
Universitat Politècnica de Catalunya
Facultat d’Informàtica de Barcelona

Bachelors Degree in Informatics Engineering

 Implementation of the Environment of a
Practical Work in a Computational Intelligence

Course

Bachelor’s Thesis of Prashanth Sridhar

Director: RENÉ ALQUÉZAR MANCHO
Co-Director: ENRIQUE ROMERO MERINO

20th June 2019  

Abstract

Machine Learning & Artificial Intelligence are currently the cutting edge
technologies that can help solve the various problems present in the current world
we live in. There is a need for AI/ML engineers/researchers who can learn, code
and deploy technologies powered by AI to solve such problems. Colleges like
UPC-FIB provide courses in the same field to help students gain the required
knowledge to solve problems with ML/AI. A course curriculum isn’t complete
without practical knowledge. One needs hands on experience with coding to truly
understand & master the concepts.

My project aims to provide a practical environment for the “Computational
Intelligence”[4] course taught at UPC-FIB. The aim of the practical work is to train
different Computational Intelligence models that are able to play different simple
games. The practical work environment should allow the students to code and test
various intelligence models that they’ve learnt in class.

The idea is to make the practical course as intuitive and interesting as possible.
Hence, this project will involve the use of Video Games as a method to generate
interest. The student will have to develop Intelligence models to train the game
agent to play a video game with human-level performance. All the intelligence
models that are to be implemented are in accordance with the course curriculum.

The environment should allow the student to play the game manually. It should
have the implementation of the function generate_data, which should allow the
student to choose the game and select the amount of data to generate for training.
The main interest of the environment is the automatic game simulator functions.
These are the functions that are used to control the game using a computational
intelligence model. These functions are to be completed by the students as the
practical work for the course. The student can choose from various intelligence
models (Multilayer Perceptrons, Evolutionary Algorithms, Fuzzy Inference Systems
etc) to control the game. These models are in line with the syllabus of the theory
course. The environment should also contain ideal good performing models that
can be used by the students to compare and evaluate their models.

Acknowledgement

First and foremost, I would like to thank the Almighty for giving me the opportunity
to work and complete my bachelor’s thesis at a prestigious institution like
Universitat Politècnica de Catalunya.

The success and final outcome of this project, required a lot of guidance and
assistance from many people and I am extremely privileged to have got this all
along the completion of my project.

I would like to express my sincere thanks and gratitude to my project directors

Prof. René Alquézar Mancho and Prof. Enrique Romero Merino who took keen
interest in my project work and guided me all along, till the completion of my
project work by providing all the necessary information for developing a good
application.

I would also like to thank Universitat Politècnica de Catalunya for letting me use
their resources which played a huge role in the completion of the project.

Lastly, I would like to thank my parents for their eternal love, support &
confidence.

Table of Contents

Index of Figures
Index of Tables

1 Introduction 1
1.1 Motivation 1
1.2 The Computational Intelligence Course at FIB, UPC 3
1.3 Objectives 3
1.4 Methodology 4

2 Scope, Stakeholders, and Challenges 5
2.1 Scope 5
2.2 Stakeholders 6
2.3 Challenges 6

3 Project Management 8
3.1 Overview 8
3.2 Planning 9
3.3 Resources 12
3.4 Project Budget 12
3.5 Sustainability 15

4 Game Description 18
4.1 Overview 18
4.2 Rules of Snake 18
4.3 Creating the Game 19
4.4 Bringing AI in the Mix 19

5 Data Description 20
5.1 Overview 20
5.2 Understanding the Requirement 20
5.3 Obtaining the Data 20
5.4 Data Representation 21

5.5 Feature Selection 22
5.6 Representing Output 24
5.7 Putting it all together 24

6 Models & Architecture 26
6.1 Overview 26
6.2 Simple Neural Network 27
6.3 Genetic Algorithms 28
6.4 Fuzzy Inference Systems 36

7 Experimental Results 40
7.1 Neural Networks 40
7.2 Genetic Algorithms 42
7.3 Fuzzy Inference Systems 45

8 Application 46
8.1 Overview 46
8.2 Key Features 47
8.3 Snapshots 48
8.4 Limitations 50

9 Deployment 51
9.1 Overview 51
9.2 Software & Package Requirements 51
9.3 Supported Model Formats 52
9.4 Changes 52

10 Conclusion & Future Work 54

References 55
Appendix A: Requirements 56

Index of Figures

Figure Number Name Page Number

1 Growth of annually
published papers 1

2
Percentage of

undergraduates enrolled
in Intro to AI

2

3 Gantt Chart 11
4 Snake Example 18
5 Snake Game Screenshot 19
6 AI Agent Working 19
7 Data Representation 21

8 Features for spatial
awareness 22

9 Feature for identifying
position of candy 23

10 Working Structure 26
11 NN Architecture 27
12 NN Structure 27
13 Genetic Representation 29
14 Crossover & Mutation 30
15 Example Chromosome 32
16 Space Representation 33

17 How to represent a NN as
a chromosome 34

18 Fuzzy Steps 37
19 Mamdani FIS 38
20 Sugeno FIS 39

21
Perfromance Graph -

Model trained on good
manual data

41

22 Fitness Values over time 42

23 max(Fitness) vs
Generation 43

24 Fitness Values over time
(Neural Networks) 44

25 Startup Screen 46
26 Data Generation Screen 48
27 Running & Testing Models 49

28 Performance Plots in
Real-time 49

29 Genetic Algorithm Splash
Screen 50

Index of Tables

Table Number Name Page Number

1 Estimated Time 10
2 Hardware Cost Estimate 13
3 Software Cost Estimate 14
4 HR cost Estimate 14
5 Total Budget Estimate 15
6 Sustainability Scores 17
7 Sample Dataset 25

8 How Quality of Data
Affects Performance 40

Chapter 1

Introduction

1.1 Motivation

We live in a generation full of technological advancements. Gone are the days
when almost everything was done manually, and now we live in a world where
most of the work is automated by machines which are powered by Artificial
Intelligence.

Artificial intelligence or AI is basically giving a machine the ability to think and act
like a human, giving the machine the power to do a job which only humans can do.
Thanks to this technology, people have been able to build AI powered machines
which have solved many problems around the world & have bettered the lives of so
many people . So it is considered important for a computer science engineer to be
well versed with the concepts involved in the field of Artificial Intelligence. The
following chart illustrates the growth of AI in the research community in the recent
years [1] [2]. Figure 1 highlights the growth & importance of the field.

Figure 1: Growth of
annually published
papers (1996–2017)
Source: Scopus [2]

�1

Many universities (including UPC) have courses in the field of Machine Learning &
Computational Intelligence so as to prepared students & make them ready to solve
problems with AI & ML and contribute to the industry. Courses in artificial
intelligence and Machine Learning have become more popular in the recent times.
Figure 2 highlights the increase in popularity among the university students [2].

Figure 2: Percent of undergraduates enrolled in Intro to AI (2010—2017) Source: University provided data

Apart from theory, practical hands-on programming knowledge is considered
important for effective learning of the subject. Hence, Universities have practical
classes along with the theory classes. In UPC-FIB, the course “Computational
Intelligence” requires a practical component.[4]

The aim of this project is to build a practical work environment for the course
where students can code and test intelligence models. At the end of the day, the
project will help students better understand the concepts taught in the theory
classes by implementing the ideas themselves in the practical environment.

The idea is to make the practical course as intuitive and interesting as possible.
Hence, this project will involve the use of Video Games as a method to generate
interest. The student will have to develop Intelligence models to make an AI play a
video game with human-level performance.

�2

1.2 The Computational Intelligence Course at FIB, UPC
The aim of this course is to provide the students with the knowledge and skills
required to design and implement effective and efficient Computational Intelligence
solutions to problems for which a direct solution is impractical or unknown.
Specifically, students will acquire the basic concepts of fuzzy, evolutionary and
neural computation. The student will also apply this knowledge to solve some real
case studies.[4]

This is a mandatory course for all students enrolled in the Masters Program in
Artificial Intelligence. This is shared by UPC, UB and URV

Keeping this in mind, the practical environment is implemented.

1.3 Objectives

“To Implement the Environment of a Practical Work in a Computational
Intelligence Course”

The objective can be elaborated as follows:

• The aim of this practical work is to train different Computational Intelligence
models that are able to play different simple games.(snake, etc).

• The environment should allow the student to play the game manually.

• The environment should provide a testing interface for the student to test their CI
models which will power the agent in the game.

• The student can choose from various intelligence models (Multilayer
Perceptrons, Evolutionary Algorithms, ...) to control the game.

• These models are to be in line with the syllabus of the theory course.

• Reliable references at evaluation time.  

�3

1.4 Methodology

These are the steps that need to be carried to ensure a successful completion of
the project within the deadline

- Choose & build suitable games that are intuitive for learning.

- Collect sufficient good quality game data for training of the models.

- Clean data if necessary such that it is suitable for training the decision making

agent.

- Experiment on more models to see which works best for the game type etc.
- Integrate into interface.

- Add necessary features on the interface to make the application user friendly.

- Deploy & Test on the practical computer labs.

�4

Chapter 2

Scope, Stakeholders & Challenges

2.1 Scope
The original idea of the project is to generate an environment for a practical work in
the master course “Computational Intelligence” at FIB-UPC [4], The aim of this
practical work is to train different Computational Intelligence models that are able
to play different simple games (snake, etc).

The environment should allow the student to play the game manually. It should
have the implementation of the function generate_data, which should allow the
student to choose the game and select the amount of data to generate for training.
The main interest of the environment is the automatic game simulator functions.
These are the functions that are used to control the game using a computational
intelligence model. These functions are to be completed by the students as the
practical work for the course. The student can choose from various intelligence
models (Multilayer Perceptrons, Evolutionary Algorithms, Fuzzy Inference Systems)
to control the game. These models are in line with the syllabus of the theory
course. Additionally, I should put myself in the student’s shoes and perform the
practical work so that we can have reliable references at evaluation time.

In Summary,

The project should generate the environment of the practical work described
above. Specifically, it should give implementation of: 

• The program generate_data 

• The “manual” game simulators (play_snake_manual) 

• The “automatic” game simulators (play_snake_CI) 

• An interface for the students to test & evaluate their models.

�5

2.2 Stakeholders

The course “Computational Intelligence” at FIB, UPC is handled by Professors

Reńe Alquézar, Enrique Romero & Angela Nebot. Therefore, the stakeholders are
the teachers of the course who also happen to be my mentors for the project.

2.3 Challenges

- Bad Interface Design
A poor practical environment design could easily produce an application that might
not do the job it is intended to do. Having a bad interface might not be user
friendly for the students. So the purpose is not served as the student doesn’t learn.

This problem was overcome by having frequent meetings with the teachers of the
course to get a better understanding of the feature requirements.

- Bad Performing Models/Problems with Result Interpretation
Selecting wrong intelligence models or improper features might result in poor
models. As a result, the environment won’t have a good reference for the students
to compare & test the performance of their models. Sometimes, anomalies might
occur which might in turn cause results which might not be easy to interpret.

This was tackled by having weekly meetings with my project mentors, who are
specialists in the field of computational intelligence. They were able to guide me
and supervise the project.

- Incompatibility Issues
Majority of the project is developed on a MacOS machine. Since most of the
elements in the application use graphical libraries (To build the games, etc), there is
a chance we might run into incompatibility issues. Different operating systems
support only certain graphical libraries. This leads to incompatibility issues in
operating systems which do not support these libraries.

�6

This can be solved by either building an application that’s free of dependencies
that change depending on the OS
- Choice of Programming Language

Different students might be comfortable with programming in their language of choice.

The application is built completely with Python. This means, students who prefer coding

on MATLAB might not be able to run their models with the application.

This was solved by adding support for MATLAB as well as Python.

�7

Chapter 3

Project Management

3.1 Overview

3.1.1 Estimated project duration

The estimated duration of the project is 5 months. The work starts on 12th
February. The work is to be completed by June 30th

3.1.2 Considerations
The requirements for the project are fully specified, but more requirements and
features may be added to the process (eg. a new game or new computational
models) later depending on the amount of time left. The idea is to complete the
current requirements as soon as possible to have enough time to implemented
other requirements, if any.

Furthermore, during April 2019, the development of the project will be paused for
about 10 days due to the spring holidays.

3.1.3 Planning & Feasibility

Most of the planning and feasibility analysis was conducted thanks to the Project
Management Course. This course first required me to define and throughly
understand the problem I was trying to solve. Next section of the course required
me to device out an effective schedule plan to complete the project on time. This
meant that i had to breakdown the development lifecycle into sections and assign
time accordingly. Next, I had to do a financial analysis to calculate the cost of
completing the project. Finally, I had to take into consideration all the socio-
economic factors that might come into play.

�8

3.2 Planning

3.2.1 Project Iterations

As mentioned in the scope definition. The project is going to be divided into many
iterations where different modules are developed separately. As as when the
modules are completed, they are integrated.

1. Learning & Setting up.  
The aim of this iteration is to learn the required languages, frameworks etc to
be able to develop and build the application. This involves learning about
MATLAB, Pygame, the python application framework & the framework to link
python with MATLAB to use the MATLAB engine within python scripts. This
iteration is also to prepare the environment and install the necessary
frameworks to develop the application. Once all frameworks are installed, it
will be necessary to configure them in order to start the next iteration.

2. Game Development  
In this iteration, the game (eg. Snake) is developed ground up using pygame.
The game should be built such that all the features required to train the CIs
are easy to access. The agent should be able to observe the environment
completely such that the necessary features can be extracted and used for
the Computational Models.

3. Data Collection.  
The aim of this iteration is to collect sufficient data for training. Based on the
features that can be selected, the data is to be collected. As a result, training
can take place leading to well performing models.

4. Experimentation  
The iteration focusses on trying different architectures etc, like switching up
different hyperparameters so as to make the CI model perform as efficiently
and effectively as possible. Using the link between Python and MATLAB,

�9

Neural Nets are to be built using MATLAB. All computation and decision
making features are to be implemented on MATLAB. At the end of this
phase, I hope to have well performing Computational Intelligence models

5. Integration & Application Development 
All the models which power the agent’s decision making, the game are
integrated into the application & all the necessary interface and menus are
added to build the practical environment.

6. Final Stage 
The final stage consists on closing the project development definitively. A
final report will be generated for the work that has been done. A user manual
for the students will be made to make the learning easier when the students
use the platform to learn. A final presentation will be delivered.

3.2.2 Estimated Time

Table 1: Estimated Time

�10

3.2.3 Gantt Chart

The Gantt Chart is the most important aspect of project management. It provides a
graphical illustration of a schedule that helps to plan, coordinate, and track
specific tasks in a project.

The Gantt chart is as follows :

Figure 3: Gantt Chart

�11

3.3 Resources

The following resources were used to complete the project

Hardware: 
Apple Laptop: MacBook Pro 2015

Software: 
Python 
MATLAB 
Sublime Text 
Pages (Like word for MacOS) Numbers (Like Excel for MacOS)

Most of the coding is done using Python. The application, the interface, the
games, are all developed using Python. The computational intelligence models
alone are coded and run in MATLAB as the programming language used in the

course is MATLAB. By using an interface package, a connection is established
between Python and MATLAB. All the computation is done using the MATLAB
engine and the results are returned to Python. Since I am the only person working
on the project, there is no need to co-ordinate with a third person to develop the
project.

With respect to writing reports & making presentations for both the GEP course as
well as the final project defence, Pages & Numbers have come in handy to help
write neat and clear reports.

3.4 Project Budget

3.4.1 Financial Planning

Considerations

An estimation of the cost of this project is presented by dividing the expenses int
their respective categories. They are hardware, software & human resources
amortizations.

�12

Since there is only one individual involved in the project, I will take up the various
necessary roles required for the completion of the project. (eg Project Manager,
Software Dev, Designer etc.)

Budget Monitoring

This is only a rough estimate. As and when the phases of the project gets
completed, the budgets are revised. This way of monitoring the amount of
spending will make sure there is no excess money spent anywhere.

3.4.2 Budget Estimations
Amortized Cost = Cost * (No of Yrs in Use/Useful Years)

The rough duration of the project is 5 months. So “No of Yrs in Use” is the duration
of the project, which is 0.416.

A. Hardware
Except for a laptop and a mouse, no other hardware equipment/entity is required
as this project is entirely software based. There are no other hardware components
required.

Hardware Cost Estimate

�13

Table 2: Hardware Cost Estimate

B. Software

Software Cost Estimate

C. Human Resources
As mentioned earlier there is only one individual involved in the project, I will take

up the various roles required for the completion of the project. (eg Project

Manager, Software Dev, Designer etc.)

Human Resource Cost Estimate

�14

Table 3: Software Cost Estimate

Table 4: HR Cost Estimate

Total Estimated Budget

3.5 Sustainability
We analyse the sustainability of the project under three main categories:
Economic, Social & Environmental Sustainability. They have been described in
detail, respectively in the following sections

3.5.1 Economic
This project is economically, a very sustainable incentive, as apparent from the
budgets that have been estimated. All aspects of the budget have been calculated
and taken into consideration. There might be some indirect and unforeseen costs,
that may have escaped our estimate.

Most of the software used in this project is free and open sourced. MATLAB is the
only software that requires a working license. This project is completely software
based and does not require any hardware to function expect for the system it runs
in. This makes it very economical as there is no money spent on extra hardware.
So there won’t be future expenses to replace any hardware parts.

Overall, this project is very cost effective and is one of the cheapest solutions to
the problem in hand. Since the project is to be deployed in university labs, there is
no need to take the extra step to get a working license as MATLAB comes installed
with an activated license for every system in the lab. Since this is a perpetual

Category Amortization (Estimate)
Hardware € 90.58
Software € 332.8
Human Resources € 18000
Total Estimate € 18423.38

�15

Table 5: Total Estimated Budget

license, there is no extra cost incurred after the initial setup. Considering all the
factors, this project deserves a 8 on 10, in the Economic Sustainability Analysis

3.5.2 Social

Our project has the biggest impact in the social front. It is a huge value add to the
students taking the Computational Intelligence Course at UPC.

The primary idea of this application is to serve as a learning & testing tool.
Students will find the features very intuitive and will overall have an enriching
learning experience. The application is to be used with the course. The application
serves as a testing tool to practically implement the concepts taught in class.

Also, this implementation is more user friendly as compared to the other existing
solutions. Plus there is flexibility to further add support for the project later in the
future. This means, there is going to be support for more algorithms etc. This has a
huge potential of becoming a tool that can make a huge impact in a student’s
learning process. Considering the usefulness and positive learning impact, this
deserves a 9 on 10, in the Social Sustainability Analysis.

3.5.3 Environmental
During the development of the project, the only environmental concern is the
consumption of electricity. Electricity is what powers the laptop that enables the
development. But, you cannot look at it as an environmental concern as laptops
and other electronic devices have become a part of our lifestyle. Our lives depend
on electronic devices. Plus the amount of power consumed by the system to run
the application is bare minimum as the application isn’t heavy. The application is
friendly on the processors, so there is no need for extra power to run this
application. So we can safely ignore the electricity factor.

This project is entirely software based. There are no hardware components that
interact with the surroundings. So there is no e-waste generated. In that aspect,
this project is very environment friendly as there is no component that could
possibly be of harm to the environment.

�16

Keeping all this in mind, we can reward this project a score of 9 on 10, in the
Environmental Analysis

Aspect Score
Economic 8

Social 9

Environmental 9

�17

Table 6: Sustainability Scores

Chapter 4

Understanding Snake

4.1 Overview

The main purpose of the project is to use Video Games as a learning tool for the
students.[6] As mentioned before, the aim of the practical work is to build various
computational intelligence models to train agents to play video games with human
level performance.[7]

Specifically, In this project, the idea is to use the classic video game ‘Snake’ as the
problem.

The practical work would require the student to understand the problem, collect/
generate data, select relevant features, choose an intelligence model, train the
model & finally test the model on the game to see how well it performs (plays the
game).

So before we get into the details of solving the problem with AI, we need to first
understand the problem we are trying to solve.

4.2 Rules of Snake

Snake has simple rules:

• The world is a grid.

• The snake can only travel
orthogonally along this grid.

• This world has a border that
kills the snake on contact.

• The snake cannot stop moving.

• If the snake runs into itself, it
dies.

• Every time the snake eats, it grows longer.

• The goal is to grow as long as possible.

�18

Figure 4: Snake Example

When playing the game, there is a decision to make each time the snake takes a
step forward: continue straight, turn left, or turn right.

Our goal is to create an AI to learn how to make this same decision. First
assessing the state of the world that the snake lives in, then choosing the move
that will keep it alive and continue to grow longer.

4.3 Creating the Game

The game has been built entirely from
scratch on Python with the help of a
graphics package called PyGame.

The game has been built entirely from
Scratch to make sure all the game
environment variables are accessible.
Some of the environment variables include
the positional coordinates of the candy,
the information about the spaces that are
free/occupied etc. This way, depending on
the feature that is selected, the required
data can be fetched from the game
environment using an API.

4.4 Brining AI in the Mix

The agent should

• Observe the environment

• Decide which action is the most
optimal

• Make the decision (AI)

• Receive rewards based on the action
made

• Repeat

�19

Figure 5: Snake Game

Figure 6: AI Agent Structure

Chapter 5

About the Data

5.1 Overview

In this section, we shall discuss the nature of data required and the various
methods that are used to create the data.

5.2 Understanding the Requirement

Before we proceed to collect data, we need to first understand the difference
between good and bad data.

Since the project is fundamentally about trying to build a really good AI that can
play as ‘good’ as a human, we need to collect data that corresponds to a really
good player. So the definition of good data is game data generated from a good
player. This means having a really good player play the game or coding a really
good heuristic that can mimic and play as good as a human player.

So keeping this in mind let us get into the specifics.

5.3 Obtaining the Data

Whenever you think of solving a problem with Machine Learning, the first thing
problem we face is finding the right data. We face the same problem here.

If we need to build AIs to play ‘Snake’, we need a game that can give us the data
(features) we need. This means the game should have an API that should let us
access the the required information from the environment. This basically forces us
to build the entire game of Snake from scratch.

All the data we need to collect has to be obtained from the game environment
using the game API. Thankfully, since I built the game from scratch, all the required
environment variables are accessible and can be fetched using an API.

�20

Therefore, the data can be obtained realtime from the game environment. At every
instant in time (Game Time) the values need to be collected from the game
environment.

So depending on the features that are selected, the data can be obtained
accordingly. This brings us to the next section, data representation.

5.4 Data Representation

At every instance in time, the positional information of the game elements can be
obtained. This information tells us the pixel coordinates of the candy, the snake
etc. Now this information needs to be used to interpret the surroundings of the
Snake (eg Is the front space free ? How far is the candy from the head of the
snake?).

To achieve that I generated a 2D array grid that represents the game grid at every
instant in time. The 2D array has the same dimensions of the game grid. Each
element is filled with numbers to represent free/empty spaces. This way, the game
state is represented by the 2D grid. The values of the grid are updated as and
when the values change.

�21

Figure 7: Game State Representation

States

0 - Walls and Spaces occcupied by the body of the Snake

1 - Free Spaces

2 - Candy

3 - Head of the snake

This representation makes it very easy to get the relevant data needed from the
environment. The reason behind using numbers to present positions is simply
because it makes the learning process easy. Neural Nets love training on simple
whole numbers.

5.5 Feature Selection

In this section, I will explain in detail what features are good features. Any feature
that helps the Snake understand its surroundings makes it a good feature. So we
need to be smart & choose minimum features that best conveys the information
the snake will need to play the game.

We need to look at this problem from the point of the snake. At a given point in
time, the snake’s vision is limited. Let’s assume that the Snake can only look at the
spaces immediately next to it. This means, it can check to see if the immediate
spaces are empty/occupied. This information is really useful as it gives the snake a
rough idea of its surroundings.

This can be a set of 3 features. Each feature
representing one direction. The snake can look
only orthogonally, therefore the snake can check
front, left & right. We have successfully chosen 3
features that tell the snake about the spaces
available for it to move into.

�22

Figure 8: Features for spatial
awareness

Next, it needs information about the candy. After all, the idea of the game is for the
snake to get to the candy and that is how the score increases.

So the next feature we need to add should somehow effectively convey the
positional information of the candy.

The best way to do this would be to calculate the angle made by the direction
vector of the head of the snake with the direction vector of the candy relative to
the head.

So these are the possible scenarios

1. The candy is to the right of the snake. Angle is positive & takes a value

between 0 & 180

2. The candy is the the left of the snake. Angle is negative & takes a value

between 0 & -180

3. The candy is directly in front of the snake. In that case the angle is 0

4. The candy is directly behind the snale. In that case the angle is 180.

These values can be discretised if needed to simply the data & training. I chose to
scale these values to a range [-1, 1]

The Angle between the direction vectors is
used to represent the relative position of the
candy in the game environment.

In Summary, with effectively 4 features, we are able to give the snake knowledge
about the free spaces next to it & give it information about the position of the
candy. Features: [Angle, Front, Left, Right]. Example: [50,1,1,1]

�23

Figure 9: Feature for identifying
position of candy

5.6 Representing Output/Decision

The working of every intelligence model is to observe the surroundings & decide
the best direction to move in. Since the snake can only move orthogonally, the
snake is restricted to move along 3 directions at a given point in time.

The Snake can move Straight, take a left or take a right.
Each of these directions are represented by numbers.

0 - Straight

1 - Right

2 - Left

So at every instance in the game, the player needs to decide what direction to take
next. If the game is played manually, the input is given from the keyboard with the
help of the arrow keys.

When the agent is powered by a trained intelligence model, the model is given the
features as input. The model needs to use those inputs and output a value. This
value should effectively be a 0, 1 or 2 which represents the direction the snake
needs to take for its next move.

5.7 Putting it all together

To create a good data set, we need to collect game data of a snake that plays
really well. A snake that scores high corresponds to the quality of data that can be
obtained.

How do we build this?

1. Play the game manually. Be an expert. Try not to make wrong moves. You will

have good data with correct labels for a set of input.

2. Use a Genetic Algorithm to evolve a snake that can play the game well. Collect

game data of that Snake.

3. Code a heuristic. Collect the data.

�24

Essentially, this is what a typical game
dataset will look like. The direction
column represents the label. In other
words, it is the decision made for that
specific game state. The quality of the
data determines the performance of
the AI trained on the data.

Note: The features selected to solve this problem is one way of the many ways of
solving the problem. There are obviously other features that can be used. These
features were chosen as they best represent the game environment and has given
promising results.

�25

Table 7: Sample Dataset

Chapter 6

Models & Architecture

6.1 Overview

In this section, we shall discuss the various intelligence models used to train the
game agents, explain the architecture & its working.

As mentioned earlier, the models used in this project are corresponding to the
course curriculum.

The course ‘Computational Intelligence’ taught at UPC contains the following
concepts.

1. Simple Neural Networks [8]

2. Evolutionary Algorithms: Genetic Algorithms - (Rule Based & Neural Network

Based) [9,10,11]

3. Fuzzy Inference Systems (FIS Mamdani & FIS Sugeno) [12,13]

In this project, I solve the problem using all the above mentioned algorithms.

As for as the student is concerned, his practical work will require him/her to do the
same as a practical work for the course with the help of the practical environment
that is developed as a result of the project.

Structure

�26

Game
Environment

Computational
Intelligence

Model

Input Features Output

Next Action

Figure 10: Working Structure

6.2 Simple Neural Network

The problem at hand was trying to predict the correct direction for the snake to
pick at every given point in time. For a specific input that describes the current
state of the game, the neural network should output the most optimal and safe
direction for the snake to take.

6.2.1 Architecture

The neural network architecture that we used to train our
snake is as follows:

Input Layer: 4 nodes.

1 node to represent each feature. [Angle, Front, Left, Right]

Hidden Layer: One fully connected layer of size 10 nodes.
Activation Function : ReLU

Output Layer: A fully connected layer of size 3 nodes
representing the 3 output classes (Straight, Left & Right)

Activation Function: Softmax

6.2.2 Working

The neural network receives an input of
size 1x4, a vector representing the current
state of the game. These values are
passed to the next layer where the edge
w e i g h t s a re m u l t i p l i e d w i t h t h e
corresponding input values. The summed
values that are entering each of the 10 nodes

in the hidden layer are added to the bias value of the respective node in the hidden
layer. Now these 10 values individually are sent to an activation function (ReLU).
The outputs of the activation function (10x1) now progress to the final layer where

�27

Figure 11: NN Architecture

Figure 12: NN Structure

they are once again multiplied with the edge weights & summed with the bias
values respectively. Now the three values that are present, one at each node are
passed to a soft max activation function. Softmax converts these values into
probabilities. It is used in classification problems to get probability values for each
possible output class. The class with the highest probability is picked as the final
output. In this problem, the output classes refer to the possible directions the
snake can take. So the output of the neural network decides the next direction of
the snake.

The weights & bias values of the neural network are learned through back-
propagation. After learning, the weights and bias values that are learnt are good
enough to power the decision making of the Snake.

6.3 Genetic Algorithms

In this section, we are going to talk about the working of genetic algorithms & how
they can be used to evolve a snake that can play the game very well.

Each genetic algorithm requires two basic components.

1. A genetic representation of the solution domain

2. A fitness function to evaluate the solution domain

In this project, we apply the concept of genetic algorithms in two different ways.
Both the methods have different genetic representations which make them unique.
They are,

A. Rule Based System: Using the genetic algorithm, a set of rules are evolved
and learnt over time.

B. Neural Networks: Using the genetic algorithm, the correct weights & bias
values of the neural network are evolved and learnt over time.

�28

Irrespective of the type of representation, the working of a genetic algorithm is
same and has the following phases.

1. Initial population
2. Fitness function
3. Selection
4. Crossover
5. Mutation
6. Repeat or Terminate

Initial Population

The process begins with a set of
individuals which is called a Population.
Each individual is a solution to the
problem you want to solve. An individual
is characterised by a set of parameters
(variables) known as Genes. Genes are
j o i n e d i n t o a n a r r a y t o f o r m
a Chromosome (solution). This array of
bits is what we call a chromosome. We

encode the genes in a chromosome. The meaning of a gene in a chromosome
changes depending on the type of representation.

Fitness Function
The fitness function determines how fit an individual is (the ability of an individual
to compete with other individuals). It gives a fitness score to each individual. The
probability that an individual will be selected for reproduction is based on its
fitness score.

�29

Figure 13: Genetic Representation

In the case of Snake, the fitness values for each individual are calculated as
follows:

+ 1000 for every candy the snake eats

- 150 for colliding with a wall or itself

The final fitness score at the end of the life of each snake are stored & used for
selection.

Selection
The idea of selection phase is to select the fittest individuals and let them pass
their genes to the next generation.

Two pairs of individuals (parents) are selected based on their fitness scores.
Individuals with high fitness have more chance to be selected for reproduction.

Crossover
Crossover is the most significant phase in a genetic
algorithm. For each pair of parents to be mated,
a crossover point is chosen at random from within the
genes. There are different ways to perform crossover.
This varies depending on how the genetic information
is represented.

Offspring are created by exchanging the genes of
parents among themselves until the crossover point
is reached. The new offspring are added to the
population.

Mutation
In certain new offspring formed, some of their
genes can be subjected to a mutation with a low
random probability. This implies that some of the
bits in the array can be flipped.

Mutation occurs to maintain diversity within the
population and prevent premature convergence.

�30

Figure 14: Crossover & Mutation

Repeat or Termination

After a new set of children are generated after crossover and mutation, these
children are called the next generation of children. They once again undergo steps
1 through 5.

The algorithm terminates if the population has converged (does not produce
offspring which are significantly different from the previous generation). Then it is
said that the genetic algorithm has provided a set of solutions to our problem.

6.3.1 Rule Based System

In this section, we will look at how to use a genetic algorithm to train a set of rules.
We will look at how to represent the genetic information and understand the
working of the genetic algorithm to learn a set of rules.

6.3.1.1 Representation

In a rule-based system, the genetic information is represented as a set of rules.
Each and every possible value in the solution domain is represented as a rule.

In this case, the input values are discretised so as to reduce the number of rules.

So the angle values were reduced to a total of 4 possible discrete classes.

The 4 classes are as follows:  

1. Positive Angles (0,1) (Candy present to the right of the Snake)

Any angle falling between 0 and 1 is put under one class

2. Negative Angles (0,-1) (Candy present to the left of the Snake)

Any negative angle falling between 0 and -1 is put under another class

3. 0 (Candy present directly in the line of sight of the Snake)

4. -1/1 (Candy present directly behind line of sight of the Snake)

�31

Now that the input features are discretised, we now have a finite number of
combination of inputs.

Features:

Angle: 4 possible values

Front: 3 possible values

Left: 3 possible values

Right: 3 possible values

So the snake can encounter a total of 4x3x3x3 possible scenarios in the game.

That is 108 different scenarios which together represent the domain.

So we need to create an array of size 108 to represent a unique individual in the
population. The value present in each element of this array is the decision it needs
to take for that corresponding game state/scenario. This array/genetic information
contains the rule/decision the snake needs to take for every scenario it faces in the
game. Good snakes are snakes which have the right set of rules. So for a game
with 108 possible game states, each snake will have an array of size 108 where
each element contains the decision the snake needs to take for that corresponding
game state. This is the chromosome or the genetic information of a snake.

0,1,2 represent the directions the snake needs to
take.

0 - Straight

1 - Right

2 - Left

�32

Figure 15: Example Chromosome

Look Up Dictionary to translate a game state into the respective position in the
chromosome. To find the gene that is responsible for a specific game state.

6.3.1.2 Working

The aim of the genetic algorithm is to evolve the set of individuals over time &
breed a snake that has the right set of rules (Genes) that allows the snake to play
the game very well.

The working of a genetic algorithm is as follows:

1. Initialisation : Create a set of individuals initialised with random values. They
represent the initial population. Since the values are random, the snakes don’t
perform great.

2. For every generation:

A. Calculate the fitness values for each individual in the population.

B. Preserve the best performing individual in that generation.

C. Select 2 of the best performing individuals.

�33

Figure 16: Space Representation

D. Uniform Crossover (33% Chance of Swap) & Create two new children

E. Mutate (1%)

F. Repeat B through D till you have a new set of individuals for next

generation.

G. Terminate if converged, else move to next generation

6.3.2 Training Neural Networks

In this section, we will look at how to use a genetic algorithm to evolve the
parameters of a neural network. We will look at how to represent the genetic
information and understand the working of the genetic algorithm to train neural
networks

6.3.2.1 Representation

In this method, the neural network functions as the brain of the snake. The brain is
given information about the surroundings in the form of an input. The neural
network performs operations on the input based on the weight and bias values.
The output of probabilities is used to determine the decision the snake needs to
take next. Here, the genetic information is represented using a neural network. The
weights & bias parameter values act as the genetic information. They together
function as the chromosome of the same. Refer Figure 17.

The idea is to evolve the weight and bias values
using a genetic algorithm and eventually
produce a neural network that has learnt the
correct parameter values. This evolved neural
network is used to power the decision making
of the snake. So the chromosome is a one
dimensional array. The size is dependent on
the number of parameters that need to be
trained. For this project, the structure of the
neural network is as follows.

�34
Figure 17: How to represent a NN
as a chromosome

Here the structure of the neural network is fixed. The genetic algorithm is used to
evolve (& learn) the parameter values.

There are neuro-evolutionary algorithms that can be used to change the structure
of the Neural Network as well. These algorithms are used to evolve & learn the
ideal structure for the problem. But that is beyond the scope of the project.

6.3.2.2 Working

To evolve the ultimate neural network, we need to first create a group of neural
networks initialised with random weights. Each neural network is used to represent
an individual snake in the population. The parameter arrays from each network
represent the chromosome. Each parameter in the chromosome is a gene.

The working of a genetic algorithm is as follows:

1. Initialisation : Create a set of N Neural Networks initialised with random weight
& bias values. They represent the initial population. Since the values are
random, the snakes don’t perform great.

2. For every generation:

A. Calculate the fitness values for each individual in the population

B. Preserve the weights of the performing individual in that generation.

C. Select 2 of the best performing individuals.

�35

D. Crossover & Create two new children

E. Mutate (1%)

F. Repeat B through D till you have a new set of individuals for next

generation.

G. Update the new weight values to all the neural networks.

H. Terminate if converged, else move to next generation

Crossover Function Modified

The crossover function used here is a little different from how normal crossover
works. Crossover in this case is applied in parts. The entire chromosome is split
into sub chromosomes such that each sub chromosome represents the
parameters of a given layer.

For example, When crossover is applied, the weight values of the hidden layer of
parent 1 are crossed with the weight values of the hidden layer of parent 2.

Similarly, weight values of the final layer are only crossed with the weight values of
the final layer. Crossover does not take place across layers. Crossover happens
individually for each layer.

6.4 Fuzzy Inference Systems

In this section, we shall discuss the final intelligence model that is applied to solve
the problem.

6.4.1 Overview

Fuzzy logic is basically a multi-valued logic that allows intermediate values to be
defined between conventional evaluations like yes/no, true/false, black/white, etc.
Notions like rather warm or pretty cold can be formulated mathematically and
algorithmically processed. In this way an attempt is made to apply a more human-
like way of thinking in the programming of computers ("soft" computing).

�36

Fuzzy logic systems address the imprecision of the input and output variables by
defining fuzzy numbers and fuzzy sets that can be expressed in linguistic variables
(e.g. small, medium and large). Fuzzy rule-based approach to modelling is based
on verbally formulated rules overlapped throughout the parameter space. They use
numerical interpolation to handle complex non-linear relationships.

There are two types of Fuzzy Inference Systems

1. Mamdani
2. Sugeno

Though there are two types, in this project, we have only worked with Sugeno
Fuzzy inference System to solve the problem. In specific, an artificial neuro-fuzzy
inference system (ANFIS) is used to solve the problem.

6.4.2 Background Theory

1. Fuzzification: Translate input into truth values

The purpose of fuzzification is to map the inputs from a set of features to values
from 0 to 1 using a set of input membership functions.

Based on the value from 0 to 1, you’ll be able to calculate the degree.

2. Rule Evaluation: Compute output truth values

Inputs are applied to a set of if/then control rules. These rules are to be written
manually. The results of various rules are summed together to generate a set of
“fuzzy outputs”.

�37

Figure 18: Fuzzy Steps

3. Defuzzification: Transfer truth values into output

Fuzzy outputs are combined into discrete values needed to drive the control
mechanism

In summary, these are the steps to compute the FIS output given the inputs

1. determining a set of fuzzy rules

2. fuzzifying the inputs using the input membership functions,

3. combining the fuzzified inputs according to the fuzzy rules to establish a rule

strength,

4. finding the consequence of the rule by combining the rule strength and the

output membership function (if it’s a mamdani FIS),

5. combining the consequences to get an output distribution, and

6. defuzzifying the output distribution (this step applies only if a crisp output

(class) is needed).

Mamdani FIS

Mamdani-type inference, expects the output membership functions to be fuzzy
sets. After the aggregation process, there is a fuzzy set for each output variable
that needs defuzzification.

�38
Figure 19: Mamdani FIS

Sugeno FIS

Sugeno FIS is similar to the Mamdani method in many respects. The first two parts
of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy
operator, are exactly the same. The main difference between Mamdani and
Sugeno is that the Sugeno output membership functions are either linear or
constant.

A typical rule in a Sugeno fuzzy model has the form: If Input
1 = x and Input 2 = y, then Output is z = ax + by + c

6.4.3 Artificial Neuro Fuzzy Inference System (ANFIS)

An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy
inference system (ANFIS) is a kind of artificial neural network that is based on
Takagi–Sugeno fuzzy inference system. Since it integrates both neural networks
and fuzzy logic principles, it has potential to capture the benefits of both in a
single framework. Its inference system corresponds to a set of fuzzy IF–THEN
rules that have learning capability to approximate nonlinear functions.
In this project, using the fuzzy toolbox in MATLAB, the function ANFIS is called and
is used to train on the snake data this is collected.

�39

Figure 20: Sugeno FIS

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Inference_system
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wiktionary.org/wiki/framework
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Nonlinear_function

Chapter 7

Experimental Results

7.1 Neural Networks

When training a neural network, the most basic requirement is good quality
labelled data. Unlike most problems, there aren’t any readily available datasets
right off the bat. This meant, we had to generate all the data from scratch. The
results depend entirely on the quality of data collected. As mentioned in the
previous sections, we decided to choose a set of 4 features that best help
describe the game state at a given point in time. With the features in place, we
created multiple datasets each unique in its own way.

Most of the experimentation involved trying to find a dataset that works best with
the problem.

Here are some of the many datasets that we collected & the model’s respective
accuracies in test phase. For testing, all the models are tested on a test set with a
set of game states with correct labels assigned manually. The performance of the
model is measure by finding the average score the snake gets in 50 games.

Dataset Size (Samples) Accuracy of
Trained Model %

Average Score

(50 Games)

Manual Gameplay
(Poor)

1200 35% 3

Manual Gameplay
(Good)

1200 69% 38.5

Genetic Algorithm
Snake Data

3000 73% 44

Heuristic 1500 68% 36

�40

Table 8: How Quality of Data Affects
Performance

That quality of data you generate depends on how you collect it & is evident from
Table 8

In the case of generating data manually by playing, there are two things that can
happen

1. You play badly and the data you generate is bad

2. You play really well and generate data that contains mostly the right labels.

As you can see from Table 8, the model trained on the poor data performs badly as
compared to the model trained on the good data. The accuracy value almost
doubles when you have good data.

This brings us to the next observation. Using Genetic Algorithms to generate
quality data. As you can see, the model trained on the data collected from a snake
evolved using a genetic algorithm seems to perform the best out of the lot. The
model trained on GA data seems to pick the right direction 73% of the time.

There wasn’t much experimentation done with respect to trying different hyper
parameters. The structure used to train was almost same for all the datasets. We
could afford to do that as the dataset isn’t huge. There are only 4 features. Since
the dataset is small, there is no need for complicated network structures to fit the

data. The number of samples is
pretty low making the training
process simple.

As you can see in Figure 21, this
is the performance graph of the
Snake trained on Good Manual
Data. This is how the Snake has
scored while playing 10 games.

�41
Figure 21: Model trained on Good Manual Data

In conclusion, the Snake that averaged 38.5 only died in situations where there
was no space for it to move. This solution is the most optimal for the snake
problem. The Snake is able to survive, avoid the walls, the body and manage to
navigate to the candy efficiently almost all the time.The game gets progressively
harder as the score increases. The snake is still able to avoid itself and get to the
candies. The only time it dies, is if does not have any space to move and is forced
to hit a wall or a body.

7.2 Genetic Algorithms

The biggest advantage of Genetic Algorithms is that there is no need for a dataset
to train the model. The algorithm tries to explore the entire solution space
efficiently and produce a Snake that is able to play the game well.

In our project, we chose two different ways to work with genetic algorithms.

We used the GA to:

1. Learn a set of rules that will help the snake make decisions

2. Train a neural network. Using GA to learn weight values.

Rule Based System
Here are the results:

�42
Figure 22: Fitness Values over time

As you can see from Figure 22, we created a population of 40 individuals and ran
the genetic algorithm for 20 generations. At each generation, the best individuals
are saved and they are used as parents to create the next generation by crossover
and mutation. As a result, every generation, the snakes keep evolving and keep
getting better till they reach a saturation point. The traits of the best performing
Snake are passed to the next generation.

As you can see, the fitness values of the snakes are low in the beginning. As the
snakes start evolving, you can see a gradual increase in the fitness values.

All the sudden spikes are the snakes that have performed the best. In generation
13, the algorithm produces the best performing Snake. It has the highest fitness
out of all the other individuals. It took 13 generations for the genetic algorithm to
learn all the rules.

In Figure 23, you can get a better view of the fitness values over time. This graph
represents the fitness value of the best performing individual till that generation. As
you can see, the fitness values are really low for the first few generations. You can
see a steep learning curve during generation 3. After that you can see it rise once
more at generation 7. Finally, you can see the Algorithm produce the best
performing snake at generation 13. After that, the subsequent generations did not
produce a better snake. The algorithm converged at generation 13. The best

individual when run for 50 games, averaged a score of 42.

�43

Figure 23: max(Fitness) vs Generation

Training a Neural Network with a Genetic Algorithm
These were the results we observed when we used GA to train the weights of the
neural network.

We created a starting population of size 50. We had to create 50 neural networks
with random parameter values assigned to them. We let them play and evolved the
Neural Networks over time using GA. Like the previous experiment, we decided to
run the program for 10 generations. As you can see from Figure 24, these are the
resulting fitness values of the individuals over time.

Initial generations have low fitness values. The first steep increase is in generation
5. Immediately after that, in generation 6, the Genetic Algorithm peaks. This is the
best individual the algorithm has evolved. After that, you can that the values are
very similar. There is no increase in fitness after generation 6. So it is safe to
assume the algorithm has converged.

The best individual when run for 50 games, averaged a score of 37.

�44

Figure 24: Fitness over time (Neural
Network Evolution)

7.3 Fuzzy Inference Systems

The project didn’t require me to design rules or train fuzzy models to play snake.

As a part of the project, I have added features in the application that give the

student the ability to open MATLAB’s fuzzy toolbox from the application. They can

then use the toolbox to build both mamdani and sugeno .fis models which they

can later open from the application & test on the Snake. The application has

support to run MATLAB scripts during runtime within python as well.

On a general note, Fuzzy Inference Systems are used when you experience

uncertainty with your input. If your values are not discrete, you need a way to be

able to represent intermediate values. If you need to address vagueness in your

features, you will find fuzzy useful.

In the case of snake, there is no use for fuzzy inference system for the following

reason:

All the features are discrete. There is no vagueness to represent. The spaces are

either occupied or free. There are no intermediate value the features take. So

writing rules for snake using fuzzy would mean that you write all the possible rules

as IF-THEN statements. So this would be same as writing rules for all the possible

scenarios by hand. This beats the point of fuzzy.

Future Work: There is later going to be support for another game in the
application. This game can have features that can make a fuzzy inference system

relevant to use. An example for the game could be a car learning to steer, break &

accelerate depending on its surroundings. In this example, there is a need to

define the amount of break / acceleration /steer that needs to be applied. This is

the perfect use of Fuzzy as you can use fuzzy to represent intermediate values.

�45

Chapter 8

Building the Application

8.1 Overview

As mentioned in the previous sections the main aim of this project is not just to use
computational intelligence models to solve the problem but also to build a tool that
the students can use in order to test their theoretical skills practically on a hands-
on environment.

In this section, we aim to discuss and highlight the various features that are added
to the application to enable the student to further understand the concepts taught
in class.

The entire application is built using Python. The GUI is coded with the help of a
package called PySimpleGUI. Though the application is in python, it can run
commands and scripts on MATLAB. This is done by calling the MATLAB engine
realtime from python with the help of an API. This API establishes a pipeline
between Python & MATLAB.

When the application is launched, this
is the splash screen (Figure 24) the
student is greeted with. The student
can choose to do the following things: 
1. Generate Data

2. Use the Demo feature to look that
benchmark models that was
developed and trained during this
project.

3. Test the models he has built on the
application.

�46

Figure 25: Startup Screen

In the next section, the above mentioned features are mentioned in detail.

8.2 Key Features

In this subsection, we will be discussing all the major features that are integrated
into the application which can be made use of by the student.

The application’s major features can be broken down into three main categories :

1. Demo
Using the Demo Feature the students can run pre-existing trained models just to
get an idea of the benchmark that they need to surpass. These are the models that
we have trained as a part of the project. These models work really well and is used
as benchmark for the students to evaluate their models.

2. Test
Using the Test Feature the student can choose a model that they have trained to
see how well their model performs in comparison to the ideal model (which is
provided). They can choose which model they want to run with the application.
They have the freedom of building a model with Python or MATLAB. Then can also
use the model to generate data. The students also get a real time plot of their
model’s performance. The graph prints real-time as the program runs.

3. Data Generation
This is the most important feature of the application. It enables the student to
generate data by one of the many ways mentioned below:

a. Manual

b. From a pre-existing model

c. Using a genetic algorithm to evolve a snake that plays well. This snake is then

used to generate quality data

�47

Other Notable Features
1. You can choose the number of games to play/to test/to generate data.

2. You can control the frame rate

3. You can choose which file you want to store data and in which mode (read,

append, etc)

4. You can plot your snake’s performance in real time

5. This application supports MATLAB as well as python models

6. There is an inbuilt manual that can be accessed at any point to help the

student if runs into a problem.

7. Support to open MATLAB from Python. This is used to open the Fuzzy

Toolbox if they student wants to build .fis models.

8. There is an inbuilt manual to help resolve issues, if any.

8.3 Snapshots

Here are a few snapshots just to give a glimpse of what this application can offer

�48Figure 26: Data Generation Screen

�49

Figure 27: Running & Testing your
own models

Figure 28: Performance Plots in Real-
time

8.4 Limitations

Since the students do not have access to the source code, they do not have the
freedom to change the number of features.This means, they will have to work the 4
default features for the time being. Future support will include support for adding
and remove features at will.

Also, they do not have the freedom to fetch any value they want from the game
environment. They are forced to work with the set of features that are prescribed.
The students don’t have access to the API can be used to fetch game environment
variables. The application works only on windows and linux. There is no support
for macOS as macOS has stopped support for SDL1.

�50

Figure 29: Genetic Algorithm Splash
Screen

Chapter 9

Deployment

9.1 Overview

The project is to be deployed in the computer lab systems at FIB, UPC. The aim of
the application is to serve as a testing tool for the students. As and when a
theoretical concept is taught, the course requires them to apply the knowledge
and solve the problem of trying to design an AI that can play the game well. They
need to use the application deployed in the lab systems to test the models that
they’ve trained. All the other notable features have been mentioned in the previous
section.

The teachers of the course will be using the application as a tool to test the
students’ knowledge of the concepts that they have taught by making them train
their models and test them via the application.

9.2 Software & Package Requirements

• Python 3.7

• Windows (7 or later) or Linux

• SDL2 driver required (Simple Direct Media Layer)

• MATLAB 2018 (or above) with API engine to communicate with a python script.

• PyGame

• PySimpleGUI

• Tensorflow

• Keras

�51

9.3 Supported Model Formats

• Tensorflow .h5 models (If python is the programming language of choice)

• Keras .h5 models (if Python is the programming language of choice)

• MATLAB .fis models from the fuzzy toolkit

• MATLAB NN models from the Neural Networks Toolkit

9.4 Changes 

During the realisation of the project, there were a certain number of changes that
were made to the original plan.

i) Initially, there was a plan to implement multiple games into the practical
environment, but as of now only Snake Game has been implemented into the
practical environment.

ii) At the start, it was decided that the language support for coding the CI models
in the application would be in Python. This was later changed as the students
are more comfortable using matlab to write code and train their models. Hence,
the application now has support for both Matlab and Python.
Adding support for Matlab was a problem initially. This was solved by
establishing a link between python and the matlab engine using a matlab API.
This enables python to call the matlab engine and execute matlab scripts
directly from python.

iii) There was no plan to implement Genetic Algorithm for training the weights of a
Neural Network. The original plan was to use Genetic Algorithms to train a set
of rules which would power the game agent. Since there was more time,
GenetIic Algorithm was also used to train Neural Networks to power the Agent’s
decision making.

�52

iv) Lack of Simple DirectMedia Layer support for MacOS. The entire game
interface was built ground up using ‘PyGame’, a graphics library for python.
Pygame was built based on SDL1.The latest version of MacOS supports SDL2,
not SDL1.This served as a obstacle for development as majority of the
development was done on a MacOS system. This works perfectly on windows
and linux systems. For the sake of development, the game has to be coded
again adding SDL2 support/ or the system for development is to be changed (A
windows system instead of a Mac).

�53

Chapter 10

Conclusion and Future Work

We can all agree that Artificial Intelligence has changed our lives for the better. It

has completely revolutionised the technology landscape that millions of people

reap benefit from. That said, there are so many problems that exist in this world

that still need to be solved. It is upto the current & future generation of engineers to

use their skills and make a difference. For us to make the difference, we need all

the education we can get from the universities we study in. Most colleges teach

the theory well, but fail to focus on the practical aspects. In reality, you can’t learn

with just theory. You need to implement what you learn to truly understand the

concepts.

That’s why a tool like this would be the perfect learning tool for students learning

Machine Learning or Artificial Intelligence for the first time. This tool with its

intuitive features will enable the student to take interest in the subject and solve

the problem. Video games have been used as a learning tool for a long time now

[6]. It is proven that, video games help increase interest in the learning process.

After all, learning isn’t learning if it is not enjoyed. Hopefully, this tool can make a

difference in FIB,UPC by helping the students understand the workings of various

Intelligence models really well and enable them to make a huge impact in the

industry.

That said, there are still many limitations in the current iteration of the project. In

the subsequent versions, these are some of the changes that will be introduced

1. Feature Flexibility

2. Support for macOS systems

3. Support for more programming languages and model formats

4. More features to enhance functionality

5. More intelligence models are to be integrated into the application

�54

References

[1] https://www.weforum.org/agenda/2017/12/charts-artificial-intelligence-ai-index/

[2] http://cdn.aiindex.org/2018/AI%20Index%202018%20Annual%20Report.pdf

[3] https://gym.openai.com/

[4] https://www.fib.upc.edu/en/studies/masters/master-artificial-intelligence/
curriculum/syllabus/CI-MAI

[5] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
New Jersey: Pearson Education, 2010.

[6] https://www.forbes.com/sites/forbestechcouncil/2018/10/09/how-video-
games-help-students-level-up-stem-learning/#786619de1a78

[7] Galway, Leo & Charles, Darryl & Black, Michaela. (2008). Machine learning in
digital games: A survey. Artif. Intell. Rev.. 29. 123-161. 10.1007/s10462-009-9112-
y.

[8] Baba, Norio & Kita, Tomio & Oda, Kazuhiro. (1995). Application of artificial
neural networks to gaming. Proceedings of SPIE - The International Society for
Optical Engineering. 465-476. 10.1117/12.205151.

[9] Thengade, Anita & Dondal, Rucha. (2012). Genetic Algorithm – Survey Paper.
IJCA Proc National Conference on Recent Trends in Computing, NCRTC. 5.

[10] Lingaraj, Haldurai. (2016). A Study on Genetic Algorithm and its Applications.
International Journal of Computer Sciences and Engineering. 4. 139-143.

[11] Kearney, William T., "Using Genetic Algorithms to Evolve Artificial Neural
Networks" (2016). Honors Theses. Paper 818. http://digitalcommons.colby.edu/
honorstheses/818

[12] Navneet Walia, Harsukhpreet Singh & Anurag Sharma. ANFIS: Adaptive
Neuro-Fuzzy Inference System- A Survey.

International Journal of Computer Applications (0975 – 8887) Volume 123 – No.13,
August 2015

[13] Swati R. Chaudhari and Manoj E. Patil. Comparative Analysis of Fuzzy
Inference Systems for Air Conditioner.

International Journal of Advanced Computer Research (ISSN (Print): 2249-7277
ISSN (Online): 2277-7970) Volume-4 Number-4 Issue-17 December-2014

�55

https://www.weforum.org/agenda/2017/12/charts-artificial-intelligence-ai-index/
http://cdn.aiindex.org/2018/AI%20Index%202018%20Annual%20Report.pdf
https://gym.openai.com/
https://www.fib.upc.edu/en/studies/masters/master-artificial-intelligence/curriculum/syllabus/CI-MAI
https://www.fib.upc.edu/en/studies/masters/master-artificial-intelligence/curriculum/syllabus/CI-MAI
https://www.forbes.com/sites/forbestechcouncil/2018/10/09/how-video-games-help-students-level-up-stem-learning/#786619de1a78
https://www.forbes.com/sites/forbestechcouncil/2018/10/09/how-video-games-help-students-level-up-stem-learning/#786619de1a78

Appendix A: Requirements

The following tools are required for the project.

Software

• Python - This was chosen as the language of implementation as it is by far the
best programming language for Machine Learning project. It being open sourced
is also an added benefit. It also comes with a huge library of packages which can
be used for completing various tasks. It also has the ability to run MATLAB
scripts. So naturally, python was the language of choice.

 Python Packages

• Pandas, Seaborn, Matplotlib - For all data manipulation & visualisation
purposes

• h5py for storing processed data. Models etc.

• Keras. We use Keras for implementing all the neural networks used in the
project. It is a high-level neural networks library, capable of fast
experimentation

• PyGame. It is an open-source module for the Python programming
language specifically intended to help make games and other multimedia
applications. Built on top of the highly portable SDL (Simple DirectMedia
Layer) development library

• PySimpleGUI. It is an easy to use python GUI library based on tkinter. This
is one of the very few GUIs that support PyGame.

• Matlab Engine - A package that helps add MATLAB support for python. It
helps establish a connection between python & matlab allowing the user to
run MATLAB scripts & commands from python during runtime.

• Git - This tool is used for project management & version control. Helps you
commit and push changes to your repository where all the project files are stored

• Sublime Text 3 - A beautiful code editor. Has features that let you use Git with
the editor. You can handle your branches, make changes etc all from the code
editor

�56

• MATLAB - MATLAB (matrix laboratory) is a multi-paradigm numerical
computing environment and proprietary programming language developed
by MathWorks. MATLAB allows matrix manipulations, plotting of functions and
data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other languages, including C, C+

+, C#, Java, Fortran and Python. MATLAB contains the fuzzy toolbox which is a
requirement for the project.

�57

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Proprietary_programming_language
https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Python_(programming_language)

	Facultat d’Informàtica de Barcelona

