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Abstract: This paper investigates the solutions of the porous-elastic materials with dissipa-

tion in the case of the whole real line. We consider three different cases. First we consider

the case when there are dissipation mechanisms at the elastic structure and the porous

structure and we prove the decay structure is standard type. Second we consider the cases

when the dissipation is only on the elastic structure or on the porous structure. In these

cases we show that the decay structure is regularity-loss type. Furthermore, we will show

the optimality for the decay estimates for all cases.

1. Introduction

Elasticity problems have attracted the attention of researchers from different fields.
In particular the time decay of solutions is one goal to study. In this article we
are concerned with the theory of porous viscoelastic materials. Porous elasticity is
one of the easier extensions of the classical theory of elasticity. It can be seen as a
continuum theory of materials with interstitial voids. Besides the usual elastic effects,
these materials have a microstructure with an important property: the mass in each
point can be obtained as the product of the mass density of the material matrix by
the volume fraction. This idea was used by Nunziato and Cowin to develop a theory
of elastic materials with voids. It is worth recalling the book of Iesan where this
theory is deeply discussed [3]. The relevance of the porous elastic materials has been
demonstrated amply by the huge quantity of papers (from different fields) dedicated
to this kind of materials. In fact in the last decades this theory has been considered
to study solids with small distributed pores such as rocks, soils, woods, ceramics,
pressed powders or biological materials as bones.

From a physical point of view we can see the case of the porous-elastic materials as
the juxtaposition of two structures: the elastic part and the porous part. The elastic
part can be seen as the macroscopic structure and the porous part as the microscopic
structure. They both are linked by means of the coupling terms. Therefore it is
relevant to clarify how several dissipation mechanisms influence in the global behavior
of the material. In this sense our paper is directed in this line. Three cases are going
to be considered. One case corresponds to the situation where we have viscoelasticity
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and porous dissipation. The other two cases correspond to the case when we only
have viscoelasticity or porous dissipation.

In the present article, we study the porous dissipation elasticity problem in one-
dimensional whole space. It is worth noting that this kind of problem has been
studied in a deep way in the case of bounded domains [6, 8, 9, 10, 11, 12]. However,
the case when the domain is the whole space has been very forgotten in the literature
and as far as we know we can only recall the contributions [2, 14]. Unfortunately,
the decay estimates introduced in [2] are not optimal and they considered only the
dissipation mechanisms at the elastic structure. In [14] the authors studied the porous
elastic problem when viscosity and non-classical thermal effects were present and they
obtained results concerning slow decay and regularity-loss type. In contrast to [2],
we study not only the elastic structure but also the porous structure and derive the
optimal decay estimates. The most interesting property of the porous dissipation
elasticity problem is the regularity-loss structure. If we consider this problem with
the elastic dissipation or the porous dissipation, the corresponding decay structure is
the regularity-loss type.

The typical feature of the standard type is that the high-frequency part decays
exponentially while the low-frequency part decays polynomially with the rate of the
heat kernel. On the other hand, because of the degeneracy for the high-frequency
part, the regularity-loss structure causes more regularity for the initial data when we
derive the decay estimate of solutions.

For the whole space problem, we had already known several results concerned with
the regularity-loss structure. For example, the dissipative Timoshenko system was
discussed in [4, 5], the plate equation was in [7, 13], and the Euler-Maxwell system
was studied in [20, 21]. Moreover, artificial models which have the several kinds
of the regularity-loss structure are constructed in [19]. Under this situation, Ueda-
Duan-Kawashima in [17, 18] tried to construct the new stability condition in order to
analyze the regularity-loss structure for the general symmetric hyperbolic systems.

The field equations of porous elastic solids are derived as follows. We start with
the following evolution equations

ρutt = Tx, κφtt = hx + g,

where u and φ describe the displacement of a solid elastic material and the volume
fraction, respectively. The positive parameters ρ and κ are the mass density and the
product of the mass density by the equilibrated inertia, respectively. Furthermore,
T , h and g denote the stress, the equilibrated stress and the equilibrated body force,
respectively. For these equations, we consider the following constitutive equations.

T = αux + βφ+ γutx + ε1φt, h = δφx, g = −βux − ηφ− τφt − ε2utx,

where the parameters α, β, γ, δ, η ε1, ε2 and τ are constitutive coefficients. If we
introduce the constitutive equations into the evolution equations we find the field
equations

ρutt − αuxx − βφx − γutxx − ε1φtx = 0,

κφtt − δφxx + βux + ηφ+ τφt + ε2utx = 0
(1.1)
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for t > 0 and x ∈ R. Here, u = u(t, x) and φ = φ(t, x) are unknown scalar functions.
We note that the internal energy is given by

E = αu2x + ηφ2 + 2βuxφ+ δφ2
x,

and the dissipation is given by

D = γu2tx + τφ2
t + (ε1 + ε2)utxφt.

Therefore when we assume that the internal energy is positive (which is related with
the elastic stability) we have to assume that

α > 0, δ > 0, αη − β2 > 0,

meanwhile if we assume that the dissipation is positive we need to impose that

γτ − ε2 > 0 for γ > 0 and τ > 0,

ε1 = ε2 = 0 for γ = 0 (and τ > 0) or τ = 0 (and γ > 0),

where we denote ε := (ε1 + ε2)/2. As we assume the coupling between the field
equations we must assume that β 6= 0 for γ = 0 or τ = 0.

In this article, we focus on the Cauchy problem defined by the system (1.1) with
the initial data

u(0, x) = u0(x), ut(0, x) = u1(x), φ(0, x) = φ0(x), φt(0, x) = φ1(x) (1.2)

for x ∈ R, where u0 = u0(x), u1 = u1(x), φ0 = φ0(x) and φ1 = φ1(x) are given scalar
functions.

2. Basic Equations and Theorems

To analyze (1.1) systematically, we rewrite these equations to the symmetric sys-
tem. Precisely, putting v = ut, w = ux, σ = φt, ψ = φx, we obtain

ρvt − αwx − βφx − γvxx − ε1σx = 0,

αwt + βφt − αvx − βσ = 0,

κσt − δψx + βw + ηφ+ τσ + ε2vx = 0,

δψt − δσx = 0,

βwt + ηφt − βvx − ησ = 0,

(2.1)

and

φx − ψ = 0. (2.2)

Then (2.1) and (2.2) are rewritten as

A0Ut + AUx −BUxx + LU +MUx = 0, (2.3)

QUx +RU = 0, (2.4)
3



where U = (v, w, σ, ψ, φ)T and

A0 =


ρ 0 0 0 0
0 α 0 0 β
0 0 κ 0 0
0 0 0 δ 0
0 β 0 0 η

 , A = −


0 α 0 0 β
α 0 0 0 0
0 0 0 δ 0
0 0 δ 0 0
β 0 0 0 0

 ,

B =


γ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L =


0 0 0 0 0
0 0 −β 0 0
0 β τ 0 η
0 0 0 0 0
0 0 −η 0 0

 , M =


0 0 −ε1 0 0
0 0 0 0 0
ε2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Q = (0 0 0 0 1) and R = (0 0 0 − 1 0). Under the assumption for the coefficients,
the matrix A0 is positive definite. Furthermore, A0 and A are symmetric, and B and
L are non-negative definite. Applying the Fourier transform to (2.3) and (2.4), we
obtain

A0Ût + iξAÛ + ξ2BÛ + LÛ + iξMÛ = 0, (2.5)

iξQÛ +RÛ = 0, (2.6)

where ξ ∈ R is a Fourier variable.
To apply the stability condition introduced in Ueda [16], we consider the corre-

sponding eigenvalue problem.

λA0ϕ+ (irωA+ r2B + L+ irωM)ϕ = 0 (2.7)

with the constraint condition

(irωQ+R)ϕ = 0 (2.8)

for r ≥ 0 and ω ∈ {−1, 1}. Here, the pair (λ, ϕ) = (λ, ϕ)(r, ω) ∈ C × C5 is the
eigenvalue and eigenvector of (2.7), respectively.

Owing to the effect of γ > 0 and τ > 0, the system (2.3) is regarded as a dissipative
system. Furthermore, in the case that γ = 0 or τ = 0, the matrix M appeared in (2.7)
is zero matrix, and it is possible to apply the following stability condition introduced
in [16].

Stability Condition under Constraint(SCC): For any (µ, ν) ∈ R× R+,

Ker(µI +A(ν)) ∩Ker(B]) ∩Ker(L]) ∩Ker(iνQ+R) = {0},

where A(ν) := (A0)−1(A− iνB[ − iν−1L[).

Here and hereafter, we use a notation that R+ := (0,∞), I is the identity matrix,
and X] and X[ are denoted the symmetric and skew-symmetric part of the matrix
X, respectively.

Using Stability Condition (SCC), we can get the following result.

Theorem 2.1. For γ = 0 or τ = 0, the system (2.3) with the constraint condi-
tion (2.4) satisfies Condition (SCC). Namely, this system is strictly dissipative under
constraint.
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Proof. Condition (SCC) suggests to start that (µ, ν) ∈ R×R+ and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)
T ∈

C5 satisfy

µρϕ1 − αϕ2 − βϕ5 = 0,

µ(αϕ2 + βϕ5)− αϕ1 + iν−1βϕ3 = 0,

µκϕ3 − δϕ4 − iν−1βϕ2 − iν−1ηϕ5 = 0,

µδϕ4 − δϕ3 = 0,

µ(βϕ2 + ηϕ5)− βϕ1 + iν−1ηϕ3 = 0,

and γϕ1 = 0, τϕ3 = 0. (2.9)

Furthermore, we get from the constraint condition that

iνϕ5 − ϕ4 = 0. (2.10)

Because of γ > 0 or τ > 0 and αη − β2 > 0, it is easy from (2.9) to get ϕ = 0 for
µ 6= 0. For µ = 0, (2.9) can be rewritten as ϕ1 = ϕ3 = 0 and

αϕ2 + βϕ5 = 0, δϕ4 + iν−1βϕ2 + iν−1ηϕ5 = 0.

Furthermore, solving the above two equations with (2.10), we obtain(
ν2αδ + (αη − β2)

)
ϕ5 = 0.

Since α > 0, δ > 0 and αη − β2 > 0, we arrive at ϕ5 = 0. Eventually, we conclude
ϕ2 = ϕ4 = 0 and complete the proof. �

Inspired by Theorem 2.1, we expect that the solutions to our Cauchy problem
decay as t→∞. Therefore, our main purpose of this article is to obtain the optimal
decay estimates for the solutions.

Theorem 2.2. Let (û, φ̂) be a Fourier image for the solution to (1.1), (1.2). Then
the solution satisfies the following pointwise estimate in Fourier space.

(|ût|2 + ξ2|û|2 + |φ̂t|2 + (1 + ξ2)|φ̂|2)

≤ Ce−cλ(iξ)t(|û1|2 + ξ2|û0|2 + |φ̂1|2 + (1 + ξ2)|φ̂0|2),
(2.11)

where c and C are certain positive constants which are independent of γ, τ , ε1 and
ε2, and λ(iξ) is defined by

λ(iξ) =



(γτ − ε2)ξ2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)ξ2
for γ > 0, τ > 0,

γξ4

(1 + ξ2)2(1 + γ2ξ2)
for γ > 0, τ = 0,

τξ2

(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)
for γ = 0, τ > 0.

(2.12)

Here p is defined by p := |ακ− ρδ|.

From Theorem 2.2, we conclude the following the decay estimates for the solution
to (1.1), (1.2).
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Corollary 2.3. Let s be a non-negative integer and q be a real number with 1 ≤ q ≤
2. Suppose that u1, ∂xu0, ∂xφ0, φ1 ∈ Hs(R) and u1, ∂xu0, φ0, φ1 ∈ Lq(R). Then the
solution of (1.1), (1.2) satisfies the following decay estimates.

(i) For γ > 0 and τ > 0,

‖∂kx(ut, ∂xu, φt)(t)‖L2 + ‖∂kxφ(t)‖H1

≤ C(1 + at)−
1
2( 1

q
− 1

2)− k2 ‖(u1, ∂xu0, φ0, φ1)‖Lq

+ Ce−cat‖∂kx(u1, ∂xu0, ∂xφ0, φ1)‖L2 ,

(2.13)

where 0 ≤ k ≤ s, and a is defined by

a :=
γτ − ε2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)
.

(ii) For γ > 0 and τ = 0,

‖∂kx(ut, ∂xu, φt)(t)‖L2 + ‖∂kxφ(t)‖H1

≤ C(1 + aγt)
− 1

4( 1
q
− 1

2)− k4 ‖(u1, ∂xu0, φ0, φ1)‖Lq

+ C(1 + aγt)
− `

2‖∂k+`x (u1, ∂xu0, ∂xφ0, φ1)‖L2 ,

(2.14)

where k, ` ≥ 0 and 0 ≤ k + ` ≤ s, and aγ is defined by aγ := γ(1 + γ2)−1.

(iii-i) For γ = 0, τ > 0 and p = 0,

‖∂kx(ut, ∂xu, φt)(t)‖L2 + ‖∂kxφ(t)‖H1

≤ C(1 + ãτ t)
− 1

2( 1
q
− 1

2)− k2 ‖(u1, ∂xu0, φ0, φ1)‖Lq

+ Ce−cãτ t‖∂kx(u1, ∂xu0, ∂xφ0, φ1)‖L2 ,

(2.15)

where 0 ≤ k ≤ s, and ãτ is defined by ãτ := τ(2 + τ 2)−1.

(iii-ii) For γ = 0, τ > 0 and p 6= 0,

‖∂kx(ut, ∂xu, φt)(t)‖L2 + ‖∂kxφ(t)‖H1

≤ C(1 + aτ t)
− 1

2( 1
q
− 1

2)− k2 ‖(u1, ∂xu0, φ0, φ1)‖Lq

+ C(1 + aτ t)
− `

2‖∂k+`x (u1, ∂xu0, ∂xφ0, φ1)‖L2 ,

(2.16)

where k, ` ≥ 0 and 0 ≤ k+ ` ≤ s, and aτ is defined by aτ := τ(1 + p)−1(2 + τ 2 + p)−1.

Here c and C are certain positive constants which are independent of γ, τ , ε1 and
ε2.

Remark 1. (i) In Corollary 2.3, the cases (i) and (iii-i) are the standard type, and
the cases (ii) and (iii-ii) are the regularity-loss type. (ii) Because of the asymptotic
expansion of the eigenvalues in Section 4, we deduce that the pointwise and decay
estimates in Theorem 2.2 and Corollary 2.3 are optimal.
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3. Energy estimates

In this section, we give proofs of Theorem 2.2 and Corollary 2.3 by using the energy
method in Fourier space. Furthermore, as a byproduct of this proof, we can derive
the following energy estimate for the problem (1.1), (1.2).

Proposition 3.1. Let s be non-negative integers. Then the solution of (1.1), (1.2)
satisfies the following energy estimates.

(i) For γ > 0 and τ > 0,

‖(ut, ux, φt)(t)‖Hs+1 + ‖φ(t)‖Hs+2

+

∫ t

0

(‖uxx(t′)‖Hs + ‖(utx, φt, φx)(t′)‖Hs+1) dt′

≤ C (‖(u1, u0,x, φ1)‖Hs+1 + ‖φ0‖Hs+2) .

(3.1)

(ii) For γ > 0 and τ = 0,

‖(ut, ux, φt)(t)‖Hs+3 + ‖φ(t)‖Hs+4

+

∫ t

0

(
‖φtxx(t′)‖Hs + ‖∂2x(ux, φ)(t′)‖Hs+1 + ‖utx(t′)‖Hs+3

)
dt′

≤ C (‖(u1, u0,x, φ1)‖Hs+3 + ‖φ0‖Hs+4) .

(3.2)

(iii-i) For γ = 0, τ > 0 and p = 0,

‖(ut, ux, φt)(t)‖Hs+1 + ‖φ(t)‖Hs+2

+

∫ t

0

(‖∂x(ut, ux)(t′)‖Hs + ‖(φt, φx)(t′)‖Hs+1) dt′

≤ C (‖(u1, u0,x, φ1)‖Hs+1 + ‖φ0‖Hs+2) .

(3.3)

(iii-ii) For γ = 0, τ > 0 and p 6= 0,

‖(ut, ux, φt)(t)‖Hs+2 + ‖φ(t)‖Hs+3

+

∫ t

0

(‖∂x(ut, ux)(t′)‖Hs + ‖(φt, φx)(t′)‖Hs+2) dt′

≤ C (‖(u1, u0,x, φ1)‖Hs+2 + ‖φ0‖Hs+3) .

(3.4)

Here C is a certain positive constant.

Proof of Theorem 2.2 and Proposition 3.1. We first derive the basic energy
equality for the system (2.5) in the Fourier space. We take an inner product Û with
the first equation of (2.5), and take the real part for the resultant equation. Then,
by virture the properties for A0, A, B and L, this yields

1

2

∂

∂t
〈A0Û , Û〉+ ξ2〈BÛ, Û〉+ 〈L]Û , Û〉+ iξ〈M [Û , Û〉 = 0.
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This means

1

2

∂

∂t

(
ρ|v̂|2 + α|ŵ|2 + κ|σ̂|2 + δ|ψ̂|2 + η|φ̂|2 + 2βRe(ŵ

¯̂
φ)
)

+ γξ2|v̂|2 + τ |σ̂|2 + 2εξRe(iv̂ ¯̂σ) = 0.
(3.5)

We remark that

α|ŵ|2 + η|φ̂|2 + 2βRe(ŵ
¯̂
φ)

≥ 1

2
(αη − β2)(

1

η
|ŵ|2 +

1

α
|φ̂|2) +

α

2
(|ŵ| − |β|

α
|φ̂|)2 +

η

2
(|φ̂| − |β|

η
|ŵ|)2

≥ c∗(|ŵ|2 + |φ̂|2)

(3.6)

for α > 0 and η > 0, where c∗ is defined by

c∗ =
1

2
(αη − β2) min

{
1

α
,

1

η

}
and c∗ is a positive constant provided by αη − β2 > 0. Similarly,

γξ2|v̂|2 + τ |σ̂|2 + 2εξRe(iv̂ ¯̂σ)

≥ 1

2
(γτ − ε2)(1

τ
ξ2|v̂|2 +

1

γ
|σ̂|2) +

γ

2
(|ξ||v̂| − ε

γ
|σ̂|)2 +

τ

2
(|σ̂| − ε

τ
|ξ||v̂|)2

≥ 1

2
(c∗γξ

2|v̂|2 + c∗τ |σ̂|2)

(3.7)

for γ > 0 and τ > 0, where c∗γ and c∗τ are defined by c∗γ := γ−ε2/τ and c∗τ := τ−ε2/γ.

Here, c∗γ and c∗τ are positive constants provided by γτ−ε2 > 0, and c∗γ = γ and c∗τ = τ
for ε = 0.

Next, to construct the dissipation terms, we recall our problem in Fourier space.
Namely, we start the proof at

ρv̂t − αiξŵ − βiξφ̂+ γξ2v̂ − ε1iξσ̂ = 0,

ŵt − iξv̂ = 0,

κσ̂t + βŵ + (η + δξ2)φ̂+ τ σ̂ + ε2iξv̂ = 0,

φ̂t − σ̂ = 0.

(3.8)

We multiply the first and second equations in (3.8) by iξ ¯̂w and −ρiξ ¯̂v, respectively.
Then, combining the resultant equations and taking a real part, we obtain

ρξ
∂

∂t
Re(iv̂ ¯̂w)+ξ2(α|ŵ|2−ρ|v̂|2)+βξ2Re(ŵ

¯̂
φ)+γξ3Re(iv̂ ¯̂w)+ε1ξ

2Re(ŵ ¯̂σ) = 0. (3.9)

For γ = 0 or τ = 0, to eliminate Re(ŵ
¯̂
φ), we multiply the second and third equations

in (3.8) by κβ ¯̂σ and β ¯̂w, respectively, and combine the resultant equations and take
a real part. Then we have

κβ
∂

∂t
Re(ŵ ¯̂σ) + β2|ŵ|2 − κβξRe(iv̂ ¯̂σ) + β(η + δξ2)Re(ŵ

¯̂
φ) + τβRe(ŵ ¯̂σ) = 0. (3.10)
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Combining (3.9) and (3.10) to obtain

∂

∂t

{
ρ(η + δξ2)ξRe(iv̂ ¯̂w)− κβξ2Re(ŵ ¯̂σ)

}
+ (αη − β2 + αδξ2)ξ2|ŵ|2 − ρ(η + δξ2)ξ2|v̂|2

+ γ(η + δξ2)ξ3Re(iv̂ ¯̂w) + κβξ3Re(iv̂ ¯̂σ)− τβξ2Re(ŵ ¯̂σ) = 0.

(3.11)

Similarly, we multiply the third and fourth equations in (3.8) by
¯̂
φ and κ¯̂σ, respec-

tively. Then, combining the resultant equations and taking a real part, we have

κ
∂

∂t
Re(σ̂

¯̂
φ) + (η + δξ2)|φ̂|2 − κ|σ̂|2 + βRe(ŵ

¯̂
φ) + τRe(σ̂

¯̂
φ) + ε2ξRe(iv̂

¯̂
φ) = 0. (3.12)

For γ = 0 or τ = 0, to eliminate Re(ŵ
¯̂
φ), we multiply the first and fourth equations

in (3.8) by βiξ
¯̂
φ and −ρβiξ ¯̂v, respectively. Then, combining the resultant equations

and taking a real part, we obtain

ρβξ
∂

∂t
Re(iv̂

¯̂
φ) + β2ξ2|φ̂|2 + αβξ2Re(ŵ

¯̂
φ)− ρβξRe(iv̂ ¯̂σ) + γβξ3Re(iv̂

¯̂
φ) = 0. (3.13)

We combine (3.12) and (3.13) to obtain

∂

∂t

{
ακξ2Re(σ̂

¯̂
φ)− ρβξRe(iv̂

¯̂
φ)
}

+ (αη − β2 + αδξ2)ξ2|φ̂|2 − ακξ2|σ̂|2

+ ατξ2Re(σ̂
¯̂
φ) + ρβξRe(iv̂ ¯̂σ)− γβξ3Re(iv̂

¯̂
φ) = 0.

(3.14)

Using these equations, we construct the desired pointwise estimate in Fourier space.
In the case γ > 0 and τ > 0, we get from (3.9) and (3.12) that

∂

∂t

{
ρξRe(iv̂ ¯̂w) + κξ2Re(σ̂

¯̂
φ)
}

+ ξ2
(
α|ŵ|2 + (η + δξ2)|φ̂|2

)
− ξ2(ρ|v̂|2 + κ|σ̂|2)

+ 2βξ2Re(ŵ
¯̂
φ) + γξ3Re(iv̂ ¯̂w) + τξ2Re(σ̂

¯̂
φ) + ε1ξ

2Re(ŵ ¯̂σ) + ε2ξ
3Re(iv̂

¯̂
φ) = 0.

Using (3.6) and the Hölder inequality, we estimate

∂

∂t

{
ρξRe(iv̂ ¯̂w) + κξ2Re(σ̂

¯̂
φ)
}

+ cξ2|ŵ|2 + c(1 + ξ2)ξ2|φ̂|2

− C(1 + ε22 + γ2ξ2)ξ2|v̂|2 − C(τ 2 + (1 + ε21)ξ
2)|σ̂|2 ≤ 0.

(3.15)

Therefore, calculating (3.5)× (c̃1 + c̃2ξ
2) + (3.15)× ω0c

∗
γc
∗
τ , we arrive at

∂tE +D = 0 (3.16)

with

E :=
1

2
(c̃1 + c̃2ξ

2)
(
ρ|v̂|2 + α|ŵ|2 + κ|σ̂|2 + (η + δξ2)|φ̂|2 + 2βRe(ŵ

¯̂
φ)
)

+ ω0c
∗
γc
∗
τ

(
ρξRe(iv̂ ¯̂w) + κξ2Re(σ̂

¯̂
φ)
)
,

D := cc∗γc
∗
τξ

2
(
|ŵ|2 + (1 + ξ2)|φ̂|2

)
+ c(c̃1 + c̃2ξ

2)(γξ2|v̂|2 + τ |σ̂|2),
9



where we choose a positive number ω0 suitably small, and

c̃1 := (1 + ε2)c
∗
τ + τ 2c∗γ = τ(1 + ε2 + γτ)

(
1− ε2

γτ

)
,

c̃2 := (1 + ε1)c
∗
γ + γ2c∗τ = γ(1 + ε1 + γτ)

(
1− ε2

γτ

)
.

(3.17)

Furthermore, using the Hölder inequality and letting ω0 suitably small, we obtain

c(c̃1 + c̃2ξ
2)
(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
≤ E ≤ C(c̃1 + c̃2ξ

2)
(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
.

(3.18)

Integrating (3.16) over t and applying (3.18) to the resultant estimate, we get

|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

+

∫ t

0

{
c∗γc
∗
τξ

2

c̃1 + c̃2ξ2

(
|ŵ|2 + (1 + ξ2)|φ̂|2

)
+ c∗γξ

2|v̂2|+ c∗τ |σ̂|2
}
dt′

≤ C(|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2)|t=0,

where C is a positive constant which is independent of γ, τ , ε1 and ε2. Here, we
remark that

c∗γc
∗
τξ

2

c̃1 + c̃2ξ2
=

(γτ − ε2)ξ2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)ξ2
.

We conclude (3.1) from this estimate. On the other hand, we apply the estimate
(3.18) to (3.16) again. Then this yields from cλ(iξ)E ≤ D that ∂tE + cλ(iξ)E ≤ 0,
where λ(iξ) is defined in Theorem 2.2 with γ > 0 and τ > 0. Consequently, we obtain

E(t, ξ) ≤ CE(0, ξ)e−cλ(iξ)t, λ(iξ) =
(γτ − ε2)ξ2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)ξ2
,

where c and C are positive constants which do not depend on γ, τ , ε1 and ε2. Namely,
we arrive at the desired pointwise estimate (2.11) for γ > 0 and τ > 0.

In the case γ > 0 and τ = 0, we start from (3.11), (3.12) and (3.13). Namely, we
construct the energy estimate by using

∂

∂t

{
ρ(η + δξ2)ξRe(iv̂ ¯̂w)− κβξ2Re(ŵ ¯̂σ)

}
+ c(1 + ξ2)ξ2|ŵ|2

− C(1 + ξ2)(1 + γ2ξ2)ξ2|v̂|2 − C|ξ|3|v̂||σ̂| ≤ 0,
(3.19)

−κ ∂
∂t

Re(σ̂
¯̂
φ) + c|σ̂|2 − C(1 + ξ2)|φ̂|2 − C|ŵ|2 ≤ 0, (3.20)

ρβξ
∂

∂t
Re(iv̂

¯̂
φ) + cξ2|φ̂|2 − Cξ2|ŵ|2 − γ2Cξ4|v̂|2 − C|ξ||v̂||σ̂| ≤ 0. (3.21)

Computing (3.19) + (3.21)× ω1ξ
2, this yields

∂

∂t

{
ρ(η + δξ2)ξRe(iv̂ ¯̂w)− κβξ2Re(ŵ ¯̂σ) + ω1ρβξ

3Re(iv̂
¯̂
φ)
}

+ cξ4|φ̂|2 + c(1 + ξ2)ξ2|ŵ|2 − C(1 + ξ2)(1 + γ2ξ2)ξ2|v̂|2 − C|ξ|3|v̂||σ̂| ≤ 0.
(3.22)
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Moreover, computing (3.22)× (1 + ξ2) + (3.20)× ω2ξ
4 and the Hölder inequality, we

get

∂

∂t

{
ρ(η + δξ2)(1 + ξ2)ξRe(iv̂ ¯̂w)− κβ(1 + ξ2)ξ2Re(ŵ ¯̂σ)

+ ω1ρβ(1 + ξ2)ξ3Re(iv̂
¯̂
φ)− ω2κξ

4Re(σ̂
¯̂
φ)
}

+ cξ4|σ̂|2 + c(1 + ξ2)ξ4|φ̂|2

+ c(1 + ξ2)2ξ2|ŵ|2 − C(1 + ξ2)2(1 + γ2ξ2)ξ2|v̂|2 ≤ 0,

(3.23)

where c and C are positive constants which do not depend on γ. Finally, calculating
(3.23)× (1 + ξ2)2(1 + γ2ξ2) + (3.20)× ω0, we arrive at

∂tEγ +Dγ = 0, (3.24)

where

Eγ :=
1

2
(1 + ξ2)2(1 + γ2ξ2)

(
ρ|v̂|2 + α|ŵ|2 + κ|σ̂|2 + (η + δξ2)|φ̂|2 + 2βRe(ŵ

¯̂
φ)
)

+ ω0γ
(
ρ(η + δξ2)(1 + ξ2)ξRe(iv̂ ¯̂w)− κβ(1 + ξ2)ξ2Re(ŵ ¯̂σ)

+ ω1ρβ(1 + ξ2)ξ3Re(iv̂
¯̂
φ)− ω2κξ

4Re(σ̂
¯̂
φ)
)
,

Dγ := cγξ4
(
|σ̂|2 + (1 + ξ2)|φ̂|2

)
+ cγ(1 + ξ2)2ξ2|ŵ|2 + cγ(1 + ξ2)2(1 + γ2ξ2)ξ2|v̂|2.

Therefore, using the Hölder inequality and letting ω0, ω1 and ω2 suitably small, we
obtain

c(1 + ξ2)2(1 + γ2ξ2)
(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
≤ Eγ ≤ C(1 + ξ2)2(1 + γ2ξ2)

(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
,

(3.25)

Integrating (3.24) over t and applying (3.25) to the resultant estimate, we get

|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

+

∫ t

0

{
γξ4

(1 + ξ2)2(1 + γ2ξ2)

(
|σ̂|2 + (1 + ξ2)|φ̂|2

)
+

γξ2

1 + γ2ξ2
|ŵ|2 + γξ2|v̂2|

}
dt′

≤ C(|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2)|t=0,

where C is a positive constant which is independent of γ. We conclude (3.2) from
this estimate. Furthermore, employing the same argument as before, we obtain

Eγ(t, ξ) ≤ CEγ(0, ξ)e
−cλγ(iξ)t, λγ(iξ) =

γξ4

(1 + ξ2)2(1 + γ2ξ2)
.

This pointwise estimate means (2.11) for γ > 0 and τ = 0.
In the case γ = 0 and τ > 0, we start from (3.10) and (3.13). We add these

equations to erase ξ2Re(ŵ
¯̂
φ). Then we have

∂

∂t

{
ακβRe(ŵ ¯̂σ)− ρδβξRe(iv̂

¯̂
φ)
}

+ β2
(
α|ŵ|2 − δξ2|φ̂|2

)
− β(ακ− ρδ)ξRe(iv̂ ¯̂σ) + αηβRe(ŵ

¯̂
φ) + ατβRe(ŵ ¯̂σ) = 0.
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Namely, we obtain

∂

∂t

{
ακβRe(ŵ ¯̂σ)− ρδβξRe(iv̂

¯̂
φ)
}

+ c|ŵ|2

− C(1 + ξ2)|φ̂|2 − τ 2C|σ̂|2 − Cp|ξ||v̂||σ̂| ≤ 0,
(3.26)

where we define p is defined in Theorem 2.2. Remark that we do not need to control
the last term in (3.26) if p = 0. On the other hand, (3.9) and (3.13) give us

−ρξ ∂
∂t

Re(iv̂ ¯̂w) + cξ2|v̂|2 − Cξ2(|ŵ|2 + |φ̂|2) ≤ 0, (3.27)

(1 + χξ2)
∂

∂t

{
ακξ2Re(σ̂

¯̂
φ)− ρβξRe(iv̂

¯̂
φ)
}

+ c(1 + χξ2)(1 + ξ2)ξ2|φ̂|2

− C(1 + τ 2)(1 + pξ2)ξ2|σ̂|2 − C(1 + pξ2)|ξ||v̂||σ̂| ≤ 0.
(3.28)

Using (3.26) and (3.28), we have

∂

∂t

{
ακξ2Re(σ̂

¯̂
φ)− ρβξ3Re(iv̂

¯̂
φ) + ω1(1 + pξ2)

(
ακβRe(ŵ ¯̂σ)−ρδβξRe(iv̂

¯̂
φ)
)}

+ cξ2|ŵ|2 + c(1 + pξ2)(1 + ξ2)ξ2|φ̂|2 − C(1 + τ 2)(1 + pξ2)ξ2|σ̂|2

− C(1 + pξ2)|ξ||v̂||σ̂| ≤ 0.

(3.29)

Furthermore, (3.27) and (3.29) give us

∂

∂t

{
ακξ2Re(σ̂

¯̂
φ)− ρβξ3Re(iv̂

¯̂
φ)

+ ω1(1 + pξ2)
(
ακβRe(ŵ ¯̂σ)− ρδβξRe(iv̂

¯̂
φ)
)
− ω2ρξRe(iv̂ ¯̂w)

}
+ cξ2

(
|v̂|2 + |ŵ|2 + (1 + pξ2)(1 + ξ2)|φ̂|2

)
− C(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)|σ̂|2 ≤ 0,

(3.30)

where c and C are positive constants which do not depend on τ . Finally, calculating
(3.23)× (1 + pξ2)(1 + (1 + τ 2 + p)ξ2) + (3.30)× ω0τ , we arrive at

∂tEτ +Dτ = 0, (3.31)

where

Eτ :=
1

2
(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)·

·
(
ρ|v̂|2 + α|ŵ|2 + κ|σ̂|2 + (η + δξ2)|φ̂|2 + 2βRe(ŵ

¯̂
φ)
)

+ ω0τ
(
ακξ2Re(σ̂

¯̂
φ)− ρβξ3Re(iv̂

¯̂
φ)

+ ω1(1 + pξ2)
(
ακβRe(ŵ ¯̂σ)− ρδβξRe(iv̂

¯̂
φ)
)
− ω2ρξRe(iv̂ ¯̂w)

)
,

Dτ := cξ2
(
|v̂|2 + |ŵ|2 + (1 + pξ2)(1 + ξ2)|φ̂|2

)
+ c(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)|σ̂|2.
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Therefore, using the Hölder inequality and letting ω0, ω1 and ω2 suitably small, we
obtain

c(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)
(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
≤ Eτ ≤ C(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)

(
|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

)
,

(3.32)

where c and C are positive constants which do not depend on τ . Integrating (3.31)
over t and applying (3.32) to the resultant estimate, we get

|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2

+

∫ t

0

{
τξ2 (|v̂|2 + |ŵ|2)

(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)
+

τ(1 + ξ2)ξ2|φ̂|2

1 + (1 + τ 2 + p)ξ2
+ τ |σ̂|2

}
dt′

≤ C(|v̂|2 + |ŵ|2 + |σ̂|2 + (1 + ξ2)|φ̂|2)|t=0,

where C is a positive constant which is independent of τ . We conclude (3.3) and
(3.4) from this estimate. Moreover, from the same argument as before, we arrive at

Eτ (t, ξ) ≤ CEτ (0, ξ)e
−cλτ (iξ)t, λτ (iξ) =

τξ2

(1 + pξ2)(1 + (1 + τ 2 + p)ξ2)
,

where c and C are positive constants which do not depend on τ . This pointwise
estimate means that (2.11) for γ = 0 and τ > 0. Therefore, we complete the proofs
of Theorem 2.2 and Proposition 3.1. �

Proof of Corollary 2.3. We first prove (2.14) in Corollary 2.3. From (2.12), we
have

λ(iξ) ≥


γ

4(1 + γ2)
ξ4 for |ξ| ≤ 1,

γ

4(1 + γ2)
ξ−2 for |ξ| ≥ 1.

Then, applying the Plancherel theorem to (2.11), we get

‖∂kxU(t)‖2L2 =
1

(2π)n

∫
Rn
ξ2k|Û(t, ξ)|2dξ

≤ C

∫
|ξ|≤1

ξ2ke−caγξ
4t|Û0(ξ)|2dξ + C

∫
|ξ|≥1

ξ2ke−caγξ
−2t|Û0(ξ)|2dξ

=: I1 + I2,

(3.33)

where aγ := γ(1 + γ2)−1. For the low frequency part I1, we first employ the Hölder
inequality to obtain

I1 ≤ C‖ξ2ke−caγξ4t‖Lp1 (|ξ|≤1)‖Û2
0‖Lp2 (|ξ|≤1) ≤ C(1 + aγt)

− 1
4p1
− k

2 ‖Û0‖2L2p2

for 1 ≤ p1, p2 ≤ ∞ with 1/p1 + 1/p2 = 1. Furthermore, using Hausdorff-Young

inequality, we have ‖Û0‖L2p2 ≤ C‖U0‖Lq for 1 ≤ q ≤ 2 with 1/(2p2) + 1/q = 1. Thus,
13



combining these estimate, we get I1 ≤ C(1 + aγt)
− 1

2
( 1
q
− 1

2
)− k

2 ‖U0‖2Lq for 1 ≤ q ≤ 2. On
the other hand, for the high frequency part I2, we compute

I2 ≤ C sup
|ξ|≥1
{|ξ|−2`e−caγξ−2t}

∫
|ξ|≥1
|ξ|2(k+`)|Û0(ξ)|2dξ ≤ C(1 + aγt)

−`‖∂k+`x U0‖2L2 .

Finally, substituting the estimates of I1 and I2 into (3.33), we arrive at the desired
decay estimate (2.14).

On the other hand, from the same argument and the fact that

λ(iξ) ≥


γτ − ε2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)
ξ2 for |ξ| ≤ 1,

γτ − ε2

τ(1 + ε2 + γτ) + γ(1 + ε1 + γτ)
for |ξ| ≥ 1

for γ > 0 and τ > 0, and

λ(iξ) ≥


τ

2 + τ 2
ξ2 for |ξ| ≤ 1,

τ

2 + τ 2
for |ξ| ≥ 1

for γ = 0, τ > 0 and p = 0, and

λ(iξ) ≥


τ

(1 + p)(2 + τ 2 + p)
ξ2 for |ξ| ≤ 1,

τ

(1 + p)(2 + τ 2 + p)
ξ−2 for |ξ| ≥ 1

for γ = 0, τ > 0 and p 6= 0, we conclude the decay estimates (2.13), (2.15) and (2.16).
This completes the proof. �

4. Eigenvalue problem

In this section, to discuss the optimality of the pointwise estimates in Theorem
2.2, we consider the eigenvalue problem for (1.1). The eigenvalue problem (2.7) is

written as (λI − Φ̂(iξ))ϕ = 0, where I is an identity matrix and Φ̂ is defined by

Φ̂(iξ) := −(A0)−1(iξA+ ξ2B + L+ iξM).

By the direct calculation, the characteristic polynomial of Φ̂(iξ) is

det(λI − Φ̂(iξ))

=
1

ρκ
λ{ρκλ4 + (κγξ2 + ρτ)λ3 +

(
(ακ+ ρδ + γτ − ε1ε2)ξ2 + ρη

)
λ2

+
(
δγξ2 + ατ + ηγ − β(ε1 + ε2)

)
ξ2λ+ (αδξ2 + αη − β2)ξ2}.

(4.1)

The polynomial (4.1) tells us that Φ̂(iξ) has a zero eigenvalue. The eigenspace Wξ of
zero eigenvalues is described as

Wξ = {ϕ = (0,− δβ

αη − β2
iξϕ0, 0, ϕ0,

αδ

αη − β2
iξϕ0) | ϕ0 ∈ C}
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for ξ 6= 0. Then, the orthogonal complement of Wξ is

W⊥
ξ = {ϕ = (ϕ1, ϕ2, ϕ3,

δ

αη − β2
iξ(αϕ4 − βϕ2), ϕ4) | ϕ1, ϕ2, ϕ3, ϕ4 ∈ C}.

On the other hand, the constraint condition (2.4) denotes

Vξ = {ϕ = (ϕ1, ϕ2, ϕ3, iξϕ4, ϕ4) | ϕ1, ϕ2, ϕ3, ϕ4 ∈ C}.

Then it is easy to obtain Vξ = W⊥
ξ for ξ ∈ R. Therefore, because our eigenvector is in

Vξ under the constraint condition (2.4), the corresponding eigenvalues are solutions
of

ρκλ4 + (κγξ2 + ρτ)λ3 +
(
(ακ+ ρδ + γτ − ε1ε2)ξ2 + ρη

)
λ2

+
(
δγξ2 + ατ + ηγ − β(ε1 + ε2)

)
ξ2λ+ (αδξ2 + αη − β2)ξ2 = 0.

(4.2)

Furthermore, from Theorem 2.1, the non-zero eigenvalues must satisfy Reλ(iξ) < 0
for ξ 6= 0 if ε1 = ε2 = 0. Hence, it is enough to consider the asymptotic expansion of
λ = λ(iξ) for |ξ| → 0 and for |ξ| → ∞.

Let λj(iξ) be the non-zero eigenvalues of Φ̂(iξ). We first consider the asymptotic
expansion for |ξ| → 0 with the expression

λj(iξ) =
∞∑
k=0

λ
(k)
j ξk. (4.3)

Substituting (4.3) into (4.2), we find, after lengthy but straightforward calculations,
as follows.

(i) γ > 0 and τ > 0:

λj(iξ) = ±

√
αη − β2

ρη
iξ − χ1

4ρη2
ξ2 +O(ξ3), (4.4)

for j = 1, 2 and

λj(iξ) = − 1

2κ
(τ ±

√
τ 2 − 4κη) +O(ξ2) if τ 2 − 4κη 6= 0,

λj(iξ) = − τ

2κ
±

√
δ

κ
− 1

ρη

(
β − ε1τ

2κ

)(
β − ε2τ

2κ

)
iξ +O(ξ2) if τ 2 − 4κη = 0

(4.5)

for j = 3, 4, where

χ1 :=
(
γτ − ε2

)(η2
τ

+
β2

γ

)
+ γ

(
η − εβ

γ

)2

+ τ
(
β − εη

τ

)2
.

Remark that χ1 > 0 for γτ − ε2 > 0.

(ii) γ > 0 and τ = 0:

λj(iξ) = ±

√
αη − β2

ρη
iξ − γη

2ρ
ξ2 +O(ξ3), (4.6)
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for j = 1, 2 and

λj(iξ) = ±
√
η

κ
i± 1

2

(
δ

κ
+
β2

ρη

)√
κ

η
iξ2

− 1

2ρη

{
γ

(
δ +

2κβ2

ρη

)
± χ2i

}
ξ4 +O(ξ5),

(4.7)

for j = 3, 4, where

χ2 :=

(
ρκ

4

(
δ

κ
+
β2

ρη

)2

+

(
ρ

(
δ

κ
+
β2

ρη

)
+ α

)(
κ

(
δ

κ
+
β2

ρη

)
+ δ

))√
κ

η
.

(iii) γ = 0 and τ > 0:

λj(iξ) = ±

√
αη − β2

ρη
iξ − τβ2

2ρη2
ξ2 +O(ξ3), (4.8)

for j = 1, 2 and

λj(iξ) = − 1

2κ
(τ ±

√
τ 2 − 4κη) +O(ξ2) if τ 2 − 4κη 6= 0,

λj(iξ) = − τ

2κ
±

√
δ

κ
− β2

ρη
iξ +O(ξ2) if τ 2 − 4κη = 0

(4.9)

for j = 3, 4.

We next study the asymptotic expansion for |ξ| → ∞. To this end, we rewrite

Φ̂(iξ) as Φ̂(iξ) = ξ2Ψ̂(iξ), where Ψ̂(iξ) := −(A0)−1(iξ−1A + B + ξ−2L + iξ−1M).

Then non-zero eigenvalues Λj(iξ) of Ψ̂(iξ) satisfy

ρκΛ4 + (κγ + ρτξ−2)Λ3 +
(
ακ+ ρδ + γτ − ε1ε2 + ρηξ−2

)
ξ−2Λ2

+
(
δγ + (ατ + ηγ − β(ε1 + ε2))ξ

−2) ξ−2Λ +
(
αδ + (αη − β2)ξ−2

)
ξ−4 = 0.

We consider the asymptotic expansion for |ξ| → ∞ with the expression

Λj(iξ) =
∞∑
k=0

Λ
(k)
j ξ−k.

Similar calculation as before leads the expansion of the eigenvalues λj(iξ) = ξ2Λj(iξ)
that

(i) γ > 0 and τ > 0:

λj(iξ) = ±
√
δ

κ
iξ − 1

2κγ
(γτ − ε1ε2)∓

χ3

8κγ2
√
δκ
iξ−1 +O(ξ−2),

λ3(iξ) = −α
γ

+O(ξ−2), λ4(iξ) = −γ
ρ
ξ2 +

ακ− ε1ε2
κγ

+O(ξ−1)

(4.10)

for j = 1, 2, where

χ3 := γ2(τ 2 − 4κη) + 8κγβε+ ε1ε2 (ε1ε2 − 2γτ − 4(ακ− ρδ)) .

Remark that γτ − ε1ε2 > 0 for γτ − ε2 > 0.
16



(ii) γ > 0 and τ = 0:

λj(iξ) = ±
√
δ

κ
iξ ± η

2δ

√
δ

κ
iξ−1 − αη

2δγ
ξ−2 +O(ξ−3),

λ3(iξ) = −α
γ

+O(ξ−2), λ4(iξ) = −γ
ρ
ξ2 +

α

γ
+O(ξ−1)

(4.11)

for j = 1, 2.

(iii-i) γ = 0, τ > 0 and p = 0:

λj(iξ) =

√
α

ρ
iξ − 1

4κ
(τ ±

√
τ 2 − 4κβ2/α) +O(ξ−1) (4.12)

for j = 1, 2 and

λj(iξ) = −
√
α

ρ
iξ − 1

4κ
(τ ±

√
τ 2 − 4κβ2/α) +O(ξ−1) (4.13)

for j = 3, 4.

(iii-ii) γ = 0, τ > 0 and p 6= 0:

λj(iξ) = ±
√
δ

κ
iξ − τ

2κ
∓ 1

2

(
τ 2

4δκ
+

ρη

ακ− ρδ

)√
δ

κ
iξ−1 +O(ξ−2) (4.14)

for j = 1, 2 and

λj(iξ) = ±
√
α

ρ
iξ ± ρη

2(ακ− ρδ)

√
α

ρ
iξ−1 − αρητ

2(ακ− ρδ)2
ξ−2 +O(ξ−3) (4.15)

for j = 3, 4.

The expansions (4.11) and (4.15) denote the regularity-loss structure. We conclude
from these expansions that the estimates in Theorem 2.2 and Corollary 2.3 should
be optimal.
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