {A1,… , Am} of E.

Definition 18. A partial transversal of  is a subset {e1,… , en} of different elements of E such that
ei ∈ Ai for 1 ≤ i ≤ n.

Definition 19. It was proved by Edmonds and Fulkerson (also in [12], Theorem 1.6.2) that the collection
of partial transversals of a family  on E are the independent sets of a matroid, M[]. A transversal

matroid is any such matroid.

Remember a bipartite graph B is a graph whose vertices can be divided into two disjoint sets U, V
such that no edge has both endpoints in the same set. Let U be {e1,… , en} and V be .

Definition 20. Amatching is a subset of edges of a bipartite graph such that there is not any pair of edges
that share a vertex. We can see a matching as a partial transversal.
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Example 3. All uniform matroids Um,n are transversal. It is easy to check by defining U = [n] and
 = {A1,… , Am} with A1 = ⋯ = Am = {1, 2,… , n} because all matchings will have size at most m
and all subsets Ui of U with |Ui| ≤ m will have matchings so they will be independents.

It is not hard to see that transversal matroids are closed under deletion. However, they are not closed
under contraction, as we will now see.

Given the transversal matroid with U = [7] and  = {A1, A2, A3} where A1 = {1, 2, 7}, A2 =

{3, 4, 7} and A3 = {5, 6, 7} can be represented as the following graphic matroid.

Figure 1.2: Graphic representation of a transversal matroid.

Contracting the edge 7 we get the following matroid

Figure 1.3: Graph after contracting edge 7.

which is not transversal.
To see it is not transversal assume it is and let us get a contradiction.
If it is transversal there is a family of subsets of {1, 2, 3, 4, 5, 6} such that all its partial transversals

are independent sets. As {1, 2} is a circuit there has to be a unique member of the family  meeting 1
and 2. Call this member A1 and contains 1 and 2. Equivalently for 3 or 4 and for 5 or 6 we have the
memberA2 containing 3 and 4 and the memberA3 containing 5 and 6. As we have that {1, 3}, {3, 5} and
{5, 1} are independent they have to be partial transversals which implies that the three sets are different.
If the sets are different any other partial transversal is an independent set of the matroid. Since {1, 3, 5}
is a partial transversal but is not an independent set of the matroid we have a contradiction.
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Finally we can say that transversal matroids are not closed under duality becauseM∕e = (M∗∖e)∗

and we have seen that they are not closed under contraction.

1.2.5 Representable matroids

Remember Definition 2 of representable matroids. In this section we study properties of this family of
matroids.

We defined representable matroids by independent sets (subsets of columns linearly independent).
The circuits are the minimal subsets linearly dependent and the rank is the rank of the matrix.

Since representable matroids are usually represented as a matrix, let us recall some elementary trans-
formations over matrices to state some more properties of representable matroids. These are what we
will call elementary (row) transformations:

• Row swap: Swap the position of two rows in a matrix.

• Row scalar multiplication: Multiply the row of a matrix by a non-zero scalar.

• Row addition: Add a multiple of a row to another row.

These operations can be made left-multiplicating by some elementary matrices.
We can define elementary column transformations analogously, and they are obtained right-multiplicating

by the same elementary matrices. However, column transformations will surely affect the matroid be-
cause we are altering the positions and labels of the ground set elements.

If A′ is a matrix obtained from A using elementary row operations thenM(A) = M(A′). If we are
allowed to relabel the elements of the ground set, then the same is true using column swaps.

Let A be a matrix of size r× n and rank r. Without loss of generality let us assume that A = [Ir,r|D]
for some matrixD of dimensions r×n−r. We can assume this because from linear algebra we know that
A can be converted into a matrix of this form using elementary row operation and column permutations.
We also know that elementary transformations do not change the resulting matroid. We define A∗ as
A∗ = [−DT

|I(n−r)×(n−r)]. Then, one checks thatM(A)∗ =M(A∗).
If e is not an isthmus thenM(A)∖e = M(A∖e), where A∖e is the result of deleting column e from

matrix A.
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In order to getM(A)∕e first let us transformA using elementary transformations in order to have just
one value different from zero in the column represented by e. If the position of this value is i, j then by
deleting the row i and the column j we get A∕e. One checksM(A)∕e =M(A∕e).

The direct sum of two representable matroidsM(A)⊕M(B) isM(A⊕B)where A⊕B =
⎛

⎜

⎜

⎜

⎝

A 0

0 B

⎞

⎟

⎟

⎟

⎠

.

Example 4. All transversal matroids are representable overR. Let us assume that the transversal matroid
has E = {e1,… , en} and  = {A1,… , Am}. The matrix A associated will have m rows and n columns
and ai,j will be 0 if ej ∉ Ai and xi,j if ej ∈ Ai where all xi,j are algebraically independent over R.

Example 5. Not all transversal matroids are representable over an arbitrary field F. For example U2,4
-recall from Example 3 that all uniform matroids are transversal- is not representable over F2. This is
because we would need to have at least four different non-zero vectors 2 × 1 and there are just three such
vectors: (1, 0), (0, 1) and (1, 1).

1.3 Geometric representation

To represent geometrically a matroid it helps to see many properties of this matroid. A geometric respre-
sentation of a matroid consists of dots (representing the ground set) in a space. The affine dependencies
between the dots in the geometrical representation define the independent sets of the matroid.

These are the rules to create the geometrical representation of a matroid:

• If k elements of the ground set form a circuit then they are represented by k different points in a
(k − 2)-dimensional space where any subset of k − 1 points are independent.

• If k elements of the ground set are an independent set then they are represented by k independent
points in a (k − 1)-dimensional space.

Small graphic matroids can be easily represented. Each edge (ground set element) is represented
by a dot. If two edges are a cycle (a circuit in the matroid) they are represented by two points in the
same place. If they form a tree -they are independent- they are represented by two points in a line. If
three edges form a circuit they are represented by three points in a line. If they form a tree -they are
independents- then they are represented by three points in a plane.
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It may be easier to understand the procedure with some examples:

Example 6. A simple example of a graphic matroid and its geometric representation. Since the three
edges of the triangle form a cycle, there will be three dots in a line.

(a) Graphic matroid.
(b) Geometric representation of the graphic matroid.

Example 7. An example of graphic matroid with parallel edges and its geometric representation. Each
pair of edges in parallel are represented by two dots in the same place.

(a) Graphic matroid.
(b) Geometric representation of the graphic matroid.

Example 8. An example of a graphic matroid with four vertices and its geometric representation. As
in Example 6, each triangle (cycle) is represented by three dots in a line. As they share an edge the two
lines have a common dot.

(a) Graphic matroid. (b) Geometric representation of the graphic matroid.

Example 9. An example of a graphic matroid with five edges forming a cycle. Since it has five edges
forming a cycle the dots are in a 3-dimensional space.

(a) Graphic matroid.
(b) Geometric representation of the graphic matroid.
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Chapter 2

Positroids

Now we will study in more depth a class of representable matroids called positroids. We will focus on
their fundamental properties and interesting objects with which we can find bijections.

Definition 21. Let A be a k × n matrix over R with rank k and all its maximal minors nonnegative. We
call such matrix A a totally nonnegative matrix. A positroid is a representable matroid M(A) over R
with A being a totally nonnegative matrix.

In a representable matroidM(A) where A is a k × n matrix, we will denote the determinant of the
matrix formed by columns {i1,… , ik} of A as ∆i1,…,ik .

In a positroid, as in any representable matroid, its independent sets are the subsets of linearly inde-
pendent columns. The circuits are the minimal linearly dependent subsets and the rank is the rank of the
matrix. Since the direct sum works as in the representable matroids, it is easy to check that the direct
sum of two positroids is also a positroid.

In this chapter the ground set of a positroid will be identified same as before we can label the columns
from 1 to n.

It is worth noting the importance of the ordering of the ground set. Reordering the elements of the
ground set is equivalent to permuting columns in the matrix, and that may change signs in determinants.

Example 10. LetM be the matroid with ground set E = {1, 2, 3, 4} and independent sets {1, 2}, {3, 4},
{1, 4} and {2, 3}. The matrix A defined below yields this matroid, thusM = M(A) is a representable
matroid, but A is not totally nonnegative, and in fact one cannot find a totally nonnegative matrix that
yieldsM . Therefore,M is a representable matroid but not a positroid.
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A =

⎛

⎜

⎜

⎜

⎝

1 0 1 0

0 1 0 1

⎞

⎟

⎟

⎟

⎠

.
However, if we swap elements 2 and 3 in the ground set the resulting matroid does have a totally

nonnegative representation. After this operation the independent sets are {1, 3}, {2, 4}, {1, 4} and {2, 3},
and it is not hard to check that the permuted matrix B is totally nonnegative.

B =

⎛

⎜

⎜

⎜

⎝

1 1 0 0

0 0 1 1

⎞

⎟

⎟

⎟

⎠

.

2.1 Bijections with positroids

In this section we will introduce several combinatorial objects that are in bijection with positroids, all of
them defined as Postnikov did in [13].

These objects, defined in 2.1.1, are Grassmann necklaces, ⅃-Diagrams, ⅃-Graphs and decorated per-
mutations. We will see how we can define a Grassmann necklace from any matroid, in particular from a
positroid. We will show a bijection between Grassmann necklaces and decorated permutations, construct
the ⅃-Diagram1 and the ⅃-Graph associated to a Grassmann necklace. We will see how to get a totally
nonnegative matrix from a ⅃-Graph to close the circle.

2.1.1 Definitions

Definition 22. (See [13], Definition 16.1) A Grassmann necklace is a sequence  = (G1,… , Gn) of
subsets Gr ⊆ [n] such that ||G1|| =⋯ = |

|

Gn|| and:

• If i ∈ Gi then Gi+1 =
(

Gi∖{i}
)

∪ {j} for some j ∈ [n].

• If i ∉ Gi then Gi+1 = Gi.

The indices are taken modulo n.
1the ⅃ symbol is pronounced as "Le"
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Observation 2. Notice that if i ∈ Gi it may also happen Gi+1 = Gi as Gi+1 can be (Gi∖{i}) ∪ {i}.

Example 11. Before we show howwe obtain a Grassmann necklace from amatroid and study the relation
between positroids and these objects let us show an example of a Grassmann necklace to help the reader
get familiar with them.

G1 = {1, 3, 5} = G6∖{6} ∪ {5}

1 ∈ G1 → G2 = {2, 3, 5} = G1∖{1} ∪ {2}

2 ∈ G2 → G3 = {3, 4, 5} = G2∖{2} ∪ {4}

3 ∈ G3 → G4 = {4, 5, 6} = G3∖{3} ∪ {6}

4 ∈ G4 → G5 = {5, 6, 1} = G4∖{4} ∪ {1}

5 ∈ G5 → G6 = {6, 1, 3} = G5∖{5} ∪ {3}

Definition 23. In the set {1,… , n} we define the order a <a to be the order a <a a + 1 <a ⋯ <a n <a

1 <a ⋯ <a a − 1. We usually refer to the ground set as the ordered set E = {1,… , n} with the natural
order <1.

Definition 24. ([13], Definition 13.3) A decorated permutation �∶ = (�, col) is a permutation � ∈ Sn

together with a coloring function col from the set of fixed points {i|�(i) = i} to {1,−1}.
We can think of a decorated permutation as a permutation where fixed points are colored with two

different colors.

Now we will see a bijection between decorated permutations and Grassmann necklaces. In the next
sections we will see a bijection between Grassmann necklaces and positroids. As a result of this we will
have a bijection between decorated permutations and positroids.

First we will see how to obtain a decorated permutation �∶ = (�, col) from a Grassmann necklace
 = (G1,… , Gn). An intuitive idea would be to set �(i) = j when Gi+1 = (Gi∖{i}) ∪ {j}). We still have
to deal with the coloration for fixed points, and we do this following these rules (see [11], Definition 15):

• If Gi+1 = (Gi∖{i}) ∪ {j}) and i ≠ j then �(i) = j.

• If Gi+1 = Gi and i ∉ Gi then �(i) = i and col(i) = 1.

• If Gi+1 = Gi and i ∈ Gi then �(i) = i and col(i) = −1.
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To obtain a Grassmann necklace from a decorated permutation we construct the following sets for
i ∈ [n]:

Gi = {j ∈ [n]|j <i �−1(j) or (�(j) = j and col(j) = −1)}.

It is not hard to check that this is indeed a Grassmann necklace.

Example 12. For the Grassmann necklace in Example 11 the corresponding decorated permutation �∶
is � = 246135. Note that no coloration function is needed since there are no fixed points.

Definition 25. A Young diagram is a finite collection of cells arranged in left-justified rows. The number
of cells in each row is not greater than in the row above. Listing the number of cells in each rowwe obtain
a partition � of the total number of cells of the diagram.

Definition 26. Given n, m, k ∈ N with n = m+ k and a partition � that fits inside the rectangle (n− k)k,
the boundary path is the set of exterior edges of the corresponding Young diagram of � from the top
right corner to the down left corner.

In other words, the boundary path are the East and South external edges of the Young Diagram. Label
these edges 1,… , n from the top right to the bottom left corner. We define I(�) as the set of labels of the
vertical edges.

Indices of the cells: The index for a cell is (i, j) where i is the label of the exterior vertical edge in
the cell’s row and j is the label of the horizontal exterior edge in the cell’s column.

Example 13. Let � be {5, 4, 3, 3, 2}. Let us construct the Young diagram associated to � and label it to
find I(�). See the result in Figure 2.1 below.

(a) Young diagram associated to �. (b) Young diagram labelled. Here, I(�) = {1, 3, 5, 6, 8}.

Figure 2.1: Labelling of � = {5, 4, 3, 3, 2}.
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Definition 27. A ⅃-Diagram ("Le-Diagram") of shape � is a Young diagram of shape � where each box
is either empty or filled with a cross (+) following the rule which we will reference as the ⅃-Diagram
rule, ⅃-Diagram property or simply ⅃-property ([11], Definition 10).

⅃-property: For any three cells indexed (i, j), (i′, j), (i, j′)where i′ < i and j′ > j, if cells on positions
(i′, j) and (i, j′) are filled, then the cell on (i, j) is also filled.

In other words, the ⅃-property says that a cell must be filled if both these conditions hold:

• It has a filled cell to the left in the same row

• It has a filled cell above in the same column.

Definition 28. (See [13], 6.3) The ⅃-Graph corresponding to a ⅃-Diagram is the directed graph obtained
following these rules:

• Each filled box is a vertex.

• Also, put a vertex in the middle of each step of the boundary path.

• From each filled box draw an edge going down and another one going right until they reach a vertex
of the boundary.

• All horizontal edges are oriented to the left and vertical ones downwards.

Example 14. Construction of the ⅃-graph associated to a ⅃-diagram.

(a) ⅃-Diagram. (b) ⅃-Graph.

Figure 2.2: Example of ⅃-diagram and its corresponding ⅃-graph.

Definition 29. A strictly northwest cell of (i, j) is any cell (k, l) such that i < k and j > l.

Definition 30. A weakly northwest cell of (i, j) is any cell (k, l) such that i ≤ k and j ≥ l.
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Observation 3. Let c be a cell in a ⅃-Diagram. It is clear by the ⅃-property, that if c has some strictly
northwest + cell then the nearest strictly northwest + cell is unique. In this case, we will call this cell
the cover of c.

This property is true for weakly northwest + cells as well, but now the nearest weakly northwest cell
of c could be c itself. We will call this cell the weak cover of c.

2.1.2 From a matroid to a Grassmann necklace

Given a matroidM = ([n],) let Gj be the the lexicographically minimal basis ofM with respect to the
order <j in [n] and (M) ∶= (G1, G2, ..., Gn).

Proposition 1. ([13], Lemma 16.3) For a matroidM = ([n],) , the sequence (M) is a Grassmann

necklace.

Note that if i ∉ Gi then Gi = Gi+1 because Gi will be the minimal basis in the order <i+1 as well.
If i ∈ Gi and using the properties of a basis (B.3 has an important role) it can be seen that Gi+1 =
(Gi∖{i}) ∪ {j} and so it is indeed a Grassmann necklace.

Example 15. Given the representable matroidM(A) with ground set E = [4] and

A =

⎛

⎜

⎜

⎜

⎝

1 3 2 0

0 0 1 2

⎞

⎟

⎟

⎟

⎠

The Grassmann necklace (M) is (G1, G2, G3, G4) with G1 = {1, 3}, G2 = {2, 3}, G3 = {3, 4}, G4 =
{4, 1}.

Since a positroid is a matroid as well, its Grassmann necklace can be obtained in the same way. From
now on we will focus again on positroids and the objects they are in bijection with, but it is worth noting
that we can obtain a Grassmann necklace from any matroid.

Theorem 1. ([2], Theorem 4.3) Let G = (G1, G2,… , Gn) be a Grassmann necklace with |Gi| = d,

Gi ⊆ [n]. Then

(G) ∶=
{

B ∈
(

[n]
d

)

|

|

|

|

|

B ≥j Gj for all j ∈ [n]
}

is the collection of bases of a rank d positroid(G) ∶= ([n],(G)).
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Moreover, for any positroid M we have

((M)) =M.

We will see an interesting application of this theorem in 3.1.4.

2.1.3 From a ⅃-Diagram to a Grassmann necklace and back

We will now explain Suho Oh’s algorithm to get a Grassmann necklace from a ⅃-diagram, which is
described in [1].

• LetG1 be I(�). Remember from Definition 26 this is the set of labels of the boundary path vertical
edges.

• Make a path of cells from the top right to the bottom left cells following the boundary path and
labelling them from 2 to n (see Figure 2.3).

• For each cell i labelled this way make a sequence following the next rules:

– Start in the nearest weakly Northwest cell filled from i (which could be i itself).

– Go to the nearest strictly Northwest cell filled and repeat this step until there are no more
strictly Northwest cells filled.

• Let Gi = (G1∖{rows involved in the path}) ∪ {columns involved in the path}

Observation 4. Since G1 = I(�) is the set of rows, notice that Gi = {rows not used in the sequence} ∪
{columns used in the sequence}.

Observation 5. We stated that the cardinality of all sets in a Grassmann necklace must be the same. We
still have to prove that the sets obtained by this algorithm are a Grassmann necklace, but for now notice
that for these sets the cardinal property holds: |Gi| = |Gj| for all i, j ∈ {1,… , n}.

This happens because the steps are taken to the nearest strictly Northwest filled cell, so for each step
of the sequence we remove one element from G1 (the row we are now using) and we add one element
(the column we are now using). Therefore, no matter how many steps the sequence has, the cardinality
will always be |G1|.
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Example 16. Let us find the Grassmann necklace associated to the ⅃-Diagram in Example 14. First we
label the boundary path of the diagram and make the path of cells following this boundary path to label
the boundary cells.

Figure 2.3: ⅃-Diagram from Example 14 with boundary path labels and boundary cells labels.

We can see in Figure 2.3 that the labels of the boundary path vertical edges (the labels of the rows)
are I(�) = {1, 2, 5, 7}.

We define G1 = I(�) = {1, 2, 5, 7}.
Now for G2 we look at 2. Since there is a + sign in this cell, it is its own weak cover, so we start the

sequence at 2. In fact, we end the sequence there as well, because there are no + cells strictly NW of 2
so we have

Rows involved in this sequence = {1}.

Columns involved in this sequence = {3}.

Then G2 = (G1∖{1}) ∪ {3} = {2, 3, 5, 7}.
For G3 we look at 3. Again, since this cell is filled we start the sequence at this same cell.
Next step is the cell (1, 6) because it is the cover of 3. The sequence ends there, so this time:

Rows involved in this sequence = {1, 2}.

Columns involved in this sequence = {3, 6}.

therefore G3 = (G1∖{1, 2}) ∪ {3, 6} = {3, 5, 6, 7}. Using the same procedure for 4,… , n we get

G4 = {1, 5, 6, 7} G5 = {1, 5, 6, 7} G6 = {1, 5, 6, 7} G7 = {1, 5, 7, 8} G8 = {1, 2, 5, 8}
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It is left for the reader to check that this sets define a Grassmann necklace. The general case will be stated
and proved in Theorem 2.

Now we will prove that the set {G1,… , Gn} is indeed a Grassmann necklace. This is stated without
proof in [1], and in the original paper [11] the algorithm is defined implicitly inside a proof. Thus, we
believe it is worth proving this result here so that the reader can follow it with the tools we have at this
time. However, in order for the proof not to use any deeper results on matroid theory, it is not short and
uses similar arguments several times. Let us start with a proposition that will be used in the proof.

Proposition 2. Given a ⅃-Diagram, let +u and +d be two + cells in the same column without any +

cell between them. Let +u be above +d and consider the NW sequences starting in these cells, su and sd

respectively.

Then one of the following holds:

(a) The sequences differ by two rows and no columns.

More concretely, sd involves all rows in su except for one, and su involves all rows in sd except for

one (the row of +d).

(b) The sequences differ by one row and one column.

More concretely, sd involves all rows in su and one more (the row of +d), and involves all columns

in su and one more.

Proof. Case 1: There are no + cells strictly NW of +u.
In this case and if there is not a + cell strictly NW of +d , then both sequences are trivial and differ

by two rows and no columns, and thus a) holds.
If there is one + cell strictly NW of +d , by the ⅃-property it must be in the same row as +u. If there

is a cover of +u call it +∗u .
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Hence, we are in the following configuration:

Figure 2.4: Case 1 configuration.

Therefore, since +u has no strictly NW + cells, the +d sequence ends after only one step. In this
case, clearly b) holds.

Case 2: There is a + cell strictly NW of +u.
First note that in this case there is a (unique) cover of +u. Call it +∗u .
Since +∗u is strictly NW of +d as well, we know that there is a unique cover of +d , let it be +∗d . Now

there are two different options for +∗d : either it is also +∗u , or it is in the same row as +u. Otherwise, as
before, there would be a + cell between +u and +d .

If +∗d is the same +∗u , then the sequences are exactly the same from that cell on, and so the full
sequences differ only in two rows and in no columns. Therefore a) holds.

Suppose then that +∗d is in the same row as +u. Note that its column must be between the +∗u column
(included) and +u column (not included), because of the ⅃-property. This can be seen in Figure 2.5a,
where the grey zone represents the only possible cells for +∗d assuming it is not +∗u .

Then if +∗d is not in the same column as +∗u , the next step from +∗d will be +∗u and the sequences will
be identical from this cell on (see Figure 2.5b). In this case, the sequence starting at +d involves a new
row (row of +d) and a new column (column of +∗d), and so b) holds.
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(a) Only possible places for u∗d other than +∗u . (b) If +∗u and +∗d are not in the same column.

Figure 2.5

But in the only case left, in which the cover +d is in the same row as +u and in the same column as
+∗u (see Figure 2.6), then the configuration between +∗u and +∗d is the same as the one we had between +u
and +d , but we are strictly closer to the NW edge of the ⅃-Diagram. Repeating the process we could end
in this situation once again for the nearest cells of+∗u and+∗d , but since the ⅃-Diagram is finite, we cannot
have this situation an infinite number of times: we will eventually come to Case 1 or another situation of
Case 2 that we have already solved. Therefore, the proof is complete.

Figure 2.6: +∗d and +∗u in the same configuration as +d and +u.

Theorem 2. The sets obtained with Suho Oh’s algorithm are indeed a Grassmann necklace.

Proof. First of all, recall from Observation 4 that we can think of Gi for i > 1 as

Gi = {rows not involved in the sequence starting from i}∪{columns involved in the sequence starting
from i}

We will study two types of boundary cells differently: cells i such that i + 1 is in the same row and
cells i such that i + 1 is in the same column. Examples can be seen in Figures 2.7 and 2.8 below.
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(a) First type.
(b) Second type.

Figure 2.7: Examples of both types of cells.

Figure 2.8: White boundary cells: First type. Grey boundary cells: Second type.

First type: i and i + 1 in the same row.
Note that in this kind of cells, the boundary edge number i corresponds to the column where i stands.

In other words, i is right above i.
We have to check the Grassmann necklace condition in both possibilities, if i ∈ Gi and if i ∉ Gi.

• i ∈ Gi. It is obvious that i ∉ Gi+1 because starting from i + 1 we would have to go East to get to
the i column. It remains to see that we can create Gi+1 adding only one element in [n].

Since i represents a column, i ∈ Gi means that the column i is involved in the sequence starting
from i. The only possible step of the sequence that involves i is the first one, therefore the nearest
weakly NW + cell of i is in the same column i. Call this cell +∗i . Note that rows between the row
of i and the row of +∗i must be all zeroes by the ⅃-property. Figure 2.9a represents this situation.

Therefore, the weak cover of i + 1 (which we will call +∗i+1) must be in the row of +∗i or above,
since all others are filled with zeroes.

In particular, if +∗i+1 is not in the same row as +∗i then it must be the nearest strictly NW + cell of
+∗i . This configuration can be seen in Figure 2.9b. In this case sequences are identical from this
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step on, and the only thing that changed in the i + 1 sequence is that it does not involve column
i anymore (which we had already stated) and it does not involve the row of +∗i , because it jumps
directly to its cover. Then Gi+1 = (Gi∖{i})∪{row of +∗i }.

(a) Rows between i and +∗i all zeroes. (b) When +∗i+1 and +i are not in the same row.

Figure 2.9

Assume now that +∗i+1 and +∗i are in the same row. Call +∗∗i the cover of +∗i . Note that if +∗∗i
is not in the same column as +∗i+1 then +∗∗i is the cover +∗i+1. In this case, which we can see in
Figure 2.10a below, the sequences are identical from this step on, and Gi+1 = (Gi∖{i})∪{column
of +∗i+1}.

The remaining case is +∗i+1 being in the same row as +∗i and in the same column as +∗∗i , as shown
in Figure 2.10b below.

(a) +∗∗i and +∗i+1 not in the same column. (b) +∗i+1 and +∗∗i in the same column.

Figure 2.10: When +∗i+1 and +i are in the same row.

In this case, +∗∗i and +∗i+1 are in the same configuration as +u and +d in Proposition 2, so we
can state that the sequences starting from this points differ in the row of +∗i+1 and another row or
column.
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If we consider the original sequences starting at i and i + 1, the row of +∗i+1 is involved in both and
the rows and columns involved in the sequence from i + 1 are the same as the ones from i except
it does not contain the column i anymore and it now contains a new column (if b) holds) or lacks
a row (if a) holds), thus Gi+1 = (Gi∖{i}) ∪ {j} for some j in [n].

• i ∉ Gi. In this case, the column i is not involved in the sequence starting from i. That means that
the weak cover of i is also a weak cover of i + 1. Therefore, the sequences are exactly the same,
and thus Gi+1 = Gi.

Second type. i and i + 1 in the same column.
Note that in this kind of cells the configuration is different. Instead of having the boundary edge

labelled i under i in a horizontal edge, we now have the label i in the row below as a vertical edge,
meaning that it represents a row in the diagram. See Figure 2.11 for an example.

Figure 2.11: Example of label in second type of cells.

This time we do not need to check both possibilities of the Grassmann necklace because only one
situation is possible. Since i labels the row below the cell i, it cannot be involved in a NW sequence
starting from i, because it is south of i. Therefore, in this type of cells we will always have i ∈ Gi.

Let +∗i and +∗i+1 be, again, the weak covers of i and i + 1, respectively.
First we consider the case in which +∗i is not in the same column as i. Note that the weakly NW

cells of i are the weakly NW cells of i + 1 except for the row of i + 1. Therefore, either +∗i+1 = +∗i or
+∗i+1 is in the same row as i + 1, the row i.

If +∗i+1 = +∗i , then both sequences are identical and so, again, Gi+1 = (Gi∖{i}) ∪ {i}.
If +∗i+1 is in the same row of i + 1, the row label i, then it has to be in some column between the

column of +∗i and the column of i + 1, both included, as shown in Figure 2.12.
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If +∗i+1 is not in the same column as +∗i then the next step from +∗i+1 is +∗i and sequences coincide
from this cell on. Therefore we have

Gi+1 = (Gi∖{i}) ∪ {the column of +∗i+1}

If, instead, +∗i+1 is in the same column as +∗i (see Figure 2.13) we have, once again, the same com-
position as in Proposition 2.

Figure 2.12: Possible locations for +∗i+1.
Figure 2.13: Configuration between +∗i+1 and +∗i as
required in Proposition 2.

So, using the Proposition:

• If the property that holds is a), then

Gi+1 = (Gi∖{i}) ∪ {the row in su that is not in sd}.

• If the property that holds is b), then

Gi+1 = (Gi∖{i}) ∪ {the column that is in sd and not in su}.

Now we consider the case in which +∗i is in the same column as i (and i + 1). In this case, and by
the ⅃-property, either +∗i+1 is +∗i or +∗i+1 is i + 1 itself.

If +∗i+1 = +∗i then the sequences are identical and thus Gi+1 = Gi = (Gi∖{i}) ∪ {i}
On the other hand, if +∗i+1 = i + 1 then, as we can see in Figure 2.14, we have the configuration

required in the Proposition 2.
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Figure 2.14: Configuration between +∗i+1 and +∗i as required in Proposition 2.

Now,

• If the property that holds is a), then

Gi+1 = (Gi∖{i}) ∪ {the row in su that is not in sd}.

• If the property that holds is b), then

Gi+1 = (Gi∖{i}) ∪ {the column that is in sd and not in su}.

Now we have a way to obtain a Grassmann necklace from a ⅃-Diagram, and we would like to have a
way back as well.

We will show Agarwala and Freyer’s algorithm from [1] to get the ⅃-diagram from a Grassmann
necklace. The idea is to recover the sequences made in the previous algorithm by doing G1∖Gi to obtain
the rows used andGi∖G1 to obtain the columns used. The two subsets created this way have to be ordered
one increasingly and one decreasingly because when the path is made in each step the row is smaller and
the column greater than in the previous step. With this intuitive ideas in mind it is easy to see that the
following algorithm is the inverse of Suho Oh’s, for a detailed proof see [1].

The algorithm is the following:

• From G1 we get the partition �

• For each i, 2 ≤ i ≤ n ∶

– Write G1∖Gi = {a1 > a2⋯ > an} and Gi∖G1 = {b1 < b2⋯ < bn}.
– Fill the cells indexed by (a1, b1),… , (an, bn).

• The cells that are not filled are left empty.
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2.1.4 From a ⅃-Diagram to a positroid

To close the circle we would like to find a way to obtain a positroid from a ⅃-Diagram. We need to create
then a totally nonnegative matrix which we will call A.

We will show Postnikov’s construction which can be found in ([13], Section 4). Although we use the
strictly necessary notions for our purpose, the reader can find in [13] more general notions and definitions
as well.

We will actually get A from a ⅃-Graph, which we can easily obtain from a ⅃-Diagram as explained
in Definition 28 and shown in Example 14. In order to work with these objects we need to define some
concepts.

Let G be a ⅃-Graph associated to a ⅃-Diagram with partition � that fits in a k × (n − k) rectangle.
Remember each edge of the boundary path in the ⅃-Diagram has a vertex in the ⅃-Graph. Since these
edges are labelled (recall Example 13) we have a labelling for the exterior vertices of the ⅃-Graph as
well. Among these vertices we have two types: sources and sinks.

Definition 31. In this situation, the source set is I = I(�) ⊆ [n] (the set of exterior vertices corresponding
to a vertical edge). The sink set is I = [n]∖I (the set of vertices corresponding to a horizontal edge).

Note this definition is the natural definition of source and sink for a directed graph: a source is a
vertex with no incoming edges and a sink is a vertex with no outgoing edges.

Since the diagram fits in a k × (n − k) rectangle it would make sense to search a suitable matrix
with these same dimensions. Instead we will construct a k × n matrix, but indeed there will be k special
columns. We label the rows of this matrix by the labels of I and the columns of the matrix by the natural
labelling 1,… , n.

Example 17. Figure 2.15 shows the labelling of the exterior vertices for the ⅃-Graph constructed in
Example 14. In this case, the source set is I = {1, 2, 5, 7} and the sink set is I = {3, 4, 6, 8}.

Therefore, A will be a matrix with 4 rows labelled 1, 2, 5, 7 and 8 columns labelled from 1 to 8.
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Figure 2.15: ⅃-Graph with labelled exterior vertices.

It only remains to fill this matrix. We do this following these rules ([13], Definition 4.6):

• Taking only the columns of A corresponding to the labels of the source set I , we must get the
identity k × k matrix. Therefore, for i, j ∈ I we define

aij =

⎧

⎪

⎨

⎪

⎩

1 if i = j,

0 if i ≠ j.

• For i ∈ I , j ∈ I , let pij be the number of different directed paths from the source i to the sink
j. This number is of course nonnegative, and it is finite as well because there are no loops in a
⅃-Graph. We define aij = (−1)spij where s is the number of sources strictly between the source i
and the sink j.

These sign choices may look strange at first sight. Again, they are taken in order to fix determinants
after column operations. Although we will not prove that this matrix is totally nonnegative, let us prove
a particular case of maximal minor to get some intuition about this sign change. We will check that a
maximal minor in which k − 1 columns are sources is nonnegative.

Proposition 3. Let A be a matrix constructed from a ⅃-Diagram following the rules above, and let I

be the source set and I the sink set. Then, for any j ∈ I we have ∆(I∖{i})∪{j}(A) = pij . In particular,

∆(I∖{i})∪{j}(A) ≥ 0.

Proof. Note that k − 1 columns of the determinant are identity matrix columns and they are ordered as
in the identity matrix. However, identity column i is missing and instead we have column j, which is not
necessarily in the i-th position. If we swap column j with its adjacent column until we place it on the
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i-th position we need exactly s swaps, where s is the number of sources strictly between the source i and
the sink j.

Therefore, the new determinant will be (−1)s times the original one. But once we have the j column
in the i-th position we can use minor expansion for all the identity columns and, since the 1’s will be in
the diagonal there will be no more sign changes. Therefore, ∆(I∖{i})∪{j}(A) = (−1)2spij = pij .

Example 18. (continuation of Examples 14 and 16). The matrix A obtained by this algorithm from the
⅃-Graph is

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 3 4 5 6 7 8

1 1 0 −1 0 0 2 0 −2

2 0 1 1 0 0 −1 0 1

5 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
Note that looking only at the columns of I = {1, 2, 5, 7}, AI is the identity matrix.
It is clear that some properties of the ⅃-Graph are reflected in this matrix. For example, since the

source 5 is not connected to any vertex, p5j = 0 for all j ∈ I because we cannot go to any sink starting
from 5. Therefore, all entries in row 5 are zero except for a5,5 = 1.

In a similar way, since the sink 4 is not connected to any other vertex then the column 4 is filled with
zeroes because pi4 = 0 for all i ∈ I .

It is easy to check with a simple code that this matrix is indeed totally nonnegative and thus it defines
a positroid.

The fact that this algorithm produces a totally nonnegative matrix is proved in ([13], Theorem 4.8),
the main idea is to study how do determinants change under arbitrary permutations of the columns that
are not the identity matrix columns.
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2.2 Operations over positroids

In this section we will see that positroids are closed under the following operations:

• Cyclic shifts of the ground set.

• Duality.

• Contraction.

• Deletion.

2.2.1 Cyclic shifts of the ground set

LetM =M(A) be a positroid with A being a k × n totally nonnegative matrix.
Recall that being representable is a property that does no depend of the labelling of the ground set,

since permuting columns in a matrix yields isomorphic matroids.
However, we need to be careful working with positroids. The restriction of A being totally nonnega-

tive involves determinants, which change signs with column swaps. Therefore, in general positroids are
not closed under permutations of the ground set. We will now study a particular kind of permutation that
preserves the positroid condition: cyclic shifts.

Definition 32. Given a, b ∈ [n] the cyclic interval is

• [a, b] = {a, a + 1,… , b} if a ≤ b.

• [a, b] = {a, a + 1,… , n, 1,… , b} if a > b.

For d ∈ [n], the cyclic shift of the (ordered) ground setE = {1,… , n} isE′ = {d, d+1,… , n, 1,… , d−

1}, which can be seen as E ordered with <d .

Proposition 4. ([2], Lemma 3.3) If M is a positroid on E = {1,… , n} then M is also a positroid on

E′ = {d, d + 1,… , n, 1,… , d − 1}.

Proof. Consider the simplest cyclic shift. Let d = 2 and E′ = {2, 3,… , n, 1}. Note that any cyclic shift
is a composition of this cyclic shift. Therefore, we will only prove the proposition for this case and the
general case will follow.
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Let A be a totally nonnegative k × n matrix such thatM = M(A), and let v1,… , vn be its column
vectors. That means A = (v1,… , vn) with vi ∈ Rk.

We want to find a suitable A′ such thatM(A′) is also a positroid (in this caseM(A′) =M because
the independent sets will be the same). Intuition leads us to think that we should do something similar to
a cyclic shift on the matrix columns, maybe (v2, v3,… , vn, v1). This is nearly correct, although a detail
is missing. Since we are working with determinants, we need to be careful with the column swaps, as
they will change their sign. To obtain (v2, v3,… , vn, v1) from (v1,… , vn) we used exactly n − 1 swaps,
therefore we consider A′ = (v2,… , vn, (−1)k−1v1). It is clear now using basic linear algebra that we
have found the matrix we were looking for: for any subset I ⊆ E and its cyclic shift I ′ ⊆ E′ we have
∆I (A) = ∆I ′(A′).

2.2.2 Duality

Proposition 5. IfM is a positroid on [n], thenM∗ is also a positroid.

Proof. This proof follows the one on the paper [2] but with a little more detail. First we consider A to be
a full rank totally nonnegative matrix d × n andM =M(A) the corresponding positroid. We can reduce
the matrix to row-echelon form by multiplying rows by constants, adding different rows and multiplying
rows by −1 when necessary. Thus, we can assume without loss of generality that A is in row-echelon
form.

Then A has the identity matrix in columns i1,… , id where i1 < ⋯ < id . We will label the rows
by i1,… , id from top to bottom. This way each row will be named by the place where it has a 1 of a
column that forms the identity. The columns will be labelled from 1 to n. We call J ∶= {i1,… , id} and
J c ∶= [n] − {i1,… , id}. Note that |J c| = n − d.

Let us construct A′ = (a′ij) such thatM(A′) =M∗. The matrix A′ will be a (n− d) × nmatrix. First
we label the rows with the elements of J c and place the identity in the columns J c .

In order for the dual to be a positroid, given an arbitrary subset I ⊂ [n] with n− d elements we need
to check that ∆I (A′) ≥ 0. To do this we will see that this maximal minor can be calculated as a maximal
minor from A, and the proof will be complete because A is a positroid. Specifically we will see that
∆I (A) = ∆Ic (A′).
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Some of the entries of A are fixed. Those corresponding to columns J are identity matrix columns.
The others, instead of calling them aij , for convenience wewill name them (−1)saij where s is the number
of elements in J strictly between i and j.

We will find suitable signs so that a′ij = ±aji makes ∆I (A) = ∆Ic (A′) true.
Let us try to calculate ∆I (A). Note that for any i ∈ I either i ∈ I ∩ J or i ∈ I ∩ J c . Columns

I ∩ J in AI are identity matrix columns and we can use minor expansion to reduce the determinant by
the cofactors 1’s. The resulting determinant may be multiplied by a −1 but it will have the remaining
columns (I ∩ J c) without the rows I ∩ J .

Now for ∆Ic (A′) the same reasoning tells us that, with maybe a −1, the determinant comes down to
columns Ic∩J without the rows Ic∩J c . These columns that remain, Ic∩J , are rows inA and, in fact, they
are the rows that remain in ∆I (A) after this procedure. In the same way, rows that remained calculating
∆Ic (A′) are the columns that remained in ∆I (A). Therefore our definition of A′ being a′ij = ±aji makes
sense, and it would remain to see which sign should we choose to make it work.

This sign choice is exactly the same we made in 2.1.4 with sources and sinks in a ⅃-Graph. For
i ∈ J c (sources) and j ∈ J (sinks) let s′ be the number of elements of J c strictly between i and j. We
define now a′ij ∶= (−1)s′aji. The reasoning behind this sign choice is similar to the one in 2.1.4: s is
the number of column swaps we need in the determinant in order to place the identity columns in their
respective natural positions, where the expansion does not change the sign.

Example 19. Let M = M(A) be a positroid with n = 6, k = 3 and J = {2, 4, 5}. Writing A in
row-echelon form with the signs as we defined in the proof we get:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 3 4 5 6

2 0 1 a2,3 0 0 a2,6

4 0 0 0 1 0 −a4,6

5 0 0 0 0 1 a5,6

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. Values that do not have a name are fixed because of the row-echelon form conditions. For the ones that
can take different values, let us check the sign we assign to them: for a2,3 there are no elements from J

strictly between 2 and 3 so the sign will be (−1)0 = 1, for a2,6 there are two elements (2 and 4) so the
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sign is (−1)2 = 1, for a4,6 there is just one (5) so (−1)1 = −1 and for a5,6 again (−1)0 = 1.
Now we construct A′ = (a′ij). Since |J | = 3, n = 6, A′ will have 6 − 3 = 3 rows. The labels for

the rows will be J c = {1, 3, 6} and the columns 1, 3 and 6 will be the identity matrix. Finally, the other
entries are a′ij ∶= (−1)s′aji, where s′ is the numbers of elements in {i + 1,… , j − 1} ∩ J c . This creates
the following matrix

A′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 3 4 5 6

1 1 0 0 0 0 0

3 0 a2,3 1 0 0 0

6 0 −a2,6 0 a4,6 a5,6 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
Signs for this entries can be checked as above but considering the set J c instead of J .

2.2.3 Contraction and deletion

Lemma 1. IfM is a positroid on [n], thenM∕{1} is also a positroid.

Proof. GivenM =M(A) positroid we can assume A is a k× nmatrix of rank k in reduced row-echelon
form. As the matrix is in row echelon form to contract {1} works the same way that works in general for
representable matroids. If {1} is dependent it implies it is a null vector and thenM∕{1} is the positroid
that arises from the matrix A without its first column. If {1} is independent M∕{1} = M(A′) is the
positroid that arises from the matrix A without its first row and column. Observe that as A is in row-
echelon form {1} is e1 ∈ Rk and that any maximal minor of A′ has the same value than the maximal
minor of A in the same columns plus the column {1}.

Proposition 6. Given a subset S = {s1,… , sj} ⊆ [n], ifM is a positroid thenM∕S is also a positroid.

Proof. Note that if we have two subsetsS1, S2 ⊆ [n]whereS1∩S2 = ∅ thenM∕(S1∪S2) = (M∕S1)∕S2

soM∕S = ((M(s1)∕s2)∕… )∕sj and it is enought to prove thatM∕S is a positroid for S = {si}. As we
already have proved that positroids are closed under cyclic shifts we can assume {si} = {1}. Now using
the previous lemma we are done.

As positroids are closed under duality and contraction they are also closed under deletion.

37



2.2.4 Operations in terms of decorated permutations

Now that we know that positroids are closed under these operations and that positroids are in bijection
with decorated permutations and Grassmann necklaces, a natural question arises. What relations are
there between the decorated permutations and the Grassmann necklaces from the positroid before and
after these operations? In other words, how do cyclic shifts, duality, contraction and deletion operate
over decorated permutation and Grassmann necklaces?

In papers [10] and [9] SuhoOh studies matroid operations via decorated permutations andGrassmann
necklaces and obtains the results we are looking for. Here we will only give the clues and the key results,
for further explanation the reader should go to the original papers.

For duality we have the following result:

Theorem 3. ([10], Corollary 13) Let M be a positroid indexed by �∶ = (�, col). Let M ′ be the dual

matroid ofM . ThenM ′ is indexed by (�−1,−col).

For contraction, first Oh ([9]) finds how the Grassmann necklace corresponding toM∕{j} looks like
with respect to the one corresponding to M , and then he studies the cases to determine the decorated
permutation obtained from that Grassmann necklace to avoid computing all the sets of the Grassmann
necklace in order to get to the permutation. In fact, instead of M∕{j} he actually uses M ′ = {I ∈

M|j ∈ I} (here the positroid is defined by its bases) and states that the decorated permutation of M ′

will be the same as the one fromM∕{j} except for the color of j. Let {K1,… , Kn} be the Grassmann
necklace associated toM ′. Oh identifies them in the following way:

Proposition 7. ([9], Proposition 7) If j ∈ Ga, we haveKa = Ga. If not, thenwe haveKa = (Ga∖{maxa(Ga∖Gj)})∪

{j}.

With this result the decorated permutation is determined as well, but with a deeper study on the
possibilities of the differences between Ka and Ka+1 he determines how does it look like.

Proposition 8. ([9], Theorem 8) Let M be a positroid indexed by �∶ = (�, col). Let M ′ be M∕{j}

for j ∈ [n] with decorated permutation �∶ = (�, col′). Then we can obtain �∶ directly from �∶ in the

following way:

If �(j) = j and col(j) = −1, then �∶ = (�, col′) where col′(j) = 1 and col′(i) = col(i) for all i ≠ j.
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If �(j) = j and col(j) = +1, then � = 123… n and col(i) = 1 for all i ∈ [n].

If �(j) ≠ j, then �∶ is obtained with the next algorithm.

1. Initial states: � ← �, col′ ← col, �(j)← j, col′(j) = 1, a ← j + 1 and q ← �(j).

2. While �(a) ≠ j do:

• If q = a or q <a+1 �(a) <a+1 j then

– Set �(a)← q and set q ← �(a).

– If �(a) = a then set col′(a) = 1.

• a← a + 1 (modulo n).

3. Set �(a)← q.

2.2.5 Minors of Positroids

We now know that positroids are closed under deletion and contraction, so if we have a matroid and by
doing these opeartions we get a different matroid wich is not a positroid we will know the original one
was not a poisitroid either.

Definition 33. A minor of a matroidM is another matroid obtained fromM by a series of deletion and
contraction operations.

Definition 34. Given a collection of matroids that are closed under contraction and deletion, a matroid
N is an excluded minor for ifN is not in but all its minors are.

Hence, a matroidM is in ifM does not contain any of the excluded minors of.

If a minor of a matroidM is not a positroid, then we knowM is neither. That leads to the concept
of excluded minors. An excluded minor of a positroid is any matroid that is not a positroid. Observe that
positroids can be characterized by excluded minors.

In ([10], Section 4) Suho Oh studies the excluded minors of positroids and concludes with the next
theorem.

Theorem 4. ([10], Theorem 16) Let  be {{12, 34, 13, 23, 14}, {12, 34, 14, 23, 24}, {12, 34, 14, 23}}.

These are the independent sets of matroids of rank 2 over E = {1, 2, 3, 4} that are not positroids.

Moreover, a matroid is a positroid if and only if it has no minors among .
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Chapter 3

Two families of positroids

In this chapter we are going to study the class of lattice path matroids and more briefly we are going to
introduce the class of series-parallel graphs.

3.1 Lattice path matroids

Lattice path matroids are an interesting family of positroids with a very intuitive geometrical interpreta-
tion that have been studied from different approaches (see [5] and [4]). They were first introduced in [3]
and we believe that their relationship with concepts like Grassmann necklaces, transversal matroids and
excluded minors make the study of lattice path matroids a good way to put these concepts together.

We have seen that positroids are closed under minors and that transversal matroids are not. In this
section we will see that lattice path matroids are both positroids and transversal matroids, and then natu-
rally we will study their behaviour under minors. We will see that LPM are indeed closed under minors.
We will also study relations between LPM and Grassmann necklaces.

Definition 35. A lattice path is a sequence p1,… , pn of steps that are either North or East. We typically
think that a lattice path forms a polygonal line in Z2 by drawing the steps starting at the origin, or at any
other point of Z2.

Notation. If a North step joins the points (i, j) and (i, j +1), we label this step with the integer i+ j +1;
similarly, an East step joining (i, j) and (i + 1, j) will also be labelled i + j + 1 (see Figure 3.3). In what
follows, whenever we speak of the set of North steps of a path we mean the set of labels of these steps.
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Definition 36. Let P = (p1,… , pn) andQ = (q1,… , qn) be two lattice paths starting at origin and ending
at (m, r), with n = m + r. Assume Q is never over P . Let NP = {k1,… , kr} and NQ = {l1,… , lr} be
the labels of the North steps of paths P and Q, respectively. Let  be the intervals between these steps,
 = {[k1, l1],… , [kr, lr]}. As we have already stated, the partial transversals of  are the independent
sets of a matroidM[]. A lattice path matroid is any such matroid.

Observation 6. Lattice path matroids have also a very intuitive geometrical approach. In the same
conditions as in Definition 36, note that paths P and Q create a bounded region in Z2. For each lattice
pathL contained in this region (that is withQ never overL andL never over P ), letNL be its set of North
steps. We claim that these sets {NL}L are the independent sets of the matroid we defined in Definition
36. As bases are maximal independent sets, here they are the North steps from the maximal lattice paths
(the ones from origin to (m, r)).

This claim is not hard to check, let us give the clues:
On one hand, given a lattice path in the region between P and Q its North steps must be a partial

transversal over . This is because each North step of L will have a North step from P to its left and a
North step from Q to its right, and so it will be in [ki, li] for exactly one i.

On the other hand, given a partial transversal {e1,… , er} over there is a unique lattice path between
P and Q having exactly these North steps. Labelling the vertical steps between ki and li we use the one
corresponding to ei, and we add the horizontal steps needed for it to be a lattice path.

Observation 7. At this point we already see the importance of the labelling of North steps over East
steps. This is why in most of the figures in this section the labels of the North steps will be bigger than
the ones corresponding to the East or horizontal steps.
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Example 20. Let P and Q be the lattice paths shown in Figure 3.1a in orange and blue, respectively.

(a) Example of a lattice path matroid. (b) In purple, a lattice path between P and Q.

Figure 3.1

For each lattice path inside the region bounded by P and Q, its set of North steps is an independent
set. For example, Figure 3.1b shows that {3, 4, 6, 9} is an independent set in the lattice path matroid.

In this example, North steps of lattice paths P and Q are NP = {1, 3, 4, 8} and NQ = {3, 5, 8, 9},
respectively. Now define  = {[1, 3], [3, 5], [4, 8], [8, 9]} as in Definition 36. It is clear that the set
{3, 4, 6, 9} is a partial transversal of .

Proposition 9. ([11], Lemma 21) A lattice path matroid is a positroid.

The following proof can also be found in [11].

Proof. To see that a lattice path matroid is a positroid we will construct a matroid with all its maximal
minors nonnegative. Recall from Example 4 that any transversal matroid is representable overR. There-
fore, we already know that a lattice path matroid is a representable matroid. The construction of the
matrix will be similar to the one in Example 4 but the non-zero elements will be chosen in order for the
matrix to be a Vandermonde matrix.

LetNP = {k1 < ⋯ < kr} andNQ = {l1 < ⋯ < lr} withNP ≤ NQ be the north steps of P and Q.
Let V be a r × n Vandermonde matrix where:

vij =

⎧

⎪

⎨

⎪

⎩

xj−1i if ki ≤ j ≤ qki ,

0 otherwise.
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It remains to assign values to x1,… , xr. Let x1 > 1 and xi+1 = xr2i for all i ∈ [r−1]. The determinant
of a maximal minor formed by r columns will be nonnegative if and only if the diagonal entries are non-
zero. This will happen when those columns form a basis. Otherwise the determinant will be zero. The
idea to check this is to transform this maximal minor into an upper diagonal matrix so that its determinant
is the product of the diagonal elements.

3.1.1 Grassmann necklaces and LPMs

Now we know that lattice path matroids are positroids, which are in bijection with Grassmann necklaces,
and from previous sections we know how to obtain a Grassman necklace from a matroid. Some questions
arise from these facts:

• Do Grassman necklaces obtained from LPM’s have any specific characteristics?

• Given a Grassman necklace, how can we say if it can be obtained from a LPM?

In this section we will try to answer these questions which, to our knowledge, have not been investi-
gated before.

Recall from 2.1.2 that a Grassmann necklace can be constructed with the minimal basis of order i for
each i ∈ E. Also recall from Definition 36 that the bases in a LPM are obtained from maximal lattice
paths inside the bounded region.

With this in mind, let us construct the Grassmann necklace associated to a LPM. LetM be a LPM.
We will be using the same notations as in Definition 36. Label the North steps of each row from ki to li
as in Figure 3.2.

Figure 3.2

For 1 ≤ i ≤ n = m + r:
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1. Find the North step with label i in the lowest possible row. If there is no such step, search for i+1,
i + 2 and so on until there is a North step.

2. From there, make a lattice path to (m, r) prioritizing North steps over East steps, always inside the
bounded region.

3. Like a continuation from this path, make a lattice path from (0, 0) to the bottom of the step where
we started in Step 1, again prioritizing North steps.

4. Joining these lattice paths we get a maximal lattice path. Label the steps of this path, and let Gi be
its North steps.

We claim that {G1,… , Gn} is a Grassmann necklace. Let us show an example first.

Example 21. For i = 4 in the LPM shown in Figure 3.2, we would create this path:

Figure 3.3: In blue, the starting step. In orange, the lattice path. G4 = {1, 4, 5, 8}.

Proposition 10. The sets {G1,… , Gn} are indeed a Grassmann necklace.

Proof. Let i ∈ {1,… , n}.
First, if i ∉ Gi it means that in Step 1 we could not find a North step with label i. In that case we

search for i + 1, i + 2 and so on until we find a North step and start the path there, so clearly Gi = Gi+1.
If, otherwise, i ∈ Gi it means we started the i-th path to (m, r) -let it be Pi- at some North step labeled

i. Two possibilities arise for i + 1:

• If i and i+1 are in the same row, both paths Pi and Pi+1 go North parallel until Pi cannot go North
anymore, in which case it goes East and they coincide from that point on. The labels of these North
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steps are the same except for i, which is in Pi but not in Pi+1, and j + 1 -where j is the label of the
last North step that Pi could step on before joining Pi+1- which is in Pi+1 but not in Pi.

From (0, 0) to the steps i and i + 1 we have taken the North steps are the same. Therefore, Gi+1 =
(Gi∖{i}) ∪ {j + 1}.

• If i and i + 1 are not in the same row, the paths to (m, r) will be identical. Then, from (0, 0) the
only possible difference between the paths to i and i+ 1 is i, because if i is not the first North step
of its row we will not use it in the path to i+1. Therefore, Gi+1 = (Gi∖i) ∪ {j} where j is the label
of the first North step in the row of i.

With this tool we can now face the second question we asked: which Grassmann necklaces can be
obtained this way from a LPM?

Lemma 2. Let G = {G1,… , Gn} be a Grassmann necklace with Gi = {gi,1,… , gi,r} and n = m + r.

There exists a lattice path starting at the origin and ending at (m, r) and with set of North steps G1. Call

it P .

For 1 ≤ i ≤ n order Gi (with the natural order <1). For 1 ≤ s ≤ r let qs = max
1≤i≤n

gi,s be the maximum

among the s-th elements of each Gi. There exists a lattice path starting at the origin with set of North

steps {q1,… , qr}. Call it Q.

Then, P and Q define a lattice path matroidM .

Proof. For convenience, in the proof wewill refer to {g1,1,… , g1,r} (the North steps of P ) as {p1,… , pr}.
Existence of P and Q.

In order for P and Q to be lattice paths the only thing we need is the ordered sets {p1,… , pr} and
{q1,… , qr} not to have repetitions. This is true for {p1,… , pr}. Now for {q1,… , qr}, remember qs =
max
1≤i≤n

gi,s, so for any qs there exists m ∈ {1,… , n} such that qs = gm,s. Then, gm,s+1 > gm,s and

qs+1 = max
1≤i≤n

gi,s+1 ≥ gm,s+1 > gm,s = qs

.
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These paths define a LPM.
By construction, the label of the i-th North step of Q is the maximum among a set that includes the

label of the i-th set of P . Therefore Q will never be above P so they define a LPM.

Observation 8. Although we proved this lemma in order to prove Proposition 11, it is worth noting
that we have seen that each Grassmann necklace (and thus, each positroid) has a lattice path matroid
canonically associated. We will not study this any further here, but it could be interesting to see if any
special properties hold among positroids that share this canonically associated LPM, or among positroids
modulo the relationship of having the same canonically associated LPM.

Proposition 11. In the same conditions as in Lemma 2, if G is obtained from a lattice path matroid, it

must be fromM .

Proof. First of all, if there is a LPM defined by some lattice paths P ,Q (with Q never above P ) that
produces G, then the North steps of P have to be G1, by construction. However, the North steps ofQ are
not so easy to determine.

Note that if we order each Gi then the s-th element will tell us which of the North steps we used in
the s-th row of the LPM. Therefore, the set {g1,s,… , gn,s} contains all the North steps used in the s-th
row. The North step of Q in the s-th row has to be the greatest among these.

It remains to see that North steps of Q will always appear in some Gi. This is true by construction
because if e is a North step of Q then it is the North step named e in the lowest possible row.

With this proposition, in order to see if a Grassmann necklace can be obtained from a LPM one can
forge P and Q as in Proposition 11 and check if the result is a LPM that creates the necklace. Let us see
an example to clarify this.

Example 22. Let G be the Grassmann necklace defined by G1 = {1, 4}, G2 = {2, 4}, G3 = {3, 4},

G4 = {4, 5}, G5 = {1, 5}, and G6 = {1, 6}.
We are looking for a LPM defined by two lattice paths P and Q with Q never above P . Fol-

lowing the proposition we set P to be the lattice path with north steps {1, 4}. For Q, we calculate
q1 = max{1, 2, 3, 4, 1, 1} = 4 and q2 = max{4, 4, 4, 5, 5, 6} = 6. Then we set Q to be the lattice path
with North steps 4 and 6 and we get the LPM shown in Figure 3.4.
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Figure 3.4

It is not hard to check that this LPM produces G using the method we defined at the beginning of the
section.

3.1.2 From a LPM to a ⅃-Diagram

We know how to obtain a ⅃-Diagram from a Grassmann necklace and a how to obtain a Grassmann
necklace from a LPM. Of course, composing these procedures we get a method to obtain a ⅃-Diagram
from a LPM, but this composition does not look very clear at first sight. Here we will see how this
method operates in a very simple way, which we find interesting and, to our knowledge, has not been
studied from this perspective before.

Theorem 5. LetM be a LPM defined by paths P and Q. The ⅃-Diagram obtained fromM using the

methods we defined in the previous sections is created in the following way (see Figure 3.5):

Rotate the path diagram ofM 180º as a figure and complete North-West of it as if it was a rectangle.

In this way we obtain a Young Diagram with boundary path P . Now fill the cells in the region defined by

the rotated paths P and Q, and leave the other cells empty.

Figure 3.5: A LPM and its associated ⅃-Diagram. Blue: P and rotated P . Red: Q and rotated Q.

Proof. Let G1,… , Gn be the Grassmann necklace obtained from the LPM with Gi = {gi,1,… , gi,r}.
We will see that, when obtaining the ⅃-Diagram from this necklace, the cells generated with Gi∖G1 in
increasing order and G1∖Gi in decreasing order are the ones and the only ones that in the LPM have a
right adjacent North step i (before the rotation).
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In the path diagram, if a North step labelled i with a left adjacent cell appears k times then Gi has
exactly k elements different from the ones of G1. First let us see it for k = 2. Observe that in this case
if i appears in the row g1,j it will also appear in the row g1,j+1, one position to the left. Therefore there
will be a i + 1 North step right above i. Let Gi be {i, i + 1, gi,3,… , gi,r}.

• Case i, i + 1 different to all g1,∗.

With this condition gi,3 will be a North step ofG1 because otherwise it would have an adjacent left
cell. This left cell would have and adjacent left North step called i+ 1. We know i+ 1 is not from
G1 so again it would have an adjacent left cell with adjacent North step i with a cell to its left by
the same reasoning. Therefore we would have k = 3. So in Gi we have two and only two elements
different from the ones of G1.

• Case i different to all g1,∗ and i + 1 labelled with the same name as some g1,∗. In this case the
North step i + 1 will not be part of P so the label i + 1 in a North step will have to appear in the
row above. This means that we will have a North step labelled with i + 2 and gi,3 = i + 2. If i + 2
is different to all g1,∗ we have the previous case and it is done, if it is labelled with the same name
as some g1,∗ we go back to this case and the same argument applies.

• A similar argument works for i labelled with the same name as any g1,∗.

The proof for any k ≥ 2 is analogous to this one.
The row labels of G1∖Gi will be consecutive. They will be the ones where the left cells of the North

i labelled steps are.
Once we have the subsets Gi∖G1 and G1∖Gi we order the second one in decreasing order to fill the

⅃-Diagram. Once this is done the cells to fill are the ones we wanted. For example the cell of the lowest
row in the LPM will be the one with the highest value of Gi∖G1 as column. It is because it is the label of
the East step of G1 that will label of the column in the ⅃-Diagram. The row labels will be the same by
construction.

48



Figure 3.6: Example of how labels are changed.

3.1.3 Operations over lattice path matroids

As we did for many different families of matroids, we will study wether lattice path matroids are closed
or not under duality, deletion, contraction and direct sum. Formal proofs for the next properties are found
in ([5], Theorem 3.1) and in ([3], Theorem 3.5 and Theorem 3.6).

Proposition 12. Lattice path matroids are closed under duality and direct sums.

To see lattice path matroids are closed under duality we want to see if chosiong the complementary
of bases as bases make a lattice path matroid. That is easy to obtain if we reflect the diagram with respect
to the line x = y.

To see lattice path matroids are close under direct sum if we sum two matroids A ⊕ B we need the
independent sets to be the union of an independent set of A and one of B. That is easy to obtain if we
draw B having as origin the ending of A.

The construction of the dual and the direct sum is illustrated in the next figures.

(a) Example of a lattice path matroid. (b) The dual of the lattice path matroid.

Figure 3.7
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Figure 3.8: Example of two lattice path matroids and their direct sum.

In order to prove that lattice path matroids are closed under deletion, we will use the following lemma.

Lemma 3. ([3], Lemma 5.2) LetM be a lattice path matroid as defined in Definition 36 with transversal

presentation
{

N1 = [k1, l1],… , Nr = [kr, lr]
}

and let {b1,… , br} be a basis ofM . Assume b1 < ⋯ <

br. Then bi is inNi for all 1 ≤ i ≤ r.

Proof. With the representation of the LPM this lemma is very intuitive. Remember that a basis is the
set of North steps of a lattice path from (0, 0) to (m, r). This lattice path will have one North step in each
row i, whose label will be between the North step labels of paths P and Q in this row, which are ki and
li.

Observation 9. Note that this lemma is equivalent to what we claim in Observation 6.

Proposition 13. Lattice path matroids are closed under deletion and contraction.

Proof. Again letM be a LPM with transversal presentation

 =
{

N1 = [k1, l1],… , Nr = [kr, lr]
}

.

If we wantM∖x the intuitive idea would be to have [m + r] − x as ground set and

′ =
{

N1 − x = [k1, l1] − x,… , Nr − x = [kr, lr] − x
}

as presentation. This is indeed a presentation of M∖x but it does not show that M∖x is a lattice path
matroid. The only condition on′ forM∖x to be a LPM is that the least (respectively, greatest) elements
of each setNi−x have to be strictly bigger than the least (respectively, greatest) elements of the previous
setNi−1 − x. There are only two ways in which this cannot happen:
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1. If x is the least element of Ni and x + 1 is the least element of Ni+1. In the LPMM this would
mean two consecutive North steps in path P .

2. If x is the greatest element of Ni and x − 1 is the greatest element of Ni−1. In the LPMM this
would mean two consecutive North steps in path Q.

Let us study case 1 first. LetB be a base ofM∖x containing x+1. We claim thatB = {b1 <⋯ < br}

can be matched with in a way that x+1 is not inNi+1. Note thatB is a basis ofM as well (one that does
not contain x), thus we can use Lemma 3 to say that we have a matching with bk ∈ Nk for all k. Now if
x+1 was matched inNi+1 then the element matched inNi would have to be x, which is a contradiction.
Finally, with this we can say that replacingNi+1 forNi+1 − (x+ 1) we still have a presentation ofM∖x.
Repeating this argument we can replace Ni+2 for Ni+2 − (x + 2) if necessary and so on. The argument
for Case 2 is analogous to this one, and finally we get a presentation ofM∖xwith the conditions we were
looking for in order for it to be a lattice path matroid.

As lattice paths matroids are close under duality and deletion they are also closed under contraction.

3.1.4 Excluded minors of LPM

Remember from Definition 33 that a minor of a matroid M is another matroid obtained from M by a
series of deletion and contraction operations. Also recall Definition 34 of excluded minors.

As lattice path matroids are closed under deletion and contraction they are closed under minors. It is
natural to ask, then, are the excluded minors known? The answere is yes, they are known and studied in
[4].

But why is this a natural and interesting question? Suppose we are given a matroidM and we use
deletion and contraction to find a minorM ′ that is an excluded minor for LPMs. Then, since LPMs are
closed under minors, we can state thatM is not a LPM either. This is very similar to Graph Theory and
excluded minors for planar graphs, where we can state that a finite graph is not planar if and only if it has
K5 or K3,3 as minors.

The list of excluded minors of lattice path matroids we will show and its corresponding proof is a
result from Bonin and can be found in [4], Theorem 3.1. We need to define some concepts in order to
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understand the list of excluded minors of lattice path matroids.
In this list, Pn = Tn(Un−1,n ⊕ Un−1,n) is the truncation (recall Definition 11) to rank n of the direct

sum of two n-circuits and P ′

n is the truncation to rank n of two n-circuits with one common element. We
will also use + to denote adding a new point without increasing the rank and introducing the minimum
possible number of dependencies (this operation is called free extension, see [12] for a more precise
definition).

Finally, these are the excluded minors of lattice path matroids:

• An = P
′

n + x for n ≥ 3. See Figure 3.9a.

• Bn,k = Tn
(

Un−1,n ⊕Un−1,n ⊕Uk−1,k
) and its dual Cn+k,k for n ≥ k ≥ 2. See Figure 3.9b.

• Dn =
(

Pn−1 ⊕U1,1
)

+ x and its dual En for n ≥ 4. See Figure 3.9c.

(a) A3 (b) B2,2 (top) and B3,2 (bottom).

(c) D4.

Figure 3.9: Particular cases of An, Bn,k and Dn.
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• The rank 3 wheelW3. This is the graphic matroid of the complete graph K4, which is also called
wheel graphW3. See Figure 3.10a.

• The rank 3 whirlW 3. See Figure 3.10b.

(a)W3. (b)W 3.

Figure 3.10: The rank 3 wheel and whirl.

• The matroid R3 and its dual R4. See Figure 3.11.

(a) R3.

(b) R4.

Figure 3.11: Matroids R3 and R4.

Recall from Proposition 9 that lattice path matroids are positroids, but not all positroids are lattice
path matroids. With this in mind, a question arises: which of the excluded minors of LPM are positroids?
To our knowledge this question has not been investigated before.

Theorem 6. All excluded minors of lattice path matroids are positroids except for the rank 3 wheelW3.

Proof. Let us prove the theorem case by case:

• An = P
′

n + x for n ≥ 3.
We can work with An as the truncation to rank n of two n-circuits that have one and only one
common element and we add there x.
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To see if An is a positroid we will try to find a labelling of the elements such that we can do the
next steps:

1. We label the elements and we obtain a Grassmann necklace G = I(An).
2. We find the collection of bases

(I) ∶=
{

B ∈
(

[n]
d

)

|

|

|

|

|

B ≥j Gj for all j ∈ [n]
}

.

3. This collection of bases by Theorem 1 from 2.1.2 form a positroid.
4. We want this bases to be the same as in An so we will know An is a positroid.

First we will label the elements of one circuit from 1,… , n, and we set n to be the label of the
element that is in both circuits. Then we label the rest of the elements of the other circuit from
n + 1,… , 2n − 1. The element x will be labelled with 2n.

With this labelling we obtain the Grassmann necklace G = {G1,… , G2n}:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G1 = {1,… , n − 1, n + 1}

Gi = {i,… , n + i − 1} for 1 < i < n

Gn = {n,… , 2n − 2, 2n}

Gn+1 = {n + 1,… , 2n}

Gn+i = {n + i,… , 2n, 1,… , i − 1} for 1 < i ≤ n

From this Grassmann necklace we obtain the bases of a positroid(G)with Theorem 1. We want
to check that this positroid and An have the same bases, thus (G) = An so An is a positroid.
Instead of doing this, we will check that they have the same sets of n elements that are not bases.
For An there are two such sets: {1,… , n} and {n,… , 2n − 1}. Now for (G), from G1 we see
that {1,… , n} is not a basis because

{1,… , n} ≤1 {1,… , n − 1, n + 1}.

In the same way, from Gn we see that {n,… , 2n − 1} is not a basis because

{n,… , 2n − 1} ≤n {n,… , 2n − 2, 2n}.
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It is not hard to check that for any other setB of n elements in(G) the following statement holds:

B ≥j Gj for all j ∈ [2n].

Therefore all other n-element sets are basis, so we are done.

• Bn,k = Tn(Un−1,n ⊕Un−1,n ⊕Uk−1,k) and its dual Cn+k,k for n ≥ k ≥ 2.
We will just see if Bn,k is a positroid because we know that positroids are closed under duals and
thus Cn+k,k will be a positroid if and only if Bn,k is a positroid.
We will work with Bn,k as two circuits of n elements and a circuit of k elements with no common
element between them, all this truncated to rank n. We will follow the same steps that we used for
An.
First we will label the elements of one of circuits of n elements from 1,… , n, and the elements of
the other circuit from n + 1,… , 2n. We wil label the elements of the circuit of k elements from
2n + 1,… , 2n + k.
With this labelling we obtain the Grassmann necklace G = {G1,… , G2n+k}:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G1 = {1,… , n − 1, n + 1}

Gi = {i,… , n + i − 1} for 1 < i < n + 1

Gn+1 = {n + 1,… , 2n − 1, 2n + 1}

Gn+i = {n + i,… , 2n,… , 2n + k − 1, 1,… , i − k} for 1 < i ≤ n + 1

G2n+1 = {2n + 1,… , 2n + k − 1, 1,… , n − k + 1}

G2n+i = {2n + i,… , 2n + k, 1,… , n − k + i} for 1 < i < k + 1

From this Grassmann necklace we obtain the bases of a positroid (G) with Theorem 1. As we
did in the previous case we want to see thatBn,k and the positroid we obtain have the same sets of n
elements that are not bases. For Bn,k there are three kinds of such sets: {1,… , n}, {n+ 1,… , 2n}

and {2n + 1,… , 2n + k, x1,… , xn−k} with xi any other label not used for i ∈ [n − k].
Now for (G), from G1 we miss the set {1,… , n}. This means that {1,… , n} is not a basis
because

{1,… , n} ≤1 {1,… , n − 1, n + 1}.
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In the same way, from Gn+1 we see that {n + 1,… , 2n} is not a basis because

{n + 1,… , 2n} ≤n+1 {n + 1,… , 2n − 1, 2n + 1},

and from G2n+1 we see that {2n + 1,… , 2n + k, x1,… , xn−k} with xi any other label not used, is
not a basis because

{2n + 1,… , 2n + k, x1,… , xn−k} ≤2n+1 {2n + 1,… , 2n + k − 1, 1,… , n − k + 1}

Finally we see that any other base that(G)misses is from B ≥j Gn+j for j ∈ {k,… , n+1}, but
these missing bases are particular cases of {2n + k, x1,… , xn−k} so we are done.

• Dn = (Pn−1 ⊕U1,1)⊕ x and its dual En for n ≥ 4.
Similar as in the previous case this time we will just see if En is a positroid because we know that
positroids are closed under duals and so Dn will be a positroid if and only if En is a positroid.
We know thatDn is made of two circuits of n−1 elements truncated in rank n−1with 2 independent
points in rank n. Then its dual En is made of two spaces of rank n − 1 each of them with n − 1
independent points and 2more points that are equal and in the intersection of the two spaces. Now
we will follow the same steps that we used for An.
First we will label the two points of the intersection with 1 and 2. The points from one of the spaces
of rank n−1 will be labelled with 3,… , n+1 and the ones from the other space with n+2,… , 2n.
With this labelling we obtain the Grassmann necklace G = {G1,… , G2n}:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G1 = {1, 3,… , n, n + 2}

G2 = {2, 3,… , n, n + 2}

Gi = {i,… , n + 1,… n + i − 1} for 2 < i < n + 2

Gn+2 = {n + 2,… , 2n, 3}

Gn+i = {n + i,… , 2n, 1, 3… i} for 2 < i < n + 1

From this Grassmann necklace we obtain the bases of a positroid (G) with Theorem 1. As we
did in the previous case we want to see that En and the positroid we obtain (G) have the same
sets of n elements that are not bases.
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For En there are three kinds of such sets:

1. n elements all from one space of rank n − 1.
2. n elements all from the other space of rank n − 1.
3. Any set that contain 1 and 2.

The sets of n elements from the same space will be {1, 3,… , n + 1}, {2, 3,… , n + 1}, {1, n +
2,… , 2n} and {1, n + 2,… , 2n}. Now for (G), from G1 we miss any set with both 1 and 2
so we have any set that contains 1, 2 and n − 2 more elements. Clearly we also miss the set
{1, 3,… , n + 1}. From G2 we miss {2, 3,… , n + 1}, from Gi we do not miss any set and from
Gn+2 we miss {n+2,… , 2n, 1} and {n+3,… , 2n, 2}. Finally fromGn+i we miss sets that contain
both 1 and 2 but we already miss them from G1. Finally we can say that these matroids have the
same n-element dependent sets and therefore the same bases, so they must be the same. Since
(G) is a positroid, we conclude that En is a positroid and its dual Dn is a positroid as well.

• The rank 3 whirlW 3

W 3 is the geometric representation of the representable matroidM(A) where A is

Figure 3.12

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 1

1 1 1 0 0 0

0 0 1 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

It is not hard to check using a simple algorithm that A is a nonnegative matroid, and thusM(A) is
a positroid.

• The rank 3 wheelW3 is not a positroid.

This matroid has ground setE = {1, 2, 3, 4, 5, 6}. From this matroid, and using Proposition 1 from
2.1.2 we obtain a Grassmann necklace G = (W3) from its lexicographically minimal basis with
order <j . Also, if W3 was a positroid, using Theorem 1 from 2.1.2 we know that the positroid
produced by G, should beW3 again: ((W3)) = W3.
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The Grassmann necklace we get from W3 depends on how we label the points of the geometric
representation. Wewill see that theGrassman necklaceG = {G1,… , G6}we get from any possible
labelling produces a positroid that is not W3. Therefore, using Theorem 1 we will conclude that
W3 is not a positroid.

Note that each Gi will be either Gi = {i, i + 1, i + 2} or Gi = {i, i + 1, i + 3}. It will be i + 2 if
i + 2 is not in the same line that form i, i + 1, otherwise it will be i + 3. As we have four and only
four lines inW3 we want that when we do ((W3)) we just get four 3-element sets that do not
appear. That means we want to have four different Gi such that Gi = {i, i + 1, i + 2, i + 3}. To
achieve this we need consecutive labels modulo 6 in the four lines.

Arbitrarily we set the left bottom point to be labelled with 1. Then arbitrarily we can set the
opposite point or the upper adjacent point to 2. First let us focus on the case with the opposite
point as labelled with 2. Now we just have two options, to set the adjacent top point to 5 and the
top to 6 or the other way. To have all lines with consecutive numbers we need the point in the
middle of the bottom line to be 6 or 1 respectively, but that is not possible because we already used
these labels.

In a similar way we can see that labelling the upper adjacent point of 1with 2we neither can get the
four lines with consecutive numbers, so the wheelW3 is not a positroid. We can see the different
options we would be forced to get in the next figure. When we get to a cross we do not have any
available label right for the point.

Figure 3.13: The possible results we can get without loss of generality.
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• The matroid R3 and its dual R4:

R4 is the geometric representation of the matroidM(B) where B is

Figure 3.14

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 0 0 0 0

0 0 0 1 1 0 0

1 2 0 0 1 0 0

0 1 0 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

As with W3, it is not hard to check that B is nonnegative and thereforeM(B) is not an excluded
minor of positroids.

3.2 Series-parallel graphs

Definition 37. A series-parallel graph is a graph formed recursively by the series and the parallel oper-
ation. The series operation consists in subidividing a step so it is replaced by two steps in series. The
parallel operation consist in replacing a single step that connects two endpoints by two steps in parallel
having the original step endpoints as common endpoints.

Proposition 14. LetM(G) be a graphic matroid and assume it is also a positroid. IfG′ is another graph

obtained from G using series and parallel operations, thenM(G′) is also a positroid.

Proof. Clearly we only need to see it for one single operation and one can iterate to make any number of
operations. Let us check both possible operations.

• Parallel operation:

This one is easy to check as adding a parallel step e′ to an existing one e consists on duplicating
the column of e in its matrix. If the graphic matroid corresponds to a positroid then by duplicating
the column of e it will still be a positroid as all determinants do not have e′ will stay the same and
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the ones that have e′ will be the same as substituting e′ by e. If both e, e′ are in the maximal minor,
then the determinant will be zero as there will be two equal columns.

• Series operation:

To subdivide an step e into two e, e′ what we are doing is: each cycle that contained e is not a cycle
anymore except if e′ is added. The rest of the cycles must remain the same. To do that, suppose
the graph is represented by a d × n matrix with all maximal minors nonnegative. We add a row
and a column -to represent e′- to the matrix so it becomes a (d + 1) × (n + 1) matrix. The row we
add is the last one with all entries zero except the ones corresponding e and e′ that are a 1. The
column that respresents e′ is a (d + 1) × 1 vector all with zeros except the last number being a 1,
(0,… , 0, 1). If we originally have

⎡

⎢

⎢

⎢

⎢

⎢

⎣

| | … | … |

a0 a1 … e … an

| | … | … |

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

then after the series operation we get
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

| | … | 0 … |

a0 a1 … e 0 … an

| | … | 0 … |

0 0 … 1 1 … 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This represents a series operations because given a group of columns which neither e nor e′ are
in the relation between those columns stay the same. If e was part of a cycle then without e′ is
not anymore. It is easy to check as the determinant now can be developed thorough the one of
the column representing e becoming ±∆(all the columns minus e and the las row), but if e was
part of a cycle and e′ is added to the group developing by e′, ±∆ (all the columns minus e′ and
the las row) = ±∆(of a cycle). The problem here is that this may not be a positroid, it is just a
way of representing the graphical matroid as a matrix. In order to still have a positroid after the
series operation first we do a cyclic shift of the ground set till e is the last vector of the matrix. As
positroids are closed under cyclic shifts we still have a positroid. Now if we add the column for e′
and the last row we still have a positroid. Suppose we have a maximal minor, if the columns of e
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nor e′ are taken the determinant will be the same, so it is nonnegative, if e is taken then developing
by the last row we get a minor we had before the operation, so it is nonnegative, and if e′ is taken
developing by the the columns we also get a minor of before the operation.

Now we know series-parallel graphs are positroids so they do not haveW3 as a minor. In fact, unions
of series-parallel graphs are exactly the graphs that do not have W3 as a minor (see the graph theory
reference book [6] for more details). SinceW3 is the only excluded minor of lattice path matroids that is
graphic, we can conclude that all series-parallel graphs are lattice path matroids as well.
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