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Abstract

3D Hall probes designed and produced by ALBA Synchrotron are currently being
used at ALBA magnetic measurements laboratory to carry out accurate magnetic
characterization of magnets and insertion devices. In order to characterize the mag-
netic fields with great accuracy, it is essential to have measuring devices calibrated
with a high degree of precision. In this thesis we present the design and construc-
tion of a system of 3D Helmholtz coils with the objective of generating a magnetic
field in any direction in a controlled way. This system will be used to determine
with detail the response of the 3D Hall probes when applying magnetic fields with
different orientations. The system will generate magnetic fields of up to 50 G with
an expected angular precision of 0.2 mrad.



Moltes gràcies a tota la gent que m’ha ajudat en l’elaboració d’aquest treball i
especialment, a Jordi Marcos.
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1 | Introduction

ALBA is a synchrotron light facility located in Cerdanyola del Vallès that came
into operation in 2012. ALBA is managed by the Consortium for the Construction,
Equipping and Exploitation of the Synchrotron Light Source (CELLS) and it is
founded in equal parts by the Spanish and the Catalonian Administration.

This large scientific infrastructure is designed to produce synchrotron light, which
allows the visualization of the atomic and molecular structure of matter as well as
the study of its properties and therefore, it can be used practically in all scientific
research areas. ALBA synchrotron has a perimeter of 270 meters which has 17
straight sections available for the installation of insertion devices and it currently
has eight operational state-of-the-art beamlines.

Figure 1.1: Schematic layout of ALBA synchrotron and the distribution
of the different beamlines.

Synchrotron light is emitted by the electrons when they move at velocities near
the speed of light in curvilinear trajectories. ALBA runs at an electron beam energy
of 3 GeV, which is achieved by combining a linear accelerator (LINAC) and a low-
emittance, full-energy booster placed in the same tunnel as the storage ring. ALBA

1



1. Introduction 2

accelerators are equipped with different types of electromagnets (dipole magnets,
quadrupole magnets, sextupole magnets) used to guide and focus the electrons along
the trajectory. Finally, to provide the light beam with the characteristics that each
beamline requires, insertion devices made of coils or made of permanent magnets
are used.

Therefore, the role of magnetic fields in a synchrotron is very important and to
have a precise characterization of them is a crucial factor. That’s why the ALBA
Synchrotron magnetic measurements laboratory has a great relevance within the
complex and is where the magnetic characterization of magnets and insertion devices
is carried out.

1.1 Motivation and brief description of the work
carried out

In order to characterize the magnetic fields with great accuracy it is essential to have
very well calibrated measuring devices. A 3D Hall probe designed and produced by
ALBA is currently being used at ALBA magnetic measurements laboratory.

Figure 1.2: View of the ALBA magnetic measurement laboratory.

The Hall probe consists of three individual Hall effect sensors assembled in a
quasi-orthogonal arrangement. During the calibration process of the 3D Hall probes,
the angular deviations from ideal orthogonal arrangement are measured, and the
obtained values are introduced in the algorithm that transforms the Hall voltage
measured by the Hall sensors into 3D magnetic field components. The current
calibration methodology has an accuracy of approximately 10 mrad.

So as to face the current challenges in magnetic measurements, it is necessary
an increase in the accuracy of the determination of angular deviations of the 3D
ALBA Hall probe. In this work we describe how we have carried out the design
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and construction of a 3D Helmholtz coil system with a high mechanical accuracy
allowing the achievement of an angular precision in the calibration of Hall effect
probes of approximately 0.2 mrad.

To perform the design, a magnetostatic simulation code (RADIA) has been used
to analyse the influence of the geometric and design parameters (coil radius, conduc-
tor diameter, number of turns, current) of a pair of Helmholtz coils over the merit
figures of the system (intensity and homogeneity of the magnetic field generated,
heating of the system). For the analysis of the thermal effects associated with power
dissipation in coils, we have used finite element simulations made with the Siemens
NX program.

Then, we have optimized the design of the three-dimensional coil system in order
to achieve a compromise between the values of the different figures of merit. In
addition, once the model has been defined, the possible errors in the manufacture
and alignment of the coils on the characteristics of the generated magnetic field have
been studied, and the tolerances required to achieve the quality of the desired field
have been determined. After that, the set of drawings for its manufacture has been
prepared.

To sum up, this bachelor’s thesis arises from the need to have a system at ALBA
magnetic measurements laboratory that allows us to generate a well defined magnetic
field in order to calibrate 3D Hall probes with great accuracy. This system will
consist of three orthogonal pairs of Helmholtz coils and, in the different sections of
this work, the entire process of its design is detailed.



2 | Theoretical fundamentals

2.1 1D Helmholtz coil

A Helmholtz coil pair consists of two equal parallel coaxial circular coils which are
connected in series and separated by a distance equal to their common radius. This
configuration is used to establish a known and nearly uniform magnetic field in a
region surrounding the centre point of the axis between the two coils [1].

Our interest is in the calculation of the magnetic field B at the midpoint between
the coils. First, we start calculating the magnetic field at a point on the axis of a
circular current loop a distance x from the circular loop’s centre.

Figure 2.1: Left : Model of a 1D Helmholtz coil pair. Right : Geometry
for calculating the magnetic field at a point on the axis of a
circular current loop.

The Biot-Savart law states that the magnetic field d ~B produced by a current
element I d~l is given by

d ~B =
µ0

4π

I d~l × r̂
r2

(2.1)

Therefore, the magnitude for the on-axis field d ~B due to a single wire loop
segment is

|d ~B| = µ0

4π

I |d~l × r̂|
r2

=
µ0

4π

I dl

(x2 +R2)
(2.2)

4
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where we have used the facts that r2 = x2 +R2 and that d~l and r̂ are perpendicular,
so |d~l × r̂| = dl. µ0 is the vacuum permeability (4π · 10−7 N/A2).

When we sum around all the current elements in the loop, the components of
d ~B perpendicular to the axis of the loop, such as d ~By in Fig. 2.1, sum zero, which
leave only the component d ~Bx that is parallel to the axis. Thus,

dBx = dB sin θ =
µ0

4π

I dl

(x2 +R2)

R√
x2 +R2

=
µ0

4π

IRdl

(x2 +R2)3/2
(2.3)

To find the field due to the entire loop of current, we integrate dBx around the
loop and the magnetic field Bx results

Bx =
µ0IR

2

2(x2 +R2)3/2
(2.4)

The Helmholtz coils consist of N turns of wire, so we must substitute I for NI
in Eq. (2.4) to obtain the field for an N -turn coil:

Bx(x) =
µ0NIR

2

2(x2 +R2)3/2
(2.5)

Moreover, in a Helmholtz coil, a point halfway between the two loops has an x
value equal to R/2, so the field strength at that point is

Bx(R/2) =
µ0NIR

2

2((R/2)2 +R2)3/2
(2.6)

Finally, we must take into account that there are two coils placed on the same
axis (i.e., one coil is at x = 0 and the second coil is at x = R) and from symmetry,
the field strength BH at the midpoint is twice the single coil value (See Fig. 2.2):

BH(R/2) = 2Bx(R/2) =
8

5
√

5

µ0NI

R
(2.7)

Figure 2.2: Left : Magnetic field generated by a 1D Helmholtz coil along
the x axis, which is obtained by superimposing the two con-
stituent fields. Right : Magnetic field lines for Helmholtz
coils. Between the coils the lines are straight as a conse-
quence of the uniformity of the field.
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2.2 The Hall effect

The Hall effect is a galvanomagnetic phenomenon that produces, as a response,
the appearance of a potential difference (Hall voltage) between the two edges of a
conductor or a semiconductor strip through which is flowing a current density in
presence of a magnetic field component perpendicular to the flow direction. The
resulting Hall voltage is proportional to the magnetic field intensity and to the
current and it is developed across the material in a direction perpendicular to both
the current and to the magnetic field. Hall effect sensors are devices that exploit the
Hall effect to measure the magnitude of a magnetic field. Thus, this phenomenon is
an ideal magnetic field sensing technology.

2.2.1 Simplified approach of the Hall effect

In this section we describe the Hall effect in its simplest and classic form, where a
long current-carrying strip is exposed to a magnetic field [2]. We consider a Hall
effect sensor made of a thin strongly extrinsic n-type isotropic semiconductor (the
majority carriers are electrons) with length L in the x direction, width w in the y
direction and thickness t in the z direction. We assume a particle charge e = −q,
a charge carrier number density n (i.e., number of carrier per unit volume) and the
same velocity vn for all the electrons (smooth drift approximation) when a current
I flows in the longitudinal direction (See Fig. 2.3).

The current I is equal to the current density j times the cross sectional area of
the conductor wt and j is the charge density −nq times the velocity of the electron
vn. Therefore, I is given by

I = jwt = −nqvnwt (2.8)

When no magnetic field is applied, the electrons move in the longitudinal di-
rection parallel to the longitudinal external electrical field Ee applied. The current
density j is related to the electric field by Ohm’s law:

j = σEe (2.9)

where σ is the material conductivity.

As soon as the semiconductor is placed in a magnetic field perpendicular to the
plane of the slab, the charge carriers experience a Lorentz force −q~vn × ~B that
deflect them toward one edge of the strip. Consequently, there is an accumulation
of charges along one side of the slab which creates a transverse electric field EH that
counteracts the force of the magnetic field.
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Figure 2.3: Diagram illustrating the Hall effect and governing parame-
ters.

Equilibrium is reached when the magnetic force pushing the carriers aside and
the reacting electric force pushing them back to the middle are balanced. At this
point, electrons will again move in the longitudinal direction. Then, this equilibrium
is expressed by

~EH = −~vn × ~B (2.10)

where EH is the Hall field, that can be expressed only as a function of the velocity
of the electrons and of the applied magnetic field.

Moreover, a measurable transverse voltage VH (Hall voltage) is produced between
the two sides of the strip. This represents the most tangible effect associated with
the Hall effect. VH can be calculated along the width of the strip using

VH = −
∫ w

0

~EH ~dl = − j

nq
Bzw = − 1

nq

IBz

t
=
RH

t
IBz = SBz (2.11)

RH is known as Hall coefficient, which depends on intrinsic parameters of the sensor’s
material, and it is given for the electrons by RH = −1/(nq) = −µn/σ, where µn is the
electrical mobility of the electrons. Bz is the magnetic field component perpendicular
to the sensor and S is the resulting magnetic sensitivity providing the proportionality
factor between the field to be measured and the generated voltage.

In a real situation, however, there are several deviations from the ideal linear
behaviour: the measured voltage is different from zero in the absence of a magnetic
field (offset voltage), the Hall coefficient of the sensor’s material depends on tem-
perature and, as a result, also the sensitivity, and finally, the Hall voltage has an
additional contribution from the magnetic field components within the plane of the
sensor, which is known as planar Hall effect (∝ BxBy). Apart from that, there are
nonlinearities and higher-order cross-terms too. Therefore, the Hall voltage in a real
situation can be expressed as

VH(Bx, By, Bz) = Voffset + S(T )Bz + cpBxBy + o(B2) (2.12)

where cp is the planar Hall coefficient and o(B2) refers to the contribution of the
non-linear therms excluding the planar Hall effect [3].
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If we want to reach good accuracy in the determination of the magnetic field,
this deviations from ideal behaviour have to be properly taken into account. For
this reason, calibration using a parametric model based on Eq. (2.12) is important.

2.3 Calibration of 3D Hall probes at ALBA

Calibration is necessary to reconstruct the magnetic field being measured from the
output signal of the Hall probes. The calibration is the test during which known
values of the magnetic field are applied to the Hall probe and the corresponding
output reading is recorded.

Hall probes at ALBA consist of an inhouse PCB board with three quasi-orthogonally
mounted uniaxial commercial Hall sensors situated on top of an aluminium profile
arm [3]. They are soldered on the circuit board with a typical accuracy of ±3o. We
use gallium arsenide planar sensors of GH-series (GH-700 and GH-701 models) from
FW Bell, with a magnetic sensitivity of S ∼ 1 VT−1 for a control current of 5 mA
and a sensitive area with a diameter of 0.3 mm. The three sensors are powered in
series using a high stability current supply. Keithley 2001 voltmeters are used to
record the generated Hall voltages, with a resolution of 7 1/2 digits. Furthermore, to
keep the temperature of the probe within ±0.05oC, Pt-100 temperature sensor and
a heater are also mounted on the circuit board of the Hall probes (See Fig. 2.5).

During the calibration process of the 3D Hall probes, the angular deviations from
ideal orthogonal arrangement are measured, and the obtained values are introduced
in the algorithm that transforms the Hall voltage measured by the Hall sensors into
3D magnetic field components. It is crucial to determine these angular misalignments
in order to enable a precise reconstruction of the magnetic field.

As we have said before, in this process of calibration we have to model the
response of the Hall probe to an external field. First, if we consider only one Hall
effect sensor, the magnetic field components in the reference system of the Hall
sensor are given by

(BX , BY , BZ) = (B cos Φ sin Θ, B sin Φ sin Θ, B cos Θ) (2.13)

where Θ and Φ are the polar and azimuthal angles of the magnetic field relative to
the Hall sensor [4].

Then, the response of the Hall sensor to the applied field has the following ex-
pression:

V (B,Θ,Φ, T ) =
∞∑
l=0

l∑
m=−l

clm(B, T )BlYlm(Θ,Φ) (2.14)

where Ylm(Θ,Φ) are spherical harmonics. However, according to the work of Bergsma
[5], only some of the terms clm have a significant contribution to the value of V .
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Figure 2.4: Left : Reference system of a Hall sensor. Right : Misalignment
of the Hall sensor.

Furthermore, it shall be taken into account that the Hall sensors are not perfectly
aligned with respect to the reference frame of the laboratory. We have the following
relation:B′

X

B′
Y

B′
Z

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

BX

BY

BZ

 (2.15)

where ψ, θ and φ are Euler angles defining the misalignment of the Hall sensor
relative to the component of the magnetic field to be measured (See Fig. 2.4). As
we have explained before, our objective in the process of calibration is to find the
corresponding values of these angles.

Therefore, the response of the Hall sensor to an external field in terms of the
laboratory frame components is

V [B′X(BX , BY , BZ), B′Y (BX , BY , BZ), B′Z(BX , BY , BZ), T ] (2.16)

Eq. (2.16), based on Eq. (2.12), takes into account the offset voltage, nonlinear-
ities, cross-terms between magnetic field components (planar Hall effect and higher-
order terms) and the non-orthogonality between the three Hall sensors mounted on
the circuit board. Since we have three Hall sensors, the Hall voltage generated on
each sensor of the probe is thus expressed in terms of the three components of the
external field.

Figure 2.5: Left: Laboratory reference frame. Right: Diagram of a typi-
cal Hall probe used at ALBA.
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vertical probe a© (Xa, Ya, Za)↔ (z, x, y) Va(Bx,By, Bz, T )

horizontal probe b© (Xb, Yb, Zb)↔ (y, z, x) Vb(Bx, By, Bz, T )

long. probe c© (Xc, Yc, Zc)↔ (x, y, z) Vc(Bx, By,Bz, T )

In the case of working with small values of B, only the offset voltage (c00) and
the linear terms will contribute significantly to the values of the voltages. More-
over, as the measurements will be done at constant temperature, the increment of
temperature will be insignificant. Under these conditions, the expressions for the
voltages result [4]:

Va(Bx, By, Bz) = ca00 + ca10B
a
y

Vb(Bx, By, Bz) = cb00 + cb10B
b
x

Vc(Bx, By, Bz) = cc00 + cc10B
c
z

(2.17)

a©


Bay = By cos θa +Bz sinφa sin θa −Bx cosφa sin θa
Baz = By sinψa sin θa +Bz(cosφa cosψa − sinφa sinψa cos θa) +Bx(sinφa cosψa + cosφa sinψa cos θa)

Bax = By cosψa sin θa −Bz(cosφa sinψa + sinφa cosψa cos θa) +Bx(cosφa cosψa cos θa − sinφa sinψa)

b©


Bbx = Bx cos θb +By sinφb sin θb −Bz cosφb sin θb
Bby = Bx sinψb sin θb +By(cosφb cosψb − sinφb sinψb cos θb) +Bz(sinφb cosψb + cosφb sinψb cos θb)

Bbz = Bx cosψb sin θb −By(cosφb sinψb + sinφb cosψb cos θb) +Bz(cosφb cosψb cos θb − sinφb sinψb)

c©


Bcz = Bz cos θc +Bx sinφc sin θc −By cosφc sin θc
Bcx = Bz sinψc sin θc +Bx(cosφc cosψc − sinφc sinψc cos θc) +By(sinφc cosψc + cosφc sinψc cos θc)

Bcy = Bz cosψc sin θc −Bx(cosφc sinψc + sinφc cosψc cos θb) +By(cosφc cosψc cos θc − sinφc sinψc)

2.3.1 Calibration using 3D Helmholtz coil system

The misalignment angles between the Hall sensors are currently estimated at ALBA
magnetic measurements laboratory by placing the probe inside a calibration dipole
(Fig. 2.6) at a series of predefined orientations with the help of mechanized pieces.
This calibration methodology has an accuracy of approximately 10 mrad.

Figure 2.6: Calibration magnet.
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Nowadays, it is necessary an increase in the accuracy of the determination of
angular deviations of the 3D ALBA Hall probe. Nevertheless, because of the small
gap dimension of the calibration magnet (15 mm), we cannot implement an accurate
mechanical system providing a full control of the orientation of the Hall probe inside
the magnetic field generated by the dipole. Thus, we have decided that we want to
calibrate our 3D Hall probes with a 3D Helmholtz coil system with a high mechanical
accuracy, that will allow us to generate a magnetic field with an arbitrary and
well controlled orientation and it will also enable us the achievement of a better
precision in the calibration of Hall effect probes. A similar system was designed and
constructed at CERN [6].

Once we will have the coils that constitute de 3D Helmholtz coil system, we will
have to determine the intensity necessary to generate a magnetic field B of a specific
magnitude for each pair of coils. To do that, we will use a fluxgate magnetometer
Bartington Mag-01 (|B|<20 G). As a result, we will obtain the coefficients that
relate the intensity values that must be applied at each pair of coils.

Then, we will apply a sinusoidal function of intensities to each pair of coils.
These functions will be out of phase from on pair to another in order to scan all the
magnetic field values belonging to the surface of a sphere (of radius |B|) situated at
the centre of our system of coils. At each point of the sphere we will know the three
components of the magnetic field (Bx, By, Bz), because there aren’t ferromagnetic
parts and thus, it’s a linear system and the principle of superposition can be applied.
While we apply the intensities, we have to place our Hall probes at the centre of the
system of coils and the voltages measured by each sensor will be recorded.

Finally, we will apply least squares fitting using Eq. (2.17) in order to determine
c00, c10, θ and φ parameters for each sensor. We can see that the angle ψ doesn’t
appear in Eq. (2.17) since it corresponds to an additional rotation around the
principal axis of the sensor, and we will only obtain information if the applied
magnetic field is large enough to consider a non negligible planar Hall effect.

All in all, after calibrating our Hall probes by means of the system of 3D
Helmholtz coils, we expect to achieve an accuracy in the calibration of Hall effect
probes of approximately 0.2 mrad.
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3.1 Specifications of our design

We want to develop a model corresponding to a system of 3 dimension Helmholtz
coils with the aim of generating a magnetic field of known direction and magnitude,
and besides, this magnetic field must be homogeneous within 10−4 in a volume of
15x15x15mm3. It is worth saying that we have decided to impose our homogeneity
requirement over a volume of 15x15x15mm3 because the sensors are mounted on
the circuit board along a common line with a separation of 5.45 mm between them.
The set of requirements that the system must fulfil is summarized in Tab. 3.1.

“Wish-list” Specifications
3D Construction 3 pairs of coils
Minimum homogeneous magnetic field value
to optimize the resolution for calibration 50 Gauss

Same field strength for all three axes Needs to compensate with
coil size and number of turns

Largest possible homogeneous field size
(Homogeneity zone) 15x15x15mm3

Tolerance in the homogeneity
of the magnetic field

∼ 10−4, which is the same as,
∼ 0.01%

Cooling Air cooling
Maximum system heating 20 oC
Magnetic field orthogonality 0.2 mrad

Table 3.1: 3D Helmholtz system specifications.

Thus, the model has to consider and establish the following aspects:

a) General dimensions of the system to guarantee the specified field homo-
geneity in its central zone.

b) Determination of the maximum field that can be generated taking into
account the thermal dissipation of the coils.

c) Mechanical alignment tolerances of the different coils in order to achieve
the accuracy required in the alignment of the generated magnetic field.

12
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3.2 Design parameters

The magnetic field strength in a Helmholtz coil can be calculated by the expression

B =

(
4

5

) 3
2

µ0
NI

R

as we have deduced in Eq. (2.7). Therefore, the parameters that must be determined
to achieve the desired magnetic field are the current (I), the number of turns (N)
and the radius of the coil (R).

In addition, as we have specified in Tab. 3.1, another factor to take into account
is the cooling of the coils, since they are heated as a consequence of the dissipated
electrical power by Joule’s effect. This fact can lead to mechanical distortions of
the system and it can seriously damage the coil insulation and cause short circuits
between the coil conductor and the surrounding equipment that is used.

We are interested in air cooling so as to avoid increasing the complexity of the
whole system. Air cooling is a combination of natural convection, radiation and
heat conduction, and it depends on coil geometry, coil surface (roughness, material,
colour), thermal contact to the surrounding materials, etc. This type of cooling
is possible when working with low current densities and, as a rule of thumb, the
maximum current density that must be used for voluminous coils must not exceed
1A/mm2 and, for the case of small coils and with smaller cross section, current
density can be higher but below 2A/mm2 (1 ≤ j ≤ 2 A/mm2) [7].

The current density j in [A/m2] is defined as follows:

j =
N I

fc A
=

I

acond

(
fc =

net conductor area
coil cross section

)
(3.1)

where acond is the conductor cross section in [m2], A corresponds to the coil cross
section in [m2] and fc is a dimensionless geometric factor known as ‘filling factor’.

The filling factor is the ratio of the area of electrical conductors to the provided
winding space (coil cross section). The value of fc varies depending on the winding
precision, the thickness of the insulating material and the conductor cross section.
We consider a circular cross section copper conductor and, owing to the fact that a
round wire will create air gaps that are not electrically used, the fill factor will be
smaller than one. The typical fc value used for round conductors is 0.63 [7].

The total dissipated power for each coil is calculated by:

Pel = I2 ·Rel (3.2)

where Rel is the electrical resistance.
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Rel = ρCu
l

acond
= ρCu

N2πR

πd2/4
= ρCu

8NR

d2
(3.3)

ρCu is the electrical resistivity of the copper (1.68 · 10−18 Ω·m) and d the diameter
of the conductor.

In the following sections we detail the simulations done in order to determine the
design parameters of our system of 3D Helmholtz coils.

3.3 Simulations with RADIA

RADIA is a fast multiplatform software dedicated to 3D magnetostatics computation
[8]. We use this simulation code to calculate the magnetic field generated by the
distribution of the 3 dimension Helmholtz coils that we want to design. Initially,
we wrote a code where I, R, N and d were used as input parameters. The fact of
having so many variables without a specific constraint made it difficult to determine
the optimum configuration of the system.

Figure 3.1: Diagram of the cross section of a Helmholtz pair generating
a magnetic field along the x axis.

To better interpret the behaviour of the whole system and simplify the initial
model, we start considering only a two-coil Helmholtz pair with one turn (N = 1) and
perpendicular to x axis. Moreover, we just define the radius and the coil section as
variables to see how the magnetic field strength and the tolerance in the homogeneity
of the magnetic field change as functions of these two input parameters. It is worth
saying that to carry out these first calculations, we consider an intensity of 20 A,
which corresponds to the maximum current that the power supply of our laboratory
can provide, and also that the coil section is square. Therefore, we calculate j
dividing the intensity by the coil section. By the moment, we don’t take into account
fc.
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In order to calculate the tolerance in the homogeneity of the magnetic field
provided by a pair of Helmholtz coils over a volume of 15x15x15mm3, the magnetic
field between the two parallel coils is calculated at different points from -7.5 to
7.5mm for each one of the coordinates. The distance between two consecutive
points is called m. Therefore, we calculate the field along a distance of 15 mm
and consequently, we obtain the magnetic field in (15/m + 1)3 points within the
volume 15x15x15mm3. Once the field is obtained, the module of each one of the
field vectors is calculated. Then, the tolerance is the error percentage between the
maximum value and the minimum value of the modulus of the magnetic field.

Tolerance [%] =
Bmax −Bmin

Bmax

· 100 (3.4)

Then, the field at the midpoint between the coils and the tolerance are calculated
for different values of R and they are represented as functions of h/R (See Fig. 3.2),
where h is one of the sides of the square coil section (See Fig. 3.1). The values
corresponding to the coil section range from 10mm2 to 1060mm2 with a separation
between points of 10mm2.

We also verify that the fact of considering more or less points when calculating
the magnetic field in a volume 15x15x15mm3 is not critical for determining the value
of the tolerance, as we can see in Tab. 3.2.

m Minimum tolerance [%] h/R
0.5 0.042609 0.176777
1.5 0.042609 0.176777
3 0.040461 0.176777

Table 3.2: Minimum value of the tolerance and the corresponding h/R
for a specific value of m. In this case, R is equal to 80 mm.

For this reason, we decide that, for each one of the coordinates, we will calculate
the magnetic field from -7.5 to 7.5mm with a distance between consecutive points of
1.5 mm (m = 1.5mm). Thus, the magnetic field is evaluated in 113 = 1331 different
points pertaining to the volume of 15x15x15mm3 in order to calculate the tolerance.
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Figure 3.2: Magnetic field calculated at the midpoint between coils and
tolerance as functions of h/R for different values of R.

As expected, the magnetic field is inversely proportional to the coil radius. With
regard to the tolerance, it is also inversely proportional to the coil radius. The
larger the radius, the better the volume of homogeneity. However, given a certain
radius (R), as the section increases, the tolerance decreases but, at a specific point,
it begins to increase as the section increases (See Fig. 3.2). Therefore, there is an
optimum point where the tolerance is minimal, from which we can infer which is the
most appropriate section value. Tab. 3.3 shows the magnetic field and section values
corresponding to the point of minimum tolerance. However, the effect of changing
the coil section on the field and the tolerance is much smaller than the effect of
changing the coil radius.

R
[mm]

Minimum tolerance
[%] h/R

Coil section
[mm2]

B
[G]

80 0.042609 0.176777 200 2.24681
130 0.00607903 0.108786 200 1.38308
180 0.00165188 0.0785674 200 0.998983

Table 3.3: Coil section corresponding to the point of minimum tolerance
for different values of R and the resulting magnetic field at the
midpoint between coils.
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We realise that the optimum coil section value is the same for any R value (Tab.
3.3). For this reason, we decide to prove how this optimal coil section varies as
a function of the dimension variable s of the volume chosen where we calculate
the magnetic field. Then, the volume where the magnetic field is calculated is
2sx2sx2smm3.

s [mm]
R [mm] 4.5 6 7.5 9 10.5

80 70 130 200 280 370
130 70 130 200 290 390
180 70 130 200 290 390

Table 3.4: Optimum coil section values for different values of s and for
the three cases of R considered.

Fig. 3.3 shows the relation between the optimal value of h (hop) and s for different
values of R. This dependence is linear and in all cases the intercept is close to zero
and the value of the slope is approximately 1.8.
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Figure 3.3: Optimum h as a function of s for different values of R. The
straight line that better fits the points found with the simu-
lation is also shown.
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With the purpose of finding an explanation for the tolerance behaviour, we check
if the points where Bx is maximum and minimum change for different section values,
since we observe that the tolerance, which is a function of B, changes its tendency
at a certain value of h. We use Bx instead of the modulus of B because both
results are almost the same given the small values of By and Bz, that are nearly
zero. Using RADIA simulations and taking s = 7.5 mm, we determine that the
maximum is always located in the coordinate point (7.5, 7.5, 7.5). On the contrary,
there is a certain section where the minimum change from the point (0, 7.5, 7.5)
to (7.5, 0, 0). This section corresponds to the optimal section (∼200mm2 when
s = 7.5 mm), where the change in the trend of the curve can be appreciated when
representing the tolerance vs. h/R (Fig. 3.2). We can find the explanation to this
fact if we consider the analytical expressions of the magnetic field calculated near
the centre of Helmholtz coils with a specific geometry and coil section.

3.4 Analytical expressions

If we consider ideal Helmholtz coils with square section (h2) and perpendicular to
x axis, the analytical expression of the magnetic field B at an off-axis point (x,y)
near the centre of the Helmholtz coils is the following [9]:

Bx(x, y) =
8µ0NI

5
√

5R

[
1− h2

60R2
+ Fcx +

2x2 − y2

125R2
F2x −

18

125R4
(8x4 − 24x2y2 + 3y4) + ...

]
(3.5a)

By(x, y) =
8µ0NI

5
√

5R

[ xy

125R2
F2y +

xy

125R4
(288x2 − 216y2) + ...

]
(3.5b)

where Bx(x, y) and By(x, y) are, respectively, the axial and radial components
(cylindrical coordinates) of the magnetic field and Fcx, F2x and F2y are defined as,

Fcx =
31h4

1875R4
F2x = −5h2

R2
F2y =

10h2

R2
(3.5c)

The model that has been used takes into account several geometrical parameters
of the coils, such as their section, the separation between coils and their radius. It
is worth saying that, as we work with ideal Helmholtz coils, the separation between
coils is equal to the radius of one coil (R). In addition, it is necessary to keep in
mind that the model described by Eq. (3.5) assumes that the current flows uniformly
within the entire cross-sectional area h of the coil.

We have decided to work on plane z = 0, where the z component of the field is
zero. Moreover, we have checked that the value of By is very small and it barely
varies and therefore, to make the analytical study, instead of taking into account
the module of B, we have only considered the Bx component. In Fig. 3.4, we have
verified using the analytical expressions that the Bx component of the magnetic field
as a function of the coil section (Eq. (3.5a)) behaves in the same way as with the
RADIA function.
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Figure 3.4: Bx calculated at the midpoint between coils using the ana-
lytical expression and the RADIA function. In this case, R
is equal to 180 mm.

From the RADIA simulations, we know that the points where the magnetic field
is minimum and maximum. The point where the magnetic field is maximum is
(s,
√

2s) and it is minimum at points (0,
√

2s) and (s,0) in cylindrical coordinates.
Fig. 3.5 shows where these points are situated.

Figure 3.5: Volume between coils where we calculate the magnetic field.
Red points show the coordinates where the field is maximum
and minimum.

Using Eq. (3.5a), we can represent the magnetic field on the plane xy to see its
behaviour and to prove again that the maximum and minimum points are where we
have indicated before, depending on the value of h. To obtain the contour plots, we
take, as an example, I = 0.2 A, N = 1100, R = 115 mm and two different values of
h. Since we have proved before that hop ∼

√
200 mm = 14 mm, we choose h1 = 5 mm
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and h2 = 20 mm. Fig. 3.6 clearly shows that for any value of h, the maximum of
the magnetic field is situated at (s,

√
2s). By the contrary, for values of h smaller

than hop (h1 < hop) the minimum value of the magnetic field is at point (0,
√

2s)
and for the case h2 > hop the minimum is at point (s, 0). Moreover, a symmetrical
magnetic field distribution with respect to zero is observed.
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Figure 3.6: Contour plots of the magnetic field on the plane xy when
considering h1 = 5 mm (left) and h2 = 20 mm (right).

We calculate the maximum value and the minimum values of Bx replacing in
Eq.(3.5a) the coordinates of the maximum and of the two minimum points.

Bxmax = Bx(s,
√

2s) =
8Iµ0N

(
1 + 31h4

1875R4 − h2

60R2 + 504s4

125R4

)
5
√

5R
(3.6a)

Bxmin 1
= Bx(0,

√
2s) =

8Iµ0N
(

1 + 31h4

1875R4 − h2

60R2 + 2h2s2

25R4 − 216s4

125R4

)
5
√

5R
(3.6b)

Bxmin 2
= Bx(s, 0) =

8Iµ0N
(

1 + 31h4

1875R4 − h2

60R2 − 2h2s2

25R4 − 144s4

125R4

)
5
√

5R
(3.6c)
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We equate Eq. (3.6b) and Eq. (3.6c) and, solving for h, we find that the
optimal coil section value is hop = 1.89737 · s mm. Therefore, the optimal section
is proportional to the dimension s of the volume where we calculate B. It is worth
saying that this value of hop coincides with the slope of the straight lines of Fig. 3.3
and that h2op = 202.5mm2 is approximately the value specified at Tab. 3.4 for the
case of s = 7.5mm.

If we calculate the tolerance with the expressions of the minimum field calculated
at point (s,0) (Eq. (3.6c)) and the maximum field (Eq. (3.6a)) the analytical formula
of the tolerance depends basically on R and it is very weakly dependent on h and s.

Tolerance [%] =
Bxmax −Bxmin 2

Bxmax

· 100

=
12000(5h2s2 + 324s4)

124h4 − 125h2R2 + 7500R4 + 30240s4

(3.7)

In order to find R corresponding to a tolerance of 0.01%, we consider the optimal
section value (hop) and s = 7.5mm. If we replace these values in Eq. (3.7), we find
out a numerical expression providing an estimation of the tolerance as a function of
R (in [mm]):

Tolerance [%] =
1.73138 · 106

13435.5− 3.375R2 +R4
(3.8)

Finally, solving Eq. (3.8) in order to achieve a tolerance of 0.01%, the result we
get is that the radius of the coils must be at least R = 115mm.
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Figure 3.7: Tolerance vs. R and drawing of the Helmholtz coils perpen-
dicular to x axis.

Furthermore, we know that air cooling is possible when working with current
densities between 1 A/mm2 and 2 A/mm2. We take j = 1.5 A/mm2 to calculate
the intensity that must flow within the conductor with a specific section d without
exceeding the above j value, knowing that I = j · acond. Results are listed in Tab.
3.5.
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d [mm] I [A]
0.1 0.011781
0.2 0.0471239
0.3 0.106029
0.4 0.188496
0.5 0.294524
0.6 0.424115
0.7 0.577268
0.8 0.753982
0.9 0.954259
1.0 1.17810
1.1 1.42550
1.2 1.69646
1.3 1.99098
1.4 2.30907
1.5 2.65072

Table 3.5: Conductor diameter values (d) and the corresponding intensity
(I) for a current density (j) of 1.5 A/mm2.

To make a first estimation, we choose a conductor of d = 1.5 mm, since work-
ing with a conductor diameter not too small will facilitate the arrangement of
the successive layers during the winding process. In addition, with a diameter of
1.5 mm, the number of turns will remain in the range of a few hundred. Then, with
hop = 1.89737 · 7.5 mm, fc = 0.63, the resulting R = 114.714 mm, j = 1.5 A/mm2,
d = 1.5 mm and the corresponding I = 2.650 72 A, we can calculate N with Eq.
(3.1) and we obtain N = 72 turns. Using these data, we calculate the magnetic field
and the tolerance with RADIA:

B = 14.9961 G
Tolerance = 0.0100424 %

This result does not satisfy the initial wish-list regarding the result of the mag-
netic field, since we do not achieve the minimum desired value of 50 G. However, we
have proved that the tolerance is dominated by R and that h barely affects its re-
sult. So, we conclude that we can increase h (>hop) to increase N and consequently
increase B. With these changes, the tolerance will have a value close to 0.01% as
well.

Apart from accomplishing the requirement of the magnetic field strength and the
tolerance, we aim at keeping the heating of the system due to the power dissipation
at a reasonable level (<20oC). Thus, the coil’s characteristics (d, N , etc.) and I,
which will determine the maximum magnetic field attainable by the system, will be
dictated by thermal considerations. We will analyse coil’s heating so as to find an
expression for the increase of the coil’s temperature as a function of the time and
we will simulate this behaviour using Siemens NX software. Then, we will be able
to use Multi-objective Optimization in order to find the most suitable solution.
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3.5 Thermal analysis

The temperature of a coil increases as a consequence of the dissipated electrical power
by Joule’s effect. As indicated in Tab. 3.1, we have decided to use air cooled coils so
as to avoid increasing the complexity of the system. In this section we analyse how
a coil is heated with the objective of calculating the maximum temperature that the
coil can reach. To do that, we have taken into account a simplified model in which
the coil is approximated by a copper solid form with the same section dimensions.

Figure 3.8: Left : Real view of the coil section. Right : Coil section view
of the simplified model.

We have considered that the electrical power Pel dissipated on each coil is equal
to the increase rate of internal energy plus the rate of heat loss through the surface.
Then, Pel results:

Pel =
dU

dt
+

∮
jt · ds = mcCu

dT

dt
+ hcS∆T (3.9)

where cCu is the copper specific heat (390 Jkg−1K−1), hc is the convective heat trans-
fer coefficient, S the surface area of the coil and ∆T is the difference in temperature
between the solid surface and the surrounding fluid area (assumed to be at 20oC).

The second therm of Eq. (3.9) refers to the energy exchange through convection
and results from the integration of heat flux (jt) over the surface S of the coil.
Convection cooling is assumed to be described by Newton’s law of cooling. This
law is a discrete analogue of Fourier’s law of heat conduction and states that the
rate of heat loss of a body is proportional to the difference in temperatures between
the body and its surroundings. It should be noted that Newton’s law applies when
hc is independent of the temperature and, although in classical natural convective
heat transfer hc is dependent on the temperature, the above law does approximate
reality when the temperature changes are relatively small.

In stationary state, dU/dt tends to 0 since the internal energy is constant and
only the second term in Eq. (3.9) remains. As a result, Pel = hcS∆T , from which
we can isolate ∆T . Knowing that Pel = I2Rel, we obtain that the maximum increase
in temperature is

∆Tmax =
I2Rel

hcS
being S = 8πhR (3.10)
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Eq. (3.10) can also be written in terms of the parameters of the coil using Eq.

(3.3) and d = 2h
√

fc
πN

:

∆Tmax =
I2N2ρCu
4h3fchc

(3.11)

If we solve the differential Eq. (3.9), ∆T can be expressed as a function of time
as an increasing exponential that tends to ∆Tmax.

∆T = − Pel
hcS

e−
1
τ
t +

Pel
hcS

where τ =
ρv V cCu
hcS

(3.12)

and ρv is the density of copper (8960 kg·m3).

In order to prove the theoretical model (Eq. (3.12)) and simulate the behaviour
described above, we have used finite element simulations made with the Siemens NX
software. First, since we are taking into account the simplified model of the coil, we
have done the simulations only considering a finite-length copper circumference of
square cross-section and applying to this solid a power per unit volume of Pel/V ,
where V is the entire volume of the solid which is V = 2πRh2 = lacond/fc. Eq.
(3.13) is the expression for the power dissipated per unit of volume:

Pel
V

=
Pel

lacond/fc
=
I2ρCul/acond
lacond/fc

=
I2ρCufc
a2cond

=
I2ρCufc

(π(d/2)2)2
=

16I2ρCufc
π2d4

(3.13)

Then, we can put Eq. (3.10) in terms of Pel /V and it can be written as:

∆Tmax =
Pel
V

h

4hc
(3.14)

For the first simulation, we have taken R = 114.714 mm, h = hop = 1.89737·7.5 =
14.230 mm, I = 2.651 A and N = 72 turns, which are the values obtained in the
above section. In addition, as in the theoretical model, we have considered that
all the generated power per unit of volume is dissipated to environment entirely
through convection. It is also worth saying that we have assumed 20oC for the
environment temperature and a convective heat transfer coefficient to air (hc) of
10 W/m2K [10]. If we make the analytical calculations with the indicated data,
Pel/V = 23 814.02 W/m3 and ∆Tmax results 8.47oC. With the simulation, the max-
imum temperature that the coil achieves is about 28.46oC. Thus, as we can see in
Fig. 3.9, the simulation only considering the coil without any support fits almost
perfectly the analytical solution obtained with the explained theoretical model.

Moreover, we have run two simulations more adding to the copper circumference
the structure where the copper will be winded. Thus, we have taken into account
natural convection in faces in contact with the environment and heat conduction
between the coil faces in contact with the support assembly faces, which have a
thickness of 5 mm. We have done simulations considering two different materials for
the support: ABS (plastic) and aluminium.
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Figure 3.9: ∆T evolution as a function of time.

Fig. 3.9 shows that with an ABS support, the temperature reached (26.85oC) is
lesser than without the support due to the increase of the surface throw which the
heat can be dissipated. In Fig. 3.10 we can see how the coil and the support are
heated at different times. As expected, the temperature of the copper part is always
larger than the temperature of the ABS support.

Figure 3.10: Thermal evolution using ABS support.
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Furthermore, we have also done the simulation taking into account an aluminium
support. We can use conductive material supports because our Helmholtz coils will
work at constant current (CC) and thus, Eddy-currents cannot appear. In this case,
as a result of the higher thermal conductivity of the aluminium, the temperature
increase of the coil is only of 4oC and besides, the copper part and the aluminium
support heat up to the same temperature in a specific time.

Figure 3.11: Thermal evolution using aluminium support.

After running this simulations, we realize that the time constant of the heating
(τ) process is quite large. For the case that we have taken into account τ ∼ 20 min.
We know that we will have to apply current to our Helmholtz coils only when
measuring with the Hall probe and it should be enough with 10 or 20 seconds per
measure. If we alternate the coil to which we give more power, we will avoid warming
up unnecessarily any of them. As a consequence, it will be possible to generate larger
magnetic fields for short periods of time.

At this point, we have analytical expressions for the magnetic field, the tolerance
and for the temperature increase. Then, we are able to look for a compromise
solution between the field, the tolerance and the induced heating. In the following
section we use multi-objective optimization in order to find a solution (or a set of
solutions) that satisfy the requirements listed in Tab. 3.1.
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3.6 Multi-objective Optimization

Multi-objective optimization involves optimizing a number of objectives simultane-
ously. Usually the optimal solution of an objective function is different from that of
the other and this fact gives rise to a set of optimal solutions known as Pareto optimal
solutions. Due to the multiplicity of solutions, these problems are solved suitably
using evolutionary algorithms which use a population approach in its search proce-
dure. In this section we present a brief description of the principles of multi-objective
optimization problems and we also explain how we solve our own problem using an
specific evolutionary multi-objective optimization (EMO) algorithm (NSGA-II) [11].

The purpose of multi-objective optimization is to find a vector of decision vari-
ables which satisfies some constraints and optimises a vector function whose elements
represent the objective functions. Without loss of generality, since objective func-
tions are to be either minimized or maximized, we can state that the multi-objective
optimization problem takes the following general form [12]:

Minimize/Maximize: fm(x) m = 1, 2, ...,M
Subject to: gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, ..., n

x ∈ Rn is the vector of n decision variables, it is represented by x = [x1, x2, ..., xn]T

and x(L)i and x(U)
i are vectors of lower and upper bounds, respectively. The solutions

satisfying the constrains and variable bounds constitute a feasible decision variable
space S ⊂ Rn. Constraints are imposed by the particular characteristics of the
environment or resources available, and they are expressed in form of mathematical
inequalities gj(x) ≥ 0 (j = 1, ...J) or equalities hk(x) = 0 (k = 1, ...K). K must be
less than n because, on the contrary, the problem is said to be overconstrained since
there are no degrees of freedom left for optimizing. Moreover, in multi-objective
optimization the objective functions constitute a multi-dimensional space called ob-
jective space, Z ⊂ RM . For each solution x in the decision variable space, there
exists a point z ∈ RM in the objective space denoted by f(x) = z = [z1, z2, ..., zM ]T .
(See Fig. 3.12)

For clarity and simplicity of the treatment we assume that all the objective
functions are to be minimized. If an objective function fm is to be maximized, it
is equivalent to minimize the function −fm. Having said that, we can handle the
concept of optimality from the definition of dominance and the definition of Pareto
optimality [13].

Definition 3.6.1 If f(x1) = [f1(x1), ..., fm(x1)] and f(x2) = [f1(x2), ..., fm(x2)]
denote two solution vectors, x1 is said to dominate x2, as notated by x1 � x2 iff
∀m: fm(x1) ≤ fm(x2) and ∃m: fm(x1) < fm(x2).
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All points which are non dominated by another member of the set are called
non-dominated points. These points make up a front when viewed them together
on the objective space (non-domination front) [14].

Figure 3.12: Diagram illustrating the feasible decision variable space (S)
and the objective space (Z). The thick line contains all
the Pareto optimal objective vectors (Pareto optimal front).
The vector z∗ is an example of them.

Definition 3.6.2 A decision vector x∗ ∈ S is Pareto optimal if there does not exist
another decision vector x ∈ S such that fm(x) ≤ fm(x∗) for all m = 1, ...,M and
fl(x) < fl(x

∗) for at least one index l.
An objective vector z∗ ∈ Z is Pareto optimal if there does not exist another objective
vector z ∈ Z such that zm ≤ z∗m for all m = 1, ...,M and zl < z∗l for at least one
index l; or equivalently, z∗ is Pareto optimal if the decision vector corresponding to
it is also Pareto optimal.

To sum up, a solution is called nondominated or Pareto optimal if non of the
objective functions can be improved in value without degrading some of the other
objective values. Points lying on the non-domination front, by definition, do not
get dominated by any other point in the objective space, hence are Pareto-optimal
points (together they constitute the Pareto-optimal front) and the corresponding
decision variable vectors are called Pareto-optimal solutions.

Mathematically, every Pareto optimal point is an equally acceptable solution
of the multi-objective optimization problem and, since it is generally desirable to
obtain one point as solution, is the person solving the problem who selects this point
depending on other information that it is not contained in the objective functions.
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3.6.1 Optimization of Helmholtz coils parameters using NSGA-
II EMO algorithm

NSGA-II is an evolutionary multi-objective optimization algorithm developed by
K.Deb. which attempts to find multiple Pareto-optimal solutions in a multi-objective
optimization problem. We have used NGPM (NSGA-II Program in Matlab) [15],
which is the implementation of NSGA-II in Matlab in order to know the parameters
characterizing a Helmholtz pair that satisfies our wish-list.

We take as decision variables N , I, R and h. In our case, the objectives functions
are B, the tolerance and ∆T , which have the following expressions:

B =

(
4

5

)3/2

µ0
NI

R

Tol =
12000(5h2s2 + 324s4)

124h4 − 125h2R2 + 7500R4 + 30240s4

∆T =
I2N2ρCu
4h3fchc

(3.15)

We run NSGA-II with a population size of 400 and for 100 generations. Moreover
the bounds specified for each decision variable are N ∈ [60, 400], I ∈ [0.1, 2.65] A,
R ∈ [0.1, 0.13] m and h ∈ [0.014, 0.03] m, and the objective functions must satisfy
B ≥ 50 G, Tol≤ 0.01% and ∆T ≤ 20oC. These three restrictions correspond to the
constraints of our problem.

Once the simulation has finished, in Fig. 3.13 we see that all the solutions are
situated in the objective space forming a surface, since there are three objective
functions. As mentioned, all the solutions situated in this surface are acceptable
solution of our multi-objective optimization problem. So, we can choose any point
from this set as our final solution.

Figure 3.13: Pareto-optimal front. All points of this set are valid solu-
tions for our problem.
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Then, we decide to make the projection of the set of points on the Tol-∆T plane
and take the data of the red point in Fig. 3.14. We have chosen this point because
we can see that any other point that would decrease considerably the temperature,
will increase the tolerance and other points that would allow us to decrease more the
tolerance will increase greatly the temperature. Moreover, we think that the values
obtained of N , R and h are reasonable to manufacture the coil.

Figure 3.14: Plane Tol-∆T where the red point is the chosen solution.

N I [A] R [mm] h [mm] B [G] Tol [%] ∆T [oC]

323 2.28 129.7 30 50.98 0.00723 13.59

Table 3.6: Values that correspond to the red point.

The result obtained is indicated in Tab. 3.6. With this values, we can calulate d,
which results 1.5 mm. From this data and taking into account coil winding, we can
adjust the coil parameters that will correspond to one Helmholtz pair and then, we
will be able to find the parameters of the other two pairs of coils. All the calculations
are explained in the following section.
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3.7 Coil manufacturing

Coil winding is the manufacture of electromagnetic coils. For the design of our coils,
we have taken into account round wires arranged forming an orthocyclic winding
(See Fig. 3.15). It is a multi-layer winding in which the round wires in the upper
layer are in the grooves of the lower layer and they all occupy a dense package.

For the coil manufacturing we have decided to use grade 2 enamelled copper wire
with a conductor/total diameter of 1.5/1.571mm. This wire has been selected be-
cause it is thin enough so as to enable the usage of standard coil winding equipment,
and at the same time it provides a higher conductor/insulation ratio in comparison
to thinner wires, thus delivering a higher filling factor fc.

Since we need an integer number of turns, we have to adjust N obtained in Tab.
3.6 so that it can be written as a product of n and m (N = m · n), where n is the
number of layers and m is the number of wires in each layer. Given the compaction
of the layers in the vertical direction, in order to end up having more or less a square
coil section, n must be larger than m. In the range of turns where we are moving,
where both m and n will have values between 15 and 30, the excess of n above m
should be between 3 and 4.

Figure 3.15: Orthocyclic winding

Once N has been determined, Eq. (3.16) is used to calculate the width and the
height of the coil and then, multiplying both values, the area of the coil cross section
can be inferred.

Coil width = (m+ 0.5)�

Coil height = [1 + 0.87(n+ 1)]�
(3.16)

where � is the effective diameter. We have taken � = 1.6 mm to do the calculation,
which is slightly larger than the nominal diameter of the wire, so we will have some
margin to accommodate irregularities in the wire and winding errors.

It is worth saying that we want to maintain the value of I indicated in Tab. 3.6
(∼ 2.3 A) and readjust R. Then, we have to recalculate R with Eq. (2.7) in order
to obtain a magnetic field of 50 G and we can also recalculate the value of the filling
factor using fc = Nπ(�2/4)/A. Thus, the filling factor results 0.77.
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Finally, we can also calculate the electrical power dissipated by a coil and its
resistance using Eq. (3.9) and Eq. (3.3) respectively and ∆Tmax, which has a new
expression since we have a rectangular coil section.

∆Tmax =
2I2ρCuN

πd2hc(w + h)
(3.17)

where w is the coil width and h is the coil heigh.

Once we have well characterized one pair of coils, we need to add two pairs of
orthogonal coils more in order to generate a known magnetic field in an arbitrary
direction. These two pairs of coils must be enlarged with respect to the first pair
to avoid any mechanical interference. In our case, we have chosen a scale factor
from pair to pair of 1.35, with the aim of leaving enough space between coils to
accommodate the elements of the support system. Apart from increasing the radius
of the coils, the number of turns and the coil cross section have also to be readjusted
using the same scale factor to provide the same magnetic field intensity at nominal
current in the three pairs of coils. Then, we will obtain again a decimal N and we
will have to follow the previous process to achieve the definitive results. The data
used to make the calculus and the results obtained are listed in Tab. 3.7.

In Tab. 3.7 we can appreciate the effects of enlarging the coils: the value of N
increases, there is an improvement in the value of the tolerance and the heating of
the system gets worse, but it is nevertheless maintained below the 20oC that we
require.
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3.8 Setup specifications

Current [A] 2.3
j [A/mm2] 1.3 Copper Resistivity [Ω·m] 1.7E-08
Conductor diameter [mm] 1.5 Air convect.coef. [W/(m2·K)] 10
Effective diameter �[mm] 1.6
Filling factor (fc) 0.77

Coils X
(small)

Coils Y
(medium)

Coils Z
(large)

Radius [mm] 125.74 172.89 236.59
Maximum Radius [mm] 139.07 188.31 254.79
Minimum Radius [mm] 112.41 157.48 218.39
Coil Cross Section [mm2] 703.72 961.96 1310.40
Coil width (w) [mm] 26.40 31.20 36.00
Coil height (h) [mm] 26.66 30.83 36.40
m wires 16 19 22
n layers 19 22 26
Number of turns 304 418 572

B field [G] 49.96 49.97 49.98
Tolerance [%] 7.83E-03 2.44E-03 6.97E-04
∆T [oC] 14.58 17.15 20.10
Power/coil [W] 12.22 23.11 43.27
Resistance/coil [Ω] 2.31 4.37 8.18

Table 3.7: Design parameters for the 3 sets of coils for the 3D Helmholtz system and the
resulting B, tolerance, ∆T, power/coil and resistance/coil obtained by means
of the simulations. A scheme of the parameters of a coil is also shown.

General view

Figure 3.16: General view of the system of 3D Helmholtz coils.
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3.9 Mechanical tolerances

Once we have determined the design parameters for the three sets of coils of the 3D
Helmholtz system (Tab. 3.7), we want to know how the tolerance varies within the
volume 15x15x15mm3 and how the magnetic field changes in the midpoint of a non
ideal pair of Helmholtz coils taking into account different possible sources of error.
In this section, we analyse the effect of a rotation α of one coil with respect to the
other and the effect of a displacement τ between their centres. Apart from these
two sources of misalignment, we also study the case of having a separation between
the midplanes of the coils of (R + η)mm and the situation of having one coil with
a radius δmm larger than that of the other coil.

In the first case, we have two coils with the centre on the same axis (x axis)
but they are not parallel. In order to simulate with RADIA the effect of the non-
perpendicularity of one coil with its axis, we vary the angle with respect to the
vertical (α) of one of the coils, in an interval from 0o to 5o (0.087 rad) each 0.2o

(0.0034 rad). By the contrary, in the second case, the two coils are parallel, but
the axes of both coils are not perfectly aligned, there is displacement between their
centres. We vary the vertical distance between the two centres (τ) in a range from
0 mm to 10 mm each 0.5 mm, to see the effect that this displacement has on the
tolerance and on the magnetic field.

Figure 3.17: Sources of misalignment of each pair of coils.

Fig. 3.18 shows that the tolerance increases as the values of α and τ are increased.
For the case of the smallest pair of coils (Coils X) we have the following behaviour:

Tol(α) = 0.00782540 + 11.2000 α

Tol(τ) = 0.00782540 + 0.00898328 τ + 0.000861055 τ 2
(3.18)

When α and τ are perfectly zero, Tol = 0.0078254%, which is the value specified
in Tab. 3.7. If we want that the maximum tolerance to be 0.01% in order to fulfil
the specifications indicated in Tab. 3.1, the maximum value of α that we can allow
is 0.2 mrad (0.01o) and the maximum value of τ is 0.237 mm.
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Figure 3.18: Bx, Bz, Bz/Bx and the tolerance as a functions of α and
τ . This results have been obtained considering the design
parameters and the orientation of the smallest coils (Coils
X).
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Furthermore, when the two coils of each pair are not perfectly aligned, the gen-
erated magnetic field has an angular deviation with respect to the nominal axis of
the pair. Thus, if we consider the pair of coils whose vertical axis is z and with the
nominal axis parallel to x (Coils X), if α and τ increase (See Fig. 3.17), although
Bx remains the main component of the magnetic field, the component Bz increases
linearly (minority component).

The minority component will limit the accuracy of our system, since we want to
guarantee the orthogonality of the magnetic fields generated by the three pairs of
coils. To do that, we must keep the deviation of the magnetic field produced by each
pair of coils below the alignment requirement of the whole system indicated in Tab.
3.1 (0.2 mrad). So, our objective is to achieve Bminority/Bmain ≤ 0.2 mrad for each
pair of coils. In the case that we are considering, we have obtained the following
expressions:

Bz/Bx = 0.35099 α

Bz/Bx = 0.00238674 τ
(3.19)

Then, the inequality that we have to fulfil is Bz/Bx ≤ 0.2 mrad. This also sets a
tolerance for the maximum permitted values of α and τ . Applying Bz/Bx = 0.2 mrad
to Eq. (3.19) we obtain α = 0.57 mrad and τ = 0.084 mm.

Parameter Coils X Coils Y Coils Z

Tol Angular deviation α [mrad] 0.19 0.94 1.59
Centres offset τ [mm] 0.23 1.81 3.91

Bz/Bx
Angular deviation α [mrad] 0.57 0.57 0.57
Centres offset τ [mm] 0.084 0.12 0.16

Table 3.8: Mechanical tolerance for the alignment of each pair of coils.

In Tab. 3.8 are listed the mechanical tolerances for the alignment of each pair
of coils calculated using the expression for the tolerance and also using the equation
for Bz/Bx. We can see that, as the radius of the coils increase, the values permitted
for α and τ are larger. This is because the tolerance, when α = τ = 0, is getting
smaller. Nevertheless, we would like to achieve for the three pairs of coils the most
restrictive values of the table (in green), which correspond to the ones of the smallest
coils.

Another source of error that can appear during the process of construction is
not having the two coils of a pair separated by a distance equal to their radius (non
ideal Helmholtz coil). Thus, the distance between both coils is equal to R + η. We
have evaluated this possible imperfection using the data of Coils X. As expected,
the tolerance increase as η increase (See Fig. 3.19), Bx is the main component
of the magnetic field and the components By and Bz remain practically zero. We
have calculated that, if we want to maintain a tolerance of 0.01%, we can have as a
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maximum value η = 0.25 mm. This is an easily achievable tolerance and it will not
cause any problem during the assembly process.
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Figure 3.19: Tolerance as a function of η.

Finally, the fourth source of error that we study is the fact of having one coil
with a radius δmm different than that of the other coil. This can happen due to
imperfections during the process of coil winding. To run this simulation we consider
one coil with a radius R and another coil with a radius R + δ and we evaluate the
tolerance as a function of δ. Fig. 3.20 shows the results obtained for Coils X and
the value of δ must be 0.019 mm to have a tolerance of 0.01%. This result indicates
us that is important to achieve a very accurate and precise winding.
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Figure 3.20: Tolerance as a function of δ.

To sum up, after calculating the permitted values for all the possible sources of
error considered, we see that the tolerances permitted are very restrictive and thus,
it is important a precise machining of the pieces where the conductor is allocated
and an accurate winding.
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4.1 Mechanical design

We have designed three pairs of cylindrical aluminium supports (one for each of
the coils) which have a rectangular groove with the appropriate dimensions where
the wired wire will be allocated. For the back of each of these pieces, we have
provisionally attached a rectangular piece with a hole in the centre that is coaxial
with the axis of the coil, in order to be able to position the assembly correctly on
the winding machines. In Fig. 4.1, we can see some holes along the perimeter of
the aluminium cylinder that will be used to introduce the epoxy resin to make the
winding be well compact and at the same time, they will reduce the weight of the
set, since only the weight of the copper has been estimated to be of a total of 50 kg.

Figure 4.1: Representation of the coil with its support attached to the
rectangular piece used to adapt the support of our coils to
the winding machine.

38
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It should be noted that all supports have been designed so that they can be
interlocked when assembling the whole set and they can allow the orthogonal ar-
rangement between the different pairs of coils. All the pieces will be mechanized
very precisely, which will guarantee that upon assembly the relative positioning of
the coils will be close to the design values. In addition, these supports will provide a
cylindrical surface concentric with the axis of each coil and a flat surface parallel to
the plane of the coil. Therefore, once assembled it will be possible to measure any
misalignment between the coils by means of a laser tracker or a portable coordinate
measuring machine and, if necessary, to correct it by means of the introduction of
shims. Fig. 4.2 shows a view of the assembled system. In the Appendix we present
the set of drawings done to construct our system of 3D Helmholtz coils.

Figure 4.2: Drawing of the assembled system.

The coils of each pair will be connected in series and thus, three power supplies
of constant current will be used. Besides this, we have estimated that the max-
imum operating current (. 5 A) and power (< 100 W) required for the wire will
sit comfortably inside the range provided by the power supplies available at our
laboratory.
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4.2 First prototype

Before constructing the entire system, we have decided to manufacture first a proto-
type of only one coil, in order to validate the winding process since it must be very
precise. Given the dimensions of the coils, the tolerances that have been established
and the mechanical demands, we have decided that the mechanical parts (supports
of the coils) will be manufactured in the ALBA Synchrotron workshop and the coil
winding will be outsource to a specialized local company.

By the moment, the support for the smallest coil has been manufactured (See
Fig. 4.3) and soon it will be send to the specialized company to make the winding.

Figure 4.3: Support for the prototype of one coil.
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In this bachelor’s thesis we have presented the design of the system of 3D Helmholtz
coils with the objective of calibrating the Hall probes used at ALBA magnetic mea-
surements laboratory with more accuracy.

The first days of my stay at ALBA Synchrotron I understood why there was a
need of finding a new calibration system for the Hall probes, which would allow us
to improve the determination of the three magnetic field components generated by
the magnets that are characterized at the laboratory, as well as the decision to build
the calibration equipment that is designed in this thesis. At the same time, so as to
carry out all the design process, I had to get used to working with the magnetostatic
simulation code RADIA and to perform thermal simulations with the Siemens NX
software.

In order to achieve the design that fulfils our requirements, different simulations
have been performed, whose results have coincided with the values obtained with
the analytical expressions deduced in this thesis. From these calculations, we have
inferred how the different variables involved in our problem behave (coil radius, con-
ductor diameter, number of turns and current applied). Then, with the help of the
NGPM (NSGA-II Program in Matlab) and having into account orthocyclic winding,
we have been able to find a compromise solution to optimize the associated merit
figures (magnitude and homogeneity of the generated magnetic field and the heating
of the system). We have also defined a very restrictive construction tolerances to
achieve the desired magnetic field quality.

Once the design parameters of our system have been defined, the set of drawings
for its manufacture has been prepared. Given the dimensions of the coils, the tol-
erances that have been established and the mechanical demands, we have decided
that the mechanical parts (supports of the coils) will be manufactured in the ALBA
Synchrotron workshop and the coil winding will be outsource to a specialized local
company. In order to validate the winding process and make all the relevant checks
before ordering the definitive construction of the entire system, it has been decided
to build a first prototype of a single coil. Hence, we expect to have the system
ready by Summer 2019 and we intend to experimentally validate its operation by
calibrating the Hall effect probes during the second half of the year.
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In conclusion, we have managed to design a system that allows generating a
magnetic field of 50 G, of homogeneity 10−4 within a volume of 15x15x15mm3 with-
out overheating due to the dissipated power during its operation. In addition, we
have verified that the time constant of the heating process is longer than 20 min and
therefore, it will be possible to generate larger magnetic fields for short periods of
time. With this system of Helmholtz coils, it is expected to achieve an accuracy
in the calibration of the Hall effect probes of 0.2 mrad, which would substantially
improve the current 10 mrad.

Special attention should be given to reference [16], an article that has emerged
from this work. This article was presented at IPAC conference in Melbourne on May
2019.
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Drawings

In this appendix we present the different drawings used to construct our system of
3D Helmholtz coils.

1. Support of Coils X.

2. Support of Coils Y.

3. Support of Coils Z.

4. Rectangular piece used to adapt the support of our coils to the winding machine.

5. Entire assembling of the system.
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