
1

Universitat Politècnica de Catalunya

Facultat d’Informàtica de Barcelona

Bachelor Degree in Informatics Engineering

Specialisation: Computing

Realistic face rendering for 3D mixed reality experience

Bachelor’s Thesis of Tharangini Sankarnarayanan

Director: Josep Ramon Morros

Signal Theory and Communications Deparment

Co-Director: Javier Ruiz Hidalgo

Signal Theory and Communications Deparment

Tutor: Nuria Castell Ariño

Computer Science Department

Date: July 1st, 2019

2

Abstract

Virtual Reality (VR) has advanced significantly in the recent years. VR allows users to explore

novel environments (both real and imaginary), play games, and engage with media in a way that

is unprecedentedly immersive. However, compared to physical reality, sharing these experiences

is difficult because the user's face is not easily observable from the outside and is partly occluded

by the VR headset. Mixed Reality (MR) is a medium that alleviates some of this disconnect by

sharing the virtual context of a VR user in a flat video format that can be consumed by an audience

to get a feel for the user's experience.

Even though MR allows audiences to connect actions of the VR user with their virtual

environment, empathizing with them is difficult because their face is hidden by the headset. Mixed

reality is a way to convey what’s happening inside and outside a virtual place in a two dimensional

format. With this new technology, we’re able to make a more complete picture of the person in

virtual reality. Some of this disconnect is alleviated by Mixed Reality (MR), a related medium that

shares the virtual context of a virtual reality user in a two dimensional video format allowing other

viewers to get a feel for the user’s virtual experience. Even though mixed reality facilitates sharing,

the headset continues to block facial expressions and eye gaze, presenting a significant hurdle to a

fully engaging experience and complete view of the person in virtual reality.

Google has a project to enhance the experience of virtual reality, our project aims to present a

solution to address this problem by virtually removing the headset and revealing the face

underneath it using a combination of 3D vision, machine learning and graphics techniques for

images. We are now able to “remove” headsets and show a person’s identity, focus and full face

in virtual reality. The solution to this problem helps in enhancing communication through videos

and video conferencing and in healthcare treatments for mental disorders.

3

Acknowledgement

First and foremost, I would like to thank the Almighty for giving me this opportunity and guiding

me always.

I am eternally grateful to my mentors Professors Ramon Morros Rubió, Professor Javier Ruiz

Hidalgo and Professor Nuria Castell Ariño for letting me work on this project and their kind

thoughtful guidance throughout.

I am greatly thankful to SASTRA University, for providing me this wonderful opportunity to work

in Universitat Politecnica De Catalunya for my Bachelor thesis.

I would also like to thank Universitat Politecnica De Catalunya for allowing us to use the NVIDIA

GPU Center of Excellence and giving us its resources and machines for developing this thesis.

Lastly, I would like to thank my parents for their eternal love, support and confidence

4

Contents

Index of Figures 7

Index of Tables 8

1 Introduction 9

1.1 Why the need to enhance the experience of Virtual and Mixed Reality9

1.2 Existing Solutions……………………………………………………………….……..10

1.2.1 State of the art……………………………………………………….……….10

1.2.2 Related Work………………………………………………………….……..11

1.3 Problem Formulation…………………………………………………………….…….12

1.4 Why Computer Vision and Machine Learning? ..13

1.5 Methodology……………………………………………………………………….…..13

2 Scope, Stakeholders, and Challenges 14

2.1 Scope……………………………………….………………………………………...14

2.2 Stakeholders……………………………………………….…………………………14

2.3 Challenges…………………………………………………………….……………...15

2.3.1 Dataset…………………………….………………………………………..15

2.3.2 Computational Resources……………….……………………………….....15

3 Project Management 16

3.1 Initial Milestone……………………………………………………………………...16

3.1.1 Temporal Planning……………………………...……..……………………16

 3.1.1.1 Tasks………………………………………………………………...16

3.1.2 Financial Planning…………….…………………………………………….22

3.1.2.1 Hardware Costs………………………………………………….….22

3.1.2.2 Software Costs……………………………………………………...23

3.1.2.3 Human Resources Costs………………………………………….…23

3.1.2.4 Indirect and Unforeseen Costs……………………………………...24

3.1.2.5 Task-based distribution……………………………………………..26

5

3.1.2.6 Budget Control…………………………………………………….. 27

3.1.2.7 Total Budget………………………………………………………..27

3.1.3 Sustainability……………………………………………………………….27

3.1.3.1 Economic Sustainability………………....…………………………28

3.1.3.2 Social Sustainability………………....……………………………..28

3.1.3.3 Environmental Sustainability………………....……………………29

3.2 Final Milestone…………………………..………………………………………….29

3.2.1 Temporal Planning…………………………………………………………29

3.2.2 Financial Planning…………………………………………………….........30

3.2.3 Sustainability……………………………………………………………… 30

3.2.4 Legal Implications………………………………………………………….31

4 About the Data 32

4.1 Creating the Dataset……………………………….………………………………..32

5 About the Model 34

5.1 Architectures……………………………………….……………………………….34

5.1.1 Basic Layout of GAN Model……………..……………………………… ...34

5.1.2 Edge-Connect Model….………………………...…… …………………… 38

5.1.3 Final Model………………………………………………..………………..39

5.1.3.1 Generator……………………………………………………………43

5.1.3.2 Discriminator………………………………………………………..43

5.2 Experiments with Models……………………….…………………………………44

5.2.1 Tuning the Learning Rate………………………………………………….45

5.2.2 Tuning the Number of Layers……………………………………………...45

5.2.3 Batch Normalization……………………………………………………….46

5.2.4 Exponential Linear Units…………………………………………………. 46

5.2.5 Noise……………………………………………………………..………...46

5.2.6 Optimizers…………………………………………….…………………....47

6

6 Experimental Results 48

6.1 Procedure……………………………………………………...……..……………..48

7 Conclusion & Future Work 51

7.1 Conclusion……………………………………………….………….……………..51

7.2 Future Work…………………………………………………………..……………51

7.3 Personal Conclusion…………………………………………………………..……52

8 References 53

Appendix A: Requirements 56

Appendix B: Background Knowledge 58

Generative Adversarial Networks………………………………………………….….58

Convolutional Neural Networks………………………………………………………59

7

Index of Figures

Figure Number Name Page Number

1 Gantt Chart of Schedule 21

2 Training images 32

3 Testing Images 33

4 Basic Generative Adversarial Network Architecture 36

5 Comparison of Generative and Discriminative Neural

Networks

37

6 Self-Attention Layer 39

7 Gradient and Laplacian based edge detection 40

8 Structure of Discriminator 41

9 Testing Results 1 49

10 Testing Results 2 50

8

Index of Table

Table Number Name Page Number

1 Summary of Schedules 20

2 Hardware Costs 22

3 Human Resources Budget 23

4 A Task based distribution of the Resources 26

5 Total Budget 27

9

Chapter 1

Introduction

1.1 Why the need to enhance the experience of Virtual and Mixed

Reality?

Virtual Reality (VR) has advanced significantly in the recent years. VR allows users to explore

novel environments (both real and imaginary), play games, and engage with media in a way that

is unprecedentedly immersive. However, compared to physical reality, sharing these experiences

is difficult because the user's face is not easily observable from the outside and is partly occluded

by the VR headset. Mixed Reality (MR) is a medium that alleviates some of this disconnect by

sharing the virtual context of a VR user in a flat video format that can be consumed by an audience

to get a feel for the user's experience.

Even though MR allows audiences to connect actions of the VR user with their virtual

environment, empathizing with them is difficult because their face is hidden by the headset. Mixed

reality is a way to convey what’s happening inside and outside a virtual place in a two dimensional

format. With this new technology, we’re able to make a more complete picture of the person in

virtual reality. Some of this disconnect is alleviated by Mixed Reality (MR), a related medium that

shares the virtual context of a virtual reality user in a two dimensional video format allowing other

viewers to get a feel for the user’s virtual experience. Even though mixed reality facilitates sharing,

the headset continues to block facial expressions and eye gaze, presenting a significant hurdle to a

fully engaging experience and complete view of the person in virtual reality.

Researchers in America are exploring the ways in which VR can be used across healthcare; such

as for 'post-traumatic' stress disorder, for reducing amputee pain and as a way to train doctors.

Participants who used VR reported reduced levels of pain and general distress and said they would

like to use VR again during painful medical procedures. VR appears to trigger an array of

10

emotional, cognitive and attention processes that act on the body’s pain modulation system, acting

as a non-pharmacological pain killer.

1.2 Existing Solutions

1.2.1 State of the art

The problem to remove the headsets in mixed reality involves videos, which is an aggregation of

consecutive images. We have worked to develop a prototype to remove headsets in images. The

headsets can be referred to a masked region which needs to be inpainted. Image inpainting, or

image completion, involves filling in missing regions of an image. It is an important step in many

image editing tasks. It can, for example, be used to fill in the holes left after removing unwanted

objects from an image. Humans have an uncanny ability to zero in on visual inconsistencies.

Consequently, the filled regions must be perceptually plausible.

Generative adversarial networks focus on creating “deepfakes” for the facial images. Adversarial

machine learning has other uses besides generative modeling and can be applied to models other

than neural networks. The general idea of learning via competition between players dates back to

at least 1959 with the influential work of Arthur Samuel, demonstrating that algorithms could learn

to play checkers via adversarial self-play.

Ian Goodfellow is recognized by several sources as having invented GANs in 2014. This paper

included the first working implementation of a generative model based on adversarial networks,

as well as game theoretic analysis establishing that the method is sound.

GANs gained importance for fixing ancient paintings with missing portions. The process gained

momentum in 2017, when a GAN was used for image enhancement focusing on realistic textures

rather than pixel-accuracy, producing a higher image quality at high magnification for paintings.

Later in 2017, the first faces were generated. These were exhibited in February 2018 at the Grand

Palais. Faces generated by StyleGAN in 2019, drew comparisons with Deepfakes.

11

Beginning in 2017, GAN technology began to make its presence felt in the fine arts arena with the

appearance of a newly developed implementation which was said to have crossed the threshold of

being able to generate unique and appealing abstract paintings.

1.2.2 Related Work

Among other things, the lack of fine structure in the filled region is a giveaway that something is

amiss, especially when the rest of the image contain sharp details. The work presented in a model

called Edge-Connect paper is motivated by the observation that many existing image inpainting

techniques generate over-smoothed and/or blurry regions, failing to reproduce fine details. The

process of image inpainting is divided into a two-stage process: edge generation and image

completion. Edge generation is solely focused on hallucinating edges in the missing regions. The

image completion network uses the hallucinated edges and estimates RGB pixel intensities of the

missing regions. Both stages follow an adversarial framework [18] to ensure that the hallucinated

edges and the RGB pixel intensities are visually consistent. Both networks incorporate losses based

on deep features to enforce perceptually realistic results. Like most computer vision problems,

image inpainting predates the wide-spread use of deep learning techniques. Broadly speaking,

traditional approaches for image inpainting can be divided into two groups: diffusion-based and

patch-based. Diffusion-based methods propagate background data into the missing region by

following a diffusive process typically modeled using differential operators. Patch-based methods,

on the other hand, fill in missing regions with patches from a collection of source images that

maximize patch similarity. These methods, however, do a poor job of reconstructing complex

details that may be local to the missing region. More recently deep learning approaches have found

remarkable success at the task of image inpainting. These schemes fill the missing pixels using

learned data distribution. They are able to generate coherent structures in the missing regions, a

feat that was nearly impossible for traditional techniques. While these approaches are able to

generate missing regions with meaningful structures, the generated regions are often blurry or

suffer from artifacts, suggesting that these methods struggle to reconstruct high frequency

information accurately. Then, how does one force an image inpainting network to generate fine

details? Since image structure is well represented in its edge mask, it is possible to generate

12

superior results by conditioning an image inpainting network on edges in the missing regions.

Clearly, there is no access to the edges in the missing regions. Rather, an edge generator/sketch

generator is used, that hallucinates edges in these areas. The approach of “lines first, color next”

is partly inspired by the understanding of how artists work.

“In line drawing, the lines not only delineate and define spaces and shapes; they also play a vital

role in the composition”, as artist Betty Edwards said, highlights the importance of sketches from

an artistic viewpoint. Edge recovery, we suppose, is an easier task than image completion. This is

the base model that essentially decouples the recovery of high and low frequency information of

the inpainted region.

1.3 Problem Formulation

Virtual Reality (VR) enables remarkably immersive experiences, offering newer ways to view the

world and the ability to explore novel environments, both real and imaginary. However, compared

to physical reality, sharing these experiences with others can be difficult; as virtual reality headsets

make it challenging to create a complete picture of the people participating in the experience. The

headsets obstruct virtual communication. If one is watching someone else using virtual reality, it

is hard to tell what is going on and what they are seeing. This also obstructs viewing one another’s

facial expressions without an avatar representation.

The project aims to provide a solution to address this problem by revealing the user’s face by

virtually “removing” the headset and create a realistic see-through effect by the combination of

3D vision, machine learning and graphics techniques and develop a prototype to demonstrate the

system using a calibrated VR setup including a headset (like the HTC Vive), a green screen, and a

video camera (in this case a phone camera) combined with accurate tracking and segmentation.

13

1.4 Why Computer Vision and Machine Learning?

In our domain, trying to solve the problem mathematically, with statistics, will only take us so far.

Making that solution of use in real life with respect to response time and scaling it to real world

size would require huge computational and storage capabilities. Even if we were to use the

resources of such magnitude, the solution still will not be as elegant as one involved Computer

Vision because computer Vision is an emulation of the most advanced, the most powerful

computer there exists: The Human Brain.

We try to solve the problem of the usage of VR headsets that makes it challenging to create a

complete picture of the people participating in the experience. The face hidden revealing the user’s

face by virtually removing the headset and create a realistic see-through effect. A computer can be

trained to do the same with the help of 3D vision, machine learning and graphics techniques. We

choose Generative Adversarial Networks as the Machine Learning technique to be used, because

GANs inherently by their design are similar to the visual cortex of the brain and likewise more

suited to deal with the processing visual data such as images.

1.5 Methodology

This section gives a brief overview of the methodology to be followed in the project. It involves

five major steps:

¶ Create a dataset with images of people with and without headsets

¶ Refine the data into a dataset suitable for training the network

¶ Build a convolution neural network model

¶ Tune the hyper-parameters of the model

¶ Deploy the final tuned model

14

Chapter 2

Scope, Stakeholders, and Challenges

2.1 Scope

The initial phase of the project will involve creating the dataset, working with the dataset to test

different mapping schemes of images. This will be followed by pruning the dataset to remove

unsuitable images to enhance the quality of training data.

Second, the most optimum values for the parameters of the adversarial network model will be

decided by running experiments on models with different parameters to study their impact on the

result.

Finally, the fully trained model allows the removal of the headsets in images in mixed reality.

2.2 Stakeholders

This project has a very diverse and large target audience as elucidated below.

¶ Headset removal is poised to enhance communication and social interaction in VR itself

with diverse applications like VR video conference meetings, multiplayer VR gaming, and

exploration with friends and family. Going from an utterly blank headset to being able to

see, with photographic realism, the faces of fellow VR users promises to be a significant

transition in the VR world

¶ VR can be used across healthcare; such as for post-traumatic stress disorder and other

mental disorders, for reducing amputee pain by noticing various changes in the person’s

expressions and emotions.

15

2.3 Challenges

2.3.1 Dataset

The dataset consists of images of faces of people without the headsets and wearing the headsets.

First, there is no dataset publicly available for usage. Hence, we created a dataset with frontal facial

images of 13 people with and without the headsets. There are 3 images each of a person wearing

the headsets and without wearing the headsets of all the people.

2.3.2 Computational Resources

The more complicated our convolutional network model is, the more layers it has and consequently

the longer it takes to train. Training a simple 2-layer convolutional network for takes weeks for 1

epoch and testing for 2 days for 1 epoch takes approximately 30 minutes on a machine with Intel

Core i7-3537 2GHz processor and 8 GB of RAM. Thus, to achieve good results, we would be

required to train a more complex network, getting enough computational resources to run the

experiments fast is a big challenge.

16

Chapter 3

Project Management

3.1 Initial Milestone

Before beginning the project, we estimated the temporal and financial aspects of the project which

include the schedule to be followed and the expected budget of the project. We present those

estimates in this section. After the completion of the project, we re-evaluated the temporal and

financial aspects of the project to a finer precision and compared it to the initial estimates. The

comparisons are presented in the next section (4.2 Final Milestone).

3.1.1 Temporal Planning

The project begins on the 11th February. The hard deadline is on the 24th of June, a week before

the final defense (Expected to be on the 1st of July). Thus, a total of 18 weeks is at our disposal

for the completion of the project. We will be undertaking the project by splitting it into different

smaller tasks and executing the tasks in an ordered manner. The tasks have been ordered in a

sequenced manner for execution. They have been described in detail in the following section.

3.1.1.1 Tasks

¶ Initial Preparatory Research

This, being the first task, involves obtaining the background knowledge required to embark

on the project. The main workers on this task will be the software designer and the project

manager. It can be subdivided into three tasks as follows:

Learning about Generative Adversarial Networks and Convolutional Neural Networks

Learning with PyTorch

Reading related Research Papers

17

Time: A duration of 2 weeks (50 hours) is both necessary and sufficient for this task.

Resources: Working Laptop with Internet Connection, Web Browser, PDF Viewer

¶ Experiments

¶ Refining the training data

One of the primary tasks of the tasks of the project. This involves working with the

dataset to find out the most optimal organization of the training data. The main

refinements to consider are:

¶ Images are focused on the frontal face

¶ Images are then resized to size 256*256

¶ Deciding the model architecture

A Generative Adversarial Network (GAN) is used as the base model. Given a

training set, this technique learns to generate new data with the same statistics as

the training set. For example, a GAN trained on photographs can generate new

photographs that look at least superficially authentic to human observers, having

many realistic characteristics. A known dataset serves as the initial training data for

the discriminator. Training it involves presenting it with samples from the training

dataset, until it achieves acceptable accuracy. The generator trains based on whether

it succeeds in fooling the discriminator.

The image inpainting network that consists of two stages:

 1) Edge Generator,

 2) Image Completion Network

Both the stages follow an adversarial model. The first stage consists of a

generator/discriminator pair. Let G1 and D1 be the generator and discriminator for

the edge generator, with the generator being executed in a GAN, and the

discriminator is a CNN network for the image completion network. Let G2 and D2

be the generator and discriminator for the image completion network, with the

18

generator being executed in a GAN, and the discriminator is a CNN network for

the image completion network.

This task deals with the building a prototype for the problem. Specifically, the

generators consist of encoders that down-sample twice, followed by eight residual

blocks and decoders that up sample images back to the original size. The

discriminator consists of dilated convolutions with a dilation factor of two are used

instead of regular convolutions in the residual layers. Instance normalization is used

across all layers of the network.

¶ Simulation

This task can be divided into three parts:

Running trial simulation based on current model with the current dataset

Analyzing the results

Based on the results, we go back to Task 2.A to further refine the dataset for better

accuracy. Then execute Task 2.B again with to update the parameters based on the

obtained results. Then run Task 2.C a new simulation.

Thus, Tasks 2.A, 2.B and 2.C form a continuous cyclic process of experimenting

with the goal of bettering the model as much as possible. All three subtasks require

an equal distribution of time and resources allocated for the collective task. Also,

all these sub-tasks would require the major involvement of the project manager,

software designer and software developer.

Time: Thus, this task of Experiments is the major and the most important part of

this project and will require the most amount of time. Hence, a total amount of 12

weeks has been allocated for this task, which is approximately 70% of the total

duration of the project.

Resources: Python IDE, Working Laptop with Internet connection

19

¶ Testing

One of the final stages of the project. This task will involve conducting a thorough

test of the entire project. The main objectives are testing the GAN prototype. It will

encompass testing the sub-components too. The software tester is responsible for

this task throughout under the supervision of the project manager.

Time: A continual testing occurs as according to the agile methodology to

completely verify all the components of the project.

Resources: Python IDE, Working Laptop with Internet connection

¶ Documentation

Last, but not the least part of the project. The final phase of the project where the

thesis is written. As, the thesis requires a lot of time to write correctly and

thoroughly, a dedicated time of a week has been allocated for the same. Within this

period, the presentation for the final defense is also scheduled to be prepared. The

project manager takes care of this task, with inputs from the software designer,

software developer and software tester.

Time: Again, this task has been allocated 2 weeks for its completion as it involves

writing the thesis and an additional task of preparing the presentation for the

defense.

Resources: Microsoft Word, Working Laptop with Internet connection

¶ Project Management Course

The Project Management Course (GEP) is an important task that will run in parallel

with the project till its completion (1st April). There is a total of 6 deliverables as

part of this course, which aims to teach the basics of project management. It helps

us plan our project and has the added benefit of ensuring a good plan for our project.

20

Time: 75h (37.5 hrs of Guided Learning + 37.5 hrs of Self Study)

Resources: Web Browser, PDF Viewer, Microsoft Word, Microsoft Excel

Summary

Tasks Start Date End Date Duration (Weeks) Duration (Hrs)

Initial Preparatory Research Feb 11,19 Feb 25, 19 2 50

Experiments Feb 26,19 May 23, 19 12 250

Testing May 24, 19 June 13,19 2 50

Documentation June 14, 19 June 24, 19 1 50

Project Management Course Feb 13, 19 April 01,19 6 75

Table 1: Summary of Schedule

3.1.1.2 Action Plan

We propose to execute the project as per our plan. Table 1 and Figure 1 give the tabular and Gantt

chart representation of the schedule respectively. We will finish the tasks one by one in the listed

order. The given order is logical and sequenced in such a way that there will be no scenario

wherein a task has to be started without its preceding requirement’s completion.

21

 Figure 1: Gantt Chart of Schedule

Also, we have distributed our available period of 18 weeks among the different tasks with a

reasonable estimate, accounting for 30h of work per week for a total of 540h for the project.

Optimistically, this is a definite and attainable schedule, as delays due to holidays and other

unforeseen circumstances leading to losses in the number of hours per week can be compensated

by putting in more hours in the following weeks. Thus, in extreme cases, most likely a workload

of 40h/week can be present. However, since this amount is also an easily surmountable figure,

we hope to complete the project in time.

We also realize that as in the case of any other projects, there might be unexpected obstacles

during each task, especially beginning from the Experiments phase. Thus, if we run out of time

during each task, we will go forward with the best version we have then. Of course, there will be

priorities that will be met such as more than 50% accuracy of the adversarial network. In case,

pessimistically, we are faced with a severe need for more time to deploy the project, we can cut

down on the extent of the Experiments phase. Planned weekly meetings with the director and the

co-director of this project will further help us to track, expedite and follow our proposed plan to

ensure deadlines are met.

22

3.1.2 Financial Planning

The budget of the project has been estimated in the following section. We have divided the total

budget into three main categories of Hardware, Software, and Human Resources.

3.1.2.1 Hardware Costs

Amortization has been using the formula:

Amortized Cost = Actual Cost * (No of years in Use/ Useful Years)

No of Years in Use is the length of the project in years, which is, 0.42 years (5 months)

Table 2(Fig. Below) shows the required calculation for the Hardware Costs, which amounts to a

total of Euros

Product Price Units Useful life Amortization (in Euros)

Dell Inspiron 15 715 € 1 5 years 74.47

HTC Vive 710 € 1 5 years 74.00

Google Nexus 41 299 € 1 5 years 33.56

Total estimated 1699 € 181.03

Table 2: Hardware Resources

23

3.1.2.2 Software Costs

All the software we need and will use for the project are available free of cost. They are listed as

below.

¶ Ubuntu 16.10

¶ PyCharm Community Edition

¶ Google Chrome

¶ Sublime Text Editor

¶ Libre OpenOffice Writer

¶ Libre OpenOffice Calc

¶ Various Python Packages (listed in Requirements Section)

3.1.2.3. Human Resources Costs

Role Estimated hours Euros/Hours Hours Total (in Euros)

Project Manager 50.00 135 6750

Software Designer 35.00 195 6825

Software Programmer 25.00

100 2500

Software Tester 20.00 110 2200

 Grand Total 18275.00 €

Table 3: Human Resources Budget

Table 3 gives a detailed distribution of the Human Resources budget, which is a total of 18,275

Euros.

The human resources budget has been estimated by considering the different roles required to

complete the project. We wish to bring to notice that there is only one person working on the

project and he will adopt different roles as and when required. They are:

24

¶ Project Manager

She oversees the entire project planning. She must work during all tasks and phases of the

project ensuring the project is proceeding as per plan.

¶ Software Designer

 She is responsible for the design of the program we are going to develop. She will have a

major portion of her work during the Experiments phase, when she should redesign the

project model according to the results of the experiments.

¶ Software Programmer

She is the actual coder. She writes code for the software designed by the Software Designer.

Mainly, she must work during the Experiments phase alongside the Software Designer.

¶ Software Tester

As the name suggests, she takes care of testing the workings of the entire project, detecting

bugs, and reporting it to the Project Manager. She will be continuously involved in the

initial stages. However, she will have a dedicated period as the final phase for thorough

testing of the developed project.

3.1.2.4 Indirect & Unforeseen Costs

In this section, we have considered costs incurred from other categories than Hardware, Software,

or Human Resources. It considers indirect costs and unforeseen costs. This accounts for possible

deviations in the course of the project.

25

Under Indirect Costs, we have Internet. We use eduroam Wi-Fi for the project which is free. Thus,

we have not considered expenses due to Internet. However, in case we are unable to use eduroam,

then we must spend money for Internet. This is considered under unforeseen costs. Also, we need

not consider office spaces as an expense, as the physical material constituting office space will be

intact even after out project completion for further use.

The reason for allocating a sum of money to unforeseen costs is to prepare for contingencies. We

hope the project will proceed per plan, but there might be sudden and unforeseen changes in the

plan. We should be prepared to handle these as well.

Some situations that might crop up are:

¶ Human resource estimation might exceed our budget. For example, if during the

testing phase, an error is detected and some part of the code must be modified, we

should use the Software Designer and Software Programmer during the testing

phase also which we have not accounted for in the calculation. Such instances will

come under unforeseen costs.

¶ We don’t expect to use any more hardware than we have listed but there might be

two cases in which we might have to.

¶ Any of our hardware gets corrupt or needs replacement

¶ Out laptop isn’t computationally sufficient to train our network. In that case, we

hope to use the supercomputing cluster present at Barcelona Supercomputing

Center (BSC), which is free of cost to academicians.

26

3.1.2.5 Task-based distribution

 Task 1 Task 2 Task 3 Task 4 Task 5 Grand Total (in

Euros)

Hardware Costs

Laptop 14.90 14.90 14.90 14.90 14.90

HTC Vive 14.00 14.00 14.00 14.00 14.00

Mouse 0.33 0.33 0.33 0.33 0.33

Total Hardware Costs 29.23 29.23 29.23 29.23 29.23 146.15

Human Resources

Costs

Project Manager 30.00 60.00 15.00 10.00 20.00

Software Designer 30.00 120.00 25.00 0.00 20.00

Software Programmer 0.00 80.00 10.00 0.00 10.00

Software Tester 0.00 40.00 10.00 50.00 10.00

Total Human

Resources Costs

2550.00 10000.00 2075.00 1500.00 2150.00 18275.00

Total Costs 2565.23 10015.23 2101.69 1526.69 2165.23 18374.06

Table 4: A Task based distribution of the Resources

A task-based view of the different facets of our budget has been presented in Table 4.

27

3.1.2.6 Budget Control

Seeing, that we have accounted for almost all possible deviations for the budget in the project, we

have a strong belief that the project will not exceed the proposed budget. Our consideration of

unforeseen costs and possible deviations is an extensive one and is a robust budget control

measure. Thus, it is an indicator that the proposed budget is definitely an upper limit on the actual

budget. All considerations in case the project requires more resources, including time, have been

dealt with under unforeseen costs. In case, the project finishes earlier than expected or requires

fewer resources, then we will have a lower actual budget.

3.1.2.7 Total Budget

 Cost (in Euros)

Hardware 1400.00

Software 0.00

Human Resources 18275.00

Contingencies (Unforeseen Costs) 0.00

Total 19675.00

 Table 5: Total Budget

Thus, as apparent from the Table 5 (Fig. Above), the total estimated budget for this project is

19675.00 euros.

3.1.3 Sustainability

We analyze the sustainability of the project under three main categories: Economic, Social and

Environmental Sustainability. They have been described in detail, respectively in the following

sections.

28

3.1.3.1 Economic Sustainability

Our project is economically a very sustainable one, as apparent from the budget we have proposed.

We have assessed all costs (material and human) that will be incurred during the project. We also

have accounted for indirect and unforeseen costs that may have escaped our initial estimate.

All the software used in the project is free and there is a very minimal requirement of hardware as

well. With respect to human resources, we have a reasonable and viable estimate, which can exceed

only in highly unrealistic circumstances. It is also impossible to reuse code of any kind completely.

It cannot be done with fewer resources of any kind. Thus, we are confident that this is economically

the most efficient budget possible for this project.

Next, for the realistic rendering of images for enhancing communication through virtual reality,

there is a need to record images before the beginning of the usage that is used for training and then

there is testing that occurs.

Finally, the potential return of investment of this project when implemented on videos, is huge as

it enhances the communication interaction in virtual reality. Thus, there is a huge scope for a large-

scale implementation of this project with corporate investments. We think this project qualifies as

an 8, on a scale of 1 to 10, in the Economic Sustainability analysis.

3.1.3.2 Social Sustainability

Social Sustainability is where our project scores the highest because it has a huge positive impact

on society. This project does not have any regional, political or social barriers to its successful

implementation because it deals with the problem of enhancing the communication through virtual

reality and using to various aspects of other fields like healthcare.

Also, it offers a solution that is much of a less hassle of pre-captured images for training. This

could ease the communication levels and enhance aspects of gaming and healthcare.

Considering the usefulness and the potential and efficiency of our project as a social contributor,

we award it a 9 on a scale of 1 to 10, in the Social Sustainability analysis.

29

3.1.3.3 Environmental Sustainability

Under environmental sustainability, we analyze the project during the course of development.

During the development, the only environmental concern for the project is the consumption of

electricity. The main contributor for electricity consumption is our Laptop. However, since laptops

have become a necessity in today’s world and doing a project without a laptop is next to

impossible. We chose to ignore the electricity factor. Even if we had considered it, we require 540

hours for the project. Assume out laptop consumes 200 W while working, which gives us a total

of 108 KWH, which is equivalent to 41.58 kg of CO2, which is well within the permissible amount

for any project. A positive feature of this project is that the project is also entirely paper-free. We

only use computers for analysis, design, development and implementation.

Considering all the points mentioned in the above discussion, we grade the Environmental

Sustainability of this project as 8, on a scale of 1 to 10.

3.2 Final Milestone

After the completion of the project, we compared the initial milestone estimates with the actual

temporal and financial outcomes. The main goal of the project and the methodology to be followed

did not change from the inception of the project throughout its course. Thus, there are no major

changes to temporal and financial aspects of the project as well. The comparisons are presented in

the following sections.

3.2.1 Temporal Planning

The initial schedule was an inaccurate estimate of the timeline of the project. All the tasks roughly

took the same amount of time as expected.

Some minor changes were observed in the first task of Initial Preparatory Research, which took

longer than the allocated 2 weeks. It took a week extra, owing to the fact that the project developer

30

needed more time to understand the technologies used in the project and familiarize herself with

the technical environment, apart from gaining background knowledge on the related subjects.

However, in a compensated manner, the task of Implementing the code a week less than the initial

estimate. With the thorough understanding of the project, obtained from the extensive phase of

running experiments, the task of implementations was easier than expected.

Thus, the overall schedule and deadlines remain unaffected at the final milestone.

3.2.2 Financial Planning

With respect to the budget of the project, all expected expenses were accurate. No extra resources

in terms of hardware, software or time were necessary for the completion of the project. Thus,

there were no deviations from the initial estimate of the budget.

Particularly, we needed more hardware resources because the laptop did not have enough

computational capacity to run the experiments in a timely and efficient manner. So, we used the

servers in Barcelona Supercomputing Center to remotely run our experiments and get the results

in less time. Since, we had already considered this expense under Contingencies (Table 5), for

which we had allocated 1000 euros, renting the extra computing resource did not deviate the

budget.

To be precise, we had allocated an amount that was more than required for Contingencies. The

only contingency that had to be handled was there rent of the extra hardware resource, which costs

only 300 euros.

3.2.3 Sustainability

The sustainability factor of the project remains the same across economic, social and

environmental dimensions as the project proceeded according to the plan without any major

deviations in terms of time, effort, money, or the result. The deliverables that were promised were

31

given within the expected temporal, financial, social and environmental boundaries. Thus, there

are no changes in the sustainability of the project.

3.2.4 Legal Implications

The images we are using are from the dataset created by us. Since, this is a dataset created with

images of 13 people, their privacy has been taken care of by not making it public. Thus, the project

does not infringe any law or regulation.

32

Chapter 4

About the Data

This section describes the dataset that is utilized for the project.

4.1 Creating the Dataset

The dataset consists of training and testing images. The training images consists of 3 images of 13

people each, without wearing the headsets. The testing images consists of 3 images of 13 people

each, without wearing the HTC Vive headsets. The images are captured using Google Nexus 41.

Hence, there are 39 training images and 39 testing images. The images are focused on the frontal

image of the face. The images are then resized to 256*256.

There is a masked image to mask the headsets of size 256*256, as part of the dataset.

Training Images:

Figure 2: Training Images

33

Testing Images:

Figure 3: Testing Images

34

Chapter 5

About the Model

This section describes the generative adversarial network models that we have used as the network

model. We first describe the architecture of the model in detail and then discuss the different

experiments carried out in hopes of improving the accuracy.

5.1 Architectures

The various architectures considered are described in this section.

5.1.1 Basic Layout of GAN

Generative adversarial networks (GANs) are deep neural net architectures comprised of two nets,

pitting one against the other thus are termed adversarial.

GANs were introduced in a paper by Ian Goodfellow and other researchers at the University of

Montreal, in 2014. Referring to GANs, Facebook’s AI research director Yann LeCun called

adversarial training “the most interesting idea in the last 10 years in Machine Learning.”

GANs’ potential is huge, because they can learn to mimic any distribution of data. That is, GANs

can be taught to create worlds eerily similar to our own in any domain: images, music, speech,

prose. They are robot artists in a sense, and their output is impressive.

Generative algorithms are favored over discriminated algorithms for this problem. Discriminative

algorithms try to classify input data; that is, given the features of an instance of data, they predict

a label or category to which that data belongs.

35

So discriminative algorithms map features to labels. They are concerned solely with that

correlation. One way to think about generative algorithms is that they do the opposite. Instead of

predicting a label given certain features, they attempt to predict features given a certain label. The

basic model used is a Generative Adversarial Learning (GAN).

Given a training set, this technique learns to generate new data with the same statistics as the

training set. For example, a GAN trained on photographs can generate new photographs that look

at least superficially authentic to human observers, having many realistic characteristics.

Typically, the generative network learns to map from a latent space to a data distribution of interest,

while the discriminative network distinguishes candidates produced by the generator from the true

data distribution. The generative network's training objective is to increase the error rate of the

discriminative network i.e., "fool" the discriminator network by producing novel candidates that

the discriminator thinks are not synthesized (are part of the true data distribution).

The generator is creating new, synthetic images that it passes to the discriminator. It does so in the

hopes that they, too, will be deemed authentic, even though they are fake. The goal of the generator

is to generate passable hand-written digits: to lie without being caught. The goal of the

discriminator is to identify images coming from the generator as fake.

The simplest type of GAN consists of generator and discriminator. In this case the generator and

the discriminator are just simple multi-layer perceptrons. GANs simply just seek to optimize the

mathematical equation using stochastic gradient descent. The generator here takes in a noise vector

‘z’, usually 100-dimensional) and produce an image G(z), which is just a flattened vector of all the

pixels in the image. This image is used in the equations we saw previously to simply update the

weights of the generator and the discriminator by computing gradients through

backpropagation. Here are the steps a GAN takes:

¶ The generator takes in random numbers and returns an image.

¶ This generated image is fed into the discriminator alongside a stream of images taken from

the actual, ground-truth dataset.

36

¶ The discriminator takes in both real and fake images and returns probabilities, a number

between 0 and 1, with 1 representing a prediction of authenticity and 0 representing fake.

Figure 4: Basic Generative Adversarial Network Architecture

When the discriminator is trained, the generator values are constant; and when the generator is

trained, the discriminator is constant. Each should train against a static adversary. For example,

this gives the generator a better read on the gradient it must learn by.

Each side of the GAN can overpower the other. If the discriminator is too good, it will return

values so close to 0 or 1 that the generator will struggle to read the gradient. If the generator is

too good, it will persistently exploit weaknesses in the discriminator that lead to false negatives.

This may be mitigated by the nets’ respective learning rates.

A known dataset serves as the initial training data for the discriminator. Training it involves

presenting it with samples from the training dataset, until it achieves acceptable accuracy. The

generator trains based on whether it succeeds in fooling the discriminator. The basic components

of every GAN are two neural networks - a generator that synthesizes new samples from scratch,

and a discriminator that takes samples from both the training data and the generator’s output and

predicts if they are “real” or “fake”. The generator input is a random vector (noise) and therefore

its initial output is also noise. Over time, as it receives feedback from the discriminator, it learns

37

to synthesize more “realistic” images. The discriminator also improves over time by comparing

generated samples with real samples, making it harder for the generator to deceive it.

1. We take some noise from random distribution, then we feed it to the Generator G to

produce the fake x (label y=0) → (x,y) input-label pair.

2. We take this fake pair and the real pair x (label y =1) and feed it to the Discriminator

D alternatively.

3. The discriminator D is a binary classification neural network so it calculates the loss for

both fake x and real x and combine them as the final loss as D loss.

4. The generator G also calculates the loss from its noise as G loss since each network has a

different objective function.

5. The two losses go back to their respective networks to learn from the loss (adjusting the

parameters w r t the loss)

6. Apply any optimization algorithm (Grad descent, ADAM, RMS prop, etc..) Repeat this

process for certain no of epochs or as long as you wish.

Each network has goals so these two networks pit against each other during the training.

The generator G gets stronger and stronger at generating the real type of results and

the discriminator D also gets stronger and stronger at identifying which one is real, which one is

fake.

38

Figure 5: Comparison of Discriminative and Generative Neural Network

In a typical GAN, a random code z is fed into the generator G to produce a ‘fake’ sample. A

discriminator network D is then (separately) fed both the generated sample x’, and a real sample x

from the training set. It assigns a probability of being ‘real’ to each, which depends on how

convincing the fake is, and how sophisticated the discriminator has become. Both these

probabilities are then used to compute the adversarial loss, from which we train both D and G via

backpropagation. As the training iterations proceed, the discriminator is updated by ascending its

stochastic gradient and the generator is updated by descending its stochastic gradient.

5.1.2 Edge-Connect Model

Along with the basic layout as described in the previous section, Edge-Connect divides the process

into 2 stages. The two stages are edge generator and image completion. There is basic model of

GAN utilized here. Here with the two steps as edge generator and image completion network, there

are 2 GAN structures for each of the stage.

39

As in the considered base model, for the process of edge detection, the HED [16] is used to generate

the sketch data, which corresponds to the user’s input to modify the facial image. After that, the

curves are smoothened and the small edges are erased. To create color domain data, blurred images

are created by applying a median filtering with size 3 followed by 20 application of bilateral filter.

GFC is used to segment the face, and each segmented parts were replaced with the median color

of the corresponding parts. When creating data for the color domain, histogram equalization was

not applied to avoid color contamination from light reflection and shadowing. Then, the curve is

smoothened and the small objects are erased. Finally, the mask is multiplied, adopting a process

similar to the previous free-form mask, and color images and get color brushed images.

The network architecture is based on encoder-decoder architecture like the U-net [13] and SN-

patchGAN is used as the discrimination network. The network structure produces high-quality

synthesis results with image size of 256×256 while achieving stable and fast training. The network

also trains generator and discriminator simultaneously like the other networks. The generator

receives incomplete images with user input to create an output image in the RGB channel, and

inserts the masked area of the output image into the incomplete input image to create a complete

image. The discriminator receives either a completed image or an original image (without

masking) to determine whether the given input is real or fake.

5.1.3 Final Model

The final model works on the base model as GAN. In our network, as synonymous to the Edge-

Connect model, there are two stages of edge generation and image completion network.

Edges are defined as an abrupt change in some low­level image feature such as brightness or color.

Edge generation is the process of detecting the edges of the object in the image. The intensity

changes can be detected by either finding the maxima or minima of the first derivative or finding

zero crossings in the second derivative of the image. Gradient based detects edges by looking for

40

the maxima or minima of the first derivate of the image. Laplacian based model detects edges by

searching for the zero crossing of the second derivate of the image.

Figure 6: Gradient Based Detection (left) and Laplacian based Detection (right)

Canny Edge Generator is used for the process as used in the Edge-Connect. The process begins

with the removal of noise using Gaussian filter. The first order derivatives of the image using

operators like the Sobel operator. For every pixel, the non-maximal suppression is calculated and

hysteresis thresholding is performed to get the edge model. The difference from the Edge-Connect

model is that the process of edge filtering happens by determining conditional probability of a

point being an Edge. The softmax function allows a probabilistic output, allowing multiple outputs

to be generated as edge models.

The GAN network consists of a generator and discriminator. The generator and discriminator are

separated by a structure termed as the self-attention structure of a convolutional neural network.

The network trains the generator, self-attention layer and the discriminator simultaneously like the

other networks. The generator receives incomplete images, images with the masked headsets as

the user input to create an output image in the RGB channel, and inserts the masked area of the

output image into the incomplete input image to create a coarse/incomplete image. This image is

then passed through the self-attention layer.

The self-attention layer learns where to borrow or copy feature information from known

background patches to generate missing patches. It is differentiable, thus can be trained in deep

models, and fully-convolutional, which allows testing on arbitrary resolutions. We consider the

41

problem where we want to match features of missing pixels (foreground) to surroundings

(background). We first extract patches (3 × 3) in background and reshape them as convolutional

filters. To match the foreground patches f(x, y) with background ones b(x’, y’), we measure with

normalized inner product (cosine similarity) as below.

where s(x, y, x’, y’) represents similarity of patch centered in background (x’, y’) and foreground

(x, y). Then we weigh the similarity with scaled softmax along (x’, y’) dimension to get attention

score for each pixel s(x, y, x’, y’) described as s*(x, y, x’, y’) = softmax(λs(x, y, x’, y’)) where λ is

a constant value. This is efficiently implemented as convolution and channel-wise softmax.

Finally, we reuse extracted patches b(x’, y’) as deconvolutional filters to reconstruct foregrounds.

Values of overlapped pixels are averaged. Firstly we use convolution to compute matching score

of foreground patches with background patches (as convolutional filters). Then we apply softmax

to compare and get attention score for each pixel. The softmax function The main advantage of

using Softmax is the output probabilities range. The range will 0 to 1, and the sum of all the

probabilities will be equal to one. Finally we reconstruct foreground patches with background

patches by performing deconvolution on attention score. The contextual attention layer is

differentiable and fully-convolutional. The structure of the self-attention layer is described below.

Figure 7: Self-Attention Layer

42

The discriminator then receives either a completed image or an original image (without masking)

to determine whether the given input is real or fake. SN-PatchGAN is used as the network

architecture of the discriminator here.

We use a combination of Mean Squared Error, L1 loss and general GAN loss is effective to restore

large erased portions. In this case, the masked headset corresponds to a large portion of the missing

in the image. The generator network takes an image with white pixels filled in the holes and a

binary mask indicating the hole regions as input pairs, and outputs the final completed image as

part of the input and output configurations. The input also has a mask with a corresponding binary

mask to handle holes with variable sizes, shapes and locations. The input to the network is a 256

× 256 images sampled randomly during training, and the trained model can take an image of

different sizes with multiple holes in it for testing.

Suitable training data is a very important factor for increasing the training performance of the

network and increasing the responsiveness to user input. To train our model, we used the dataset

we have created, after several pre-processing steps as described as following. We resize the images

to 256×256 pixels before attaining the trained dataset. Since the headsets are focused to cover the

eyes in the face image, we used a free-from mask based on the eye position to train network. Using

free-form mask and face segmentation GFC as used in the base model, various options for the

sketch image are generated. This is a crucial step which enabled the system to produce persuasive

results for the user input case. However, when training on the facial images, a free draw mask is

randomly applied with eye-positions as a starting point in order to express complex parts of the

eyes.

As in the considered base model of Edge-Connect, for the process of edge detection, the HED [16]

is used to generate the sketch data, which corresponds to the user’s input to modify the facial

image. After that, the curves are smoothened and the small edges are erased. To create color

domain data, blurred images are created by applying a median filtering with size 3 followed by 20

application of bilateral filter. GFC is used to segment the face, and each segmented parts were

replaced with the median color of the corresponding parts. When creating data for the color

domain, histogram equalization was not applied to avoid color contamination from light reflection

43

and shadowing. Then, the curve is smoothened and the small objects are erased. Finally, the mask

is multiplied, adopting a process similar to the previous free-form mask, and color images and get

color brushed images.

5.1.3.1 Generator

The generator is based on U-net [10] and all convolution layers use gated convolutions, by using

a using 3x3 size kernel like the self-attention layer. The generator differs from that of the Edge-

Connect Model, by using dilated convolutions instead of a residual blocks model. Local signal

normalization (LRN) is applied after feature map convolution layers excluding other soft gates.

LRN is applied to all convolution layers except input and output layers. The encoder of our

generator receives input tensor of size 256×256×9; an incomplete RGB channel image with a

removed region to be edited, a binary sketch that describes the structure of removed parts, a RGB

color stroke map, a binary mask and a noise. The noise is the gaussian noise that acts as the first

layer. The encoder downsamples input 7 times using 2 stride kernel convolutions, followed by

dilated convolutions before upsampling. The decoder uses transposed convolutions for

upsampling. Then, skip connections were added to allow concatenation with previous layer with

the same spatial resolution. We used the ELU activation function after each layer except for the

output layer, which uses a tanh function.

Overall, the generator consists of 16 convolution layers and the output of the network is an RGB

image of same size of input (256×256). We replaced the remaining parts of image outside the mask

with the input image before applying the loss functions to it. This replacement allows the generator

to be trained on the edited region exclusively. The generator is trained with losses as: MSE, L1

loss, per-pixel losses, perceptual loss, style loss and total variance loss. The generic GAN loss

function is also used in the network.

5.1.3.2 Discriminator

The discriminator has SNPatchGAN [17] structure. Also we use 3×3 size convolution kernel and

applied gradient penalty loss term. A convolutional neural network is used as the discriminator

where the input consists of image, mask and guidance channels, and the output is a 3-D feature of

44

shape R(h×w×c), where h, w, c representing the height, width and number of channels respectively.

Six strided convolutions with kernel size 5 and stride 2 is stacked to captures the feature statistics

of Markovian patches. Below describes the discriminator.

Figure 8: Structure of Discriminator

5.2 Experiments with Models

The training dataset consists of 39 images of people without wearing the virtual reality headsets

(here HTC Vive glasses). The process begins with edge detection and edge generation. The edge

generation is preceded with a probabilistic model, which helps in the generation of multiple images

corresponding to one masked image. The model is able to generate photo-realistic results with a

large fraction of image structures remaining intact. Furthermore, by including style loss, the

inpainted images lack any “checkerboard” artifacts in the generated results. As importantly, the

inpainted images exhibit minimal blurriness.

The generator uses a kernel of 3 and stride 2. The discriminator uses a kernel of 5 and stride 2. The

model was initially trained with images of one person which resulted in blurred images. Training

with 39 images betters the results, reducing the blurriness. Hence the more the training images, the

better the network.

45

5.2.1 Tuning the Learning rate

The learning rate is probably the most important parameter in any network. It determines the rate

at which the weights of the network are modified and is the key variable for the Gradient Descent

Algorithm, which is the fundamental optimization algorithm. We used a momentum based

approach. Momentum is a technique for accelerating Gradient Descent Algorithm. Using

momentum, we can achieve faster learning rates and better our chances of converging to a global

minimum. We also used a learning decay. It is the measure by which the learning rate will be

reduced in successive epochs. This is done in order to ensure continuous learning even at later

epochs. Otherwise, the learning will satiate after some epochs because the learning rate will

become too high. Thus, it needs to be gradually reduced for optimal learning. 5.2.2 Tuning the

dropout rate

To reduce overfitting, we include a dropout layer after each of the layer and the fully connected

layers. The earmark of dropout layers is that there is only one parameter, the dropout rate is the

probability with which neurons are dropped in the next layer.

5.2.2 Tuning the Number of Layers

The number of convolutional layers and fully connected layers in our basic model was decided to

be 2 each. This was fixed at 2 because having more layers would create more parameters and thus

exponentially increase the size of our model for every layer that was added. The main objective of

this model was to achieve results close to the original image.

5.2.3 Batch Normalization

We used Batch Normalization as suggested in [19] to improve the basic model. Batch

Normalization draws its strength from making normalization a part of the part of the model

architecture and performing the normalization for each training mini-batch. Normalization is often

used as a pre-processing step to make the data comparable across features. As the data flows

46

through a deep network, the weights and parameters adjust those values, sometimes making the

data too big or too small again - a problem the authors of [19] refer as “internal covariate shift”.

By normalizing the data in each mini-batch, this problem is largely avoided. Batch Normalization

allows us to use much higher learning rates and to be less careful about initialization. It also acts

as a regularizer.

5.2.4 Exponential Linear Units

Rectified Linear Units (ReLUs) have been the standard activations used in Neural Networks. Their

performance has been proved empirically. However recently, many improvements to ReLUs have

been suggested and we used the most recent and advanced one, which were Exponential Linear

Units (ELUs).

In contrast to ReLUs, ELUs have negative values which allows them to push mean unit activations

close to zero. Zero means speed up learning because they bring the gradient closer to the unit

natural gradient. Like batch normalizations, ELUs push the mean towards zero, but with a

significantly smaller computational footprint. ELUs saturate to a negative value with smaller

inputs and thereby decrease the propagated variation and information. Consequently, dependencies

between ELUs are much easier to model and distinct concepts are less likely to interfere.

5.2.5 Noise

In the model, we also tried adding a Gaussian Noise Layer as the first layer in order to add noise

to the input data. Adding noise to the training input will help in making the model generalize to

other inputs better.

47

5.2.6 Optimizers

The most common choice for optimizers for neural networks in the Stochastic Gradient Descent

(SGD) Optimizer. We used the same optimizer for all the experiments. SGD requires us to

manually tune the learning rate, decay and momentum. The methods in which they were tuned in

Section 5.2.1 ‘Tuning the learning rate’.

48

Chapter 6

Experimental Results

6.1 Procedure

In this section, we present ablation studies with comparisons to recent related works, followed by

face editing results. All the experiments were executed on NVIDIA(R) Tesla(R) V100 GPU and

Power9 @ 2.3GHz CPU with Tensorflow v1.10, CUDA v8, Cudnn v7 and Python 3. For testing,

it takes 54s on GPU for resolution 256×256 on average regardless of size and shape of inputs.

The training dataset consists of 39 images of people without wearing the virtual reality headsets

(here HTC Vive glasses). The process begins with sketch development and color filling. The

generator is a generative adversarial network and the discriminator a convolution neural network.

Our model is able to generate photo-realistic results with a large fraction of image structures

remaining intact. The model was initially trained with images of one person which resulted in

blurred images. Training with 39 images betters the results, reducing the blurriness. Hence the

more the training images, the better the network. As importantly, the inpainted images exhibit

minimal blurriness.

The sketched models, that are formed by the Canny Edge-Detector are then passed through color

generation layer. Histogram equalization is used to create sketches and HED is then used for

smoothing and erasing the image for enhancing the quality of the output image. The Canny Edge

detector has a probabilistic function to increase the number of outputs for a corresponding input

image. Each segment is then replaced with the corresponding median color.

49

The testing results below indicate the masked image with the corresponding 5 outputs.

Fi gur e

Figure 9: Test Results 1; Input (first image), outputs (unmasked images of first and second row),

true image (third row)

50

The testing results show the original image and the 6 corresponding outputs after masking and

inpainting processes.

Figure 10: Testing Results 2; Input (true image), outputs (unmasked images of second and third

row)

51

Chapter 7

Conclusion & Future Work

7.1 Conclusion

We successfully developed a network with Generative Adversarial Network, which can remove

the headsets from the images to enhance the experience of Virtual Reality. The advantage of this

model is that there is no current method publicly available to solve the problem, hence this serves

as an initial prototype for the problem using images. Once the images are aggregated together with

a timer, the system has scope to be implemented in videos for virtual reality.

This technology enables viewing changes in facial expressions and emotions which enhances the

communication through videos and video conferences. This has benefits for mental disorders and

for turning VR into a viable short term treatment for pain that patients can use at home as an

alternative to drugs. These benefits indicate the importance of this problem and the corresponding

benefits.

7.2 Future Work

The project focuses on removal of headsets in images. This can further be enhanced to videos by

aggregating the images to form the video and keeping track of time to implement the

communication effectively. What we have developed is a prototype for the initialization of the

project, which I hope will enhance and develop effectively to achieve the goal of real time headset

removal.

While we have shown the potential of our technology, its applications extend beyond Mixed

Reality. Removal of headsets in Headset removal is poised to enhance communication and social

interaction in VR itself with diverse applications like VR video conference meetings, multiplayer

52

VR gaming, and exploration with friends and family. Going from an utterly blank headset to being

able to see, with photographic realism, the faces of fellow VR users promises to be a significant

transition in the VR world, and we are excited to be a part of it.

7.3 Personal Conclusion

At the outset, I would like to place on record my gratitude to Professor Ramon Morros, Professor

Javier Ruiz Hidalgo and Professor Nuria Castell for giving me the opportunity to work on such an

exciting and enriching project and to help me throughout the duration. This project was just the

right difficulty for me, wherein, neither was it too easy being a walk nor too hard, seemingly

impossible. It was challenging and piqued my curiosity to put my best efforts into it, since there

was no available solution to the problem. Being my first foray into the domain of Image Processing

and Inpainting, I learnt a lot thanks to this project, both academically and practically. The

background knowledge that I had to acquire before beginning the project gave me a thorough

theoretical exposure to generative adversarial networks and convolutional neural networks.

Reading through so many research papers and articles in this domain, I obtained a very good

awareness of the latest advances, best practices and conventions in the field. After starting the

work on the project, I was exposed to the practical side of implementing adversarial networks and

along with it, I was got a good experience of Image Processing and File handling in Python as

well. Working with such a comprehensive codebase taught me how important modularity and

writing clean code was, when building software. More importantly, the work that I did has inspired

me to delve deeper into the domain and pursue higher studies in the same domain. Apart from

these technical insights, I gained a lot of valuable non-technical skills too. Running experiments

overnight and waiting for results, taught me how important patience and discipline were in

research. Also, being an exchange student in Barcelona, I was able to live and relish a beautiful

city with a great culture. The completion of this project, as a one-man team, in a new environment,

in a new city has boosted my confidence and made me ready to take on bigger challenges.

However, this would not have been possible without the constant support and expert guidance of

Professor Ramon Morros and Professor Javier Ruiz Hidalgo, to whom I am eternally grateful. So,

on the whole, this project has given me a wonderful experience which has improved my skills and

character. I take with me a lot of knowledge and cherishable memories, as I move forward in life.

53

Chapter 8

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI, volume 16, pages

265–283, 2016. 6

[2] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative

adversarial networks for multidomain image-to-image translation. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018. 3

[3] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2414–2423, 2016. 1

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of

wasserstein gans. In Advances in Neural Information Processing Systems, pages 5767–5777, 2017.

[5] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent image completion.

ACM Transactions on Graphics (TOG), 36(4):107, 2017. 1, 3, 4

[6] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional

adversarial networks. CVPR, 2017. 2

[7] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-

resolution. In European

Conference on Computer Vision, pages 694–711. Springer, 2016. 5

54

[8] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,

stability, and variation. arXiv preprint arXiv:1710.10196, 2017. 3, 4

[9] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face completion. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), volume 1, page 3, 2017. 1, 3, 4

[10] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro. Image inpainting for

irregular holes using partial convolutions. arXiv preprint arXiv:1804.07723, 2018. 4

[11] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative

adversarial networks. arXiv preprint arXiv:1802.05957, 2018. 5

[12] T. Portenier, Q. Hu, A. Szabo, S. Bigdeli, P. Favaro, and M. Zwicker. Faceshop: Deep sketch-

based face image editing. arXiv preprint arXiv:1804.08972, 2018. 2, 3, 4, 6, 7

[13] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical

image segmentation. In International Conference on Medical image computing and computer-

assisted intervention, pages 234–241. Springer, 2015. 2, 3, 4

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015. 5

[15] M. Weber. Autotrace, 2018. http://autotrace.sourceforge.net. 3, 7

[16] S. ”Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of IEEE International

Conference on Computer Vision, 2015. 3

[17] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image inpainting with

gated convolution. arXiv preprint arXiv:1806.03589, 2018. 2, 3, 4, 6, 7

55

[18] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting with

contextual attention. arXiv preprint arXiv:1801.07892, 2018. 3, 6, 7, 9

[19] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros. Real-time user-

guided image colorization with learned deep priors. arXiv preprint arXiv:1705.02999, 2017. 2, 3

[20] Y. Zhao, B. Price, S. Cohen, and D. Gurari. Guided image inpainting: Replacing an image

region by pulling content from another image. arXiv preprint arXiv:1803.08435, 2018. 2

[21] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired imageto-image translation using cycle-

consistent adversarial networkss. In Computer Vision (ICCV), 2017 IEEE International

Conference on, 2017. 2

[22] Nazeri, Kamyar and Ng, Eric and Joseph, Tony and Qureshi, Faisal and Ebrahimi, Mehran,

EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning, arXiv preprint, 2019.

56

Appendix A: Requirements

The following tools are required for the project.

Software

¶ Python was chosen as the language of implementation as it is one of the best and most

famous programming/ scripting languages, aptly suited for the project. Python enables us

to use a highly modular framework with a huge library of packages which we can use for

the deployment of the project.

Python Packages

o To get the data from the server we use Requests, which is a HTTP API built for

python.

o To process the data, we use PIL (Python Imaging Library).

o To store the processed data as datasets, we use h5py.

o To implement the generative adversarial network model, we use pytorch. PyTorch

is a high-level neural networks library, written in Python. Scalable distributed

training and performance optimization in research and production is enabled by the

torch due to distributed backend. Deep integration into Python allows popular

libraries and packages to be used for easily writing neural network layers in Python.

A rich ecosystem of tools and libraries extends PyTorch and supports development

in computer vision, NLP and more.

¶ We also use Git, the best way for project management and version control. Github gives

us a git repository on the cloud, which can be used for synchronization of different files

and security of the project.

57

¶ PyCharm, a Python IDE developed by JetBrains is used for the working of the project. It

has automatic synchronization with Git and helpful features like code completion,

automatic error checking, suggestions, package control, logging etc.

Hardware

¶ Laptop, our primary workstation. This is bundled with basic software (Ubuntu 16.04,

Google Chrome, Libre OpenOffice, Sublime Text Editor) and internet connection.

¶ HTC Vive, The HTC Vive is a virtual reality headset developed by HTC and Valve

Corporation. The headset uses "room scale" tracking technology, allowing the user to move

in 3D space and use motion-tracked handheld controllers to interact with the environment.

They are used for creating our dataset.

58

Appendix B: Background Knowledge

Generative Adversarial Networks

Generative adversarial networks (GANs) are deep neural net architectures comprised of two nets,

pitting one against the other thus the “adversarial”.

GANs were introduced in a paper by Ian Goodfellow and other researchers at the University of

Montreal, in 2014. Referring to GANs, Facebook’s AI research director Yann LeCun called

adversarial training “the most interesting idea in the last 10 years in Machine Learning.”

GANs’ potential is huge, because they can learn to mimic any distribution of data. That is, GANs

can be taught to create worlds eerily similar to our own in any domain: images, music, speech,

prose. They are robot artists in a sense, and their output is impressive.

Generative algorithms are favored over discriminated algorithms for this problem. Discriminative

algorithms try to classify input data; that is, given the features of an instance of data, they predict

a label or category to which that data belongs.

So discriminative algorithms map features to labels. They are concerned solely with that

correlation. One way to think about generative algorithms is that they do the opposite. Instead of

predicting a label given certain features, they attempt to predict features given a certain label. The

basic model used is a Generative Adversarial Learning (GAN). Given a training set, this technique

learns to generate new data with the same statistics as the training set. For example, a GAN trained

on photographs can generate new photographs that look at least superficially authentic to human

observers, having many realistic characteristics. Typically, the generative network learns to map

from a latent space to a data distribution of interest, while the discriminative network distinguishes

candidates produced by the generator from the true data distribution. The generative network's

training objective is to increase the error rate of the discriminative network i.e., "fool" the

59

discriminator network by producing novel candidates that the discriminator thinks are not

synthesized (are part of the true data distribution).

The generator is creating new, synthetic images that it passes to the discriminator. It does so in the

hopes that they, too, will be deemed authentic, even though they are fake. The goal of the generator

is to generate passable hand-written digits: to lie without being caught. The goal of the

discriminator is to identify images coming from the generator as fake.

Convolutional Neural Networks

Convolutional networks (LeCun, 1989), also known as convolutional neural

networks or CNNs, are a specialized kind of neural network for processing data that

has a known, grid-like topology. Examples include time-series data, which can be

thought of as a 1D grid taking samples at regular intervals, and image data, which

can be thought of as a 2D grid of pixels. Convolutional networks have been

tremendously successful in practical applications. The name “convolutional neural

network” indicates that the network employs a mathematical operation called

convolution. Convolution is a specialized kind of linear operation. Convolutional

networks are simple neural networks that use convolution in place of general matrix

multiplication in atleast one of their layers.

Convolution leverages three important ideas that can help improve a machine

learning system: sparse interactions, parameter sharing and equivariant

representations.

¶ Traditional neural network layers use matrix multiplication by a matrix of

parameters with a separate parameter describing the interaction between each

60

input and each output unit. This means every output unit interacts with every

input unit. Convolutional networks, however, typically have sparse

interactions (also referred as sparse connectivity or sparse weights). This is

accomplished by making the kernel smaller than the input.

¶ Parameter sharing refers to using the same parameter for more than one

function in a model. In a traditional neural net, each element of the weight

matrix is used exactly once when computing the output layer. It is multiplied

by one element of the input and then never revisited. As a synonym for

parameter sharing, one can say that a network has tied weights, because the

value of the weight applied to one input is tied to the value of a weight applied

elsewhere. In a convolutional neural net, each member of the kernel is used at

every position of the input.

¶ A convolutional neural network consists of an input and an output layer, as

well as multiple hidden layers. The hidden layers of a CNN typically consist

of a series of convolutional layers that convolve with a multiplication or other

dot product. The activation function is commonly a RELU layer, and is

subsequently followed by additional convolutions such as pooling layers,

fully connected layers and normalization layers, referred to as hidden layers

because their inputs and outputs are masked by the activation function and

final convolution.

